石家庄市赵县2020-2021学年人教版七年级下期末数学试卷(解析版)
最新人教版数学七年级下学期《期末考试题》含答案解析
2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题 共 30 分,每小题 3 分.在每小题给出的四个选项中,只有一项是符合 题目要求的)1. 已知a b ,则下列四个不等式中,不正确的是( ) A . 22a b --B . 22a b --C . 22a bD . 22a b ++ 2. 在实数4、3、13、0.3、π、2.1234567891011121314…(自然数依次排列)、38-中,无理数有( ) A . 2个 B . 3个 C . 4个 D . 5个3. 下列命题中,属于真命题的是 ( )A . 两个锐角的和是锐角B . 在同一平面内,如果A ⊥B ,B ⊥C ,则A ⊥C C . 同位角相等D . 在同一平面内,如果A //B ,B //C ,则A //C 4. 点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A . (﹣3,4)B . ( 3,﹣4)C . (﹣4,3)D . ( 4,﹣3) 5. 如图,直线A B ,C D 被直线EF 所截,交点分别为点E,F ,若A B ∥C D ,下列结论正确的是( )A . ∠2=∠3B . ∠2=∠4C . ∠1=∠5D . ∠3+∠A EF=180°6. 下列说法正确是( )A . 周长相等的锐角三角形都全等B . 周长相等的直角三角形都全等C . 周长相等钝角三角形都全等D . 周长相等的等边三角形都全等7. 某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:节电量(度)1020 30 40 户数 2 15 10 3则五月份这30户家庭节电量的众数与中位数分别为( )A . 20,20B . 20,25C . 30,25D . 40,208. 点A 在直线m 外,点B 在直线m 上,AB 、两点的距离记作a ,点A 到直线m 的距离记作b ,则a 与b 的大小关系是 ( )A . a b >B . a b ≤C . a b ≥D . a b <9. 不等式组42103x x >⎧⎪⎨-+≥⎪⎩的整数解为( ) A . 0,1,2,3 B . 1,2,3C . 2,3D . 3 10. 要反映某市某一周每天的最高气温的变化趋势,宜采用( )A . 条形统计图B . 扇形统计图C . 折线统计图D . 以上均可二、填空题(本共 18 分,每小题 3 分)11. 分解因式:﹣m 2+4m ﹣4═_____.12. 已知点A (﹣2,﹣1),点B (A ,B ),直线A B ∥y 轴,且A B =3,则点B 的坐标是___13. 小华将直角坐标系中的猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为(– 4,3)、(– 2,3),则移动后猫眼的坐标为__________.14. 如图,A D 是△A B C 的中线,E 是A D 的中点,如果S △A B D =12,那么S △C D E =__. 15. 在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点.若整点P (m+2,2m ﹣1)在第四象限,则m 的值为_____.16. 已知等腰三角形的两条边长分别是3C m、7C m,那么这个等腰三角形的周长是________C m.三、解答题17. 计算:3827﹣(π﹣1)0﹣(12)﹣1.18. 已知A ﹣2B =﹣1,求代数式(A ﹣1)2﹣4B (A ﹣B )+2A 的值.19. 分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.20. 解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.21. 已知:如图,点D 是△A B C 内一点,A B =A C ,∠1=∠2.求证:A D 平分∠B A C .22. 已知:如图,直线l分别与直线A B ,C D 相交于点P,Q,PM垂直于PQ,∠1+∠2=90°.求证:A B ∥C D .23. 列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T恤.若两种纪念品共生产6000件,且T 恤比帽子的2倍多300件.问生产帽子和T恤的数量分别是多少?24. 某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题:(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是 ;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数是 .25. 如图,在直角坐标平面内有两点A (0,2)、B (﹣2,0)、C (2,0). (1)△A B C 的形状是 等腰直角三角形;(2)求△A B C 的面积及A B 的长;(3)在y 轴上找一点P ,如果△PA B 是等腰三角形,请直接写出点P 的坐标.答案与解析一、选择题(本大题 共 30 分,每小题 3 分.在每小题给出的四个选项中,只有一项是符合 题目要求的)1. 已知a b ,则下列四个不等式中,不正确的是( ) A . 22a b -- B . 22a b -- C . 22a b D . 22a b ++【答案】B【解析】【分析】根据不等式的性质即可得出答案.在不等式的左右两边同时加上或减去一个数,不等式成立;在不等式的左右两边同时乘以或除以一个正数,不等式成立;在不等式的左右两边同时乘以或除以一个负数,不等符号需要改变.【详解】根据不等式的性质可知:-2A >-2B ,故选B .【点睛】本题主要考查的是不等式的基本性质,属于基础题型.记住不等式的性质是解决这个问题的关键.2.、13、0.3、π、2.1234567891011121314…(自然数依次排列),无理数有( ) A . 2个B . 3个C . 4个D . 5个 【答案】B【解析】π,2.1234567891011121314…(自然数依次排列),共3个,故选B .3. 下列命题中,属于真命题的是 ( )A . 两个锐角和是锐角B . 在同一平面内,如果A ⊥B ,B ⊥C ,则A ⊥C C . 同位角相等D . 在同一平面内,如果A //B ,B //C ,则A //C 【答案】D【解析】【分析】【详解】试题解析:A . 两个锐角的和是锐角,错误;B . 同一平面内,如果A ⊥B ,B ⊥C ,则A ∥C ,错误; C . 同位角相等,错误;D . 在同一平面内,如果A //B ,B //C ,则A //C ,正确.故选D .4. 点P是第二象限的点且到x轴的距离为3、到y轴的距离为4,则点P的坐标是()A . (﹣3,4)B . ( 3,﹣4)C . (﹣4,3)D . ( 4,﹣3)【答案】C【解析】【分析】【详解】由点且到x轴的距离为3、到y轴的距离为4,得|y|=3,|x|=4.由P是第二象限的点,得x=-4,y=3.即点P的坐标是(-4,3),故选C .5. 如图,直线A B ,C D 被直线EF所截,交点分别为点E,F,若A B ∥C D ,下列结论正确的是()A . ∠2=∠3B . ∠2=∠4C . ∠1=∠5D . ∠3+∠A EF=180°【答案】D【解析】试题解析:∵A B ∥C D ,∴∠3+∠A EF=180°.所以D 选项正确,故选D .6. 下列说法正确的是()A . 周长相等的锐角三角形都全等B . 周长相等直角三角形都全等C . 周长相等的钝角三角形都全等D . 周长相等的等边三角形都全等【答案】D【解析】试题分析:根据全等三角形的判定方法依次分析各选项即可作出判断.A .周长相等的锐角三角形不一定全等,B .周长相等的直角三角形不一定全等,C .周长相等的钝角三角形不一定全等,故错误;D .周长相等的等腰直角三角形都全等,本选项正确.考点:全等三角形的判定点评:全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7. 某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:则五月份这30户家庭节电量的众数与中位数分别为( )A . 20,20B . 20,25C . 30,25D . 40,20【答案】A【解析】试题解析:由表格中的数据可得,五月份这30户家庭节电量的众数是:20,中位数是20,故选A .8. 点A 在直线m 外,点B 在直线m 上,AB 、两点的距离记作a ,点A 到直线m 的距离记作b ,则a 与b 的大小关系是 ( )A . a b >B . a b ≤C . a b ≥D . a b <【答案】C【解析】【分析】分两种情况:①A 和B 构成一个直角三角形,且A 是斜边,B 是直角边,所以A >B ;②若B 是垂足时,A =B .【详解】如图,A 是斜边,B 是直角边,∴A >B ,若点A 、点B 所在直线垂直直线m,则A =B ,故选C .【点睛】本题考查了点到直线的距离,明确点到直线的距离是这点到直线的垂线段的长度,属于基础题.9. 不等式组42103xx>⎧⎪⎨-+≥⎪⎩的整数解为()A . 0,1,2,3B . 1,2,3C . 2,3D . 3 【答案】B【解析】试题分析:解不等式4x>2,可得x>12;解不等式103x-+≥,解得x≤3,因此不等式组的解集为12<x≤3,所以整数解为1,2,3.故选B .点睛:此题主要考查了不等式组的解法,根据不等式的解法分别解两个不等式,取其公共部分,然后确定其整数解即可.10. 要反映某市某一周每天的最高气温的变化趋势,宜采用()A . 条形统计图B . 扇形统计图C . 折线统计图D . 以上均可【答案】C【解析】【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.由此即可解答.【详解】根据统计图的特点,要反映某市某一周每天的最高气温的变化趋势,应采用折线统计图.故选C .【点睛】本题考查了折线统计图的特点,熟知折线统计图表示的是事物的变化情况是解决问题的关键.二、填空题(本共18 分,每小题3 分)11. 分解因式:﹣m2+4m﹣4═_____.【答案】﹣(m﹣2)2【解析】试题解析:原式=-(m2-4m+4)=-(m-2)2.12. 已知点A (﹣2,﹣1),点B (A ,B ),直线A B ∥y轴,且A B =3,则点B 的坐标是___【答案】(﹣2,2)或(﹣2,﹣4)【解析】试题解析:∵A (-2,-1),A B ∥y轴,∴点B 的横坐标为-2,∵A B =3,∴点B 的纵坐标为-1+3=2或-1-3=-4,∴B 点的坐标为(-2,2)或(-2,-4).13. 小华将直角坐标系中猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为(– 4,3)、(– 2,3),则移动后猫眼的坐标为__________.【答案】(-1,3)、(1,3)【解析】【分析】利用坐标系中的移动法则右加左减,上加下减来确定向右平移后的各点的坐标即可【详解】∵向右平移三个单位长度,横坐标分别加3,纵坐标不变∴移动后猫眼的坐标为:(-1,3)、(1,3)【点睛】在坐标系中确定点的位置和平移是本题的考点,熟练掌握平移法则是解题的关键.14. 如图,A D 是△A B C 的中线,E是A D 的中点,如果S△A B D =12,那么S△C D E=__.【答案】6.【解析】试题解析:△A C D 的面积=△A B D 的面积=12,△C D E的面积=12△A C D 的面积=12×12=6.15. 在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点.若整点P(m+2,2m ﹣1)在第四象限,则m的值为_____.【答案】﹣1或0.【解析】试题分析:由点P(m+2,2m﹣1)在第四象限,可得m+2>0,2m-1<0,解得﹣2<m<12,又因点的横、纵坐标均为整数可得m是整数,所以m的值为﹣1或0.考点:点的坐标.16. 已知等腰三角形的两条边长分别是3C m、7C m,那么这个等腰三角形的周长是________C m.【答案】17【解析】【分析】【详解】解∵等腰三角形的两条边长分别是3C m、7C m,∴当此三角形的腰长为3C m时,3+3<7,不能构成三角形,故排除,∴此三角形的腰长为7C m,底边长为3C m,∴此等腰三角形的周长=7+7+3=17C m,故答案为:17.三、解答题17. 3827π﹣1)0﹣(12)﹣1.【答案】3. 【解析】试题分析:原式利用零指数幂、负整数指数幂法则,以及分数指数幂法则计算即可得到结果.试题解析:原式=3827﹣1﹣2=6﹣1﹣2=3.18. 已知A ﹣2B =﹣1,求代数式(A ﹣1)2﹣4B (A ﹣B )+2A 的值.【答案】2.【解析】试题分析:原式利用完全平方公式,单项式乘以多项式法则化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.试题解析:原式=A 2﹣2A +1﹣4A B +4B 2+2A =(A ﹣2B )2+1,当A ﹣2B =﹣1时,原式=2.19. 分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.【答案】(1)x(x+4)(x﹣4);(2)(x+2)2(x﹣3)2.【解析】试题分析:(1)原式提取x,再利用平方差公式分解即可;(2)原式利用完全平方公式及十字相乘法分解即可.试题解析:(1)原式=x(x2﹣16)=x(x+4)(x﹣4);(2)原式=(x2﹣x﹣6)2=(x+2)2(x﹣3)2.20. 解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.【答案】x>3.【解析】试题分析:先去括号,再移项,合并同类项,把x的系数化为1并在数轴上表示出来即可.试题解析:去括号得,2x﹣11<4x﹣20+3,移项得,2x﹣4x<﹣20+3+11,合并同类项得,﹣2x<﹣6,x的系数化为1得,x>3.在数轴上表示为:.21. 已知:如图,点D 是△A B C 内一点,A B =A C ,∠1=∠2.求证:A D 平分∠B A C .【答案】见解析.【解析】【分析】易证△A B D ≌△A C D ,则可得证.【详解】解:证明:∵∠1=∠2,∴B D =C D ,在△A B D 与△A C D 中,A B =A C ,B D =C D ,A D =A D ,∴△A B D ≌△A C D (SSS),∴∠B A D =∠C A D ,即A D 平分∠B A C .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.22. 已知:如图,直线l分别与直线A B ,C D 相交于点P,Q,PM垂直于PQ,∠1+∠2=90°.求证:A B ∥C D .【答案】证明见解析.【解析】【分析】【详解】试题分析:先根据垂直的定义得出∠A PQ+∠2=90°,再由∠1+∠2=90°得出∠A PQ=∠1,进而可得出结论.试题解析:如图,∵PM ⊥PQ (已知),∴∠A PQ+∠2=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠A PQ=∠1(同角的余角相等),∴A B ∥C D (内错角相等,两直线平行).23. 列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T 恤.若两种纪念品共生产6000件,且T 恤比帽子的2倍多300件.问生产帽子和T 恤的数量分别是多少?【答案】生产帽子1900件,生产T 恤4100件.【解析】试题分析:设生产帽子x 件,生产T 恤y 件,根据“两种纪念品共生产6000件,且T 恤比帽子的2倍多300件”列方程组求解可得.试题解析::设生产帽子x 件,生产T 恤y 件.根据题意,得:6000{2300x y y x ++==, 解得:1900{4100x y == 答:生产帽子1900件,生产T 恤4100件.【点睛】此题主要考查了二元一次方程组的应用,弄清题意,找出合适的等量关系,据此列出方程组是解题关键.24. 某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题:(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数是.【答案】(1)详见解析;(2)100;(3)360.【解析】【分析】(1)根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,即可求出女生总人数,即可得出喜欢舞蹈的人数;(2)根据(1)的计算结果再利用条形图即可得出样本容量;(3)用全校学生数×喜欢剪纸的学生在样本中所占百分比即可求出.【详解】(1)∵根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50−10−16=24(人),如图所示:(2)本次抽样调查的样本容量是:30+6+14+50=100;(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数=1200×30100=360人.【点睛】此题考查扇形统计图,条形统计图,用样本估计总体,解题关键在于看懂图中数据25. 如图,在直角坐标平面内有两点A (0,2)、B (﹣2,0)、C (2,0).(1)△A B C 的形状是等腰直角三角形;(2)求△A B C 的面积及A B 的长;(3)在y轴上找一点P,如果△PA B 是等腰三角形,请直接写出点P的坐标.【答案】(1)等腰直角三角形,(2)22(3)P(0,﹣2)或P(0,2﹣22或P(0,2+22或P(0,0).【解析】【分析】(1)根据点的坐标判断出OA =OB =OC ,从而得出结论;(2)根据点的坐标求出求出B C ,OA ,再用三角形面积公式即可;(3)设出点P坐标,根据平面坐标系中,两点间的距离公式表示出B P,A P,再分三种情况计算即可.【详解】∵A (0,2)、B (﹣2,0)、C (2,0).∴OB =OC =OA ,∴△A B C 是等腰三角形,∵A O⊥B C ,∴△A B C 是等腰直角三角形.故答案为等腰直角三角形,(2)∵A (0,2)、B (﹣2,0)、C (2,0).∴B C =4,OA =2,∴S△A B C =12B C ×A O=12×4×2=4,∵A (0,2)、B (﹣2,0), ∴4+4=22(3)设点P(0,m),∵A (0,2)、B (﹣2,0),∴,A P=|m﹣2|,∵△PA B 是等腰三角形,∴①当A B =B P时,∴,∴m=±2,∴P(0,2)(与点A 重合,舍去)或P(0,﹣2),②当A B =A P时,∴﹣2|,∴m=2﹣∴P(0,2﹣P(0,③当A P=B P时,∴|m﹣,∴m=0,∴P(0,0),∴P(0,﹣2)或P(0,2﹣P(0,P(0,0).【点睛】此题是等腰三角形性质,主要考查了等腰三角形的判定,两点间的距离公式,方程的解法,解本题的关键是分类讨论计算即可.。
2020-2021学年河北省七年级下学期期末考试数学试题及答案-精品试卷
最新度第二学期期末质量检测七年级数学试卷题号选择题填空题21 22 23 24 25 26 总分得分一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1. 9的值等于()A . 3B . -3C . ±3D . 32. 已知a<b,则下列四个不等式中,不正确的是()A.a-2<b-2 B.-2a<-2b C.2a<2b D.a+2<b+23. 下列说法正确的是()A . 相等的两个角是对顶角B .和等于180度的两个角互为邻补角C . 若两直线相交,则它们互相垂直D . 两条直线相交所形成的四个角都相等,则这两条直线互相垂直4.下列命题中,属于真命题的是()A.两个锐角的和是锐角B.在同一平面内,如果a⊥b,b⊥c,则a⊥cC.同位角相等D.在同一平面内,如果a//b,b//c,则a//c5. 若点A(-2,n)在x轴上,则点B(n-1,n+1)在()A . 第一象限B . 第二象限C . 第三象限D .第四象限6.如右图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5C.∠1+∠4=180°D.∠3=∠57.一副三角板按如右图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °, ∠2=y °,则可得到方程组为( )A .⎩⎨⎧=+-=18050y x y xB .⎩⎨⎧=++=18050y x y x C .⎩⎨⎧=+-=9050y x y x D .⎩⎨⎧=++=9050y x y x8.在下列各数中:39,3.1415926,23, -5,38,3,0.5757757775…(相邻两个5之间的7的个数逐次加1),无理数有( )个 A .1 B .2 C .3 D .49.点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是 ( )A . (3,2)B .(3,-2)C .(-2,3) C .D .(2,-3) 10.要反映本县一周内每天的最高气温的变化情况,宜采用 ( ) A .条形统计图 B .扇形统计图 C .折线统计图C .频数分布直方图11.二元一次方程组941611x y x y +=⎧⎨+=-⎩的解满足2x -ky=10,则k 的值等于( )A .4B .-4C .8D .-8 12. 下列调查方式,你认为最合适的是( ) A. 了解全市每天的流动人口数,采用抽样调查方式B. 要了解全市七年级学生英语单词的掌握情况,采用全面调查方式C. 了解全市居民日平均用水量,采用全面调查方式D. 旅客进火车站上车前的安检,采用抽样调查方式13.不等式2(1)3x x +<的解集在数轴上表示出来应为( )14.若不等式组2<x <a 的整数解恰有3个,则a 的取值范围是( ) A .a >5 B .5<a <6 C .5≤a <6 D .5<a ≤6二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.用不等式表示“a 与5的差不是正数”16.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫左眼的坐标为 (–4,3)、则移动后猫左眼的坐标为17.如图,直线AB ,CD 相交于点O ,OE ⊥AB ,O 为垂足,∠EOD=30°,则∠AOC= 度. 18.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_____度.CBA17题图 19题图19.如图,小强告诉小华图中A 、B 两点的坐标分别为(–3,5)、(3,5),小华一下就说出了C1 2 30 -1 -2 B .3 4 5 2 1 0 C .1 2 30 -1 -2 A .3 4 52 1 0 D .点在同一坐标系下的坐标是20.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点。
2020-2021学年七年级(下)期末考试数学试卷 解析版
