材料表界面范围
材料表界面 习题答案
![材料表界面 习题答案](https://img.taocdn.com/s3/m/c45e5637f56527d3240c844769eae009581ba2a4.png)
材料表界面习题答案材料表界面习题答案近年来,随着科技的不断发展,材料表界面的研究成为了材料科学领域的热点之一。
材料表界面是指两个或多个不同材料之间的交界面,它们的性质和结构对材料的性能起着至关重要的作用。
因此,研究材料表界面的性质和行为对于开发新材料、改善材料性能以及解决材料失效问题具有重要意义。
一、材料表界面的定义和分类材料表界面是指材料中两个或多个不同相之间的交界面,它们的性质和结构往往与材料本身的性质有很大的差异。
根据不同的分类标准,材料表界面可以分为物理界面和化学界面。
物理界面是指两个相之间仅有形态和结构上的差异,而化学界面则是指两个相之间发生了化学反应,形成了新的化学物质。
二、材料表界面的性质和行为材料表界面的性质和行为受到多种因素的影响,包括界面能量、界面结构、界面化学反应等。
界面能量是指两个相之间的能量差异,它决定了界面的稳定性和相互作用力的大小。
界面结构则指的是界面上原子或分子的排列方式,它对界面的力学性能和电子结构具有重要影响。
界面化学反应是指两个相之间发生的化学反应,它可以导致界面的变化和材料性能的改变。
三、材料表界面的研究方法为了研究材料表界面的性质和行为,科学家们发展了多种研究方法。
其中,最常用的方法包括电子显微镜、X射线衍射、拉曼光谱等。
电子显微镜可以观察到材料表界面的形貌和结构,X射线衍射可以分析界面的晶体结构,而拉曼光谱则可以研究界面的振动和光学性质。
四、材料表界面的应用材料表界面的性质和行为在材料科学和工程中具有广泛的应用。
例如,在材料加工过程中,控制材料表界面的性质可以改善材料的加工性能和机械性能。
在材料设计中,通过调控材料表界面的结构和化学反应,可以开发出新的材料,如纳米材料和复合材料。
此外,材料表界面的研究还有助于解决材料失效问题,如腐蚀、疲劳和断裂等。
综上所述,材料表界面是材料科学领域的一个重要研究方向。
通过研究材料表界面的性质和行为,可以为开发新材料、改善材料性能以及解决材料失效问题提供理论指导和技术支持。
(完整word版)材料的表面界面特征及在材料工程上的意义
![(完整word版)材料的表面界面特征及在材料工程上的意义](https://img.taocdn.com/s3/m/6119f236960590c69ec376ba.png)
四川大学2009级研究生期末考试论文(2009-1010学年下半学年)课程名称:材料的表面与界面论文题目:材料的表界面特征及在材料工程上的意义学院:材料科学与工程学院专业:材料材料与纳米技术学号:S092030姓名:管东波材料的表面界面特征及在材料工程上的意义摘要:本文首先提出为什么要研究材料的表界面,随后又系统的阐述了何为材料的表界面,接着文章从液体材料表面、固体材料表面、固-液界面、金属材料表面、高分子材料表界面、无机材料表面等不同类型的材料表面来具体分析了材料表面的特征,最后文章简单的说明了材料的表界面对提高、改善材料工程上很多材料的性能有极大的帮助,研究材料的表界面对材料工程有着非常重要的意义。
关键词:材料的表界面、表面、界面、材料工程1.前言材料科学、信息科学和生命科学是当今新技术革命的三大前沿科学,而材料科学方面材料的表界面占有十分重要的地位,所以说研究材料的表界面特征对我们材料科学的发展、对我们材料工程的设计有着非常重要的意义。
材料的表面界面与其内部本体在结构上和化学组成上都有很明显的差别,这是因为在材料内部的原子周围布满原子,原子之间相互作用,中间原子所受的力是平衡的,而对于处于表面界面的原子,它所受的力场是不平衡的,所以在材料的表面产生了表面能(若是界面则称为界面能)。
对于不同组分构成的材料,组分与组分之间可形成界面,而对于单组份材料,由于其内部不可避免的会存在有缺陷,所以即使单组份材料内部也会产生界面。
材料的表界面对材料的整体性能有很大的影响,有的甚至直接决定了材料的性能,所以我们有必要把研究材料的表界面作为我们研究材料的一个重要研究对象。
2.材料表界面的定义及其特征2.1材料表界面的定义何谓材料的表界面?表界面研究的对象是不均匀的体系,具有多相性,即该体系中存在两个或两个以上的不同的相,而表界面就是指由一个相过渡到另一个相的这段过渡区域。
虽然说表面和界面都是指这段过渡区域,但由于习惯的不同,我们还是把表面和界面区分开来的,一般把固-气、液-气的过渡的过渡区域称为表面,而把固-液、液-液、固-固之间的过渡区域称为界面。
材料表界面-第十章
![材料表界面-第十章](https://img.taocdn.com/s3/m/6cc7e88b27fff705cc1755270722192e4436586e.png)
二、聚合物基复合材料
2. 环氧树脂
特点: 在加热条件下即能固化,无须添加固化剂。酸、碱对固