2020学年七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)在实数0,﹣,,﹣2中,最小的是()A.﹣2B.﹣C.D.02.(3分)下列计算正确的是()A.=±5B.=4C.()2=4D.±=2 3.(3分)若a<b,则下列不等式中正确的是()A.a﹣3<b﹣3B.a﹣b>0C.b D.﹣2a<﹣2b 4.(3分)下列说法正确的是()A.调查全国初中生每天体育锻炼所用时间的情况,适合采用全面调查B.调查黄河某段的水质情况,适合采用抽样调查C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查5.(3分)如图,若∠A+∠ABC=180°,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.∠2=∠4 6.(3分)如果点P(m,1﹣2m)在第四象限,那么m的取值范围是()A.0<m<B.﹣<m<0C.m<0D.m>7.(3分)方程组的解为,则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,48.(3分)若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7B.﹣1,7C.1,﹣7D.﹣1,﹣7 9.(3分)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x尺,绳子长为y尺,则下列符合题意的方程组是()A.B.C.D.10.(3分)学习平行线后,张明想出了过已知直线外一点画这条直线的平行线的新方法,他是通过折一张半透明的纸得到的.观察图(1)~(4),经两次折叠展开后折痕CD所在的直线即为过点P与已知直线a平行的直线.由操作过程可知张明画平行线的依据有()①同位角相等,两直线平行;②两直线平行,同位角相等;③内错角相等,两直线平行;④同旁内角互补,两直线平行.A.①③B.①②③C.③④D.①③④二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)由2x+y=3可以得到用x表示y的式子为.12.(3分)已知x、y满足方程组,则x+y的值为.13.(3分)如果m=﹣2,那么m的取值范围是.14.(3分)一种苹果的进价是每千克1.9元,销售中估计有5%的苹果正常损耗,商家把售价至少定为元,才能避免亏本.15.(3分)把10个相同的小长方形拼接成如图所示的一个大长方形(尺寸如图所示),这个大长方形的面积为cm2.三、解答题(本大题共7个小题,共55分.解答应写出文字说明,证明过程或演算步骤)16.(8分)(1)计算:+|﹣3|﹣+;(2)解不等式﹣≥﹣1,并把解集在数轴上表示出来.17.(6分)x取哪些整数值时,不等式4(x﹣0.3)<0.5x+5.8与3+x>x+1都成立?18.(8分)如图,已知AB∥CD,∠1+∠2=180°.(1)请你判断AD与CE的位置关系,并说明理由;(2)若CE⊥AE于点E,∠2=150°,试求∠F AB的度数.19.(7分)现如今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了本市若干名教师某日“微信运动”中的步数情况进行统计整理,绘制了如图不完整的统计图表:步数频数频率0≤x<400080.164000≤x<8000150.38000≤x<12000a0.2412000≤x<16000100.216000≤x<2000030.0620000≤x<240002b 请根据以上信息,解答下列问题:(1)求a,b的值;(2)补全频数分布直方图;(3)本市共有5000名教师,求每日步数不少于16000步的教师约有多少人?20.(5分)先阅读材料,然后解方程组.材料:善于思考的小军在解方程组时,采用了如下方法:解:将②变形,得4x+10y+y=5即2(2x+5y)+y=5③把①代入③,得2×3+y=5,解得y=﹣1.把y=﹣1代入①,得2x+5×(﹣1)=3,解得x=4.∴原方程组的解为.这种方法称为“整体代入法”.请用这种方法解方程组:.21.(10分)“直播带货,助农增收”.前不久,一场由央视携手部分直播平台,以“秦晋之‘好’,晋陕尽美”为主题的合作直播,将我市的部分农产品推向网络,助农增收.已知购买2袋大同黄花、3袋阳高杏脯,共需130元;购买1袋大同黄花、2袋阳高杏脯,共需80元.(1)求每袋大同黄花和每袋阳高杏脯各多少元;(2)某公司根据实际情况,决定购买大同黄花和阳高杏脯共400袋,要求购买总费用不超过10000元,那么至少购买多少袋大同黄花?22.(11分)综合与实践问题背景如图,在平面直角坐标系中,点A的坐标为(﹣3,5),点B的坐标为(0,1),点C的坐标为(4,5),将线段AB沿AC方向平移,平移距离为线段AC的长度.动手操作(1)画出AB平移后的线段CD,直接写出B的对应点D的坐标;探究证明(2)连接BD,试探究∠BAC,∠BDC的数量关系,并证明你的结论;拓展延伸(3)若点E在线段BD上,连接AD,AE,且满足∠EAD=∠CAD,请求出∠ADB:∠AEB的值,并写出推理过程.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)在实数0,﹣,,﹣2中,最小的是()A.﹣2B.﹣C.D.0【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可【解答】解:因为0,分别是0和正数,它们大于﹣2和﹣,又因为2>,所以﹣2<﹣所以最小的数是﹣2故选:A.2.(3分)下列计算正确的是()A.=±5B.=4C.()2=4D.±=2【分析】分别根据算术平方根、平方根以及立方根的定义逐一判断即可.【解答】解:A.,故本选项不合题意;B.=﹣4,故本选项不合题意;C.()2=4,故本选项符合题意;D.,故本选项不合题意.故选:C.3.(3分)若a<b,则下列不等式中正确的是()A.a﹣3<b﹣3B.a﹣b>0C.b D.﹣2a<﹣2b 【分析】根据不等式的性质1,可判断A、B;根据不等式的性质2,可判断C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都减3,不等式的方向不变,故A正确;B、不等式的两边都减b,不等号的方向不变,故B错误;C、不等式的两边都乘以,不等号的方向不变,故C错误;D、不等式的两边都乘以﹣2,不等号的方向改变,故D错误;故选:A.4.(3分)下列说法正确的是()A.调查全国初中生每天体育锻炼所用时间的情况,适合采用全面调查B.调查黄河某段的水质情况,适合采用抽样调查C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A.调查全国初中生每天体育锻炼所用时间的情况,适合采用抽样调查的方式,故本选项不合题意;B.调查黄河某段的水质情况,适合采用抽样调查的方式,故本选项符合题意;C.为了了解神舟飞船的设备零件的质量情况,适合采用普查的方式,故本选项不合题意;D.为了了解一批袋装食品是否含有防腐剂,适合采用抽样调查的方式,故本选项不合题意.故选:B.5.(3分)如图,若∠A+∠ABC=180°,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.∠2=∠4【分析】先根据题意得出AD∥BC,再由平行线的性质即可得出结论.【解答】解:∵∠A+∠ABC=180°,∴AD∥BC,∴∠2=∠4.故选:D.6.(3分)如果点P(m,1﹣2m)在第四象限,那么m的取值范围是()A.0<m<B.﹣<m<0C.m<0D.m>【分析】横坐标为正,纵坐标为负,在第四象限.【解答】解:∵点p(m,1﹣2m)在第四象限,∴m>0,1﹣2m<0,解得:m>,故选D.7.(3分)方程组的解为,则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,4【分析】把x=2代入x+y=3中求出y的值,确定出2x+y的值即可.【解答】解:把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,故选:B.8.(3分)若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7B.﹣1,7C.1,﹣7D.﹣1,﹣7【分析】根据题意,利用绝对值的代数意义及二次根式性质化简,确定出a与b的值,即可求出a﹣b的值.【解答】解:∵|a|=4,,且a+b<0,∴a=﹣4,b=﹣3或a=﹣4,b=3,则a﹣b=﹣1或﹣7.故选:D.9.(3分)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x尺,绳子长为y尺,则下列符合题意的方程组是()A.B.C.D.【分析】根据题意可以列出相应的二元一次方程组,从而本题得以解决.【解答】解:由题意可得,,故选:B.10.(3分)学习平行线后,张明想出了过已知直线外一点画这条直线的平行线的新方法,他是通过折一张半透明的纸得到的.观察图(1)~(4),经两次折叠展开后折痕CD所在的直线即为过点P与已知直线a平行的直线.由操作过程可知张明画平行线的依据有()①同位角相等,两直线平行;②两直线平行,同位角相等;③内错角相等,两直线平行;④同旁内角互补,两直线平行.A.①③B.①②③C.③④D.①③④【分析】由作图可知,a⊥AB,CD⊥AB,利用平行线的判定即可解决问题.【解答】解:由作图可知,a⊥AB,CD⊥AB,∴可以利用同位角相等,两直线平行或内错角相等,两直线平行或同旁内角互补,两直线平行,判定CD∥a,故选:D.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)由2x+y=3可以得到用x表示y的式子为y=﹣2x+3.【分析】把含x的项移到等号的另一边即可.【解答】解:方程移项,得y=﹣2x+3.故答案为:y=﹣2x+3.12.(3分)已知x、y满足方程组,则x+y的值为3.【分析】由2x+y=5,x+2y=4,两式相加化简即可得出.【解答】解:,①+②得:3(x+y)=9,即x+y=3.故答案为:3.13.(3分)如果m=﹣2,那么m的取值范围是3<m<4.【分析】先估算出的范围,即可得出m的范围.【解答】解:∵5<<6,∴,m的取值范围是3<m<4,故答案为:3<m<4.14.(3分)一种苹果的进价是每千克1.9元,销售中估计有5%的苹果正常损耗,商家把售价至少定为2元,才能避免亏本.【分析】设商家把售价应该定为每千克x元,因为销售中估计有5%的苹果正常损耗,故每千克苹果损耗后的价格为x(1﹣5%),根据题意列出不等式即可.【解答】解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥1.9,解得,x≥2,故为避免亏本,商家把售价应该至少定为每千克2元.故答案为:2.15.(3分)把10个相同的小长方形拼接成如图所示的一个大长方形(尺寸如图所示),这个大长方形的面积为7680cm2.【分析】设一个小长方形的长为xcm,宽为ycm,由题意列出方程组,解方程组,即可得出答案.【解答】解:设一个小长方形的长为xcm,宽为ycm,由题意得:,解得:,∴大长方形的面积=10×16×48=7680(cm2),故答案为:7680.三、解答题(本大题共7个小题,共55分.解答应写出文字说明,证明过程或演算步骤)16.(8分)(1)计算:+|﹣3|﹣+;(2)解不等式﹣≥﹣1,并把解集在数轴上表示出来.【分析】(1)先计算立方根、平方根、绝对值,然后计算加减法;(2)先去分母,然后通过移项、合并同类项,化未知数系数为1来解不等式,再把解集在数轴上表示出来即可.【解答】解:(1)+|﹣3|﹣+=2+3﹣﹣5+=0;(2)﹣≥﹣1,2(x﹣1)﹣3(2x+3)≥﹣6,2x﹣2﹣6x﹣9≥﹣6.﹣4x≥1,x≤﹣,故不等式的解集在数轴上表示如下:17.(6分)x取哪些整数值时,不等式4(x﹣0.3)<0.5x+5.8与3+x>x+1都成立?【分析】分别求出两不等式的解集,找出解集的公共部分,确定出整数解即可.【解答】解:不等式4(x﹣0.3)<0.5x+5.8,去括号得:4x﹣1.2<0.5x+5.8,移项合并得:3.5x<7,解得:x<2;不等式3+x>x+1,去分母得:6+2x>x+2,解得:x>﹣4,∴两不等式的公共解为﹣4<x<2,则整数值为﹣3,﹣2,﹣1,0,1.18.(8分)如图,已知AB∥CD,∠1+∠2=180°.(1)请你判断AD与CE的位置关系,并说明理由;(2)若CE⊥AE于点E,∠2=150°,试求∠F AB的度数.【分析】(1)根据平行线的判定与性质即可判断AD与CE的位置关系;(2)根据CE⊥AE,可得∠CEA=90°,再根据平行线的性质和∠2=150°,即可求∠F AB的度数.【解答】解:(1)AD∥CE,理由如下:∵AB∥CD,∴∠1=∠ADC,∵∠1+∠2=180°,∴∠ADC+∠2=180°.∴AD∥CE;(2)∵CE⊥AE,∴∠AEC=90°,∵AD∥CE,∴∠DAF=∠AEC=90°,∵∠1+∠2=180°,且∠2=150°,∴∠1=30°,∴∠F AB=∠DAF﹣∠1=90°﹣30°=60°.答:∠F AB的度数为60°.19.(7分)现如今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了本市若干名教师某日“微信运动”中的步数情况进行统计整理,绘制了如图不完整的统计图表:步数频数频率0≤x<400080.164000≤x<8000150.38000≤x<12000a0.2412000≤x<16000100.216000≤x<2000030.0620000≤x<240002b请根据以上信息,解答下列问题:(1)求a,b的值;(2)补全频数分布直方图;(3)本市共有5000名教师,求每日步数不少于16000步的教师约有多少人?【分析】(1)根据频数分布表中的数据,可以计算出a和b的值;(2)根据频数分布表中的数据,可以将频数分布直方图补充完整;(3)根据频数分布表中的数据,可以计算出每日步数不少于16000步的教师约有多少人.【解答】解:(1)本次调查的人数为:8÷0.16=50,a=50×0.24=12,b=2÷50=0.04,即a,b的值分别为12,0.04;(2)由(1)知,a=12,由频数分布表知,20000≤x<24000的频数为2,补充完整的频数分布直方图如右图所示;(3)5000×(0.06+0.04)=500(人),答:每日步数不少于16000步的教师约有500人.20.(5分)先阅读材料,然后解方程组.材料:善于思考的小军在解方程组时,采用了如下方法:解:将②变形,得4x+10y+y=5即2(2x+5y)+y=5③把①代入③,得2×3+y=5,解得y=﹣1.把y=﹣1代入①,得2x+5×(﹣1)=3,解得x=4.∴原方程组的解为.这种方法称为“整体代入法”.请用这种方法解方程组:.【分析】仿照小军的方法将方程②变形,把方程①代入求出y的值,即可确定出x的值.【解答】解:,将②变形,得9x﹣6y+y=12,即3(3x﹣2y)+y=12③,把①代入③,得3×5+y=12,解得y=﹣3.把y=﹣3代入①,得3x﹣2×(﹣3)=5,解得x=﹣.∴原方程组的解为.21.(10分)“直播带货,助农增收”.前不久,一场由央视携手部分直播平台,以“秦晋之‘好’,晋陕尽美”为主题的合作直播,将我市的部分农产品推向网络,助农增收.已知购买2袋大同黄花、3袋阳高杏脯,共需130元;购买1袋大同黄花、2袋阳高杏脯,共需80元.(1)求每袋大同黄花和每袋阳高杏脯各多少元;(2)某公司根据实际情况,决定购买大同黄花和阳高杏脯共400袋,要求购买总费用不超过10000元,那么至少购买多少袋大同黄花?【分析】(1)设每袋大同黄花x元,每袋阳高杏脯y元,根据“购买2袋大同黄花、3袋阳高杏脯,共需130元;购买1袋大同黄花、2袋阳高杏脯,共需80元”列方程组求解可得;(2)设购买大同黄花a袋,则购买阳高杏脯(400﹣a)袋,根据总费用不超过10000元列出关于a的不等式求解可得.【解答】解:(1)设每袋大同黄花x元,每袋阳高杏脯y元,根据题意,得:,解得:,答:每袋大同黄花20元,每袋阳高杏脯30元;(2)设购买大同黄花a袋,则购买阳高杏脯(400﹣a)袋,根据题意,得:20a+30(400﹣a)≤10000,解得:a≥200,答:至少购买200袋大同黄花.22.(11分)综合与实践问题背景如图,在平面直角坐标系中,点A的坐标为(﹣3,5),点B的坐标为(0,1),点C的坐标为(4,5),将线段AB沿AC方向平移,平移距离为线段AC的长度.动手操作(1)画出AB平移后的线段CD,直接写出B的对应点D的坐标;探究证明(2)连接BD,试探究∠BAC,∠BDC的数量关系,并证明你的结论;拓展延伸(3)若点E在线段BD上,连接AD,AE,且满足∠EAD=∠CAD,请求出∠ADB:∠AEB的值,并写出推理过程.【分析】(1)利用A、C点的坐标确定平移的方向与距离,从而得到D点坐标;(2)利用平移的性质得到AB∥CD,AC∥BD,再根据平行线的性质得∠ABD+∠BDC=180°,∠BAC+∠ABD=180°,所以∠BAC=∠BDC;(3)先由AC∥BD得到∠CAD=∠ADB,∠AEB=∠CAE,再由∠EAD=∠CAD,然后利用等量代换可确定∠AEB=2∠ADB.【解答】解:(1)如图,CD为所作,因为AB向右平移7个单位,所以D点坐标为(7,1);(2)∠BAC=∠BDC.理由如下:∵AB平移后的线段CD,∴AB∥CD,AC∥BD,∴∠ABD+∠BDC=180°,∠BAC+∠ABD=180°,∴∠BAC=∠BDC;(3)∠ADB:∠AEB=1:2;理由如下:∵AC∥BD,∴∠CAD =∠ADB ,∠AEB =∠CAE , ∵∠EAD =∠CAD , ∴∠CAE =2∠CAD , ∴∠AEB =2∠ADB , 即∠ADB :∠AEB =1:2.1、最困难的事就是认识自己。
河北省石家庄市赵县2021-2022学年七年级下学期期末数学试题
河北省石家庄市赵县2021-2022学年七年级下学期期末数学试题学校:___________姓名:___________班级:___________考号:___________A .(0,2π)B .(2π,0)C .(π,0)D .(0,π) 7.以下问题,不适合用全面调查的是( )A .旅客上飞机前的安检B .学校招聘教师,对应聘人员的面试C .了解全校学生的课外读书时间D .了解全国中学生的用眼卫生情况 8.如图,点O 为直线AB 上一点,OC ⊥OD .如果∠1=35°,那么∠2的度数是( )A .35°B .45°C .55°D .65° 9.某整数的两个不同平方根是21a -与2a -+,则这个数是( )A .1B .3C .-3D .910.在平面直角坐标系内有一点P ,已知点P 到x 轴的距离为2,到y 轴的距离为4,则点P 的坐标不可能是( )A .(-2,-4)B .(4,2)C .(-4,2)D .(4,-2) 11.某校学生来自甲、乙、丙三个地区,其人数比为3:4:3,如图所示的扇形图表示上述分布情况.若来自甲地区有180人,则该校学生总数为( )A .720人B .450人C .600人D .360人 12.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a 、b 、c 对应的密文a+1,2b+4,3c+9,例如明文1,2,3,对应的密文为2,8,18,如果接收方收到密文7,18,15,则解密得到的明文为( )A .6,5,2B .6,5,7C .6,7,2D .6,7,613.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( )A .a <-2B .a ≤-2C .a >-2D .a ≥-2 14.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩ 15.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( )A .1个B .2个C .3个D .4个 16.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点'(1,1)P y x -++叫做点P 伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1234,,,,,,n A A A A A L L ,若点1A 的坐标为(3,1),则点2020A 的坐标为( ) A .(0,4) B .(3,1)- C .(0,2)- D .(3,1)三、解答题48②若25,40A C =︒=︒∠∠,则AEC ∠=.③猜想图1中EAB ∠、ECD ∠、AEC ∠的关系,并证明你的结论.(2)拓展应用:如图2,//AB CD ,线段MN 把ABDC 这个封闭区域分为I 、II 两部分(不含边界),点E 是位于这两个区域内的任意一点,请直接写出EMB ∠、END ∠、MEN ∠的关系.。
【人教版】数学七年级下册《期末考试题》含答案解析
2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、精心选一选,相信自己的判断力!(每小题3分.共36分)1. 二元一次方程x-2y=1有无数多个解,下列四组值中是该方程的解的是()A .1xy=⎧⎨=⎩B .1xy=⎧⎨=⎩C .11xy=⎧⎨=⎩D .11xy=⎧⎨=-⎩2. 下列各数中无理数有().3.141,227-,327-, π,0,2.3 ,0.101001000……A . 2个B . 3 个C . 4个D . 5个3. 如图,直线A B 与直线C D 相交于点O,OE⊥A B ,垂足为O,∠EOD =30°,则∠B OC =()A . 150°B . 140°C . 130°D . 120°4. 下列条件不能判定A B //C D 的是( )A . ∠3=∠4B . ∠1=∠5C . ∠1+∠2=180°D . ∠3=∠55. 下列A 、B 、C 、D ;四幅图案中,能通过平移左图案得到的是()A .B .C .D .6. 如果点M(A +3,A +1)在直角坐标系的x轴上,那么点M的坐标为( ) A . (0,-2) B . (2,0) C . (4,0) D . (0,-4)7. 把不等式组{x10x10+≥-<的解集表示在数轴上正确的是()A .B .C .D .8. 为了了解某校初二年级400名学生的体重情况,从中抽取50名学生的体重进行统计分析;在这个问题中,总体是指( )A . 400B . 被抽取的50名学生C . 初二年级400名学生的体重D . 被抽取50名学生的体重9. 下列说法正确的是( )A . 4的平方根是2B . ﹣4的平方根是﹣2C . (﹣2)2没有平方根D . 2是4的一个平方根10. 已知关于x的方程5x+3k=24与方程5x+3=0的解相同,则k的值是( )A . 7B . ﹣8C . ﹣10D . 911. 点P(1,-2)( )A .第一象限B . 第二象限C . 第三象限D . 第四象限12. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是( ) A . 301216400x y x y+=⎧⎨+=⎩ B . 301612400x y x y+=⎧⎨+=⎩ C . 121630400x y x y+=⎧⎨+=⎩ D . 161230400x y x y+=⎧⎨+=⎩二、认真填一填,试试自己的身手!填空题(每小题3分,共24分)13. 不等式2x+1>3x-2的非负整数解是______.14. 算术平方根等于本身的实数是__________. 15. 若点(m﹣4,1﹣2m)在第三象限内,则m的取值范围是_____.16. 实a、b在数轴上的位置如图所示,则化简()2a b b a++-=___________.17. 点()2,1M-关于y轴的对称点的坐标为______.18. 如图,已知A B ∥C D ,∠A =60°,∠C =25°,则∠E=_____度.19. 某校对1000名学生进行“个人爱好”调查,调查结果统计如图,则爱好音乐的学生共有_________人.20. 一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答倒扣一分,在这次竞赛中.小明获得优秀(90分或90分以上),则小明至少答对了___道题.三、计算题(每小题4分,共20分)21. 239(6)27--22. 解方程组:(1)1235 y xx y=-⎧⎨+=⎩(2)3(1)55(1)3(5)x yy x-=+⎧⎨-=+⎩23. 解不等式组3(2)4,1413x x x x --≥⎧⎪+⎨>-⎪⎩,并把解集在数轴上表示出来. 24. 已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+++的值.四、解答题(共40 分)25. 已知△A B C 在平面直角坐标系中的位置如图所示.将△A B C 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A 1B 1C 1;(2)直接写出△A 1B 1C 1各顶点的坐标(3)求出△A 1B 1C 1的面积26. 如图,△A B C 中,D 在B C延长线上,过D 作D E ⊥A B 于E ,交A C 于F .∠A =30°,∠FC D =80°,求∠D .27. 一支部队第一天行军4h ,第二天行军5h ,两天共行军98KM ,且第一天比第二天少走2KM ,第一天和第二天行军的平均速度各是多少?28. 某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7 000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4 120元.每台电脑机箱、液晶显示器的进价各是多少元?29. 某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?30. 为了了解某校七年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图.(1)本次抽测的男生有多少人,(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名七年级男生中,估计有多少人体能达标?参考答案一、精心选一选,相信自己的判断力!( 每小题3分.共36分)1. 二元一次方程x-2y=1有无数多个解,下列四组值中是该方程的解的是( )A . 01x y =⎧⎨=⎩B . 10x y =⎧⎨=⎩C . 11x y =⎧⎨=⎩D . 11x y =⎧⎨=-⎩【答案】B【解析】【分析】 将各项中x 与y 的值代入方程检验即可得到结果.【详解】A 、x=0、y=1时,x-2y=0-2=-2≠1,不符合题意;B 、x=1、y=0时,x-2y=1,符合题意;C 、x=1、y=1时,x-2y=1-2=-1≠1,不符合题意;D 、x=1、y=-1时,x-2y=1+2=3≠1,不符合题意;故选B .【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 2. 下列各数中无理数有( ).3.141, 227-, , π ,0,2.3 ,0.101001000…… A . 2个B . 3 个C . 4个D . 5个【答案】A【解析】【分析】根据无理数的定义求解即可.【详解】解:π,0.1010010001…是无理数,故选A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.3. 如图,直线A B 与直线C D 相交于点O ,OE ⊥A B ,垂足为O ,∠EOD =30°,则∠B OC =( )A . 150°B . 140°C . 130°D . 120°【答案】D【解析】【分析】运用垂线,邻补角的定义计算.【详解】∵OE⊥A B ,∴∠EOB =90°,∵∠EOD =30°,∴∠D OB =90°-30°=60°,∴∠B OC =180°-∠D OB =180°-60°=120°,故选D【点睛】本题主要考查了垂线,邻补角,灵活运用垂线,邻补角的定义计算是解题的关键.4. 下列条件不能判定A B //C D 的是( )A . ∠3=∠4B . ∠1=∠5C . ∠1+∠2=180°D . ∠3=∠5 【答案】D【解析】【分析】根据平行线的判定逐个判断即可.【详解】A .∵∠3=∠4,∴A B ∥C D ,故本选项不符合题意;B .∵∠1=∠5,∴A B ∥CD ,故本选项不符合题意;C .∵∠1+∠2=180°,∠1+∠3=180°,∴∠3=∠2,∴A B ∥CD ,故本选项不符合题意;D .根据∠3=∠5,不能推出A B ∥C D ,故本选项符合题意.故选D .【点睛】本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解答此题的关键,注意:平行线的判定有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.5. 下列A 、B 、C 、D ;四幅图案中,能通过平移左图案得到的是()A .B .C .D .【答案】A【解析】试题分析:依题意知,平移的概念是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,不改变图像大小与形状.故A 图笑脸为原图以一定方向平移所得,不改变形状与大小.选A .考点:平移点评:本题难度较低,主要考查学生对平移知识点的掌握.根据平移的性质判定即可.6. 如果点M(A +3,A +1)在直角坐标系的x轴上,那么点M的坐标为( )A . (0,-2)B . (2,0)C . (4,0)D . (0,-4)【答案】B【解析】∵点M(A +3,A +1)在直角坐标系的x轴上,∴A +1=0,解得A =−1,所以,A +3=−1+3=2,点M的坐标为(2,0).故选B .7. 把不等式组{x10x10+≥-<解集表示在数轴上正确的是()A .B .C .D .【答案】D【解析】【分析】先解不等式组,再把解集表示在数轴上.【详解】解:x+10x10≥⎧-<⎨⎩①②,解①得,x1≥-,解②得,x1<,把解集表示在数轴上,不等式组的解集为1x1-≤<.故选D .【点睛】本题考查了一元一次不等式组的解法以及在数轴上表示不等式的解集,是基础知识比较简单.8. 为了了解某校初二年级400名学生的体重情况,从中抽取50名学生的体重进行统计分析;在这个问题中,总体是指( )A . 400B . 被抽取的50名学生C . 初二年级400名学生的体重D . 被抽取50名学生的体重【答案】C【解析】在这个问题中,总体是指400名学生的体重,故选C .9. 下列说法正确是( )A . 4的平方根是2B . ﹣4的平方根是﹣2C . (﹣2)2没有平方根D . 2是4的一个平方根【答案】D【解析】【分析】依据平方根的性质即可作出判断.【详解】A .4的平方根是±2,故A 错误;B .−4没有平方根,故B 错误;C .()224-=,有平方根,故C 错误;D .2是4的一个平方根,故D 正确.故选D .【点睛】此题主要考查平方根的相关知识,求一个数A 的平方根的运算,叫做开平方,其中A 叫做被开方数.A >0时,A 有两个平方根;A =0时,A 只有一个平方根;A <0时,没有平方根.10. 已知关于x的方程5x+3k=24与方程5x+3=0的解相同,则k的值是( )A . 7B . ﹣8C . ﹣10D . 9【答案】D【解析】【分析】可以分别解出两方程的解,两解相等,就得到关于m的方程,从而可以求出m的值.【详解】解第一个方程得x=2435k-,第二个方程得x=-35,∴243355k-=-,解得k=9.故选D .【点睛】本题解决的关键是能够求解关于x的方程,正确理解方程解的含义.11. 点P(1,-2)在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限【答案】D【解析】点P(1,-2)所在的象限是第四象限,故选D .12. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是( )A . 301216400x y x y +=⎧⎨+=⎩B . 301612400x y x y +=⎧⎨+=⎩C . 121630400x y x y +=⎧⎨+=⎩D . 161230400x y x y +=⎧⎨+=⎩【答案】B【解析】【分析】 设购买甲种奖品x 件,乙种奖品y 件,根据“花了400元钱购买甲、乙两种奖品共30件”列方程即可.【详解】若设购买甲种奖品x 件,乙种奖品y 件,根据题意得:301612400x y x y +=⎧⎨+=⎩. 故选:B .【点睛】本题考查了根据实际问题抽象出方程组:根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.二、认真填一填,试试自己的身手!填空题(每小题3分,共24分)13. 不等式2x +1>3x -2的非负整数解是______.【答案】0,1,2【解析】【分析】先求出不等式2x+1>3x-2的解集,再求其非负整数解【详解】移项得,2+1>3x-2x ,合并同类项得,3>x ,故其非负整数解为:0,1,2【点睛】解答此题不仅要明确不等式的解法,还要知道非负整数的定义.14. 算术平方根等于本身的实数是__________.【答案】0或1【解析】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案. 解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.15. 若点(m ﹣4,1﹣2m )在第三象限内,则m 的取值范围是_____. 【答案】142m << 【解析】【分析】先根据第三象限的点的坐标的符号特征列出关于m 的不等式组,再求解即可.【详解】由题意得40120m m -<⎧⎨-<⎩,解得:142m <<. 【点睛】解题的关键是熟练掌握求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16. 实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.【答案】2a -【解析】由数轴得,A +B <0,B -A >0,|A +B |+()2b a - A -B +B -A =-2A .故答案为-2A .点睛:根据,0,0a a a a a ≥⎧=⎨-<⎩,推广此时A 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.17. 点()2,1M -关于y 轴的对称点的坐标为______.【答案】()2,1【解析】【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.18. 如图,已知A B ∥C D ,∠A =60°,∠C =25°,则∠E=_____度.【答案】35【解析】【分析】设A E交C D 于点F,先根据平行线的性质求出∠D FE的度数,再由三角形外角的性质即可得出结论.【详解】设A E交C D 于点F,∵A B ∥ C D ,∠A =60°,∴∠D FE=∠A =60°,∵∠D FE是△C EF的外角,∴∠E=∠D FE-∠C =60°-25°=35°,故答案为35【点睛】本题考查的是平行线的性质及三角形外角的性质,用到的知识点为:(1)两直线平行,同位角相等;(2)三角形的一个外角等于不相邻的两个内角和.19. 某校对1000名学生进行“个人爱好”调查,调查结果统计如图,则爱好音乐学生共有_________人.【答案】190【解析】试题解析:根据扇形统计图的定义,各部分占总体的百分比之和为1,由图可知,爱好音乐的学生占总体的百分比为:1-32%-33%-16%=19%,所以爱好音乐的学生共有1000×19%=190人.故答案为190.20. 一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答倒扣一分,在这次竞赛中.小明获得优秀(90分或90分以上),则小明至少答对了___道题.【答案】24.【解析】试题分析:设小明答对了x题.故(30-x)×(-1)+4x≥90,解得:x≥24.考点:一元一次不等式的应用.三、计算题(每小题4分,共20分)21.【答案】0.【解析】【分析】根据算术平方根、立方根进行计算.【详解】原式33627=3630【点睛】本题考查的是算术平方根、立方根,需要注意开立方里面的负号要保留,出来后要变号.22. 解方程组:(1)1235 y xx y=-⎧⎨+=⎩(2)3(1)55(1)3(5)x yy x-=+⎧⎨-=+⎩【答案】(1)23xy=-⎧⎨=⎩; (2)57xy=⎧⎨=⎩.【解析】【分析】(1)直接用代入法求解即可,(2)解题时需要先化简,再用代入法或加减消元法求解.【详解】(1) 原方程组标记为1235y x x y =-⎧⎨+=⎩①②, 将①代入②得2315x x ,解得2x =- ,把2x =-代入1y x =-,解得3y =∴方程组的解为23x y =-⎧⎨=⎩; (2) 原方程组可化为383520x y x y -⎧⎨--⎩=③=④,③-④得,4y=28,即y=7,把y=7代入3x-y=8得,3x-7=8,即x=5.∴方程组的解为57x y =⎧⎨=⎩. 【点睛】本题考查的是计算能力,解题时要注意观察,选择适当的解题方法会达到事半功倍的效果.23. 解不等式组3(2)4,1413x x x x --≥⎧⎪+⎨>-⎪⎩,并把解集在数轴上表示出来. 【答案】x≤1,数轴详见解析.【解析】【分析】分别解两个不等式,再取两个解集的公共解集,并在数轴上表示出来.【详解】()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩①②, 解:由①得:x≤1,由②得:x <4,∴ 原不等式的解集为x≤1.24. 已知,a、b互为倒数,c、d互为相反数,求31ab c d-+++的值.【答案】0.【解析】试题分析:利用已知倒数,相反数关系代入求值.试题解析:由题意得A b=1,C +D =0,所以31ab c d-+++=-1+1=0.故答案为0.四、解答题(共40 分)25. 已知△A B C 在平面直角坐标系中的位置如图所示.将△A B C 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A 1B 1C 1;(2)直接写出△A 1B 1C 1各顶点的坐标(3)求出△A 1B 1C 1的面积【答案】(1)详见解析;(2)A 1(4,−2), B 1(1,−4), C 1(2,−1);(3)7 2【解析】【分析】(1)直接利用平移的性质得出A ,B ,C 平移后对应点位置;(2)利用(1)中图形得出各对应点坐标;(3)利用△A 1B 1C 1所在矩形面积减去周围三角形面积即可得出答案.【详解】(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:A 1(4,−2), B 1 (1,−4), C 1(2,−1);(3) △A 1B 1C 1的面积为:3×3−12×1×3−12×1×2−12×2×3=3.5【点睛】此题考查作图-平移变换,解题关键在于掌握作图法则26. 如图,△A B C 中,D 在B C 的延长线上,过D 作D E⊥A B 于E,交A C 于F.∠A =30°,∠FC D =80°,求∠D .【答案】40°【解析】【分析】由三角形内角和定理,可将求∠D 转化为求∠C FD ,即∠A FE,再在△A EF中求解即可.【详解】∵D E⊥A B (已知),∴∠FEA =90°(垂直定义),∵△A EF中,∠FEA =90°,∠A =30°(已知),∴∠A FE=180°−∠FEA −∠A (三角形内角和是180)=180°−90°−30°=60°,又∵∠C FD =∠A FE(对顶角相等),∴∠C FD =60°,∴在△C D F中,∠C FD =60°,∠FC D =80°(已知),∴∠D =180°−∠C FD −∠FC D =180°−60°−80°=40°27. 一支部队第一天行军4h,第二天行军5h,两天共行军98KM,且第一天比第二天少走2KM,第一天和第二天行军的平均速度各是多少?【答案】第一天行军速度为12km/h,第二天行军速度为10km/h.【解析】【分析】设:第一天行军的平均速度为xkm/h ,第二天行军的平均速度为ykm/h ,根据两天共行军98km ,第一天比第二天少走2km ,列出方程组求解.【详解】设:第一天行军平均速度为xkm/h,第二天行军平均速度为ykm/h可得方程组4598542x y y x +=⎧⎨-=⎩ 解得1210x y =⎧⎨=⎩答:第一天行军的平均速度为12km/h ,第二天行军的平均速度为10km/h .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.28. 某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7 000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4 120元.每台电脑机箱、液晶显示器的进价各是多少元?【答案】每台电脑机箱的进价是60元,液晶显示器的进价是800元.【解析】 解:设每台电脑机箱的进价是元,液晶显示器的进价是元,得, 解得. 答:每台电脑机箱的进价是60元,液晶显示器的进价是800元. 29. 某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元. (1)符合公司要求的购买方案有几种?请说明理由; (2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?【答案】(1)有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车【解析】【分析】设要购买轿车x辆,则要购买面包车(10-x)辆,题中要求“轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元”列出不等式,然后解出x的取值范围,最后根据x的值列出不同方案.【详解】(1)设购买轿车x辆,那么购买面包车(10-x)辆.由题意,得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.【点睛】本题主要考查对于一元一次不等式组的应用,要注意找好题中的不等关系.解题的关键是:(1)根据数量关系列出关于x的一元一次不等式;(2)求出三种购买方案的日租金30. 为了了解某校七年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图.(1)本次抽测的男生有多少人,(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名七年级男生中,估计有多少人体能达标?【答案】(1)50人;(2)见解析;(3)252人【解析】【分析】(1)由引体向上的次数为4次的人数除以所占的百分比即可求出抽测的男生数;(2)求出次数为5次的人数,补全统计图即可;(3)求出5次以上(含5次)人数占的百分比,乘以350即可得到结果【详解】(1)根据题意得:10÷20%=50(人),答:本次抽测的男生有50人;(2)5次的人数为50-(4+10+14+6)=16(人),补全条形统计图,如图所示:(3)根据题意得:16146350252()50人答:该校350名七年级男生中估计有252人体能达标.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.。
2020-2021学年七年级下学期期末考试数学试卷及答案解析
2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分) 1.(3分)下列实数中是无理数的是( ) A .23B .√2C .3.1D .0解:A 、23是分数,属于有理数,故本选项不合题意; B 、√2是无理数,故本选项符合题意;C 、3.1是有限小数,属于有理数,故本选项不合题意;D 、0是整数,属于有理数,故本选项不合题意. 故选:B .2.(3分)如图,若AB ∥DE ,∠B =130°,∠D =35°,则∠C 的度数为( )A .80°B .85°C .90°D .95°解:过C 作CM ∥AB , ∵AB ∥DE , ∴AB ∥CM ∥DE ,∴∠1+∠B =180°,∠2=∠D =35°, ∵∠B =130°, ∴∠1=50°,∴∠BCD =∠1+∠2=85°, 故选:B .3.(3分)下列等式正确的是( )A .±√9=3B .√273=±3C .√(−3)33=−3D .√(−3)2=−3解:A 、原式=±3,故A 错误. B 、原式=3,故B 错误. C 、原式=﹣3,故C 正确. D 、原式=3,故D 错误. 故选:C .4.(3分)如图,直线AB ,CD 相交于点O ,OE ⊥CD ,垂足为点O .若∠BOE =40°,则∠AOC 的度数为( )A .40°B .50°C .60°D .140°解:∵OE ⊥CD , ∴∠EOD =90°, ∵∠BOE =40°,∴∠BOD =90°﹣40°=50°, ∴∠AOC =∠BOD =50°. 故选:B .5.(3分)已知a <b ,下列结论中成立的是( ) A .﹣a +1<﹣b +1 B .﹣3a <﹣3bC .−12a +2>−12b +2D .如果c <0,那么ac<bc解:A 、a <b 则﹣a +1>﹣b +1,故原题说法错误; B 、a <b 则﹣3a >﹣3b ,故原题说法错误; C 、a <b 则−12a +2>−12b +2,故原题说法正确; D 、如果c <0,那ac>bc ,故原题说法错误;故选:C .6.(3分)下列实数中,是无理数的是( )A .3.14159265B .√36C .√7D .227解:A 、3.1415926是有限小数是有理数,选项错误. B 、√36=6,是整数,是有理数,选项错误; C 、√7是无理数,选项正确; D 、227是分数,是有理数,选项错误;故选:C .7.(3分)不等式组{2x −4≤0x +2>0的解集在数轴上用阴影表示正确的是( )A .B .C .D .解:{2x −4≤0①x +2>0②,由①得x ≤2,由②得x >﹣2, 故此不等式组的解集为:故选:C .8.(3分)点P (t +3,t +2)在直角坐标系的x 轴上,则P 点坐标为( ) A .(0,﹣2)B .(﹣2,0)C .(1,2)D .(1,0)解:∵点P (t +3,t +2)在直角坐标系的x 轴上, ∴t +2=0, 解得:t =﹣2, 故t +3=1,则P 点坐标为(1,0). 故选:D .9.(3分)老大爷背了一背鸡鸭到市场出售,单价是每只鸡100元,每只鸭80元,他出售完收入了660元,那么这背鸡鸭只数可能的方案有( ) A .4种B .3种C .2种D .1种解:设鸡有x 只,鸭有y 只, 依题意,得:100x +80y =660, ∴y =33−5x4.又∵x ,y 均为正整数, ∴{x =1y =7或{x =5y =2, ∴这背鸡鸭只数只有2种方案. 故选:C .10.(3分)在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(a ,b ),则点A 2020的坐标为( ) A .(a ,b )B .(﹣b +1,a +1)C .(﹣a ,﹣b +2)D .(b ﹣1,﹣a +1)解:观察发现:A 1(a ,b ),A 2(﹣b +1,a +1),A 3(﹣a ,﹣b +2),A 4(b ﹣1,﹣a +1),A 5(a ,b ),A 6(﹣b +1,a +1)…∴依此类推,每4个点为一个循环组依次循环, ∵2020÷4=505,∴点A 2020的坐标与A 4的坐标相同,为(b ﹣1,﹣a +1), 故选:D .二.填空题(共5小题,满分15分,每小题3分) 11.(3分)若√a 3=−7,则a = ﹣343 . 解:∵√a 3=−7, ∴a =(﹣7)3=﹣343. 故答案为:﹣343.12.(3分)新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是 普查 .(填“普查”或“抽样调查”)解:新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是普查. 故答案为:普查.13.(3分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y 千克,则可列方程组为 {4x +6y =28x =y +2 .解:由题意可得,{4x +6y =28x =y +2, 故答案为:{4x +6y =28x =y +2.14.(3分)已知关于x ,y 的方程组{4x +y =3mx −y =7m −5的解满足不等式2x +y >8,则m 的取值范围是 m <﹣6 .解:解方程组得x =2m ﹣1,y =4﹣5m , 将x =2m ﹣1,y =4﹣5m 代入不等式2x +y >8得 4m ﹣2+4﹣5m >8, ∴m <﹣6, 故答案为m <﹣6.15.(3分)如图,点A (1,0),B (2,0),C 是y 轴上一点,且三角形ABC 的面积为2,则点C 的坐标为 (0,4)或(0,﹣4) .解:设△ABC 边AB 上的高为h , ∵A (1,0),B (2,0), ∴AB =2﹣1=1, ∴△ABC 的面积=12×1•h =2, 解得h =4,点C 在y 轴正半轴时,点C 为(0,4), 点C 在y 轴负半轴时,点C 为(0,﹣4), 所以,点C 的坐标为(0,4)或(0,﹣4). 故答案为:(0,4)或(0,﹣4). 三.解答题(共8小题,满分75分) 16.(10分)(1)解方程组{x +y =102x −y =11;(2)解不等式3x ﹣2(x ﹣1)≥10.解:(1){x +y =10①2x −y =11②,由①+②,得3x =21, 解得x =7,把x =7代入①,得y =3. ∴原方程组的解为:{x =7y =3.(2)3x ﹣2(x ﹣1)≥10. 去括号,得3x ﹣2x +2≥10, 移项,得3x ﹣2x ≥10﹣2, 合并同类项,得x ≥8.17.(5分)已知5a +2的立方根是3,3a +b ﹣1的算术平方根是4,c 是√11的整数部分. (1)求a ,b ,c 的值; (2)求3a ﹣b +c 的平方根.解:(1)∵5a +2的立方根是3,3a +b ﹣1的算术平方根是4, ∴5a +2=27,3a +b ﹣1=16, ∴a =5,b =2;∵3<√11<4,c 是√11的整数部分,∴c =3;(2)3a ﹣b +c =15﹣2+3=16,16的平方根是±4.18.(9分)如图,三角形ABC 三个顶点的坐标分别是A (﹣3,﹣2),B (0,﹣1),C (﹣1,1),将三角形ABC 进行平移,点A 的对应点为A '(1,0),点B 的对应点是B ',点C 的对应点是C '.(1)画出平移后的三角形A 'B 'C '并写出B ',C '的坐标; (2)写出由三角形ABC 平移得到三角形A 'B 'C '的过程;(3)分别连接BB ',CC ',则BB '和CC '有怎样的关系?(直接写出答案,不需证明)解:(1)如图所示,△A'B'C'即为所求:∴B'(4,1),C'(3,3);(2)△ABC先向右平移4个单位长度,再向上平移2个单位长度得到△A'B'C';(3)根据平移性质可得:BB'和CC'平行且相等.19.(10分)我区的数学爱好者申请了一项省级课题﹣﹣《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名? 解:(1)本次调查共抽取学生为:205%=400(名),∴不太了解的学生为:400﹣120﹣160﹣20=100(名), 补全条形统计图如下:(2)“理解”所占扇形的圆心角是:120400×360°=108°;(3)8000×(40%+120400)=5600(名), 所以“理解”和“了解”的共有学生5600名. 20.(9分)完成推理填空如图,已知∠B =∠D ,∠BAE =∠E .将证明∠AFC +∠DAE =180°的过程填写完整. 证明:∵∠BAE =∠E ,∴ AB ∥ DE ( 内错角相等,两直线平行 ). ∴∠B =∠ BCE ( 两直线平行,内错角相等 ). 又∵∠B =∠D ,∴∠D =∠ BCE (等量代换).∴AD ∥BC ( 同位角相等,两直线平行 ).∴∠AFC +∠DAE =180°( 两直线平行,同旁内角互补 ).证明:∵∠BAE =∠E ,∴AB ∥DE (内错角相等,两直线平行). ∴∠B =∠BCE (两直线平行,内错角相等). 又∵∠B =∠D ,∴∠D =∠BCE (等量代换).∴AD ∥BC (同位角相等,两直线平行).∴∠AFC +∠DAE =180°(两直线平行,同旁内角互补).故答案为:AB ,DE ,内错角相等,两直线平行;BCE ,两直线平行,内错角相等;BCE ,同位角相等,两直线平行;两直线平行,同旁内角互补.21.(8分)甲、乙两人共同解方程组{ax +5y =15①4x =by −2②时,甲看错了方程①中的a ,解得{x =−3y =−1,乙看错了②中的b ,解得{x =5y =4,求a 2019+(−b 10)2020的值. 解:将{x =−3y =−1代入方程组中的4x =by ﹣2得:﹣12=﹣b ﹣2,即b =10;将x =5,y =4代入方程组中的ax +5y =15得:5a +20=15,即a =﹣1, 则a 2019+(−b 10)2020=(−1)2019+(−1010)2020=−1+1=0. 22.(11分)某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元. (1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本? 解:(1)设购买一个甲种笔记本需x 元,一个乙种笔记本需y 元, 由题意可得:{15x +20y =25010x +25y =225,解得:{x =10y =5,答:购买一个甲种笔记本需10元,一个乙种笔记本需5元; (2)设需要购买a 个甲种笔记本, 由题意可得:10a +5(35﹣a )≤300, 解得:a ≤25,答:至多需要购买25个甲种笔记本.23.(13分)已知,点Q 、A 、D 均在直线l 1上,点B 、C 均在直线l 2上,且l 1∥l 2,点E 是BA延长上一点.(1)如图1,CD∥AB,CE与AD相交于点F,AC与BF相交于点O,∠1=∠2,求证∠3=∠4;(2)在(1)的条件下,若BF平分∠ABC,试直接写出∠CFB与∠ACF的数量关系为∠CFB+12∠ACF=90°;(3)如图2,点N是∠QAB角平分线上一点,点M在射线BC上,若∠NMC与∠ABC 满足2∠NMC﹣∠ABC=180°的数量关系,请判断直线MN与直线AN的位置关系,并说明理由.解:(1)证明:∵∠1=∠2,∴∠1+∠ACF=∠2+∠ACF即:∠BCE=∠ACD,∵AB‖CD,∴∠ACD=∠4,∴∠BCE=∠4,∵l1∥l2∴∠3=∠BCE∴∠3=∠4;(2)如图,设∠ABF=∠5,∠ACF=∠6,∠CFB=∠7,∵BF 平分∠ABC ,∴∠ABC =2∠5,∠CBF =∠5,∵l 1∥l 2,∴∠AFB =∠CBF =∠5,∴∠AFC +∠BCF =180°,即∠1+∠6+∠5+∠7=180°①, ∵AB ‖CD ,l 1∥l 2,∴∠ABC +∠BCD =180°,∠BCD +∠CDF =180°,∴∠CDF =2∠5,∴∠1+∠6+∠2+2∠5=180°,∵∠1=∠2,∴2∠1+∠6+2∠5=180°,∴∠1+12∠6+∠5=90°②,∴①﹣②得:12∠6+∠7=90°, ∴∠CFB 与∠ACF 的数量关系为∠CFB +12∠ACF =90°. 故答案为:∠CFB +12∠ACF =90°.(3)直线MN 与直线AN 的位置关系为:MN ⊥AN .理由如下: 过点N 作NR ∥l 1,∵l1∥l2,NR∥l2,∴∠ABC=∠QAB,∠QAN=∠ANR,∠RNM=∠NMB,∵NA平分∠QAB,∴∠QAB=2∠QAN,不妨设∠QAN=x°,∠NAM=∠NMB=y°,∴∠ABC=∠QAB=2x°,∴y+∠NMC=180°①,∵2∠NMC﹣∠ABC=180°,∴2∠NMC﹣2x=180°,∠NMC﹣x=90°②,①﹣②得:x+y=90°,∴∠ANM=90°,∴MN⊥AN.。