化反应起促进作用;
已固化的树脂有良好的压缩性能,良好的耐水、耐化学
介质和耐烧蚀性能;
树脂固化过程中有小分子析出,故需在高压下进行; 固化时体积收缩率大,树脂对纤维的粘附性不够好,但
断裂延伸率低,脆性大。
二、聚合物基复合材料
主链含有双键的不饱和聚酯:
O CO
HC=CH
O CO
HC=CH
调节饱和二元酸和不饱和二元酸的比例,可以控制不饱和聚酯中双键的含量
然后,在引发剂的存在下,不饱和聚酯中的双键与苯乙烯发生
自由基共聚反应,交联成三元网状结构
O
O
CO
HC-CH
CO
HC-CH
CH-Ph
CH-Ph
CH
O
n
O
CH n
CO
HC-CH
二、聚合物基复合材料
1. 不饱和聚酯树脂
不饱和聚酯树脂是由饱和二元酸(或酸酐)、不饱和 二元酸(或酸酐)与多元醇缩聚而成的聚酯在乙烯基 单体(如苯乙烯)中形成的溶液。是制造玻璃纤维复 合材料的一种重要树脂。在国外,聚酯树脂占玻璃纤 维复合材料用树脂总量的80%以上。
二、聚合物基复合材料
1. 不饱和聚酯树脂
饱和二元酸或酸酐
不饱和二元酸或酸酐
O C CO O
COOH COOH
O HC C
HC COOH
HC C O HOOC CH
O
• 多元醇
CH 3CH-CH 2 HOCH2CH2OH
OH OH
• 交联剂
CH=CH2
二、聚合物基复合材料
1. 不饱和聚酯树脂
材料表界面-第一篇章
![材料表界面-第一篇章](https://img.taocdn.com/s3/m/cdd4cb7e82c4bb4cf7ec4afe04a1b0717fd5b396.png)
在能源、环境、医疗等领域,材料表界面的研究 成果具有广泛的应用前景,能够推动相关领域的 技术进步和创新发展。
02 材料表界面基础
CHAPTER
表界面定义
总结词
表界面是材料中两个相的交界面,具有独特的结构和性能。
详细描述
表界面是指两种不同的材料在接触时形成的交界面,这个交界面通常具有独特的结构和性能,与材料 的其他部分存在明显的差异。表界面在材料中的作用至关重要,它可以影响材料的物理、化学和机械 性能。
研究领域
涵盖了物理、化学、材料 科学等多个学科领域,对 于材料的应用和发展具有 重要意义。
研究方向
包括表面改性、界面反应、 表面增强等方向,旨在提 高材料的性能和功能。
研究背景与意义
1 2 3
研究背景
随着科技的发展,对材料性能的要求越来越高, 材料表界面研究的重要性逐渐凸显。
研究意义
通过研究材料表界面,可以深入了解材料的性质 和行为,为新材料的研发和应用提供理论支持和 实践指导。
模拟法
模拟法是通过计算机模拟来研究材料表界面的方法。它利用分子动力学、蒙特卡洛方法等计算方法, 模拟材料表界面的结构和性质,从而获得关于材料表界面的信息。
模拟法具有高效性和可重复性,可以在短时间内对大量材料进行表界面研究。此外,模拟法还可以预 测实验难以观测的现象和性质。然而,模拟法的结果受到模型和参数选择的限制,需要谨慎验证和校 准。
生物材料
利用材料表界面调控细胞行为, 促进组织再生和修复,为生物医 学工程和再生医学提供关键材料。
药物传递
通过材料表界面改善药物释放的 效率和靶向性,提高药物治疗效 果和降低副作用。
医学诊断
利用材料表界面提高生物标志物 的检测灵敏度和特异性,推动医 学诊断技术的发展。
微纳结构和表界面特性对材料性能的影响研究
![微纳结构和表界面特性对材料性能的影响研究](https://img.taocdn.com/s3/m/8bca251fcdbff121dd36a32d7375a417866fc1f9.png)
微纳结构和表界面特性对材料性能的影响研究随着科学技术的进步,人们对材料性能的研究日益深入。
微纳结构和表界面特性是影响材料性能的重要因素之一,也成为了近年来研究的热点。
微纳结构是指材料的尺寸在微米和纳米级别范围内的结构,包括晶界、孪晶、晶粒大小等。
微结构对材料机械、物理、化学、光学等性能的影响很大。
比如,随着晶粒尺寸的减小,材料的硬度、韧性、延展性都会增强,而其疲劳寿命则会增加。
对于材料的接触性能、润湿性、摩擦性能等实际应用而言,微纳结构的影响就更加显著。
研究发现,某些功能材料的性能,如金属润滑剂和晶体管等,就在于其微纳结构和微观的平衡相互关系。
表界面是材料与外部环境接触的最外层面,表面粗糙度、化学成分、质量等都会影响其性能。
表界面具有很多独特的物理、化学和结构特性,如可靠、疏水性等,这些特性可以通过各种方法得到精确的控制。
灵活地控制表界面可以进一步增强材料的性能,改善产品的工业品质,同时可以创造新的技术应用领域。
例如,利用表界面特性可以开发新型的纳米材料、有机材料和生物材料等,可以使这些材料具有更高的化学稳定性和机械性能。
对于材料性能的研究,微纳结构和表界面特性的研究是非常重要的。
优化微纳结构改变表界面特性可以提高材料的性能。
例如,一个新的技术被发明出来可以用于测量材料表面的原子结构。