河北省石家庄市2020-2021学年七年级下学期数学期末复习测试卷(word版 含答案)
河北省石家庄市2020-2021学年七年级下学期数学期末复习测试卷一、单选题(本大题共10小题,每小题3分,共30分)1、下列长度的三条线段能组成三角形的是( )A .5cm 2cm 3cmB .5cm 2cm 2cmC .5cm 2cm 4cmD .5cm 12cm 6cm2、在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( )A .1个B .2个C .3个D .4个3、下列分解因式的变形中,正确的是( )A .xy(x -y)-x(y -x)=-x(y -x)(y +1)B .6(a +b)2-2(a +b)=(2a +b)(3a +b -1)C .3(n -m)2+2(m -n)=(n -m)(3n -3m +2)D .3a(a +b)2-(a +b)=(a +b)2(2a +b)4、不等式组⎩⎨⎧x -1≤0,2x -5<1的解集为( ) A .x <-2 B .x ≤-1 C .x ≤1 D .x <35、如果关于x 、y 的二元一次方程组2351x y k x y k +=⎧⎨+=-⎩的解x 、y 满足2x y +=,那么k 的值是( )A .2-B .3-C .3D .2 6、若x n +与2x +的乘积中不含x 的一次项,则3n 的值为( )A.4-B.4 C.8 D.8-7、如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC 的延长线于点E、H、F、G,下列四个式子中正确的是()A.∠1=12(∠2﹣∠3)B.∠1=2(∠2﹣∠3)C.∠G=12(∠3﹣∠2)D.∠G=12∠18、已知a,b,c是△ABC的三边长,满足a2+b2=6a+8b-25,则最长边c的范围是( )A.1<c<7 B.4≤c<7 C.4<c<7 D.1<c≤49、若关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=4的解,则k的值为()A.12-B.12C.2 D.﹣210、小颖在做下面的数学作业时,因钢笔漏墨水,不小心将部分字迹污损了,作业过程如下(涂黑部分即为污损部分):如图,OP平分∠AOB,MN∥OB,试说明:OM=MN.理由:因为OP平分∠AOB,所以■,又因为MN∥OB,所以■,故∠1=∠3,所以OM=MN.小颖思考:污损部分应分别是以下四项中的两项:①∠1=∠2;②∠2=∠3;③∠3=∠4;④∠1=∠4.那么她补出来的部分应是( )A .①④B .②③C .①②D .③④二、填空题(本大题共6小题,每小题4分,共24分)11、若|a -2|+b 2-2b +1=0,则a b =______.12、若a m =6,a n =8,则a m+n =______,a m-n =_____.13、已知 x+2y ﹣3z=0,2x+3y+5z=0,则x y z x y x++-+=_____. 14、如图,有一条直的宽纸带,按图方式折叠,则∠α的度数等于_____.15、已知关于x 的不等式组⎩⎨⎧x -3m <0,n -2x <0的解集是-1<x <3,则(m +n)2 021=____. 16、如图,在△ABC 中,已知点E 、F 分别是AD 、CE 边上的中点,且S △BEF =3cm 2,则S △ABC 的值为_________cm 2 .三、解答题(共66分)17、(8分)利用公式计算(1)(2x+3y-z )(2x-3y+z); (2)2(2)(2)(4)x x x +--.18、(本小题满分12分)分解因式:(1)2x2-18; (2)3m2n-12mn+12n;(3)(a+b)2-6(a+b)+9; (4)(x2+9)2-36x2.19、(6分)已知2xy=⎧⎨=⎩和350xy=-⎧⎨=-⎩是关于x,y的二元一次方程mx-ny=10的两个解.(1)求m,n的值.(2)先化简,再求值:(m-n)(4m+n)-(2m+n)(2m-n).20、(6分)已知关于x的不等式4(x+2)-2>5+3a的解都能使不等式(3a+1)x3>a(2x+3)2成立,求a的取值范围.21、(8分)如图,直线AB,CD,EF相交于点O,且AB CD⊥,OC平分∠BOE,若722EOG AOE∠=∠,求EOG∠和DOF∠的度数.22、(8分)七年级某班为准备科技节表彰的奖品,计划从友谊超市购买笔记本和水笔共40件,在获知某网店有“五一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.品名商店笔记本(元/水笔(元/件)件)友谊超市 2.4 2网店 2 1.8(1)请求出需购买笔记本和水笔的数量;(2)求从网店购买这些奖品可节省多少元.23、(10分)(1)如图1,直线a∥直线b,点A、D在直线a上,点B、C在直线b上,连接AB、AC、BD、DC,得△ABC和△BDC,△ABC的面积_______△BDC的面积(填“>”、“=”或“<”).(2)如图2,已知△ABC,过点A有一条线段,将△ABC的面积平分,且交BC于点D,则BDBC.(3)如图3,已知四边形ABCD,请过点D作一条线段DG将四边形ABCD面积平分.24、(10分)解决问题:(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是____.(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是____.(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式____.(4)利用所得公式计算:24814111112(1)(1)(1)(1)22222+++++参考答案一、单选题(本大题共10小题,每小题3分,共30分)1、下列长度的三条线段能组成三角形的是( C )A .5cm 2cm 3cmB .5cm 2cm 2cmC .5cm 2cm 4cmD .5cm 12cm 6cm2、在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( C )A .1个B .2个C .3个D .4个3、下列分解因式的变形中,正确的是( A )A .xy(x -y)-x(y -x)=-x(y -x)(y +1)B .6(a +b)2-2(a +b)=(2a +b)(3a +b -1)C .3(n -m)2+2(m -n)=(n -m)(3n -3m +2)D .3a(a +b)2-(a +b)=(a +b)2(2a +b)4、不等式组⎩⎨⎧x -1≤0,2x -5<1的解集为( C ) A .x <-2 B .x ≤-1 C .x ≤1 D .x <35、如果关于x 、y 的二元一次方程组2351x y k x y k +=⎧⎨+=-⎩的解x 、y 满足2x y +=,那么k 的值是( B )A .2-B .3-C .3D .26、若x n +与2x +的乘积中不含x 的一次项,则3n 的值为( D )A.4-B.4 C.8 D.8-7、如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC 的延长线于点E、H、F、G,下列四个式子中正确的是( C )A.∠1=12(∠2﹣∠3)B.∠1=2(∠2﹣∠3)C.∠G=12(∠3﹣∠2)D.∠G=12∠18、已知a,b,c是△ABC的三边长,满足a2+b2=6a+8b-25,则最长边c的范围是( C )A.1<c<7 B.4≤c<7 C.4<c<7 D.1<c ≤49、若关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=4的解,则k的值为( B )A.12-B.12C.2 D.﹣210、小颖在做下面的数学作业时,因钢笔漏墨水,不小心将部分字迹污损了,作业过程如下(涂黑部分即为污损部分):如图,OP平分∠AOB,MN∥OB,试说明:OM=MN.理由:因为OP平分∠AOB,所以■,又因为MN∥OB,所以■,故∠1=∠3,所以OM=MN.小颖思考:污损部分应分别是以下四项中的两项:①∠1=∠2;②∠2=∠3;③∠3=∠4;④∠1=∠4.那么她补出来的部分应是( C )A .①④B .②③C .①②D .③④二、填空题(本大题共6小题,每小题4分,共24分)11、若|a -2|+b 2-2b +1=0,则a b =2.12、若a m =6,a n =8,则a m+n =___48___,a m-n =___34__. 13、已知 x+2y ﹣3z=0,2x+3y+5z=0,则x y z x y x ++-+=___729__. 14、如图,有一条直的宽纸带,按图方式折叠,则∠α的度数等于___75°__.15、已知关于x 的不等式组⎩⎨⎧x -3m <0,n -2x <0的解集是-1<x <3,则(m +n)2 021=__-1__.16、如图,在△ABC 中,已知点E 、F 分别是AD 、CE 边上的中点,且S △BEF =3cm 2,则S △ABC 的值为_____12____cm 2 .三、解答题(共66分)17、(8分)利用公式计算(1)(2x+3y-z )(2x-3y+z);(2)2(2)(2)(4)x x x +--.解:(1)原式=4x 2-9y 2+6yz -z 2;(2)原式=42816x x -+.18、(本小题满分12分)分解因式:(1)2x 2-18;解:原式=2(x 2-9)=2(x +3)(x -3).(2)3m 2n -12mn +12n ;解:原式=3n(m 2-4m +4)=3n(m -2)2.(3)(a +b)2-6(a +b)+9;解:原式=(a +b -3)2.(4)(x 2+9)2-36x 2.解:原式=(x 2+9+6x)(x 2+9-6x)=(x +3)2(x -3)2.19、(6分)已知2xy=⎧⎨=⎩和350xy=-⎧⎨=-⎩是关于x,y的二元一次方程mx-ny=10的两个解.(1)求m,n的值.(2)先化简,再求值:(m-n)(4m+n)-(2m+n)(2m-n).解:(1)把和代入方程得:,解得512mn=⎧⎪⎨=⎪⎩.(2)原式=4m2﹣3mn﹣n2﹣4m2+n2=﹣3mn,当m=5,n=时,原式=﹣.20、(6分)已知关于x的不等式4(x+2)-2>5+3a的解都能使不等式(3a+1)x3>a(2x+3)2成立,求a的取值范围.解:解不等式4(x+2)-2>5+3a,得x>3a-1 4.解不等式(3a+1)x3>a(2x+3)2,得x>9a2.由题意,得3a-14≥9a2.解得a≤-1 15 .21、(8分)如图,直线AB ,CD ,EF 相交于点O ,且AB CD ⊥,OC 平分∠BOE ,若722EOG AOE ∠=∠,求EOG ∠和DOF ∠的度数.解:∵OG 平分∠BOE ,∴EOG BOG ∠=∠.设AOE x ︒∠=, ∴722EOG BOG x ︒∠=∠=∴772222x x x ++180=,解得110x =. ∴71103522EOG ︒︒∠=⨯=. ∵AB CD ⊥,∴90BOC ︒∠=,∴DOF COE ∠=∠903535︒︒︒=--20︒=.22、(8分)七年级某班为准备科技节表彰的奖品,计划从友谊超市购买笔记本和水笔共40件,在获知某网店有“五一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.品名商店 笔记本(元/水笔(元/件)件)友谊超市 2.4 2网店 2 1.8(1)请求出需购买笔记本和水笔的数量;(2)求从网店购买这些奖品可节省多少元.解:(1)设需购买笔记本x件,水笔y件,根据题意得:,解得:.答:需购买笔记本25件,水笔15件.(2)在网店购买这些奖品所需费用为25×2+15×1.8=77(元),节省的钱数为90﹣77=13(元).答:从网店购买这些奖品可节省13元.23、(10分)(1)如图1,直线a∥直线b,点A、D在直线a上,点B、C在直线b上,连接AB、AC、BD、DC,得△ABC和△BDC,△ABC的面积___=____△BDC的面积(填“>”、“=”或“<”).(2)如图2,已知△ABC ,过点A 有一条线段,将△ABC 的面积平分,且交BC 于点D ,则BD BC = 12. (3)如图3,已知四边形ABCD ,请过点D 作一条线段DG 将四边形ABCD 面积平分.解:(3)如图,连接BD ,过点A 作BD 的平行线AE ,延长CB 交AE 于点F ,取FC 中点G ,连接DG ,DG 为所求线段.24、(10分)解决问题:(1)如图1,已知正方形ABCD 的边长为a ,正方形FGCH 的边长为b ,长方形ABGE 和EFHD 为阴影部分,则阴影部分的面积是__22a b -__.(写成平方差的形式)(2)将图1中的长方形ABGE 和EFHD 剪下来,拼成图2所示的长方形,则长方形AHDE 的面积是__()()a b a b +-__.(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式__22()()a b a b a b +-=-__.(4)利用所得公式计算:24814111112(1)(1)(1)(1)22222+++++解:原式=4。
2020-2021学年七年级下期末考试数学试卷及答案解析
2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列图形中,对称轴最少的图形是()A.B.C.D.解:A.圆有无数条对称轴;B.正七边形有7条对称轴;C.五角星有5条对称轴;D.等腰梯形有1条对称轴.故选:D.2.(3分)下列事件属于确定事件的是()A.今天日本新冠肺炎新增零人B.明天太阳从西边升起C.数学老师长得最好看D.掷一枚质地均匀的硬币正面朝上解:A、今天日本新冠肺炎新增零人,是随机事件;B、明天太阳从西边升起,是不可能事件,是确定事件;C、数学老师长得最好看,是随机事件;D、掷一枚质地均匀的硬币正面朝上,是随机事件;故选:B.3.(3分)如图,在△ABC中,AB=2020,AC=2018,AD为中线,则△ABD与△ACD的周长之差为()A.1B.2C.3D.4解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2020﹣2018=2,故选:B.4.(3分)在圆周长的计算公式C=2πr中,变量有()A.C,πB.C,r C.π,r D.C,2π解:在圆周长的计算公式C=2πr中,变量有C和r,故选:B.5.(3分)如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数为()A.68°B.58°C.48°D.32°解:如图所示:∵AD∥FE,∴∠2=∠3,又∵∠1+∠BAC+∠3=180°,∠BAC=90°,∴∠1+∠3=90°,又∵∠1=32°,∴∠3=58°,∴∠2=58°,故选:B.6.(3分)下列运算正确的是()A.a4•a2=a8B.a6÷a2=a3C.(2ab2)2=4a2b⁴D.(a3)2=a5解:A.a4•a2=a6,故本选项不合题意;B.a6÷a2=a4,故本选项不合题意;C.(2ab2)2=4a2b⁴,正确;D.(a3)2=a6,故本选项不合题意;故选:C.7.(3分)若三角形的三边长分别为3,1+2x,8,则x的取值范围是()A.2<x<5B.3<x<8C.4<x<7D.5<x<9解:根据三角形的三边关系可得:8﹣3<1+2x<3+8,解得:2<x<5.故选:A.8.(3分)如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,AS=AR,则这四个结论:①P A平分∠RPS;②PR=PS;③QP ∥AR;④∠ABC=∠QPS中正确的有()A.4个B.3个C.2个D.1个解:(1)在Rt△APS和Rt△APR中,{AP=APAR=AS,∴Rt△APR≌Rt△APS(HL),∴∠P AR=∠P AS,AS=AR,∴P A平分∠BAC,故①②正确;∵AQ=PR,∴∠P AQ=∠APQ,∴∠PQS=∠P AQ+∠APQ=2∠P AQ,又∵P A平分∠BAC,∴∠BAC=2∠P AQ,∴∠PQS=∠BAC,∴PQ∥AR,故③正确;∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等),故④不正确.故选:B.9.(3分)如图,在△ABC中,∠C=90°,DE⊥AB于点E,CD=DE,∠CBD=26°,则∠A的度数为()A.40°B.34°C.36°D.38°解:∵DE⊥AB,DC⊥BC,DE=DC,∴BD平分∠ABC,∴∠EBD=∠CBD=26°,∴∠A=90°﹣∠ABC=90°﹣2×26°=38°.故选:D.10.(3分)一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度h(cm)102030405060708090100小车下滑的时间t(s) 4.233.002.452.131.891.711.59 1.50 1.411.35下列说法正确的是()A.当h=70cm时,t=1.50sB.h每增加10cm,t减小1.23C.随着h逐渐变大,t也逐渐变大D.随着h逐渐升高,小车下滑的平均速度逐渐加快解;A、当h=70cm时,t=1.59s,故A错误;B、h每增加10cm,t减小的值不一定,故B错误;C、随着h逐渐升高,t逐渐变小,故C错误;D、随着h逐渐升高,小车的时间减少,小车的速度逐渐加快,故D正确;故选:D.二.填空题(共4小题,满分12分,每小题3分)11.(3分)自然界中,花粉的质量很小,一粒某种植物花粉的质量约为0.000042毫克,0.000042用科学记数法表示为 4.2×10﹣5.解:0.000042=4.2×10﹣5.故答案为:4.2×10﹣5.12.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)解:当∠D=∠B时,在△ADF和△CBE中∵{AD=BC ∠D=∠B DF=BE,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)13.(3分)某学习小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,小智绘制了如图所示的折线图,该事件最有可能是③(填写一个你认为正确的序号).①掷一枚硬币,正面朝上;②掷一个质地均匀的正六面体骰子,向上一面的点数是5;③暗箱中有1个黑球和2个白球,这些球除颜色外无差别,从中任取一球是黑球.解:由折线统计图知,随着试验次数的增加,频率逐渐稳定在0.33,即13左右, ①中掷一枚硬币,正面朝上的概率为12,不符合题意; ②掷一个质地均匀的正六面体骰子,向上一面的点数是5的概率是16,不符合题意; ③中从中任取一球是黑球的概率为11+2=13,符合题意, 故答案为:③. 14.(3分)在△ABC 中MP ,NO 分别垂直平分AB ,AC .若∠BAC =106°,则∠P AO 的度数是 32° .解:∵∠BAC =106°,∴∠B +∠C =180°﹣106°=74°,∵MP 是线段AB 的垂直平分线,∴P A =PB ,∴∠P AB =∠B ,同理,∠OAC =∠C ,∴∠P AO =∠BAC ﹣(∠P AB +∠OAC )=∠BAC ﹣(∠B +∠C )=32°,故答案为:32°.三.解答题(共11小题,满分1分)15.计算:2﹣1+√16−(3−√3)0+|√2−12|. 解:2﹣1+√16−(3−√3)0+|√2−12| =12+4﹣1+√2−12=3+√2.16.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.解:在Rt△ABF中,∠A=70°,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.17.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=−12.y=1.解:(2x+3y)2﹣(2x+y)(2x﹣y)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当x=−12,y=1时,原式=12×(−12)×1+10×12=﹣6+10=4.18.(1分)在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.(1)如图1,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).(2)如图2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙点P(尺规作图,不写作法,保留作图痕迹),并直接写出∠BPC的度数是40°,160°,140°,80°.(3)等边三角形的巧妙点的个数有C.(A)2(B)6(C)10(D)12解:(1)∴点P为所求.(2)∴P1,P2,P3,P4,P5,P6所求.∠BPC的度数分别为:40°,160°,140°,80°,40°,40°.综上所述,∠BPC的度数为40°,160°,140°,80°.(3)利用(2)中结论,可知等边三角形有10个巧妙点,故选C.19.完成推理填空如图,已知∠B=∠D,∠BAE=∠E.将证明∠AFC+∠DAE=180°的过程填写完整.证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).故答案为:AB,DE,内错角相等,两直线平行;BCE,两直线平行,内错角相等;BCE,同位角相等,两直线平行;两直线平行,同旁内角互补.20.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使P A+PC最小;(3)在DE上画出点M,使|MB﹣MC|最大.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P即为所求;(3)如图所示,点M即为所求.21.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,请你运用自己所学知识说明他们的做法是正确的.证明:∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA),∴DE=BA.22.一个不透明的盒子里装有30个除颜色外其它均相同的球,其中红球有m个,白球有3m 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.(1)当m=4时,求小李摸到红球的概率是多少?(2)当m为何值时,游戏对双方是公平的?解:(1)当m=4时,红球有4个、白球有12个、黄球有14个,则小李摸到红球的概率是430=215;(2)若要是双方摸到红球和黄球的概率相等,则袋子中红球和黄球的数量相等,即m =30﹣m ﹣3m ,解得:m =6,即当m =6时,游戏对双方是公平的.23.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m 3时,水费按每立方米1.1元收费,超过6m 3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm 3,应缴水费为y 元.(1)写出y 与x 之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?解:(1)由题意可得,当0≤x ≤6时,y =1.1x ,当x >6时,y =1.1×6+(x ﹣6)×1.6=1.6x ﹣3,即y 与x 之间的函数表达式是y ={1.1x (0≤x ≤6)1.6x −3(x >6); (2)∵5.5<1.1×6,∴缴纳水费为5.5元的用户用水量不超过6m 3,将y =5.5代入y =1.1x ,解得x =5;∵9.8>1.1×6,∴缴纳水费为9.8元的用户用水量超过6m 3,将y =9.8代入y =1.6x ﹣3,解得x =8;答:这两户家庭这个月的用水量分别是5m 3,8m 3.24.设a ,b ,c 为整数,且一切实数x 都有(x ﹣a )(x ﹣8)+1=(x ﹣b )(x ﹣c )恒成立,求a +b +c 的值.解:∵(x ﹣a )(x ﹣8)+1=x 2﹣(a +8)x +8a +1,(x ﹣b )(x ﹣c )=x 2﹣(b +c )x +bc又∵(x ﹣a )(x ﹣8)+1=(x ﹣b )(x ﹣c )恒成立,∴﹣(a +8)=﹣(b +c ),∴8a +1=bc ,bc﹣8(b+c)=﹣63,即(b﹣8)(c﹣8)=1,∵b,c都是整数,故b﹣8=1,c﹣8=1或b﹣8=﹣1,c﹣8=﹣1,解得b=c=9或b=c=7,当b=c=9时,解得a=10,当b=c=7时,解得a=6,故a+b+c=9+9+10=28或7+7+6=20,故答案为:20或28.25.(1)如图1,等腰△ABC和等腰△ADE中,∠BAC=∠DAE=90°,B,E,D三点在同一直线上,求证:∠BDC=90°;(2)如图2,等腰△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且∠BDC =90°,求证:∠ADB=45°;(3)如图3,等边△ABC中,D是△ABC外一点,且∠BDC=60°,①∠ADB的度数;②DA,DB,DC之间的关系.(1)证明:如图1,设BD与AC交于点F,∵∠BAC=∠DAE=90°,∴∠BAE=∠CAD,在△ABE和△ACD中,{∠BAE =∠CAD AE =AD∴△ABE ≌△ACD (SAS ),∴∠ABE =∠ACD ,∵∠ABE +∠AFB =90°,∠AFB =∠CFD ,∴∠ACD +∠CFD =90°,∴∠BDC =90°;(2)如图2,过A 作AE ⊥AD 交BD 于E ,∵∠BAC =∠DAE =90°,∴∠BAE =∠CAD ,∵∠BAC =∠BDC =90°,∠AFB =∠CFD ,∴∠ABE =∠ACD ,在△ABE 和△ACD 中,{∠BAE =∠CAD AB =AC ∠ABE =∠ACD,∴△ABE ≌△ACD (ASA ),∴AE =AD ,∴∠ADE =∠AED =45°;(3)①如图3,在形内作∠DAE =60°,AE 交BD 于E 点,与(2)同理△ABE ≌△ACD ,∴AE=DA,∴△ADE是等边三角形,∴∠ADE=60°;②∵BE=DC,∴DB=BE+DE=DA+DC.。
2020-2021学年人教版七年级下期末考试数学试题及答案解析
2020-2021学年七年级下期末考试数学试卷一.选择题(共20小题)1.(3分)已知|a|=5,√b2=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12【解答】解:∵|a|=5,∴a=±5,∵√b2=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.故选:D.2.(3分)如图,直线AB、CD相交于点O,若∠1+∠2=120°,则∠BOC等于()A.110°B.120°C.130°D.140°【解答】解:∵∠1与∠2是对顶角,∴∠1=∠2,又∵∠1+∠2=120°,∴∠1=60°.∵∠1与∠BOC互为邻补角,∴∠BOC=180°﹣∠1=180°﹣60°=120°.故选:B.3.(3分)若点P(a,b)在第三象限,则点Q(a﹣3,﹣b)一定在()A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:∵点P (a ,b )在第三象限,∴a <0,b <0,∴a ﹣3<0,﹣b >0,∴点Q (a ﹣3,﹣b )一定在第二象限.故选:B .4.(3分)已知{x =−1y =2是关于x 、y 的二元一次方程组{3x +ny =8mx −y =2的解,则m +2n 的值为( )A .−52B .1C .7D .11【解答】解:把x =﹣1,y =2代入方程组,得{−3+2n =8−m −2=2解得m =﹣4,n =112, ∴m +2n =﹣4+11=7.故选:C .5.(3分)把不等式2﹣x <1的解集在数轴上表示正确的是( )A .B .C .D .【解答】解:不等式移项合并得:﹣x <﹣1,解得:x >1,表示在数轴上,如图所示故选:A .6.(3分)为了解某校3000名学生的视力情况,从中抽取了350名学生的视力,就这个问题来说,说法正确的是( )A .3000名学生的视力是总体B .3000名学生是总体C .每个学生是个体D.350名学生是所抽取的一个样本【解答】解:为了了解3000名学生的视力情况,从中抽取了350名学生进行视力调查,这个问题中的总体是3000名学生的视力情况,个体是每一个学生的视力情况,样本是抽取的350名学生的视力情况;故选:A.7.(3分)设a为正整数,且a<√37<a+1,则a的值为()A.5B.6C.7D.8【解答】解:∵√36<√37<√49,∴6<√37<7,∵a为正整数,且a<√37<a+1,∴a=6.故选:B.8.(3分)实数a、b在数轴上的位置如图所示,化简√(a+1)2+√(b−1)2−√(a−b)2的结果是()A.﹣2B.0C.﹣2a D.2b【解答】解:由数轴可知﹣2<a<﹣1,1<b<2,∴a+1<0,b﹣1>0,a﹣b<0,∴√(a+1)2+√(b−1)2−√(a−b)2=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+(b﹣1)+(a﹣b)=﹣a﹣1+b﹣1+a﹣b=﹣2故选:A.9.(3分)点P(2,﹣3)到x轴的距离等于()A.﹣2B.2C.﹣3D.3【解答】解:点P(﹣2,﹣3)到x轴的距离是:3.故选:D.10.(3分)下列选项中a ,b 的取值,可以说明“若a >b ,则|a |>|b |”是假命题的反例为( )A .a =﹣5 b =﹣6B .a =6 b =5C .a =﹣6 b =5D .a =6 b =﹣5【解答】解:当a =﹣5,b =﹣6时,a >b ,但|a |<|b |,∴“若a >b ,则|a |>|b |”是假命题,故选:A .11.(3分)已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣c |+√b −7=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a +b +c 的值为() A .12 B .15 C .17 D .20【解答】解:∵且|a ﹣c |+√b −7=0,∴a =c ,b =7,∴P (a ,7),PQ ∥y 轴,∴PQ =7﹣3=4,∴将线段PQ 向右平移a 个单位长度,其扫过的图形是边长为a 和4的矩形,∴4a =20,∴a =5,∴c =5,∴a +b +c =5+7+5=17,故选:C .12.(3分)关于x ,y 的二元一次方程组{2x +3y =2ax −y =a −5的解满足x +y =5,则a 的值为()A .6B .5C .4D .3【解答】解:解方程组{2x +3y =2a x −y =a −5得{x =a −3y =2,又x +y =5,∴a ﹣3+2=5,解得a =6,故选:A .13.(3分)如图所示,直角坐标系中四边形的面积是( )A.15.5B.20.5C.26D.31【解答】解:图中四边形可以视为由两个直角三角形和一个梯形构成,则其面积为:1×2×3+12(3+4)×3+12×1×4=3+212+2=15.5.2故选:A.14.(3分)如图,在中国象棋棋盘中,如果将“卒”的位置记作(3,1),那么“相”的位置可记作()A.(2,8)B.(2,4)C.(8,2)D.(4,2)【解答】解:∵将“卒”的位置记作(3,1),∴“相”的位置可记作(8,2).故选:C.15.(3分)如图,从C到B地有①②③条路线可以走,每条路线长分别为l,m,n()A.l>m>n B.l=m>n C.m<n=l D.l>n>m【解答】解:由题意可得:∵从C到B地有①②③条路线可以走,每条路线长分别为l,m,n,则AC+AB=l>BC∴l =n >m .故选:C .16.(2分)已知关于x 的不等式组{x −a >03−2x >0的整数解共有5个,则a 的取值范围是( ) A .﹣4<a <﹣3 B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <32 【解答】解:解不等式x ﹣a >0,得:x >a ,解不等式3﹣2x >0,得:x <1.5,∵不等式组的整数解有5个,∴﹣4≤a <﹣3.故选:B .17.(2分)如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于28”为一次运算.若运算进行了3次才停止,则x 的取值范围是( )A .2<x ≤4B .2≤x <4C .2<x <4D .2≤x ≤4【解答】解:依题意,得:{3(3x −2)−2≤283[3(3x −2)−2]−2>28, 解得:2<x ≤4.故选:A .18.(2分)如图,若AB ∥DE ,∠B =130°,∠D =35°,则∠C 的度数为( )A .80°B .85°C .90°D .95°【解答】解:过C作CM∥AB,∵AB∥DE,∴AB∥CM∥DE,∴∠1+∠B=180°,∠2=∠D=35°,∵∠B=130°,∴∠1=50°,∴∠BCD=∠1+∠2=85°,故选:B.19.(2分)我们知道实数和数轴上的点一一对应,如图,正方形的边长为1,点P是半圆与数轴的交点,则点P对应的实数为()A.√2B.√2+1C.2.4D.2.5【解答】解:∵正方形的边长为1,∴根据图示,点P是以1为圆心,以√2(2+12=√2)为半径的圆与x的交点,∴点P表示的数是√2+1.故选:B.20.(2分)在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(a,b),则点A2020的坐标为()A.(a,b)B.(﹣b+1,a+1)C.(﹣a,﹣b+2)D.(b﹣1,﹣a+1)【解答】解:观察发现:A1(a,b),A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),A6(﹣b+1,a+1)…∴依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A 2020的坐标与A 4的坐标相同,为(b ﹣1,﹣a +1),故选:D .二.填空题(共6小题,满分18分,每小题3分)21.(3分)已知方程2x +3y ﹣1=0,用含x 的代数式表示y ,则 y =−23x +13.【解答】解:方程2x +3y ﹣1=0,移项得:3y =1﹣2x ,解得:y =−23x +13.故答案为:y =−23x +13.22.(3分)一个正数a 的平方根分别是2m ﹣1和﹣3m +52,则这个正数a 为 4 .【解答】解:根据题意,得:2m ﹣1+(﹣3m +52)=0,解得:m =32,∴正数a =(2×32−1)2=4,故答案为:4.23.(3分)运算符号⊗的含义是a ⊗b ={a(a ≥b)b(a <b),则(1+x )⊗(1﹣2x )=5时x 的值为 4或﹣2 .【解答】解:当1+x ≥1﹣2x 时,即x ≥0,此时1+x =5,解得x =4;当1+x <1﹣2x 时,即x <0,此时1﹣2x =5,解得x =﹣2.故答案为:4或﹣2.24.(3分)如图,△DEF 是由△ABC 沿直线BC 向右平移得到,若BC =6,当点E 刚好移动到BC 的中点时,则CF = 3 .【解答】解:由平移的性质可得:BC=EF,BE=CF,∵BC=6,点E刚好移动到BC的中点,∴BE=EC=CF=3,故答案为:3.25.(3分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.则由统计图可知,在扇形统计图中,“乒乓球”部分所对应的圆心角的度数是100.8°.【解答】解:调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),则“乒乓球”部分所对应的圆心角的度数是:360°×1450=100.8°;故答案为:100.8°.26.(3分)已知点M在y轴上,纵坐标为4,点P(6,﹣4),则△OMP的面积是12.【解答】解:∵M在y轴上,纵坐标为4,∴OM=4,∵P(6,﹣4),∴S△OMP=12OM•|x P|=12×4×6=12.故答案为12.三.解答题(共3小题,满分27分)27.(12分)(1)计算:|√3−2|+√−83+√(−2)2−|−2|(2)解方程组{x =2y −13x +y =4(3)解不等式组{4(x +1)<7x +13x −4<x−83,并写出它所有负整数解. 【解答】解:(1)原式=2−√3−2+2﹣2=−√3;(2){x =2y −1①3x +y =4②, 将①代入②,得:3(2y ﹣1)+y =4,解得y =1,将y =1代入①,得:x =1,则方程组的解为{x =1y =1; (3)解不等式4(x +1)<7x +13,得:x >﹣3,解不等式x ﹣4<x−83,得:x <2, 则不等式组的解集为﹣3<x <2,∴这个不等式组的负整数解为﹣2、﹣1.28.(6分)已知:如图,DB ⊥AF 于点G ,EC ⊥AF 于点H ,∠C =∠D .求证:∠A =∠F .证明:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),∴∠DGH =∠EHF =90°( 垂直的定义 ).∴DB ∥EC ( 同位角相等,两直线平行 ).∴∠C = ∠DBA ( 两直线平行,同位角相等 ).∵∠C =∠D (已知),∴∠D = ∠DBA ( 等量代换 ).∴DF ∥AC ( 内错角相等,两直线平行 ).∴∠A =∠F ( 两直线平行,内错角相等 ).【解答】解:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),∴∠DGH =∠EHF =90°(垂直的定义),∴DB ∥EC (同位角相等,两直线平行),∴∠C =∠DBA (两直线平行,同位角相等),∵∠C =∠D (已知),∴∠D =∠DBA (等量代换),∴DF ∥AC (内错角相等,两直线平行),∴∠A =∠F (两直线平行,内错角相等).故答案为:垂直的定义;同位角相等,两直线平行;∠DBA ,两直线平行,同位角相等;∠DBA ,等量代换;内错角相等,两直线平行;两直线平行,内错角相等.29.(9分)某商场计划用7.8万元从同一供应商处购进A ,B 两种商品,供应商负责运输.已知A 种商品的进价为120元/件,B 种商品的进价为100元/件.如果售价定为:A 种商品135元/件,B 种商品120元/件,那么销售完后可获得利润1.2万元.(1)该商场计划购进A ,B 两种商品各多少件?(2)供应商计划租用甲、乙两种货车共16辆,一次性将A ,B 两种商品运送到商场,已知甲种货车可装A 种商品30件和B 种商品12件,乙种货车可装A 种商品20件和B 种商品30件,试通过计算帮助供应商设计几种运输用车方案?【解答】解:(1)设购进A 种商品x 件,B 种商品y 件.根据题意得:{120x +100y =78000(135−120)x +(120−100)y =12000, 解得:{x =400y =300. 答:购进A 种商品400件,B 种商品300件.(2)设租用甲种货车a 辆,则租用乙种货车(16﹣a )辆,则{30a +20(16−a)≥40012a +30(16−a)≥300. 解得8≤a ≤10.∵a为整数,∴a=8,9,10.故有3种用车方案:①A种车8辆,B种车8辆;②A种车9辆,B种车7辆;③A种车10辆,B种车6辆.答:有3种用车方案:①A种车8辆,B种车8辆;②A种车9辆,B种车7辆;③A 种车10辆,B种车6辆.。
2020-2021学年七年级下期末考试数学试卷及答案解析
2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列图形中,对称轴最少的图形是()A.B.C.D.【解答】解:A.圆有无数条对称轴;B.正七边形有7条对称轴;C.五角星有5条对称轴;D.等腰梯形有1条对称轴.故选:D.2.(3分)下列事件属于确定事件的是()A.今天日本新冠肺炎新增零人B.明天太阳从西边升起C.数学老师长得最好看D.掷一枚质地均匀的硬币正面朝上【解答】解:A、今天日本新冠肺炎新增零人,是随机事件;B、明天太阳从西边升起,是不可能事件,是确定事件;C、数学老师长得最好看,是随机事件;D、掷一枚质地均匀的硬币正面朝上,是随机事件;故选:B.3.(3分)如图,在△ABC中,AB=2020,AC=2018,AD为中线,则△ABD与△ACD的周长之差为()A.1B.2C.3D.4【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2020﹣2018=2,故选:B.4.(3分)在圆周长的计算公式C=2πr中,变量有()A.C,πB.C,r C.π,r D.C,2π【解答】解:在圆周长的计算公式C=2πr中,变量有C和r,故选:B.5.(3分)如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数为()A.68°B.58°C.48°D.32°【解答】解:如图所示:∵AD∥FE,∴∠2=∠3,又∵∠1+∠BAC+∠3=180°,∠BAC=90°,∴∠1+∠3=90°,又∵∠1=32°,∴∠3=58°,∴∠2=58°,故选:B.6.(3分)下列运算正确的是()A.a4•a2=a8B.a6÷a2=a3C.(2ab2)2=4a2b⁴D.(a3)2=a5【解答】解:A.a4•a2=a6,故本选项不合题意;B.a6÷a2=a4,故本选项不合题意;C.(2ab2)2=4a2b⁴,正确;D.(a3)2=a6,故本选项不合题意;故选:C.7.(3分)若三角形的三边长分别为3,1+2x,8,则x的取值范围是()A.2<x<5B.3<x<8C.4<x<7D.5<x<9【解答】解:根据三角形的三边关系可得:8﹣3<1+2x<3+8,解得:2<x<5.故选:A.8.(3分)如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,AS=AR,则这四个结论:①P A平分∠RPS;②PR=PS;③QP ∥AR;④∠ABC=∠QPS中正确的有()A.4个B.3个C.2个D.1个【解答】解:(1)在Rt△APS和Rt△APR中,{AP=APAR=AS,∴Rt△APR≌Rt△APS(HL),∴∠P AR=∠P AS,AS=AR,∴P A平分∠BAC,故①②正确;∵AQ=PR,∴∠P AQ=∠APQ,∴∠PQS=∠P AQ+∠APQ=2∠P AQ,又∵P A平分∠BAC,∴∠BAC=2∠P AQ,∴∠PQS=∠BAC,∴PQ∥AR,故③正确;∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等),故④不正确.故选:B.9.(3分)如图,在△ABC中,∠C=90°,DE⊥AB于点E,CD=DE,∠CBD=26°,则∠A的度数为()A.40°B.34°C.36°D.38°【解答】解:∵DE⊥AB,DC⊥BC,DE=DC,∴BD平分∠ABC,∴∠EBD=∠CBD=26°,∴∠A=90°﹣∠ABC=90°﹣2×26°=38°.故选:D.10.(3分)一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度h(cm)102030405060708090100小车下滑的时间t(s) 4.233.002.452.131.891.711.59 1.50 1.411.35下列说法正确的是()A.当h=70cm时,t=1.50sB.h每增加10cm,t减小1.23C.随着h逐渐变大,t也逐渐变大D.随着h逐渐升高,小车下滑的平均速度逐渐加快【解答】解;A、当h=70cm时,t=1.59s,故A错误;B、h每增加10cm,t减小的值不一定,故B错误;C、随着h逐渐升高,t逐渐变小,故C错误;D、随着h逐渐升高,小车的时间减少,小车的速度逐渐加快,故D正确;故选:D.二.填空题(共4小题,满分12分,每小题3分)11.(3分)自然界中,花粉的质量很小,一粒某种植物花粉的质量约为0.000042毫克,0.000042用科学记数法表示为 4.2×10﹣5.【解答】解:0.000042=4.2×10﹣5.故答案为:4.2×10﹣5.12.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)【解答】解:当∠D=∠B时,在△ADF和△CBE中∵{AD=BC ∠D=∠B DF=BE,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)13.(3分)某学习小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,小智绘制了如图所示的折线图,该事件最有可能是③(填写一个你认为正确的序号).①掷一枚硬币,正面朝上;②掷一个质地均匀的正六面体骰子,向上一面的点数是5;③暗箱中有1个黑球和2个白球,这些球除颜色外无差别,从中任取一球是黑球.【解答】解:由折线统计图知,随着试验次数的增加,频率逐渐稳定在0.33,即13左右, ①中掷一枚硬币,正面朝上的概率为12,不符合题意; ②掷一个质地均匀的正六面体骰子,向上一面的点数是5的概率是16,不符合题意; ③中从中任取一球是黑球的概率为11+2=13,符合题意, 故答案为:③. 14.(3分)在△ABC 中MP ,NO 分别垂直平分AB ,AC .若∠BAC =106°,则∠P AO 的度数是 32° .【解答】解:∵∠BAC =106°,∴∠B +∠C =180°﹣106°=74°,∵MP 是线段AB 的垂直平分线,∴P A =PB ,∴∠P AB =∠B ,同理,∠OAC =∠C ,∴∠P AO =∠BAC ﹣(∠P AB +∠OAC )=∠BAC ﹣(∠B +∠C )=32°,故答案为:32°.三.解答题(共11小题,满分1分)15.计算:2﹣1+√16−(3−√3)0+|√2−12|. 【解答】解:2﹣1+√16−(3−√3)0+|√2−12| =12+4﹣1+√2−12=3+√2.16.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.【解答】解:在Rt△ABF中,∠A=70°,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.17.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=−12.y=1.【解答】解:(2x+3y)2﹣(2x+y)(2x﹣y)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当x=−12,y=1时,原式=12×(−12)×1+10×12=﹣6+10=4.18.(1分)在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.(1)如图1,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).(2)如图2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙点P(尺规作图,不写作法,保留作图痕迹),并直接写出∠BPC的度数是40°,160°,140°,80°.(3)等边三角形的巧妙点的个数有C.(A)2(B)6(C)10(D)12【解答】解:(1)∴点P为所求.(2)∴P1,P2,P3,P4,P5,P6所求.∠BPC的度数分别为:40°,160°,140°,80°,40°,40°.综上所述,∠BPC的度数为40°,160°,140°,80°.(3)利用(2)中结论,可知等边三角形有10个巧妙点,故选C.19.完成推理填空如图,已知∠B=∠D,∠BAE=∠E.将证明∠AFC+∠DAE=180°的过程填写完整.证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).【解答】证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).故答案为:AB,DE,内错角相等,两直线平行;BCE,两直线平行,内错角相等;BCE,同位角相等,两直线平行;两直线平行,同旁内角互补.20.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使P A+PC最小;(3)在DE上画出点M,使|MB﹣MC|最大.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P即为所求;(3)如图所示,点M即为所求.21.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,请你运用自己所学知识说明他们的做法是正确的.【解答】证明:∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA),∴DE=BA.22.一个不透明的盒子里装有30个除颜色外其它均相同的球,其中红球有m个,白球有3m 个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.(1)当m=4时,求小李摸到红球的概率是多少?(2)当m为何值时,游戏对双方是公平的?【解答】解:(1)当m=4时,红球有4个、白球有12个、黄球有14个,则小李摸到红球的概率是430=215;(2)若要是双方摸到红球和黄球的概率相等,则袋子中红球和黄球的数量相等,即m =30﹣m ﹣3m ,解得:m =6,即当m =6时,游戏对双方是公平的.23.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m 3时,水费按每立方米1.1元收费,超过6m 3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm 3,应缴水费为y 元.(1)写出y 与x 之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?【解答】解:(1)由题意可得,当0≤x ≤6时,y =1.1x ,当x >6时,y =1.1×6+(x ﹣6)×1.6=1.6x ﹣3,即y 与x 之间的函数表达式是y ={1.1x (0≤x ≤6)1.6x −3(x >6); (2)∵5.5<1.1×6,∴缴纳水费为5.5元的用户用水量不超过6m 3,将y =5.5代入y =1.1x ,解得x =5;∵9.8>1.1×6,∴缴纳水费为9.8元的用户用水量超过6m 3,将y =9.8代入y =1.6x ﹣3,解得x =8;答:这两户家庭这个月的用水量分别是5m 3,8m 3.24.设a ,b ,c 为整数,且一切实数x 都有(x ﹣a )(x ﹣8)+1=(x ﹣b )(x ﹣c )恒成立,求a +b +c 的值.【解答】解:∵(x ﹣a )(x ﹣8)+1=x 2﹣(a +8)x +8a +1,(x ﹣b )(x ﹣c )=x 2﹣(b +c )x +bc又∵(x ﹣a )(x ﹣8)+1=(x ﹣b )(x ﹣c )恒成立,∴﹣(a +8)=﹣(b +c ),∴8a +1=bc ,bc﹣8(b+c)=﹣63,即(b﹣8)(c﹣8)=1,∵b,c都是整数,故b﹣8=1,c﹣8=1或b﹣8=﹣1,c﹣8=﹣1,解得b=c=9或b=c=7,当b=c=9时,解得a=10,当b=c=7时,解得a=6,故a+b+c=9+9+10=28或7+7+6=20,故答案为:20或28.25.(1)如图1,等腰△ABC和等腰△ADE中,∠BAC=∠DAE=90°,B,E,D三点在同一直线上,求证:∠BDC=90°;(2)如图2,等腰△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且∠BDC =90°,求证:∠ADB=45°;(3)如图3,等边△ABC中,D是△ABC外一点,且∠BDC=60°,①∠ADB的度数;②DA,DB,DC之间的关系.【解答】(1)证明:如图1,设BD与AC交于点F,∵∠BAC=∠DAE=90°,∴∠BAE=∠CAD,在△ABE和△ACD中,{∠BAE =∠CAD AE =AD∴△ABE ≌△ACD (SAS ),∴∠ABE =∠ACD ,∵∠ABE +∠AFB =90°,∠AFB =∠CFD ,∴∠ACD +∠CFD =90°,∴∠BDC =90°;(2)如图2,过A 作AE ⊥AD 交BD 于E ,∵∠BAC =∠DAE =90°,∴∠BAE =∠CAD ,∵∠BAC =∠BDC =90°,∠AFB =∠CFD ,∴∠ABE =∠ACD ,在△ABE 和△ACD 中,{∠BAE =∠CAD AB =AC ∠ABE =∠ACD,∴△ABE ≌△ACD (ASA ),∴AE =AD ,∴∠ADE =∠AED =45°;(3)①如图3,在形内作∠DAE =60°,AE 交BD 于E 点,与(2)同理△ABE ≌△ACD ,∴AE=DA,∴△ADE是等边三角形,∴∠ADE=60°;②∵BE=DC,∴DB=BE+DE=DA+DC.。