这种技术可以直接测量晶体材料表面的原子间距和形状,以及接触面的化学成分和电子结构。
这对研究材料表界面的特性和性能具有重要的意义。
另外,通过使用计算机模拟,可以更加精确控制表界面和微纳结构。
可以在计算中考虑到各种化学和物理反应的影响,以及纳米量级的尺寸和材料特性。
计算机模拟对于理解微纳结构和表界面的特性以及材料性能的控制和改善具有重大意义。
综上所述,微纳结构和表界面特性对于材料性能研究非常重要。
它们的研究可以改善材料性能、提高产品质量,同时扩展新的应用领域。
通过不断深入的研究,人类将更好地理解微纳结构和表界面对材料性能的影响,为实际应用创造更多更好的新材料。
材料表界面-第二章
![材料表界面-第二章](https://img.taocdn.com/s3/m/c21faeea68dc5022aaea998fcc22bcd127ff426e.png)
W
4
r12
(
r1 r2
1)
4.85101 Jm2 4 3.1416 (103 m)2 (105 1)
6.09101 J
2.2 表面张力的热力学定义
• 热力学第一定律告诉我们可逆条件下生 成单位表面时内能的变化:
dU=dQR dWR (2 5)
• 系统功包括膨胀功和表面功:
dWR pdV σdA
P4 r dr 8 r dr 外部压强的两倍,求水珠2 的半径。设大气压
强P0=1.013×105Pa,20℃时水的表面张力系 数α=72.8×10-3N/m
p 2 / r (2-15)
解:水珠内外压强差:
2
P内 P外 2P0 P0 P0 R
指向液体内部,r越小,△P越大;
(2)平液面,r趋向无穷大,△P为零,跨越平液面不存在
压力差; (3)凹液面,r为负,△P为负,附加压力指向空气。
2.3 Laplace方程
2.3.2 任意曲面
如果将该曲面由ABCD向外 推移一个小小的距离dz 成 A’B’C’D’,其面积变化为:
dA (x dx)(y dy) xy xdy ydx
H A
S , P
F A
V
,T
G A
P,T
(2 10)
• 由于经常在恒温、恒压下研究表面性
能,故常用下式表示:
σ=
G A
P,T
(2 11)
• 广义表面自由能的定义:保 持相应的特征变量不变,每 增加单位表面积时,相应热
力学函数的增值。
2.2 表面张力的热力学定义
狭义的表面自由能(surface free energy)定义:
(G / A) p,T ,nB
材料表面与界面考试必备
![材料表面与界面考试必备](https://img.taocdn.com/s3/m/e3370a0caef8941ea66e0523.png)
材料表面与界面考试必备一、名词解释1.表界面:由一个相过渡到另一相的过渡区域。
2.表面:习惯上把固-气、液-气的过渡区域称为表面。
界面:把固-液、液-液、固-固的过渡区域称为界面。
物体与物体之间的接触面。
界面-两种物质(同种或不同种)之间的接触面、连接层和分界层。
3.理想表面:理论上结构完整的二维点阵平面。
4.清洁表面:不存在任何吸附、催化反应、杂质扩散等物理-化学效应的表面。
(表面的化学组成与体内相同,但结构可以不同于体内)5.驰XX表面:指表面层之间以及表面和体内原子层之间的垂直间距d s和体内原子层间距d0相比有所膨胀和压缩的现象。
6.驰XX:表面区原子(或离子)间的距离偏离体内的晶格常数,而晶胞结构基本不变,这种情况称为弛XX。
7.重构表面:指表面原子层在水平方向上的周期性不同于体内,但在垂直方向上的层间间距d0与体内相同。
8.XX阶表面:表面不是平面,由规则或不规则XX阶组成。
9.表面偏析:杂质由体内偏析到表面,使多组分材料体系的表面组成与体内不同。
10.吸附表面:在清洁表面上有来自体内扩散到表面的杂质和来自表面周围空间吸附在表面上的质点所构成的表面。
11.平移界面:在结构相同的晶体中,一部分相对于另一部分平滑移动一个位移矢量。
其间的界面称为平移界面。
12.反演界面:当晶体结构由中心对称向非中心对称转变时,由反演操作联系起来的两个畴之间形成反演界面IB。
13.表面能:可以理解为系统增加单位面积时所需做的可逆功,单位是J/m2。
14.表面张力:是单位长度上的作用力,单位是N/m。
15.晶界:同质材料形成的固体/固体界面为晶界。
16.相界:异质材料形成的固体/固体界面为相界。
二、简答、简述1、表界面通常可以分为哪5类?固-气;液-气;固-液;液-液;固-固。
2、获得理想表面的理论前提?(1)、不考虑晶体内部周期性势场在晶体表面中断的影响;(2)、不考虑表面原子的热运动、热扩散、热缺陷等;(3)、不考虑外界对表面的物理-化学作用等;(4)、认为体内原子的位置与结构是无限周期性的,则表面原子的位置与结构是半无限的,与体内完全一样。
材料表界面
![材料表界面](https://img.taocdn.com/s3/m/1c2762ccce2f0066f533223c.png)