2020-2021学年七年级下学期期末数学试卷含答案解析
2020-2021学年七年级下学期期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)若x=﹣2是方程ax+b=1(a≠0)的解,则2a﹣b的值为()A.﹣2B.﹣1C.0D.1【解答】解:把x=﹣2代入方程得:﹣2a+b=1,则2a﹣b=﹣1.故选:B.2.(3分)下列图形中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.3.(3分)将若干个大小相等的正五边形排成环状,如图所示是前3个五边形,要完成这一圆环还需_______个正五边形()A.6B.7C.8D.9【解答】解:五边形的内角和为(5﹣2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O ,则∠1=360°﹣108°×3=360°﹣324°=36°, 360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:B .4.(3分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长( )尺.A .25B .20C .15D .10【解答】解:设索长x 尺,竿子长y 尺,依题意,得:{x −y =5y −12x =5, 解得:{x =20y =15. 故选:B .5.(3分)一个数x 的13与4的差不小于这个数的2倍加上5所得的和,则可列不等式是( ) A .13x ﹣4>2x +5 B .13x ﹣4<2x +5 C .13x ﹣4≥2x +5 D .13x ﹣4≤2x +5 【解答】解:根据题意,得13x ﹣4≥2x +5.故选:C .6.(3分)如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,连接CD 、CE ,若△ACD 的面积为10,则四边形ACED 的面积为( )A.15B.18C.20D.24【解答】解:∵△ABC沿直线AB向右平移后到达△BDE的位置,∴AB=BD,BC∥DE且BC=DE,∴四边形BDEC是平行四边形,∵平行四边形BDEC和△ABC等底等高,∴S平行四边形BDEC=2S△ABC=10,∴S四边形ACED=S平行四边形BDEC+S△ABC=10+5=15.故选:A.7.(3分)如图,点D,E在△ABC边上,沿DE将△ADE翻折,点A的对应点为点A′,∠A′EC=40°,∠A′DB=110°,则∠A等于()A.30°B.35°C.60°D.70°【解答】解:∵∠A′EC=40°,∴∠AEC+∠A′EC=180°+40°=220°,由翻折可知:∠AED=∠A′ED=12×220°=110°,∵∠A′DB=110°,∴∠A′DA=70°,由翻折可知:∠ADE=∠A′DE=12∠A′DA=35°,∴∠A=180°﹣∠ADE﹣∠AED=35°.故选:B.8.(3分)如图,在五边形ABCDE 中,若去掉一个30°的角后得到一个六边形BCDEMN ,则∠1+∠2的度数为( )A .210°B .110°C .150°D .100°【解答】解:解法一:∵∠A +∠B +∠C +∠D +∠E =(5﹣2)×180°=540°,∠A =30°,∴∠B +∠C +∠D +∠E =510°,∵∠1+∠2+∠B +∠C +∠D +∠E =(6﹣2)×180°=720°,∴∠1+∠2=720°﹣510°=210°,解法二:在△ANM 中,∠ANM +∠AMN =180°﹣∠A =180°﹣30°=150°,∴∠1+∠2=360°﹣(∠AMN +∠ANM )=360°﹣150°=210°故选:A .9.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三;问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( )A .{y =5x +45y =7x +3B .{y =5x −45y =7x +3C .{y =5x +45y =7x −3D .{y =5x −45y =7x −3 【解答】解:依题意,得:{y =5x +45y =7x −3. 故选:C .10.(3分)如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转100°得到△AB ′C ′,连接CC ′,若CC ′∥AB ,则∠CAB '的度数为( )A .45°B .60°C .70°D .90°【解答】解:∵将△ABC 绕点A 按逆时针方向旋转100°得到△AB ′C ′,∴AC =AC ',∠BAB '=∠CAC '=100°,∴∠ACC '=∠AC 'C =40°,∵AB ∥CC ',∴∠BAC =∠ACC '=40°,∴∠CAB '=∠BAB '﹣∠BAC =60°,故选:B .二.填空题(共5小题,满分15分,每小题3分)11.(3分)已知对任意有理数a 、b ,关于x 、y 的二元一次方程(a ﹣b )x ﹣(a +b )y =a +b有一组公共解,则公共解为 {x =0y =−1. 【解答】解:由已知得,a (x ﹣y ﹣1)﹣b (x +y +1)=0,即{x −y −1=0①x +y +1=0②, ①+②,2x =0,x =0;把x =0代入①得,y =﹣1,故此方程组的解为:{x =0y =−1. 故答案为:{x =0y =−1. 另法:解:因为对于任意有理数a ,b ,关于xy 的二元一次方程(a ﹣b )x ﹣(a +b )y =a +b 都有一组公共解,所以,设a =1,b =﹣1(a +b =0),则(a ﹣b )x ﹣(a +b )y =a +b 为:2x =0,x =0,设a =b =1,(a ﹣b =0),则(a ﹣b )x ﹣(a +b )y =a +b 为:﹣2y =2,y =﹣1,所以公共解为:x =0,y =﹣1.12.(3分)甲乙两人同解方程组{ax +by =2cx −7y =8时,甲正确解得{x =3y =−2,乙因抄错c 而得{x =−2y =2,则a +c = 2 . 【解答】解:{ax +by =2①cx −7y =8②把{x =3y =−2代入②得:3c +14=8, 解得:c =﹣2,把{x =3y =−2和{x =−2y =2代入①得:{3a −2b =2−2a +2b =2, 解得:{a =4b =5, 所以a +c =4+(﹣2)=2,故答案为:2.13.(3分)若关于x 的不等式2x ﹣a ≥3的解集如图所示,则常数a = ﹣5 .【解答】解:由数轴上关于x 的不等式的解集可知x ≥﹣1,解不等式2x ﹣a ≥3得x ≥3+a 2,故3+a 2=−1,解得a =﹣5.故答案为:﹣5.14.(3分)如图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,可以求出这两个角的度数的方程组是 {x +y =90y −x =15.【解答】解:根据“AB ⊥BC ”,得方程为x +y =90;根据“∠ABD 的度数比∠DBC 的度数少15°”,得方程y ﹣x =15.那么方程组应该是:{x +y =90y −x =15. 15.(3分)如图,在三角形ABC 中∠BAC =90°,AD 是BC 边上的高,∠CAD =35°,则∠B = 35° .【解答】解:∵AD 是BC 边上的高,∴∠ADC =90°,在△ACD 中,∠CAD =35°,∠ADC =90°,∴∠C =180°﹣∠CAD ﹣∠ADC =180°﹣35°﹣90°=55°.在△ABC 中,∠BAC =90°,∠C =55°,∴∠B =180°﹣∠BAC ﹣∠C =180°﹣90°﹣55°=35°.故答案为:35°.三.解答题(共8小题,满分75分)16.(8分)解方程(组):(1)15﹣(7﹣5x )=2x +(5﹣3x );(2)3+0.2x 0.2−0.2+0.03x 0.01=0.75;(3){3x −2y +4=03y +2x −19=0; (4){x+32+y+53=7x−43+2y−35=2. 【解答】解:(1)15﹣(7﹣5x )=2x +(5﹣3x ),去括号,得15﹣7+5x =2x +5﹣3x ,移项,得5x ﹣2x +3x =5﹣15+7,合并同类项,得6x =﹣3,系数化为1,得x =−12;(2)3+0.2x 0.2−0.2+0.03x 0.01=0.75, 方程变形,得30+2x 2−20+3x 1=34,去分母,得2(30+2x )﹣4(20+3x )=3,去括号,得60+4x ﹣80﹣12x =3,移项,得4x ﹣12x =3﹣60+80,合并同类项,得﹣8x =23,系数化为1,得x =−238; (3)方程组变形,得{3x −2y =−4①2x +3y =19②, ①×3+②×2得13x =26,解得x =2,把x =2代入①得,y =5,所以方程组的解为{x =2y =5; (4)方程变形,得{3x +2y =23①5x +6y =59②, ①×3﹣②得x =52,把x =52代入①得,y =314,所以方程组的解为{x =52y =314. 17.(9分)(1)解不等式3x +5<8(x ﹣1)+3,并写出满足此不等式的最小整数解.(2)解不等式组{−2(x +3)≤7x +3x+12−16<x+33,并把它的解集在数轴上表示出来.【解答】解:(1)3x +5<8x ﹣8+3,3x ﹣8x <﹣8+3﹣5,﹣5x <﹣10,x >2,所以此不等式的最小整数解为3;(2)解不等式﹣2(x +3)≤7x +3,得:x ≥﹣1,解不等式x+12−16<x+33,得:x <4,则不等式组的解集为﹣1≤x <4,将不等式组的解集表示在数轴上如下:18.(9分)下列图形中,哪些是中心对称图形?哪些是轴对称图形?请画出它们的对称中心或对称轴.【解答】解:中心对称图形有:①②③④⑤.轴对称图形有:①②③.图中的点O 即为对称中心,图中的虚线即为对称轴.19.(9分)糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?【解答】解:设竹签有x 根,山楂有y 个,由题意得:{5x +4=y 8(x −7)=y, 解得:{x =20y =104, 答:竹签有20根,山楂有104个.20.(9分)如图,在△ABC 中,AM 是△ABC 的高线,AN 是△ABC 的角平分线,已知∠B=50°,∠BAC =100°,分别求出∠C 和∠MAN 的度数.【解答】解:在△ABC中,∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣100°=30°.在△ABM中,∠B=50°,AM⊥BM,∴∠AMB=90°,∴∠BAM=90°﹣∠B=40°.∵AN平分∠BAC,∴∠BAN=12∠BAC=50°,∴∠MAN=∠BAN﹣∠BAM=50°﹣40°=10°.21.(10分)小明骑自行车从家中前往地铁一号线的B站,与此同时,一列地铁从A站开往B站.3分钟后,地铁到达B站,小明离B站还有1800米.已知A、B两站间距离和小明家到B站的距离恰好相等,这列地铁的平均速度是小明的4倍.(1)求小明骑车的平均速度;(2)如果此时另有一列地铁需8分钟到达B站,且小明骑车到达B站后还需2分钟才能走到地铁站台候车,他要想乘上这趟地铁,骑车的平均速度至少应提高多少?【解答】解:(1)设小明骑车的平均速度是x米/分,根据题意,得3x+1800=12 x,解方程,得x=200.答:小明骑车的平均速度是200米/分.(2)设小明的速度提高a米/分,根据题意,得6×(200+a)≥1800,解不等式,得a≥100.答:小明的速度至少应提高100米/分.22.(10分)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)写出图中互相平行的线段:CG∥BE,AC∥FG(2)写出图中全等的三角形:△ABC≌△FEG≌△EDB(3)将△DBE变换到与△FEG重合,变换的方法是:将△DBE逆时针旋转90°再平移BE的距离与△FEG重合.(4)判断线段DE、FG的位置关系,并说明理由.FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED..【解答】解:(1)互相平行的线段:CG∥BE,AC∥FG;(2)图中全等的三角形:△ABC≌△FEG≌△EDB;(3)将△DBE逆时针旋转90°再平移BE的距离与△FEG重合;(4)FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG ⊥ED .23.(11分)喜迎元旦,某玩具店购进2022年冬奥会吉祥物冰墩墩与冬残奥会吉祥物雪容融共100个,花去3300元,这两种吉祥物的进价、售价如下表:进价(元/个) 售价 (元/个) 冰墩墩30 40 雪容融 35 50(1)求冰墩墩、雪容融各进了多少个?(2)如果销售完100个吉祥物所得的利润,全部捐赠,那么,该玩具店捐赠了多少钱?【解答】解:(1)设冰墩墩进x 个,雪容融进了y 个,由题意可得:{30x +35y =3300x +y =100, 解得:{x =40y =60, 答:冰墩墩进40个,雪容融进了60个;(2)∵利润=(40﹣30)×40+(50﹣35)×60=1300(元),∴玩具店捐赠了1300元.。
2020—2021年人教版七年级数学下册期末试卷及答案【完美版】
2020—2021年人教版七年级数学下册期末试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.三、解答题(本大题共6小题,共72分)1.计算那列各式(1)计算:﹣14+(﹣2)3÷4×[5﹣(﹣3)2](2)解方程435x -﹣1=723x -2.已知关于x 、y 的二元一次方程组21222x y m x y m +=+⎧⎨+=-⎩的解满足不等式组81x y x y -<⎧⎨+>⎩则m 的取值范围是什么?3.如图1,在平面直角坐标系中,A (a ,0)是x 轴正半轴上一点,C 是第四象限内一点,CB ⊥y 轴交y 轴负半轴于B (0,b ),且|a ﹣3|+(b+4)2=0,S 四边形AOBC =16.(1)求点C 的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.6.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)11、5或-7三、解答题(本大题共6小题,共72分)17、(1)7;(2)x=﹣14 2318、0<m<3.19、(1) C(5,﹣4);(2)90°;(3)略20、(1)略(2) ∠AEB=15°(3) 略22、(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.。
2020-2021学年人教版七年级下学期期末考试数学试卷及答案
2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分) 1.(3分)平方根等于它自己的数是( ) A .0B .1C .﹣1D .4解:平方根等于它自己的数是0. 故选:A .2.(3分)在给出的一组数0,π,√5,3.14,√93,227中,无理数有( )A .1个B .2个C .3个D .5个解:无理数有:π,√5,√93共有3个. 故选:C .3.(3分)下列计算中正确的是( ) A .b 3•b 2=b 6B .x 3+x 3=x 6C .a 2÷a 2=0D .(﹣a 3)2=a 6解:b 3•b 2=b 5,故选项A 不合题意; x 3+x 3=2x 3,故选项B 不合题意; a 2÷a 2=1,故选项C 不合题意;(﹣a 3)2=a 6,正确,故选项D 符合题意. 故选:D .4.(3分)如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是( )A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度解:观察图形可知:△DEF 是由△ABC 沿BC 向右移动BE 的长度后得到的, ∴平移距离就是线段BE 的长度. 故选:B .5.(3分)若m >n ,则下列结论错误的是( ) A .m +2>n +2B .m ﹣2>n ﹣2C .2m >2nD .m −2>n−2∴m +2>n +2,原变形正确,故本选项不符合题意; B 、∵m >n ,∴m ﹣2>n ﹣2,原变形正确,故本选项不符合题意; C 、∵m >n ,∴2m >2n ,原变形正确,故本选项不符合题意; D 、∵m >n , ∴m −2<n−2,原变形错误,故本选项符合题意;故选:D .6.(3分)已知关于x 的不等式4x+a 3>1的解都是不等式2x+13>0的解,则a 的范围是( )A .a =5B .a ≥5C .a ≤5D .a <5解:由4x+a 3>1得,x >3−a4,由2x+13>0得,x >−12,∵关于x 的不等式4x+a 3>1的解都是不等式2x+13>0的解,∴3−a 4≥−12,解得a ≤5.即a 的取值范围是:a ≤5. 故选:C .7.(3分)若(x ﹣2)(x +3)=x 2+ax +b ,则a 、b 的值分别为( ) A .a =5,b =6B .a =1,b =﹣6C .a =1,b =6D .a =5,b =﹣6解:∵(x ﹣2)(x +3)=x 2+x ﹣6=x 2+ax +b , ∴a =1,b =﹣6. 故选:B . 8.(3分)若分式|x|−2(x−2)(x+1)的值为零,则x 的值为( )A .±2B .2C .﹣2D .﹣1解:分式|x|−2(x−2)(x+1)的值为零,则|x |﹣2=0,(x ﹣2)(x +1)≠0,故选:C.9.(3分)如图,点P在直线L外,点A,B在直线l上,P A=3,PB=7,点P到直线l的距离可能是()A.2B.4C.7D.8解:当P A⊥AB时,点P到直线l的距离是P A=3,当P A不垂直AB时,点P到直线l的距离小于P A,故点P到直线l的距离可能是2.故选:A.10.(3分)如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补解:如图知∠A和∠B的关系是相等或互补.故选:D.二.填空题(共5小题,满分20分,每小题4分)11.(4分)银原子的直径为0.0003微米,用科学记数表示为3×10﹣4微米.解:0.000 3微米=3×10﹣4微米.12.(4分)已知(2a+b)2与√3b+12互为相反数,则b a=16.解:由题意得,(2a+b)2+√3b+12=0,则2a+b=0,3b+12=0,解得,a=2,b=﹣4,则b a=(﹣4)2=16,故答案为:16.13.(4分)7mn2−42m2n=−n6m.解:原式=7mn⋅n7mn⋅(−6m)=−n6m.故答案为:−n 6m. 14.(4分)两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为 72 °.解:∵一个角的12等于另一个角的13,∴这两个角不相等,设其中一个角的度数为x °,另一个角的度数为12x °÷13=32x °, ∵两个角的两边两两互相平行, ∴x +32x =180, 解得:x =72,即较小角的度数是72°, 故选:72.15.(4分)一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗的取出,最终盒内都只剩下一颗糖,如果每次以11颗的取出,那么正好取完,则盒子里共有 121 颗糖.解:已知如果每次11颗地取出正好取完,则盒子内糖数必为11的倍数.又知盒子里装有不多于200颗糖,则盒子内糖数可能为11、22、33、44、55、66、77、88、99、110、121、132、143、154、165、176、187、198.又已知如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,则盒子内糖数为12的倍数+1.又知盒子里装有不多于200颗糖则盒子内糖数可能为13,25,37,49,61,73,85,97,109,121,133,145,157,169,181,193. 取上面两组数的交集可得121,故盒子里共有121颗糖. 故答案为:121.三.解答题(共8小题,满分50分)16.(4分)计算:2﹣1+√16−(3−√3)0+|√2−12|.解:2﹣1+√16−(3−√3)0+|√2−12|=12+4﹣1+√2−12 =3+√2.17.(4分)分解因式: (1)x 2(x ﹣y )+(y ﹣x ); (2)3ax 2﹣6axy +3ay 2.解:(1)原式=(x ﹣y )(x 2﹣1), =(x ﹣y )(x ﹣1)(x +1);(2)原式=3a (x 2﹣2xy +y 2), =3a (x ﹣y )2.故答案为:(x ﹣y )(x ﹣1)(x +1);3a (x ﹣y )2. 18.(4分)解不等式组:{2x +1>−1x +1≤3.解:{2x +1>−1①x +1≤3②,由①得:x >﹣1, 由②得:x ≤2,则不等式组的解集为﹣1<x ≤2.19.(6分)已知√5的整数部分是a ,小数部分是b ,求b a 的值. 解:∵2<√5<3, ∴a =2,b =√5−2,∴b a =(√5−2)2=(√5)2−2×√5×2+22=5−4√5+4=9−4√5. 20.(6分)先化简,再求值:x 2−2x−3x−2÷(x +2−5x−2),其中x =12.解:原式=(x−3)(x+1)x−2÷x−4−5x−2=(x−3)(x+1)x−2•x−2(x+3)(x−3) =x+1x+3, 当x =12时, 原式=12+112+3 =37.21.(6分)完成推理填空如图,已知∠B=∠D,∠BAE=∠E.将证明∠AFC+∠DAE=180°的过程填写完整.证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).故答案为:AB,DE,内错角相等,两直线平行;BCE,两直线平行,内错角相等;BCE,同位角相等,两直线平行;两直线平行,同旁内角互补.22.(8分)阅读材料:求1+2+22+23+24+…+22019的值.解:设S=1+2+22+23+24+…+22019①,将等式两边同乘2,得2S=2+22+23+24+…+22019+22020②,用②式减去①式,得:2S﹣S=22020﹣1即S=22020﹣1,所以1+2+22+23+24+…+22019=22020﹣1.请你仿照此法计算:1+3+32+33+34+ (32020)解:设S=1+3+32+33+34+…+32020,①将等式两边同乘3,得:3S=3+32+33+34+…+32020+32021,②用 ②式减去①式得: 3S ﹣S =32021﹣1, 2S =32021﹣1, S =32021−12,所以1+3+32+33+34+⋯+32020=32021−12.23.(12分)平价大药房准备购进KN 95、一次性医用两种口罩.两种口罩的进价和售价如表.已知:用1800元购进一次性医用口罩的数量是用2000元购进KN 95口罩的数量的5倍.KN 95口罩 一次性医用口罩进价(元/个) m +1 0.2m 售价(元/个) 152.5(1)求m 的值;(2)要使购进的KN 95、一次性医用两种口罩共1000个的总利润不少于1560元,且不超过1603元,问该药店共有多少种进货方案? 解:(1)由题意得:18000.2m=2000m+1×5,解得:m =9,经检验,m =9是原方程的解,且符合题意, ∴m =9; (2)∵m =9,∴m +1=10,0.2m =1.8,设购进的KN 95口罩为x 个,一次性医用口罩为(1000﹣x )个, 由题意得:1560≤(15﹣10)x +(2.5﹣1.8)×(1000﹣x )≤1603, 解得:200≤x ≤210, 即x 的取值有11个, ∴药店共有11种进货方案.。
2020-2021学年人教版七年级下期末考试数学试题及答案