一、答:表、界面是指由一个相到另一相的过渡区域,通常把凝固相和气相之间的分界面称为表面,把凝固相之间的分界面称为界面。
分为两大类:物理表面和材料表面。
物理表面又分为:理想表面、清洁表面、吸附表面;材料表面有如下几类:机械作用界面、化学作用界面、固态结合界面、液相或气相沉积界面、凝固共生界面、粉末冶金界面、粘结界面、熔焊界面等。
在国民经济建设各领域,表、界面科学亦显示出愈来愈重要的作用。
主要应用在食品、土壤化学、造纸、涂料、橡胶、建材、冶金、能源、电子工业和航天技术等领域。
二、答:溶质的浓度对溶剂表面张力的影响有三种类型,第一类物质的加入会使溶剂的表面张力略为升高,属于此类物质有强电解质(如无机盐、酸、碱);第二类物质的加入会使溶剂的表面张力逐渐降低(如低碳醇、羧酸等有机物);第三类物质少量加入就会使溶剂表面张力急剧下降,但到一定浓度后,表面张力变化很缓慢或几乎不下降,趋于一个稳定值。
我们把能使溶剂(通常为水)表面张力降低的物质称为具有表面活性的物质,如第二类和第三类物质都能使溶剂表面张力降低,它们都具有表面活性。
表面活性剂的种类很多,按亲水基类型分类是表面活性剂分类的主要方法,表面活性剂溶于水能电离生成离子的叫做离子型表面活性剂;不能电离的叫非离子型表面活性剂。
离子型表面活性剂按生成离子的性质可分成阴离子、阳离子和两性表面活性剂。
按相对分子质量分类:低分子表面活性剂,相对分子质量200-1000;中分子表面活性剂,相对分子质量1000-10000;高分子表面活性剂,相对分子质量10000以上。
按工业用途分类:表面活性剂可分为渗透剂、润湿剂、乳化剂、分散剂、起泡剂、消泡剂、净洗剂、杀菌剂、匀染剂、缓染剂、柔软剂、平滑剂、抗静电剂防锈剂等。
有的表面活性剂可同时具有几种功能。
三、答:陶瓷材料为无机非金属粉末晶体在一定条件下形成的多晶聚集体。
表面结构:由于表面处原子周期性排列突然中断,形成了附加表面能,表面原子的排列与内部有明显的差别。
材料表界面的物理化学性质研究
![材料表界面的物理化学性质研究](https://img.taocdn.com/s3/m/cc2c25f159f5f61fb7360b4c2e3f5727a5e924ac.png)
材料表界面的物理化学性质研究材料表界面是材料科学中的一个重要研究领域,它关注的是固体材料表面的物理化学性质,对于材料的设计、制备、性能和应用等方面都有着重要的意义。
本文将介绍材料表界面的物理化学性质研究的相关内容。
一、材料表界面的物理化学性质材料表界面是指固体材料表面与周围环境之间的交界面,它具有与体内材料相同或不同的物理化学性质。
材料表界面的物理化学性质包括表面能、界面稳定性、界面扩散、吸附和吸附动力学等。
表面能是指固体表面与周围环境之间的相互作用能力,它可以通过表面张力和表面自由能等进行描述。
界面稳定性是指材料表界面的稳定程度,即固体表面分子能量较低,表面积较小,有利于表面通量或表面反应的稳定性。
界面扩散是指材料表界面上的原子和分子在不同温度和压力下的运动和扩散。
吸附是指材料表界面吸附分子和离子的现象,它与材料的表面性质密切相关。
吸附动力学则研究了吸附过程中分子间相互作用能力和吸附速率。
二、材料表界面的研究方法材料表界面的研究方法包括实验和理论两种方法,这两种方法有各自的优缺点。
实验方法是通过实验手段直接观测和确定材料表界面的各种物理化学性质,例如表面张力、表面自由能、界面稳定性、扩散性、吸附性等,最常用的实验方法包括表面张力法、接触角法、界面扩散法、X射线衍射、原子力显微镜等。
实验方法的优点是具有直接性、准确性和可靠性,但是需要大量的物料和人力物力,耗时耗费较大。
理论方法则是通过理论计算、模拟和预测的方式研究材料表界面的各种物理化学性质,包括第一性原理计算、分子动力学模拟、蒙特卡洛模拟、密度泛函理论等。
理论方法的优点是能够直接预测和解释一些实验现象,减少实验的时间和物料的需求,但它也受到研究模型精度、计算资源等因素的制约。
三、表界面性质与材料应用材料表界面的物理化学性质对材料的应用领域有着广泛的影响。
更好地理解和掌握材料表界面的物理化学性质,能够为材料应用领域提供更为准确的设计和协调,例如促进新产品的材料开发、改善产品性能、提高产品效率、降低成本和环境污染等。
材料表面界面分析
![材料表面界面分析](https://img.taocdn.com/s3/m/b6668c1c4431b90d6c85c78c.png)
2) 恒电流模式
利用电子反馈线路控制隧道电流I,使其保持恒定。再 通过计算机系统控制针尖在样品表面扫描,即是使针尖沿x、 y两个方向作二维运动。由于要控制隧道电流I不变,针尖 与样品表面之间的局域高度也会保持不变,因而针尖就会 随着样品表面的高低起伏而作相同的起伏运动,高度的信 息也就由此反映出来。 这就是说,STM得到 了样品表面的三维立 体信息,可以用于观 察表面起伏较大的样 品,显微图象质量高, 应用最为广泛。
2.2.1 AFM的特点
1.
2.
3.
4.
5.
分辨率高:高分辨力能力远超过扫描电子显微镜(SEM),以及光 学粗糙度仪。 非破坏性:探针与样品表面相互作用力为10-8N以下,远比以往 触针式粗糙度仪压力小,因此不会损伤样品,也不存在扫描电子显 微镜的电子束损伤问题。另外扫描电子显微镜要求对不导电的样品 进行镀膜处理,而原子力显微镜则不需要。 应用范围广 :可用于表面观察、尺寸测定、表面粗糙测定、颗粒 度解析、突起与凹坑的统计处理、成膜条件评价、保护层的尺寸台 阶测定、层间绝缘膜的平整度评价、VCD涂层评价、定向薄膜的 摩擦处理过程的评价、缺陷分析等。 软件处理功能强:其三维图象显示其大小、视角、显示色、光泽可 以自由设定。并可选用网络、等高线、线条显示。图象处理的宏管 理,断面的形状与粗糙度解析,形貌解析等多种功能。 使用方便:电子显微镜需要运行在高真空条件下,原子力显微镜在 常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物 宏观分子,甚至活的生物组织。可以用于几乎所有样品(对表面光 洁度有一定要求),而不需要进行其他制样处理
3. 测导电和半导电样品的表面结构。
4. 无法观测绝缘体材料。
1.5 试样分析
1) 铁表面阳极钝化膜的原子分辨率的STM图
材料表界面知识点汇总
![材料表界面知识点汇总](https://img.taocdn.com/s3/m/86711a5c33687e21af45a95f.png)
材料表界面知识点汇总1.表,界面是指一个相到另一个相的过渡区域。
2.表界面可以分为一下五类:固-气,液-气,固-液,液-液,固-固。
3.把凝聚相和气相之间(固-气,液-气)的分界面称为表面;把凝聚相之间(固-液,液-液,,固-固)的分界面称为界面。
4.理想表面的定义:指除了假设确定的一套边界条件外,系统不发生任何变化的表面。
特点:表面的原子位置和电子密度都和在体内一样,且在实际生活中理想表面是不可能存在的。
5.清洁表面的定义:指不存在任何污染的化学纯表面,即不存在吸附,催化反应或杂质扩散等一系列物理,化学效应的表面。
特点:可以发生多种与体内不同的结构和成分变化。
6.吸附表面的定义:吸附有外来原子的表面称之为吸附表面。
特点:吸附原子可以形成无序的或有序的覆盖层。
7.材料表面的分类:机械作用界面,化学作用界面,固态结合界面,液相或气相沉积界面,凝固共生界面,粉末冶金界面,粘接界面,熔焊界面。
8.表面张力的定义:在液体表面膜中,存在着使液体表面积缩小的张力,这种张力称为表面张力。
9.吸附是组分在热力学体系的各相中偏离热力学平衡组成的非均匀分布现象。
通常将被吸附的分子成为吸附质,固体则称为吸附剂。
10.吸附类型分为物理吸附和化学吸附。
11.表面张力计算公式:12.表面张力产生的根本原因是分子间相互作用力的不平衡引起的。
13.表面张力本质上是由分子间相互作用力,即范德瓦尔斯力,单位为:J/m2place方程:附加压力的方向总是指向曲率中心一边,且与曲率大小有关。
place方程:球面:与曲率半径成反比任意曲面:;对于平液面,两个曲率半径都为无限大,p=0,表示跨过平液面不存在压差。
16.当毛细管浸在液体中,若液体能浸润管壁,则会发生毛细上升现象,液面呈凹月形。
反之,若液体不能浸润管壁,则液面下降呈凸液面。
17.Kelvin公式:po为T温度下,平液面的蒸汽压;P为T温度下,弯液面的蒸汽压;V为液体摩尔体积;r为弯液面的曲率半径。
材料表界面范围
![材料表界面范围](https://img.taocdn.com/s3/m/0c326cc0f9c75fbfc77da26925c52cc58bd6900d.png)
第一章绪论名词解释:表、界面;物理表面表界面是指由一个相到另一个相的过渡区域。
物理表面:三维规整点阵到体外空间之间的过渡区域;厚度随材料种类而异,从一个到多个以上不同性能的相。
2、表界面指相与相之间的过渡区域,因此表界面区的结构、能量、组成等都呈现连续的梯度变化。
3、按照扩散的微观机制可将表面扩散分为两类;自扩散和互扩散。
4、固体中的扩散是通过原子的随机运动进行的,因此扩散的前提是有可供原子运动的空间。
5、扩散过程的微观机制是缺陷的运动。
6、晶界迁移是重要的界面扩散传质现象,可由不同的驱动力引起;晶界迁移的特点与处于一定能量状态的晶界原子结构特点密切相关,其过程的本质是晶界能量的下降。
公式:第二章液体界面名词解释:表面张力:液体表面任意二相邻部分之间垂直于它们的单位长度分界线相互作用的拉力表面自由能:广义,保持相应的特征变量不变,每增加单位表面积时,相应热力学函数的增值。
狭义,保持温度、压力和组成不变,每增加单位表面积时,Gibbs自由能的增加值称为表面Gibbs自由能,或简称表面自由能或表面能。
特劳贝(Traube)规则;在同系物溶液中,欲使表面张力降低得一般多,所需溶液浓度因分子中每增加一个亚甲基-ch2-而减少为原来的三分之一。