2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分20分,每小题2分)1.(2分)点P(a,b)在第四象限,且|a|>|b|,那么点Q(a+b,a﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P(a,b)在第四象限,且|a|>|b|,∴a>0,b<0,a+b>0,a﹣b>0,∴点Q(a+b,a﹣b)在第一象限.故选:A.2.(2分)在下列考察中,是抽样调查的是()A.了解全校学生人数B.调查某厂生产的鱼罐头质量C.调查广州市出租车数量D.了解全班同学的家庭经济状况【解答】解:A.了解全校学生人数,适合普查,故本选项不合题意;B.调查某厂生产的鱼罐头质量,适合抽样调查,故本选项符合题意;C.调查广州市出租车数量,适合普查,故本选项不合题意;D.了解全班同学的家庭经济状况,适合普查,故本选项不合题意;故选:B.3.(2分)射箭时,新手的成绩往往不太稳定.小明和小华练习射箭,当一局12支箭全部射完以后两人的成绩如图所示,根据图中信息,判断两人成绩的方差较小的是()A.小明的方差B.小华的方差C.两人方差一样大D.无法判断两人方差大小【解答】解:由图可以看出,两人的成绩都在8的上下波动,小明波动幅度较小,小华波动幅度较大,故小明的方差较小,小华的方差较大. 故选:A .4.(2分)下列各式中,正确的是( ) A .√(−4)2=−4B .√83=2C .−√16=4D .±√16=4【解答】解:√(−4)2=4,因此选项A 不正确;√83=2,因此选项B 正确;−√16=−4,因此选项C 不正确; ±√16=±4,因此选项D 不正确; 故选:B .5.(2分)如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【解答】解: ∵AB ∥CD , ∴∠C =∠1=45°, ∵∠3是△CDE 的一个外角, ∴∠3=∠C +∠2=45°+35°=80°, 故选:D .6.(2分)已知a <b ,则下列四个不等式中,不正确的是( ) A .a +2<b +2 B .ac 2<bc 2C .12a <12bD .﹣2a ﹣1>﹣2b ﹣1【解答】解:A .∵a <b ,∴a +2<b +2,故本选项不符合题意; B .∵a <b ,∴ac 2≤bc 2,故本选项符合题意;C .∵a <b ,∴12a <12b ,故本选项不符合题意;D .∵a <b , ∴﹣2a >﹣2b ,∴﹣2a ﹣1>﹣2b ﹣1,故本选项不符合题意; 故选:B .7.(2分)已知x ,y 为正整数,且x <√8<y ,则y x 的最小值为( ) A .1B .3C .4D .9【解答】解:∵x ,y 为正整数,且x <√8<y , ∴x 最小为1,y 最小为3, ∴y x 的最小值为31=3, 故选:B .8.(2分)如图,三角形ABC 的顶点坐标分别是A (4,3),B (3,1),C (1,2)若将三角形ABC 向左移动3个单位,向下移动2个单位得三角形A 1B 1C 1,则A 1,B 1,C 1对应的坐标分别为( )A .(7,5)、(6,3)、(4,4)B .(7,1)、(6,﹣1)、(4,0)C .(1,1)、(0,﹣1)、(﹣2,0)D .(1,5)、(0,3)、(﹣2,4)【解答】解:如图,△A 1B 1C 1即为所求,则A 1,B 1,C 1对应的坐标分别为(1,1)、(0,﹣1)、(﹣2,0), 故选:C .9.(2分)下列命题为真命题的是()A.两个锐角之和一定是钝角B.两直线平行,同旁内角相等C.如果x2>0,那么x>0D.平行于同一条直线的两条直线平行【解答】解:A、20°和30°都是锐角,20°+30°=50°,50°是锐角,∴两个锐角之和一定是钝角,是假命题;B、两直线平行,同旁内角互补,不一定相等,∴两直线平行,同旁内角相等,是假命题;C、(﹣1)2>0,﹣1<0,∴如果x2>0,那么x>0,是假命题;D、平行于同一条直线的两条直线平行,是真命题;故选:D.10.(2分)如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,动动脑子想一想,图中的?表示什么数()A.25B.15C.12D.14【解答】解:如图,图中的鞋子为x只,小猪玩具为y只,字母玩具为z只,依题意得:{6x =302x +2y =20y +4z =13,解得{x =5y =5z =2,故x +yz =5+5×2=15. 故选:B .二.填空题(共6小题,满分12分,每小题2分)11.(2分)某次知识竞赛共有20道题,每答对一题得10分,答错或不答都扣5分,娜娜得分要不低于80分,设她答对了x 道题,则根据题意可列不等式为 10x ﹣5(20﹣x )≥80 .【解答】解:设她答对了x 道题,则答错或不答的有(20﹣x )道, 由题意得:10x ﹣5(20﹣x )≥80, 故答案为:10x ﹣5(20﹣x )≥80. 12.(2分)若关于x 的不等式组{x <4x <m的解集是x <4,则P (m +1,2﹣m )在第 四 象限.【解答】解:∵关于x 的不等式组{x <4x <m的解集是x <4,∴m ≥4.∴m +1>0,20m <0,∴P (m +1,2﹣m )在第四象限. 故答案为:四.13.(2分)如图:已知直线AB 、CD 交于点O ,EO ⊥CD ,∠DOB =35°,则∠EOA = 55 °.【解答】解:∵∠DOB =35°, ∴∠BOD =∠AOC =35°, ∵EO ⊥CD , ∴∠EOC =90°,∴∠AOE =∠EOC ﹣∠AOC =90°﹣35°=55°, 故答案为:55.14.(2分)如图,将小王某月手机费中各项费用的情况制成扇形统计图,表示短信费的扇形的圆心角等于 61.2 度.【解答】解:360°×(1﹣4%﹣45%﹣34%) =360°×17% =61.2°, 故答案为:61.2.15.(2分)若点P (a +1,2a +3)在平面直角坐标系的x 轴上,则a 的值为 ﹣1.5 . 【解答】解:∵点P (a +1,2a +3)在平面直角坐标系的x 轴上, ∴2a +3=0, 解得a =﹣1.5. 故答案为:﹣1.5. 16.(2分)√12+√13=7√33. 【解答】解:√12+√13=2√3+√33=7√33, 故答案为:7√33. 三.解答题(共8小题,满分68分)17.(8分)计算:(1)√−643−|2−√5|−√(−3)2+2√5; (2)3√5−|√6−√5|.【解答】解:(1)√−643−|2−√5|−√(−3)2+2√5 =﹣4−√5+2﹣3+2√5 =√5−5.(2)3√5−|√6−√5| =3√5−√6+√5 =4√5−√6. 18.(8分)解方程组(1){2x −5y =−3−4x +y =−3;(2){4(x −y −1)=3(1−y)−2x 2+y 3=2;【解答】解:(1){2x −5y =−3①−4x +y =−3②,①×2+②得:﹣9y =﹣9, 解得:y =1,把y =1代入②得:x =1, 则方程组的解为{x =1y =1;(2)方程组整理得:{4x −y =5①3x +2y =12②,①×2+②得:11x =22, 解得:x =2,把x =2代入①得:y =3, 则方程组的解为{x =2y =3.19.(8分)解不等式(组) (1)解不等式x +x+13≤1−x−146,并把解集在数轴上表示出来. (2)解不等式组{8−x >3x5x+13≥x −1,并写出它的所有整数解.【解答】解:(1)去分母,得:6x+2(x+1)≤6﹣(x﹣14),去括号,得:6x+2x+2≤6﹣x+14,移项,得:6x+2x+x≤6+14﹣2,合并同类项,得:9x≤18,系数化为1,得:x≤2,将解集表示在数轴上如下:;(2){8−x>3x①5x+13≥x−1②,解不等式①得:x<2,解不等式②得:x≥﹣2,则不等式组的解集为﹣2≤x<2,∴不等式组的整数解为﹣2、﹣1、0、1.20.(8分)某供电公司为了解2020年4月份某小区家庭月用电情况,随机调查了该小区部分家庭,并将调查数据进行整理,绘制了如下尚不完整的统计图表.调查结果统计表:月用电量x(千瓦时)频数(户)频率0<x≤2020.0420<x≤401240<x≤60a0.3660<x≤8080.1680<x≤1006b100<x≤1200.08合计c1根据以上信息解答下列问题:(1)统计表中,a=18b=0.12c=50;(2)请把频数分布直方图补充完整;(3)求该小区月用电量超过80千瓦时的家庭数占被调查家庭总数的百分比;(4)若该小区有1000户家庭,根据调查数据估计该小区月用电量不超过60千瓦时的家庭大约有多少户?【解答】解:(1)c=2÷0.04=50,b=6÷50=0.12,a=50×0.36=18,故答案为:18,0.12,50;(2)50×0.08=4,补全频数分布直方图如下:(3)(6+4)÷50×100%=20%,答:用电量超过80千瓦时的家庭数占被调查家庭总数的20%;(4)1000×2+12+1850=640(户),答:该小区月用电量不超过60千瓦时的家庭大约有640户.21.(8分)如图,直线AD∥BC,AB∥DC,∠1=120°,求∠2的度数.【解答】解:∵直线AD∥BC,AB∥DC,∴∠1﹣∠3,∠3+∠2=180°,∵∠1=120°,∴∠3=120°,∠2=60°,即∠2的度数是60°.22.(8分)如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A (1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆(B)位置的坐标;(2)若体育馆位置坐标为C(﹣3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.【解答】解:(1)建立直角坐标系如图所示:图书馆(B )位置的坐标为(﹣3,﹣2);(2)标出体育馆位置C 如图所示,观察可得,△ABC 中BC 边长为5,BC 边上的高为4,所以△ABC 的面积为=12×5×4=10.23.(10分)某电器超市销售每台进价分别为2000元、1700元的A 、B 两种型号的空调,如表是近两周的销售情况:销售时段销售数量 销售款 A 种型号B 种型号 第一周4台 5台 20500元 第二周 5台 10台 33500元 (1)求A 、B 两种型号的空调的销售单价;(2)求近两周的销售利润.【解答】解:(1)设A 型号空调的销售单价为x 元,B 型号空调的销售单价为y 元,依题意可得:{4x +5y =205005x +10y =33500, 解得:{x =2500y =2100, 答:A 型号空调的销售单价为2500元,B 型号空调的销售单价为2100元.(2)由(1)题知A 型号空调的销售单价为2500元,B 型号空调的销售单价为2100元, 则销售总利润为:(2500﹣2000)(4+5)+(2100﹣1700)(5+10)=10500(元); 答:近两周的销售利润为10500元.24.(10分)如图,点E 在直线DF 上,点B 在直线AC 上,若∠AGB =∠EHF ,∠C =∠D .试说明:∠A =∠F .请同学们补充下面的解答过程,并填空(理由或数学式).解:∵∠AGB =∠DGF ( 对顶角相等 )∠AGB =∠EHF (已知)∴∠DGF =∠EHF ( 等量代换 )∴ BD ∥ CE ( 同位角相等,两直线平行 )∴∠D = ∠CEF ( 两直线平行,同位角相等 )∵∠D =∠C (已知)∴ ∠CEF =∠C ( 等量代换 )∴DF∥AC(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等)【解答】解:∵∠AGB=∠DGF(对顶角相等)∠AGB=∠EHF(已知)∴∠DGF=∠EHF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠D=∠CEF(两直线平行,同位角相等)∵∠D=∠C(已知)∴∠CEF=∠C(等量代换)∴DF∥AC(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等)故答案为:对顶角相等;等量代换;BD;CE;同位角相等,两直线平行;∠CEF;两直线平行,同位角相等;∠CEF;等量代换;DF;AC;内错角相等,两直线平行;两直线平行,内错角相等.。
2020-2021学年七年级下学期期末考试数学试卷及答案解析 (4)
③等腰三角形的中线不一定是它的高,说法是错误;
④线段垂直平分线上的点到这条线段两个端点的距离相等,说法正确.
故选:C.
9.如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是( )
A. B. C. D.
解:在序号①②③④⑤中的一个小正方形涂黑,有6种等可能结果,其中与图中的阴影部分构成轴对称图形的有②③④这3种结果,
所以与图中的阴影部分构成轴对称图形的概率为 ,
故选:A.
10.如图,已知AD=CB,再添加一个条件使△ABC≌△CDA,则添加的条件不是( )
A.AB=CDB.∠B=∠DC.∠BCA=∠DACD.AD∥BC
∵AB∥CD,
∴∠A=∠ADC=40°.
故选:D.
6.以下事件中,必然事件是( )
A.打开电视机,正在播放体育节目
B.三角形内角和为180°
C.同位角相等
D.掷一次骰子,向上一面是5点
解:A、打开电视机,正在播放体育节目是随机事件;
B、三角形内角和为180°是必然事件;
C、同位角相等是随机事件;
D、掷一次骰子,向上一面是5点是随机事件;
A.4.3×106米B.4.3×10﹣5米C.4.3×10﹣6米D.43×107米
4.下列关系式中,正确的是( )
A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2
C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b2
解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;
D、添加AD∥BC,则∠BCA=∠DAC,由全等三角形的判定定理SAS可以使△ABC≌△CDA,故本选项不符合题意.
2020-2021学年人教版七年级下期末数学试题及答案
2020-2021学年七年级下期末考试数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠3=∠4D.∠1=∠5【解答】解:A、∵∠1与∠2是对顶角,∴∠1=∠2,本选项说法正确;B、∵AD与AB不平行,∴∠2≠∠3,本选项说法错误;C、∵AD与CB不平行,∴∠3≠∠4,本选项说法错误;D、∵CD与CB不平行,∴∠1≠∠5,本选项说法错误;故选:A.2.(3分)下列说法:①平面内,垂直于同一直线的两条直线平行;②两条直线被第三条直线所截,内错角相等;③如果直线a∥b,b∥c那么a∥c;④直线外一点与直线上各点连接的所有线段中,垂线段最短;⑤同旁内角的角平分线互相垂直.其中正确的是()A.①③④B.①②⑤C.②③④D.②③⑤【解答】解:①平面内,垂直于同一直线的两条直线平行,原说法正确;②两条平行线被第三条直线所截,内错角相等,原说法错误;③如果直线a∥b,b∥c那么a∥c,原说法正确;④直线外一点与直线上各点连接的所有线段中,垂线段最短,原说法正确;⑤两条平行线被第三条直线所截,同旁内角的角平分线互相垂直,原说法错误.其中正确的是①③④.故选:A.3.(3分)如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有()A.3个B.4个C.5个D.6个【解答】解:①由∠1=∠2,可得a∥b;②由∠3+∠4=180°,可得a∥b;③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;④由∠2=∠3,不能得到a∥b;⑤由∠7=∠2+∠3,∠7=∠1+∠3可得∠1=∠2,即可得到a∥b;⑥由∠7+∠4﹣∠1=180°,∠7﹣∠1=∠3,可得∠3+∠4=180°,即可得到a∥b;故选:C.4.(3分)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C 的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.24B.40C.42D.48【解答】解:∵△ABC沿着点B到C的方向平移到△DEF的位置,平移距离为6,∴S△ABC=S△DEF,BE=6,DE=AB=10,∴OE=DE﹣DO=6,∵S阴影部分+S△OEC=S梯形ABEO+S△OEC,∴S阴影部分=S梯形ABEO=12×(6+10)×6=48.故选:D.5.(3分)下列各式中没有意义的是()A.√−7B.√0.01C.√(−3)2D.√−83【解答】解:A、√−7,根号下部分是负数,无意义,故此选项符合题意;B、√0.01有意义,故此选项不合题意;C、√(−3)2有意义,故此选项不合题意;D、√−83有意义,故此选项不合题意;故选:A.6.(3分)下列说法:①﹣a2没有算术平方根;②若一个数的平方根等于它本身,则这个数是0或1;③有理数和数轴上的点一一对应;④负数没有立方根,其中正确的是()A.0个B.1个C.2个D.3个【解答】解:①当a=0时,﹣a2=0,有算术平方根0,故①错误;②平方根等于它本身的数只有0,1的平方根是±1,故②错误;③实数和数轴上的点一一对应,故③错误;④负数也有立方根,故④错误.综上,正确的是0个.故选:A.7.(3分)在平面坐标系中,位于第四象限的点是()A.(﹣2020,2020)B.(﹣2020,﹣2020)C.(2020,2020)D.(2020,﹣2020)【解答】解:∵位于第四象限的点:横坐标是正数,纵坐标是负数,∴(2020,﹣2020)在第四象限.故选:D.8.(3分)在平面直角坐标系中,将点(﹣3,2)向左平移5个单位长度,再向上平移1个单位长度后的坐标是()A.(2,1)B.(﹣8,1)C.(2,3)D.(﹣8,3)【解答】解:将点(﹣3,2)向左平移5个单位长度,再向上平移1个单位长度后的坐标是(﹣8,3),故选:D.9.(3分)在下列考察中,是抽样调查的是()A.了解全校学生人数B.调查某厂生产的鱼罐头质量C.调查杭州市出租车数量D.了解全班同学的家庭经济状况【解答】解:A.了解全校学生人数,适合普查,故本选项不合题意;B.调查某厂生产的鱼罐头质量,适合抽样调查,故本选项符合题意;C.调查杭州市出租车数量,适合普查,故本选项不合题意;D.了解全班同学的家庭经济状况,适合普查,故本选项不合题意;故选:B.10.(3分)把不等式x+1≤2x﹣1的解集在数轴上表示,正确的是()A.B.C.D.【解答】解:由x+1≤2x﹣1,得:x≥2,故选:A.11.(3分)为打造三墩五里塘河河道风光带,现有一段长为180米的河道整治任务,由A、B两个工程小组先后接力完成,A工程小组每天整治12米,B工程小组每天整治8米,共用时20天,设A工程小组整治河道x米,B工程小组整治河道y米,依题意可列方程组()A .{x +y =180x 12+y 8=20 B .{x +y =2012x +8y =180 C .{x +y =20x 12+y 8=180 D .{x +y =18012x +8y=20 【解答】解:设A 工程小组整治河道x 米,B 工程小组整治河道y 米,依题意可得: {x +y =180x 12+y 8=20, 故选:A .12.(3分)某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10元,则该商品每件的进价为( )A .100元B .105元C .110元D .120元【解答】解:设该商品每件的进价为x 元,则150×80%﹣10﹣x =x ×10%,解得 x =100.即该商品每件的进价为100元.故选:A .二.填空题(共8小题,满分40分,每小题5分)13.(5分)如图,已知AB ∥CD ∥EF ,则∠1,∠2,∠3之间的数量关系是 ∠1﹣∠3+∠2=180° .【解答】解:∵CD ∥EF ,∴∠2+∠CEF =180°,∵AB ∥EF ,∴∠1=∠3+∠CEF ,∴∠CEF =∠1﹣∠3,∴∠2+∠1﹣∠3=180°,即∠1﹣∠3+∠2=180°.故答案为:∠1﹣∠3+∠2=180°.14.(5分)如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p ,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的”距离坐标”根据上述规定,“距离坐标”是(3,2)的点共有4个.【解答】解:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1,l2的距离分别是3,2的点,即距离坐标是(3,2)的点,因而共有4个.故答案为:415.(5分)已知1﹣3m是数A的一个平方根,4m﹣2是数A的算术平方根,则数A=4 49或4.【解答】解:∵1﹣3m是数A的一个平方根,4m﹣2是数A的算术平方根,∴1﹣3m=4m﹣2或1﹣3m=﹣(4m﹣2),解得m=37或m=1.∴1﹣3m=−27或1﹣3m=﹣2,∴数A为449或4,故答案为:449或4.16.(5分)把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么它们相等.【解答】解:题设为:两个角是等角,结论为:它们的补角相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.17.(5分)小芸为了解同学们最感兴趣的在线学习方式,设计了如下的调查问题(选项不完整):你最感兴趣的一种在线学习方式是()(单选)A.B.C.D.其他她准备从“①在线听课,②在线讨论,③在线学习2~3小时,④用手机在线学习,⑤在线阅读”中选取三个作为该问题的备选答案,合理的选取是 ①②⑤ .(填序号)【解答】解:根据题意可知:①在线听课,②在线讨论,⑤在线阅读,作为该问题的备选答案合理,故答案为:①②⑤.18.(5分)不等式组{2x −a <1x −2b >3的解集为﹣1<x <1,则(a +2)(b ﹣2)的值等于 ﹣12 . 【解答】解:解不等式组{2x −a <1x −2b >3得解集为:2b +3<x <a+12, ∵不等式组的解集为﹣1<x <1,∴2b +3=﹣1,a+12=1,解得a =1,b =﹣2.代入(a +2)(b ﹣2)=3×(﹣4)=﹣12.故答案为:﹣12.19.(5分)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 4 次.【解答】解:设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,由题意得: {x +y =1015−1×10+5y =35, 整理得:{x +y =105y =30, 解得:{x =4y =6. 故答案为:4.20.(5分)若√6的值在两个整数a 与a +1之间,则a = 2 .【解答】解:∵2<√6<3,∴√6的值在两个整数2与3之间,∴可得a =2.故答案为:2.三.解答题(共6小题,满分74分)21.(10分)(1)解方程组:{2x +y =5x −y =1; (2)计算:|√3−3|+√643−√3.【解答】解:(1){2x +y =5①x −y =1②, ①+②得:3x =6,解得:x =2,把x =2代入②得:y =1,则方程组的解为{x =2y =1; (2)原式=3−√3+4−√3=7﹣2√3.22.(10分)如图,在平面直角坐标系中,O 为坐标原点,点A (4,1)B (1,1),C (4,5),D (6,﹣3),E (﹣2,5).(1)在坐标系中描出各点,并画出△AEC ,△BCD .(2)求出△BCD 的面积.【解答】解:(1)如图所示:(2)S△BCD=12×4×4+12×4×4=16.23.(15分)如图,AB∥DG,AD∥EF.(1)试说明:∠1+∠2=180°;(2)若DG是∠ADC的平分线,∠2=138°,求∠B的度数.【解答】解:(1)∵AD∥EF,∴∠BAD+∠2=180°,∵AB∥DG,∴∠BAD=∠1,∴∠1+∠2=180°.(2)∵∠1+∠2=180°且∠2=138°,∴∠1=42°,∵DG是∠ADC的平分线,∴∠CDG=∠1=42°,∵AB∥DG,∴∠B=∠CDG=42°.24.(10分)某校组织全校2000名学生进行了时事知识竞赛.为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了频数分布表和频数分布直方图(不完整).分组50.5≤x<60.560.5≤x<70.570.5≤x<80.580.5≤x<90.590.5≤x<100.5合计频数2048a104148400根据所给信息,回答下列问题:(1)频数分布表中,a=80;(2)补全频数分布直方图;(3)学校将对分数x在90.5≤x<100.5范围内的学生进行奖励,请你估算出全校获奖学生的人数.【解答】解:(1)a=400﹣148﹣104﹣48﹣20=80,故答案为:80;(2)补全频数分布直方图如下:(3)2000×148400=740(人), 答:全校2000名学生中获奖的大约有740人.25.(14分)某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉m 盆,求当m 的值等于40时,两种花卉全部销售后获得的利润是多少?【解答】解:(1)设购进甲种花卉每盆x 元,乙种花卉每盆y 元,{20x +50y =72040x +30y =880, 解得,{x =16y =8, 即购进甲种花卉每盆16元,乙种花卉每盆8元;(2)由题意可得,W =6m +800−16m 8, 化简,得W =4m +100,即W 与x 之间的函数关系式是:W =4m +100,当m =40时,W =260元,答:当m 的值等于40时,两种花卉全部销售后获得的利润是260元.26.(15分)某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰上运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元.(1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?(2)若该校购进花滑冰鞋的数量比购进速滑冰鞋数量的2倍少10双,且用于购置两种冰鞋的总经费不超过9000元,则该校至多购进速滑冰鞋多少双?【解答】解:(1)设每双速滑冰鞋购进价格是x 元,每双花滑冰鞋购进价格是y 元,由题意,得{30x +20y =850040x +10y =8000. 解得{x =150y =200. 答:每双速滑冰鞋购进价格是150元,每双花滑冰鞋购进价格是200元;(2)设该校购进速滑冰鞋a 双,根据题意,得 150a +200(2a ﹣10)≤9000.解得 a ≤20.答:该校至多购进速滑冰鞋20双.。