2、表面张力产生的根本原因是分子间相互作用力不平衡引起的;3、处在液体表面层的分子与其内部分子所受力场相同(错);4、气液界面的分子净受到指向液体内部的引力,该引力主要是范德华力;(对)5、由于系统的能量越低越稳定,所以液体表面有自动收缩的能力;(对)6、表面弯曲的液体在表面张力的作用下,表面上承受着附加压力,且方向总是指向液体内部;(错)7、跨过平液面不存在压差;(对)8、毛细管法测液体表面张力时,要求毛细管被所测液体完全浸润。
(错)9、Kelvin公式表明:液滴的半径越小,其蒸汽压越大;气泡的半径越小,其蒸汽压越小。
10、利用毛细管法测液体表面张力时,当毛细血管浸在液体中,若液体能浸润管壁,则会发生毛细上升现象,液面呈凹月形:若液体不能浸润管壁,则液面下降呈凸液面。
材料表界面(beta)
![材料表界面(beta)](https://img.taocdn.com/s3/m/94723f12c281e53a5802ff36.png)
1.定义与概念表界面是由一个相到另一个相的过渡区域。
若其中一相为气体,这种界面通常称为表面。
表面功:温度、压力和组成恒定时,可逆使表面积增加d A所需要对体系作的功,称为表面功。
单位质量的吸附剂具有的表面积为比表面积(单位:m2/g);吸附量可用单位质量吸附剂所吸附气体的量或体积来表示。
接触角:在三相交界处自固—液界面经过液体内部到气—液界面的夹角叫接触角,以θ表示。
表面活性剂达到形成单分子膜的最低浓度叫临界胶束浓度(CMC)。
亲疏平衡值(HLB):HLB的大小表示表面活性剂亲水亲油性的相对大小,HLB 值越大,表示该表面活性剂的亲水性越强,HLB越低,则亲油性或疏水性越强。
其中石蜡HLB=0,油酸钾HLB=20;十二烷基硫酸酯钠HLB =40。
故阴离子表面活性剂HLB在1~40之间,非离子表面活性剂的HLB在1~20之间。
非离子型表面活性剂乳状液随着温度升高,从原来O/W(水包油)型转变为W/O(油包水)型的温度,称为相转型温度(PIT),也叫做亲水—亲油平衡温度(HLB温度)。
测定方法:由于O/W型比W/O型的电导率高,在转相时电导率发生突变,那么此时的温度即为PIT。
少量活性剂的加入可使水的表面张力迅速下降,但到某一浓度后,水溶液的表面张力几乎不变。
这个表面张力转折点的浓度称为临界胶束浓度(CMC)。
表面活性剂达到形成单分子膜的最低浓度叫临界胶束浓度。
测定方法:表面张力法、电导法、光散射法(Tyndall效应)。
离子型表面活性剂的溶解度随温度变化的特点是在足够低的温度下,溶解度随温度升高而慢慢增大,当温度达到某一定值后,溶解度会突然增大。
这种现象称为Krafft现象。
溶解度开始突然增大的温度叫Krafft温度,也叫K.P点。
非离子型表面活性剂溶液的溶解度随温度升高而下降,当温度升到一定值时,溶液突然变成浑浊,此时的温度成为浊点,即C.P点。
复合材料是由两种或两种以上的不同材料通过一定工艺制成的多相材料,并具有与原组成材料不同的新的性能。
材料的表面界面特征及在材料工程上的意义
![材料的表面界面特征及在材料工程上的意义](https://img.taocdn.com/s3/m/962ac406b5daa58da0116c175f0e7cd184251863.png)
材料的表面界面特征及在材料工程上的意义四川大学2009级研究生期末考试论文(2009-1010学年下半学年)课程名称:材料的表面与界面论文题目:材料的表界面特征及在材料工程上的意义学院:材料科学与工程学院专业:材料材料与纳米技术学号:S092030姓名:管东波材料的表面界面特征及在材料工程上的意义摘要:本文首先提出为什么要研究材料的表界面,随后又系统的阐述了何为材料的表界面,接着文章从液体材料表面、固体材料表面、固-液界面、金属材料表面、高分子材料表界面、无机材料表面等不同类型的材料表面来具体分析了材料表面的特征,最后文章简单的说明了材料的表界面对提高、改善材料工程上很多材料的性能有极大的帮助,研究材料的表界面对材料工程有着非常重要的意义。
关键词:材料的表界面、表面、界面、材料工程1.前言材料科学、信息科学和生命科学是当今新技术革命的三大前沿科学,而材料科学方面材料的表界面占有十分重要的地位,所以说研究材料的表界面特征对我们材料科学的发展、对我们材料工程的设计有着非常重要的意义。
材料的表面界面与其内部本体在结构上和化学组成上都有很明显的差别,这是因为在材料内部的原子周围布满原子,原子之间相互作用,中间原子所受的力是平衡的,而对于处于表面界面的原子,它所受的力场是不平衡的,所以在材料的表面产生了表面能(若是界面则称为界面能)。
对于不同组分构成的材料,组分与组分之间可形成界面,而对于单组份材料,由于其内部不可避免的会存在有缺陷,所以即使单组份材料内部也会产生界面。
材料的表界面对材料的整体性能有很大的影响,有的甚至直接决定了材料的性能,所以我们有必要把研究材料的表界面作为我们研究材料的一个重要研究对象。
2.材料表界面的定义及其特征2.1材料表界面的定义何谓材料的表界面?表界面研究的对象是不均匀的体系,具有多相性,即该体系中存在两个或两个以上的不同的相,而表界面就是指由一个相过渡到另一个相的这段过渡区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论名词解释:表、界面;物理表面表界面是指由一个相到另一个相的过渡区域。
物理表面:三维规整点阵到体外空间之间的过渡区域;厚度随材料种类而异,从一个到多个原子层不等。
基本知识点:1、表、界面现象的研究对象通常为具有多相性的不均匀体系,即体系中一般存在两个或两个以上不同性能的相。
2、表界面指相与相之间的过渡区域,因此表界面区的结构、能量、组成等都呈现连续的梯度变化。
3、按照扩散的微观机制可将表面扩散分为两类:自扩散和互扩散。
4、固体中的扩散是通过原子的随机运动进行的,因此扩散的前提是有可供原子运动的空间。
5、扩散过程的微观机制是缺陷的运动。
6、晶界迁移是重要的界面扩散传质现象,可由不同的驱动力引起;晶界迁移的特点与处于一定能量状态的晶界原子结构特点密切相关,其过程的本质是晶界能量的下降。
公式:第二章液体界面名词解释:表面张力:液体表面任意二相邻部分之间垂直于它们的单位长度分界线相互作用的拉力表面自由能:广义,保持相应的特征变量不变,每增加单位表面积时,相应热力学函数的增值。
狭义,保持温度、压力和组成不变,每增加单位表面积时,Gibbs自由能的增加值称为表面Gibbs自由能,或简称表面自由能或表面能。
特劳贝(Traube)规则;在同系物溶液中,欲使表面张力降低得一般多,所需溶液浓度因分子中每增加一个亚甲基-ch2-而减少为原来的三分之一。
基本知识点:1、表面张力本质上是由分子间相互作用力,即范德瓦尔斯力产生的;2、表面张力产生的根本原因是分子间相互作用力不平衡引起的;3、处在液体表面层的分子与其内部分子所受力场相同(错);4、气液界面的分子净受到指向液体内部的引力,该引力主要是范德华力;(对)5、由于系统的能量越低越稳定,所以液体表面有自动收缩的能力;(对)6、表面弯曲的液体在表面张力的作用下,表面上承受着附加压力,且方向总是指向液体内部;(错)7、跨过平液面不存在压差;(对)8、毛细管法测液体表面张力时,要求毛细管被所测液体完全浸润。
(错)9、Kelvin公式表明:液滴的半径越小,其蒸汽压越大;气泡的半径越小,其蒸汽压越小。
10、利用毛细管法测液体表面张力时,当毛细血管浸在液体中,若液体能浸润管壁,则会发生毛细上升现象,液面呈凹月形;若液体不能浸润管壁,则液面下降呈凸液面。
11、跨过一个平表面不存在压力差,而跨过曲面必然存在压力差。
(对)12、弯曲表面,△P与表面张力成正比,而与曲率半径成反比;(错)13、人工降雨利用凸液面饱和蒸气压大于平液面蒸气压的原理,向云层提供凝结中心达到降雨目的;(对)简答题:1、应用Kelvin公式解释以下现象:①人工降雨;②过热液体;③过饱和溶液。
根据公式:(1)当空气中的水蒸气凝结时,首先形成非常小的液核,在液核存在的基础上继而长大形成大的液滴,从而发生水蒸气的凝结。
初始形成的液核半径非常小,对应的饱和蒸气压远远大于平液面水的饱和蒸气压,液核很难形成,空气中水蒸气过饱和。
空气中存在凝结中心时,如灰尘,会使水滴初始凝结曲率半径变大,当相应的饱和蒸气压小于高空中有的水蒸气压力时,蒸汽会凝结成水。
人工降雨是利用这种原理,通过向云层中的过饱和水气提供凝聚中心以达到人工增雨的目的。
(2)液体沸腾时在液体表面进行气化,而且在液体内部要自动形成小气泡。
根据开尔文公式对于这样的气泡其饱和蒸气压小于平面液体的饱和蒸气压,而且气泡半径越小,泡内饱和蒸气压越小。
在沸点时,最初形成的半径极小的气泡内的饱和蒸气压远小于外压,因此在外压的压迫下,小气泡难以形成,以致液体不易沸腾。
(3)公式:生成高度分散的微小晶体具有较大的溶解度,晶体的曲率半径越小,相应的溶解度就越大,因此产生过饱和现象。
2、书后及课件计算题第三章固体表面简答题:1、讨论固体的表面特性;固体表面分子的运动受缚性,固体表面的不均一性,吸附性。
对固体形成新表面时,表面的分子或原子重排,迁移到平衡位置过程难完成,产生表面应力。
固体表面凹凸不平,晶体晶面的不均一性,固体表面污染。
正由于固体表面原子受力不对称和表面结构不均匀性,它可以吸附气体或液体分子,使表面自由能下降,而且不同的部位吸附和催化的活性不同。
2、比较物理吸附和化学吸附的区别与联系;物理吸附仅仅是一种物理作用,没有电子转移,没有化学键的生成与破坏,也没有原子重排等。
化学吸附相当于吸附剂表面分子与吸附质分子发生了化学反应,在红外、紫外-可见光谱中会出现新的特征吸收带。
3、Langmuir理论;BET多分子吸附理论langmuir理论基本观点:固体表面存在一定数量的活化位置,当气体分子碰撞到固体表面时,就有一部分气体被吸附在活化位置上,并放出吸附热。