2020-2021学年人教版七年级下学期期末数学试卷及答案解析
2020-2021学年七年级下期末考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.(3分)a6可以表示为()A.6a B.a2•a3C.(a3)2D.a12÷a2【解答】解:A、6a表示6×a,此选项不符合题意;B、a2•a3=a5,此选项不符合题意;C、(a3)2=a6,此选项符合题意;D、a12÷a2=a10,此选项不符合题意;故选:C.2.(3分)下列命题:①如果两个角相等,那么它们是对顶角;②两直线平行,内错角相等;③三角形的一个外角大于任何一个和它不相邻的内角;④等腰三角形的底角必为锐角,其中假命题的个数有()A.1个B.2个C.3个D.4个【解答】解:①如果两个角相等,那么它们是对顶角,错误,是假命题,符合题意;②两直线平行,内错角相等,正确,是真命题,不符合题意;③三角形的一个外角大于任何一个和它不相邻的内角,正确,是真命题,不符合题意;④等腰三角形的底角必为锐角,正确,是真命题,不符合题意,故选:A.3.(3分)已知x>y,则下列不等式不成立的是()A.x﹣6>y﹣6B.3x>3yC.﹣2x<﹣2y D.﹣3x+6>﹣3y+6【解答】解:A、∵x>y,∴x﹣6>y﹣6,故本选项错误;B、∵x>y,∴3x>3y,故本选项错误;C、∵x>y,∴﹣x<﹣y,∴﹣2x<﹣2y,故选项错误;D、∵x>y,∴﹣3x<﹣3y,∴﹣3x+6<﹣3y+6,故本选项正确.故选:D.4.(3分)下列命题中是真命题的是()A.相等的角是对顶角B.数轴上的点与实数一一对应C .同旁内角互补D .无理数就是开方开不尽的数【解答】解:A 、相等的角不一定是对顶角,故此命题是假命题; B 、数轴上的点与实数一一对应,故此命题是真命题; C 、两直线平行,同旁内角互补,故此命题是假命题;D 、π2是无理数,但不是开方开不尽的数,故此命题是假命题; 故选:B .5.(3分)若{x =1y =3是二元一次方程mx ﹣y =3的解,则m 为( )A .7B .6C .43D .0【解答】解:把{x =1y =3代入方程得:m ﹣3=3,解得:m =6, 故选:B .6.(3分)若解集在数轴上的表示如图所示,则这个不等式组可以是( )A .{x ≥−2x <3B .{x ≤−2x ≥3C .{x ≥−2x ≤3D .{x >−2x ≤3【解答】解:若解集在数轴上的表示如图所示,可得解集为﹣2≤x <3, 则这个不等式组可以是{x ≥−2x <3.故选:A .7.(3分)如图,下列推理及所证明的理由都正确的是( )A .若AB ∥DG ,则∠BAC =∠DCA ,理由是内错角相等,两直线平行 B .若AB ∥DG ,则∠3=∠4,理由是两直线平行,内错角相等 C .若AE ∥CF ,则∠E =∠F ,理由是内错角相等,两直线平行D .若AE ∥CF ,则∠3=∠4,理由是两直线平行,内错角相等【解答】解:A 、若AB ∥DG ,则∠BAC =∠DCA ,理由是两直线平行,内错角相等;故选项A 错误;B 、若AB ∥DG ,则∠BAC =∠DCA ,并不是∠3=∠4,理由是两直线平行,内错角相等;故选项B 错误;C 、若AE ∥CF ,则∠E =∠F ,理由是两直线平行,内错角相等;故选项C 错误;D 、若AE ∥CF ,则∠3=∠4,理由是两直线平行,内错角相等;正确; 故选:D .8.(3分)如图,带箭头的两条直线互相平行,其中一条直线经过正八边形的一个顶点,若∠1=20°,则∠2的度数为( )A .55°B .60°C .70°D .110°【解答】解:如下图所示,∵正八边形的一个内角为180°×(8−2)8=135°,∴∠4=∠3+∠6=135°,∵∠1+∠4+∠5=180°,∠1=20°,∴∠5=180°﹣∠1﹣∠4=180°﹣20°﹣135°=25°, ∵带箭头的两条直线互相平行,∴∠6=∠5=25°(两直线平行,内错角相等), ∴∠3=135°﹣∠6=135°﹣25°=110°, ∴∠2=180°﹣∠3=180°﹣110°=70°, 故选:C .二.填空题(共8小题,满分32分,每小题4分)9.(4分)人体内某种细胞的形状可近似看做球体,它的直径约为0.0000032m,数字0.00000032用科学记数法表示为 3.2×10﹣7.【解答】解:0.00000032=3.2×10﹣7.故答案为:3.2×10﹣7.10.(4分)已知a=240,b=332,c=424,试比较a,b,c的大小,用“>”将它们连接起来:b>c>a.【解答】解:a=240=(25)8=328,b=332=(34)8=818,c=424=(43)8=648,∵81>64>32,∴b>c>a,故答案为b>c>a.11.(4分)石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则S△ABC1=S△AC1C2=S△AC2C.请回答,S△ABC1=S△AC1C2=S△AC2C成立的理由是:①平行线分线段成比例定理;②等底共高.【解答】解:由BB1=B1B2=B2B3且B1C1∥B2C2∥B3C,依据平行线分线段成比例定理知BC1=C1C2=C2C,再由△ABC1,△AC1C2与△AC2C等底共高知S△ABC1=S△AC1C2=S△AC2C,故答案为:①平行线分线段成比例定理;②等底共高.12.(4分)如图,将边长为5个单位的等边△ABC沿边BC向右平移3个单位得到△A′B′C′,则四边形AA′C′C的周长为16.【解答】解:∵△ABC为等边三角形,∴AB=AC=BC=5,∵等边△ABC沿边BC向右平移3个单位得到△A′B′C’,∴AC=A′C′=5,AA′=CC′=3,∴四边形AA′C′C的周长=3+3+5+5=16.故答案为16.13.(4分)如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360°.【解答】解:连接BE.∵△CDM和△BEM中,∠DMC=∠BME,∴∠C+∠D=∠MBE+∠BEM,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=∠A+∠ABC+∠MBE+∠BEM+∠DEF+∠F=∠A+∠F+∠ABE+∠BEF=360°.故答案为:360°.14.(4分)a,b,c为△ABC的三边,化简|a﹣b﹣c|﹣|a+b﹣c|+2a结果是2c.【解答】解:∵a,b,c为△ABC的三边,∴a+b>c,b+c>a,∴原式=c+b﹣a﹣(a+b﹣c)+2a=c+b﹣a﹣a﹣b+c+2a=2c.故答案为:2c.15.(4分)已知a﹣b=2,则a2﹣2ab+b2=4.【解答】解:原式=(a﹣b)2,当a﹣b=2时,原式=4.16.(4分)不等式3x﹣6>0的解集为x>2.【解答】解:移项得:3x>6,解得:x>2,故答案为:x>2.三.解答题(共9小题,满分84分)17.(10分)计算:(1)(﹣2a3)2+a8÷a2﹣2a2・a4;(2)(−12)﹣3+(﹣2)3+(−13)0+(14)﹣2.【解答】解:(1)原式=4a6+a6﹣2a6=3a6;(2)原式=1(−12)3−8+1+1(14)2=﹣8﹣8+1+16=1.18.(10分)分解因式: (1)x 2(x ﹣y )+(y ﹣x ); (2)3ax 2﹣6axy +3ay 2.【解答】解:(1)原式=(x ﹣y )(x 2﹣1), =(x ﹣y )(x ﹣1)(x +1);(2)原式=3a (x 2﹣2xy +y 2), =3a (x ﹣y )2.故答案为:(x ﹣y )(x ﹣1)(x +1);3a (x ﹣y )2. 19.(10分)(1){3x −2y =112x +3y =16(2){5x −1>3(x +1)12x −1≤7−32x【解答】解:(1){3x −2y =11①2x +3y =16②,①×3+②×2,得:13x =65, 解得x =5,将x =5代入①,得:15﹣2y =11, 解得y =2, ∴{x =5y =2;(2)解不等式5x ﹣1>3(x +1),得:x >2, 解不等式12x ﹣1≤7−32x ,得:x ≤4,则不等式组的解集为2<x ≤4.20.(8分)先化简,再求值:(a +3)2﹣(a +1)(a ﹣1)﹣2(2a +4),其中a =12. 【解答】解:原式=a 2+6a +9﹣(a 2﹣1)﹣4a ﹣8 =2a +2, ∵a =12,∴原式=1+2=3.21.(6分)已知,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(5,6),B (﹣2,3),C(3,1).请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC;(2)将三角形ABC先向下平移6个单位长度,再向左平移3个单位长度后得到的三角形A1B1C1(点A1,B1,C1分别是点A,B,C移动后的对应点).①请画出三角形A1B1C1;②并判断线段AC与A1C1的位置与数量关系.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,A1B1C1即为所求,AC与A1C1平行且相等.22.(8分)如图,①AB∥CD,②BE平分∠ABD,③∠1+∠2=90°,④DE平分∠BDC.(1)请以其中三个为条件,第四个为结论,写出一个命题;(2)判断这个命题是否为真命题,并说明理由.【解答】解:(1)如果BE 平分∠ABD ,∠1+∠2=90°,DE 平分∠BDC ,那么AB ∥CD ; (2)这个命题是真命题, 理由如下:∵BE 平分∠ABD , ∴∠1=12∠ABD , ∵DE 平分∠BDC , ∴∠2=12∠BDC , ∵∠1+∠2=90°, ∴∠ABD +∠BDC =180°, ∴AB ∥CD .23.(10分)某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰上运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元.(1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?(2)若该校购进花滑冰鞋的数量比购进速滑冰鞋数量的2倍少10双,且用于购置两种冰鞋的总经费不超过9000元,则该校至多购进速滑冰鞋多少双?【解答】解:(1)设每双速滑冰鞋购进价格是x 元,每双花滑冰鞋购进价格是y 元, 由题意,得{30x +20y =850040x +10y =8000.解得{x =150y =200.答:每双速滑冰鞋购进价格是150元,每双花滑冰鞋购进价格是200元;(2)设该校购进速滑冰鞋a 双,根据题意,得 150a +200(2a ﹣10)≤9000. 解得 a ≤20.答:该校至多购进速滑冰鞋20双.24.(10分)已知关于x 的方程a ﹣3(x ﹣1)=7﹣x 的解为负分数,且关于x 的不等式组{−2(a −x)≤x +4,①3x−42<x −3,②的解集为x <﹣2,求符合条件的所有整数a 的积.【解答】解:{−2(a −x)≤x +4①3x−42<x −3②,由①得:x ≤2a +4, 由②得:x <﹣2,由不等式组的解集为x <﹣2,得到2a +4≥﹣2,即a ≥﹣3,把a =﹣3代入方程得:﹣3﹣3(x ﹣1)=7﹣x ,即x =−72,符合题意; 把a =﹣2代入方程得:﹣2﹣3(x ﹣1)=7﹣x ,即x =﹣3,不合题意; 把a =﹣1代入方程得:﹣1﹣3(x ﹣1)=7﹣x ,即x =−52,符合题意; 把a =0代入方程得:﹣3(x ﹣1)=7﹣x ,即x =﹣2,不合题意; 把a =1代入方程得:1﹣3(x ﹣1)=7﹣x ,即x =−32,符合题意; 把a =2代入方程得:2﹣3(x ﹣1)=7﹣x ,即x =﹣1,不合题意; 把a =3代入方程得:3﹣3(x ﹣1)=7﹣x ,即x =−12,符合题意. 故符合条件的整数a 取值为﹣3,﹣1,1,3,积为9.25.(12分)如图,在△ABC 中,AE 平分∠BAC ,AD ⊥BC 于点D .∠ABD 的角平分线BF 所在直线与射线AE 相交于点G ,若∠ABC =3∠C ,求证:3∠G =∠DFB .【解答】证明:∵AE 平分∠BAC ,BF 平分∠ABD , ∴∠CAE =∠BAE ,∠ABF =∠DBF ,设∠CAE =∠BAE =x , ∵∠ABC =3∠C ,∴可以假设∠C =y ,∠ABC =3y ,∴∠ABF =∠DBF =∠CBE =12(180°﹣3y )=90°−32y ,第 11 页 共 11 页 ∵AD ⊥CD ,∴∠D =90°,∴∠DFB =90°﹣∠DBF =32y ,设∠ABF =∠DBF =∠CBE =z ,则{z =x +∠G z +∠G =x +y, ∴∠G =12y ,∴∠DFB =3∠G .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年河北省石家庄市赵县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2021•威海)64的立方根是()A.8B.±8 C.4D.±4考点: 立方根.专题: 计算题.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵4的立方等于64,∴64的立方根等于4.故选C.点评:此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(4分)如图所示的网格中各有不同的图案,不能通过平移得到的是()A.B.C.D.考点: 生活中的平移现象.分析:根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.解答:解:A、可以通过平移得到,不符合题意;B、可以通过平移得到,不符合题意;C、不可以通过平移得到,符合题意;D、可以通过平移得到,不符合题意.故选:C.点评:本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.)3.(4分)如图,下列推理及所注明的理由都正确的是(B.因为∠2=∠3,所以DE∥BC(两直线平行,内错角相等)C.因为DE∥BC,所以∠2=∠3(两直线平行,内错角相等)D.因为∠1=∠C,所以DE∥BC(两直线平行,同位角相等)考点: 平行线的判定与性质.分析:A的理由应是两直线平行,同位角相等;B的理由应是内错角相等,两直线平行;D的理由应是同位角相等,两直线平行;所以正确的是C.解答:解:A、因为DE∥BC,所以∠1=∠C(两直线平行,同位角相等);B、因为∠2=∠3,所以DE∥BC(内错角相等,两直线平行);C、因为DE∥BC,所以∠2=∠3(两直线平行,内错角相等);D、因为∠1=∠C,所以DE∥BC(同位角相等,两直线平行).故选C.点评:正确区分平行线的性质和判定是解决此类问题的关键.4.(4分)(2021•常州)将100个数据分成8个组,如下表:则第六组的频数为()组号1 2 3 4 567 8频数11 14 12 13 13 x 12 10A.12 B.13 C.14 D.15考点: 频数与频率.专题: 图表型.分析:根据各组频数的和是100,即可求得x的值.解答:解:根据表格,得第六组的频数x=100﹣(11+14+12+13+13+12+10)=15.故选D.点评:本题是对频率、频数灵活运用的综合考查.各小组频数之和等于数据总和;各小组频率之和等于1.5.(4分)(2021•聊城)不等式组无解,则a的取值范围是()A.a<1 B.a≤1 C.a>1 D.a≥1考点: 解一元一次不等式组.分析:先求不等式组的解集,再逆向思维,要不等式组无解,x的取值正好在不等式组的解集之外,从而求出a的取值范围.解答:解:原不等式组可化为,即,故要使不等式组无解,则a≤1.故选B.点评:解答此题的关键是熟知不等式组的解集的求法应遵循:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.6.(4分)在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A.B.C.D.考点: 在数轴上表示不等式的解集;解二元一次方程组;解一元一次不等式.分析:先把m当作已知条件求出x+y的值,再根据x+y>0求出m的取值范围,并在数轴上表示出来即可.解答:解:,①+②得,3(x+y)=3﹣m,解得x+y=1﹣,∵x+y>0,∴1﹣>0,解得m<3,在数轴上表示为:.故选B.点评:本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.7.(4分)(1999•哈尔滨)若方程组的解x与y相等.则a的值等于()A.4B.10 C.11 D.12考点: 解三元一次方程组.分析:理解清楚题意,运用三元一次方程组的知识,解出a的数值.解答:解:根据题意得:,把(3)代入(1)解得:x=y=,代入(2)得:a+(a﹣1)=3,解得:a=11.故选C.点评:本题的实质是解三元一次方程组,用加减法或代入法来解答.8.(4分)在平面直角坐标系中,△DEF是由△ABC平移得到的,点A(﹣1,﹣4)的对应点为D(1,﹣1),则点B(1,1)的对应点F的坐标为()A.(2,2) B.(3,4) C.(﹣2,2) D.(2,﹣2)考点: 坐标与图形变化-平移.分析:先根据点A与D确定平移规律,再根据规律写出点B的对应点F的坐标即可.解答:解:∵,△DEF是由△ABC平移得到的,点A(﹣1,﹣4)的对应点为D(1,﹣1),∴平移规律是:先向右平移2个单位,再向上平移3个单位,∵点B的坐标为(1,1),∴F的坐标为(3,4).故选B.点评:本题考查了平移与坐标与图形的变化,根据对应点A与D的坐标得到平移规律是解题的关键.9.(4分)如图所示,把一根铁丝折成图示形状后,AB∥DE,则∠BCD等于()A.∠D+∠B B.∠B﹣∠D C.180°+∠D﹣∠B D.180°+∠B﹣∠D考点: 平行线的性质.分析:根据三角形外角的性质可得∠BCD=∠D+∠E,再由平行线的性质表示出∠E,即可得出答案.解答:解:∵AB∥DE,∴∠E=180°﹣∠B,∴∠BCD=∠D+∠E=180°﹣∠B+∠D.故选C.点评:本题考查了平行线的性质,解答本题的关键是掌握三角形外角的性质及平行线的性质.10.(4分)(2021•潍坊)某乡镇有甲、乙两家液化气站,他们的每罐液化气的价格、质和量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年购买8罐液化气,则购买液化气最省钱的方法是()A.买甲站的B.买乙站的C.买两站的都可以D.先买甲站的1罐,以后再买乙站的考点: 有理数的混合运算;有理数大小比较.专题: 应用题;压轴题.分析:购买液化气最省钱的意思是,在质和量都相同的条件下,花钱最少.分别计算出每年到甲、乙两家液化气站购买8罐液化气的价钱,进行比较即可得出结果.解答:解:设每罐液化气的原价为a,则在甲站购买8罐液化气需8×(1﹣25%)a=6a,在乙站购买8罐液化气需a+7×0.7a=5.9a,由于6a>5.9a,所以购买液化气最省钱的方法是买乙站的.故选B.点评:本题考查了有理数的大小比较在实际问题中的应用.比较有理数的大小的方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)某市有6500名九年级学生参加数学毕业考试,为了了解这些学生毕业考试的数学成绩,从6500份数学答卷中随机抽取了300份进行统计分析,在这个问题中,总体是6500名九年级学生的数学成绩,个体是每一名学生的数学成绩,样本是随机抽取的这300名学生的数学成绩.考点: 总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.解答:解:总体是6500名九年级学生的数学成绩,个体是每一名学生的数学成绩,样本是随机抽取的这300名学生的数学成绩.故答案是:6500名九年级学生的数学成绩,每一名学生的数学成绩,随机抽取的这300名学生的数学成绩.点评:考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.12.(4分)(2021•上海)不等式组整数解是0,1.考点: 一元一次不等式组的整数解.专题: 计算题.分析:先求出不等式的解集,在取值范围内可以找到整数解.解答:解:由(1)得x,由(2)得x>﹣,所以解集为﹣<x<,则整数解是0,1.点评:解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.(4分)(2021•宜昌)有关学生健康评价指标规定,握力体重指数m=(握力÷体重)×100,初中毕业班男生握力合格标准是m≥35,如果九年(1)班男生小明的体重为50千克,那么小明的握力至少要达到千克时才能合格.考点: 一元一次不等式的应用.分析:本题中的不等关系是:握力体重指数m=(握力÷体重)×100≥35,设小明的握力是x千克,就可以列出不等式.解答:解:设小明的握力至少要达到x千克时才能合格,依题意得×100≥35解之得x≥,所以小明的握力至少要达到千克时才能合格.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.14.(4分)(2021•绍兴)写出一个以为解的二元一次方程组,(答案不唯一).考点: 二元一次方程组的解.专题: 开放型.分析:根据方程组的解的定义,应该满足所写方程组的每一个方程.因此,可以围绕列一组算式,然后用x,y代换即可.应先围绕列一组算式,如0+7=7,0﹣7=﹣7,然后用x,y代换,得等.解答:解:应先围绕列一组算式,如0+7=7,0﹣7=﹣7,然后用x,y代换,得等.答案不唯一,符合题意即可.点评:本题是开放题,注意方程组的解的定义.15.(4分)如图所示,已知∠1=∠2,则再添上条件∠ABM=∠CDM可使AB∥CD.考点: 平行线的判定.分析:添加条件是∠ABM=∠CDM,根据同位角相等,两直线平行推出即可,此题答案不唯一,还可以添加条件∠EBM=∠FDM等.解答:解:添加条件是∠ABM=∠CDM,理由是:∵∠ABM=∠CDM,∴AB∥CD(同位角相等,两直线平行),故答案为:∠ABM=∠CDM.点评:本题考查了平行线的判定的应用,此题是一道开放型的题目,答案不唯一.16.(4分)如图,直线AB、CD相交于点O,OE⊥OC,若∠1=50°,则∠2=40°.∠3+∠1=190°.考点: 垂线;对顶角、邻补角.分析:先由垂直的定义得出∠COE=90°,再根据平角的定义求出∠2=40°,根据邻补角互补得出∠3=180°﹣∠2=140°,将∠1=50°代入即可求出∠3+∠1的度数.解答:解:∵OE⊥OC,∴∠COE=90°,∴∠1+∠2=180°﹣∠COE=90°,∵∠1=50°,∴∠2=40°,∴∠3=180°﹣∠2=140°,∴∠3+∠1=140°+50°=190°.故答案为40°,190°.点评:本题利用垂直的定义,平角及邻补角的性质计算,要注意领会由垂直得直角这一要点.17.(4分)(2021•南岗区一模)将点P(﹣3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,﹣1),则xy=﹣10.考点: 坐标与图形变化-平移.分析:直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.解答:解:此题规律是(a,b)平移到(a﹣2,b﹣3),照此规律计算可知﹣3﹣2=x,y﹣3=﹣1,所以x=﹣5,y=2,则xy=﹣10.故答案填:﹣10.点评:本题考查图形的平移变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题(本大题共4小题,共52分)18.(10分)如图所示,已知AE与CE分别是∠BAC,∠ACD的平分线,且∠1+∠2=∠AEC.(1)请问:直线AE与CE互相垂直吗?若互相垂直,给予证明;若不互相垂直,说明理由;(2)试确定直线AB,CD的位置关系并说明理由.考点: 平行线的判定;垂线;三角形内角和定理.分析:(1)根据:∠1+∠2+∠AEC=180°和∠1+∠2=∠AEC推出∠AEC=90°,根据垂直定义推出即可;(2)根据角平分线得出2∠1=∠BAC,2∠2=∠DCA,求出∠BAC+∠DCA=2×90°=180°,根据平行线的判定推出即可.解答:(1)AE⊥CE,证明:∵∠1+∠2+∠AEC=180°,∠1+∠2=∠AEC,∴2∠AEC=180°,∴∠AEC=90°,∴AE⊥CE.(2)解:AB∥CD,理由是:∵AE与CE分别是∠BAC,∠ACD的平分线,∴2∠1=∠BAC,2∠2=∠DCA,∵∠1+∠2=∠AEC=90°,∴∠BAC+∠DCA=2×90°=180°,∴AB∥CD.点评:本题考查了平行线的性质,角平分线定义,垂直定义,三角形的内角和定理的应用,主要考查学生的推理能力.19.(12分)如图所示,长方形ABCD在坐标平面内,点A的坐标是A(,1),且边AB、CD与x轴平行,边AD,BC与y轴平行,AB=4,AD=2.(1)求B、C、D三点的坐标;(2)怎样平移,才能使A点与原点重合?考点: 坐标与图形性质;坐标与图形变化-平移.分析:(1)根据矩形的对边平行且相等求出BC到y轴的距离,CD到x轴的距离,然后写出点B、C、D的坐标即可;(2)根据图形写出平移方法即可.解答:解:(1)∵A(,1),AB=4,AD=2,∴BC到y轴的距离为4+,CD到x轴的距离2+1=3,∴B(4+,1)、C(4+,3)、D(,3);(2)由图可知,先向下平移1个单位,再向左平移个单位(或先向左平移平移个单位,再向下平移1个单位).点评:考查了坐标与图形性质,坐标与图形变化﹣平移,熟练掌握矩形的对边平行且相等并准确识图是解题的关键.202115分)(2021•嘉兴一模)下图是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、…方程组n.(1)将方程组1的解填入图中;(2)请依据方程组和它的解变化的规律,将方程组n和它的解直接填入集合图中;(3)若方程组的解是,求m的值,并判断该方程组是否符合(2)中的规律?考点: 解二元一次方程组.专题: 压轴题;阅读型.分析:(1)用加减消元法消去y项,得出x的值,然后再用代入法求出y的值;(2)根据方程组及其解的集合找出规律并解方程;(3)把方程组的解代入方程x﹣my=16即可求的m的值.。