已吸附在固体表面上的气体分子又可重新回到气相,即存在凝聚与逃逸的平衡,是一个动态平衡的过程。
bet:接受了langmuir理论中关于固体表面是均匀的,吸附作用是吸附和解吸的平衡等观点。
吸附是多分子层的,各相邻吸附层之间存在着动态平衡。
第一层吸附是固体表面与气体分子之间的相互作用,其吸附热为q1,第二层以上的吸附都是吸附质分子之间的相互作用,吸附热接近被吸附分子的凝聚热qL。
基本知识点:1、固体表面的分子(原子)具有迁移性。
(错)2、固体表面的分子(原子)在一定条件下具有迁移性。
(对)3、固体表面的最突出特性之一是不均一性。
(对)4、固体表面的不均一性的原因包括:固体表面的凹凸不平、固体中晶体晶面的不均一性和固体表面易污染。
5、根据力的本质,可将固体表面的吸附作用分为物理吸附和化学吸附。
6、以提高固体比表面积来提高固体的吸附能力的方法包括:使固体具有多孔性和微粒化。
第四章液固界面名词解释:接触角:在气、液、固三相交界点,自固-液界面经过液体内部到气-液界面的夹角称为接触角。
;粘附功:在等温等压条件下,单位面积的液面与固体表面粘附时对外所作的最大功称为粘附功;内聚能:等温、等压条件下,两个单位液面可逆聚合为液柱所作的最大功称为内聚能,是液体本身结合牢固程度的一种量度;基本知识点:1、接触角的测定方法:停滴法;吊片法;电子天平法。
2、接触角滞后的原因是由于液滴的前沿存在着能垒。
3、当θy<90°时,表面粗糙化将使接触角更小,润湿性更好;当θy>90°时,表面粗糙化将使接触角变大。
润湿性更差。
4、前进角往往反映表面能较低的区域,或反映与液体亲和力弱的那部分固体表面的性质;而后退角往往反映表面能较高的区域,或反映与液体亲和力强的那部分固体表面的性质。
5、表面污染往往来自液体和固体表面的吸附作用,从而使接触角发生显著变化。
6、习惯上规定θ=90°为润湿与否的标准,即θ>90°为不润湿;θ<90°为润湿,θ越小润湿越好;当平衡接触角θ=0°或不存在时为铺展。
简答题:1、引起接触角滞后的原因?固体表面的粗糙度,固体表面的不均匀性和多相性,固体表面的污染。
2、润湿过程的三种类型是什么?为什么铺展是润湿的最高形式?粘附湿润过程,浸湿过程,铺展湿润过程。
因为凡能铺展的必定能粘附润湿与浸湿。
3、什么是杨氏方程?接触角大小与液体对固体的润湿性好坏有怎样的关系?(1)固体被液体完全润湿(2)固体完全不为液体润湿(3) W固液越大。
湿润性能越好第五章表面活性剂名词解释:表面活性剂:能显著降低水气界面和水油界面的界面张力的物质称为表面活性剂HLB:亲疏平衡值,用来表示表面活性物质的亲水性的相对值CMC:表面活性剂溶液中开始形成胶束的最低浓度PIT:非离子型表面活性剂在低温下形成水包油(O/W)型乳状液,升温到达相转型温度时,乳状液从原来的O/W型转变为油包水型(W/O)简答题:1、表面活性剂的浓度对溶液的表面张力有怎样的影响?为什么有这样的影响?表面活性剂加于水中,一开始表面张力随表面活性剂浓度增加而急剧下降,以后则大体保持不变。
表面活性剂分子聚集在水面,亲水端向水,亲油端向空气分子会聚集在表面,使空气和水的接触面减少,表面张力急剧下降。
水溶液表面聚集了足够多的表面活性剂,无间隙的布满在水表面上,形成了单分子膜,空气和水的接触面积不会再缩小,因此也就不能再降低表面张力。
2、表面活性剂按亲水基分类法总结,书P65;看书画3、讨论影响CMC的因素;(1)疏水基的影响:在C8—C16范围内表面活性剂疏水基烃链长度增加,CMC下降(2)亲水基的影响:亲水基团越多,CMC值越大,种类影响不大(3)温度:开始时CMC随温度升高而下降,中间经过一最小值,然后随温度升高而增大(4)其他:电解质的影响,添加电解质使CMC下降,有机物的加入基本知识点:1、HLB值的大小表示表面活性剂亲水亲油性的相对大小,HLB值越大,该表面活性剂的亲水性越强;HLB值越低,则亲油性越强。
2、PIT与HLB的关系近乎直线,HLB值越大,其亲水性强,其PIT越高,故需在较高的温度下才能转相;3、PIT的测定可用电导法;4、在CMC附近,表面活性剂溶液的许多性质都会出现转折;5、CMC越小,该表面活性剂的活性越大;6、离子型表面活性剂的溶解度随温度升高而增大,当温度达到某一定值后,溶解度会突然增大;该温度称为Krafft点,Krafft点是分子溶解和胶束溶解的分界点;7、非离子型表面活性剂的溶解度随温度升高而下降;第七、八章复合材料的界面及分析表征基本知识点:1. 复合材料的结构——基体相、增强剂相、相与相之间存在界面。
2. 界面是复合材料产生协同效应的根本原因;3. 界面相内的化学组分,分子排列,热性能,力学性能呈现连续的梯度性变化;4. 聚合物基复合材料增强材料包括——纤维增强材料,片状增强材料,颗粒状增强材料。
5. 按化学组成,偶联剂主要可分为硅烷类、有机铬络合物类、钛酸酯类偶联剂。
6. 硅烷偶联剂在玻璃纤维表面以-Si-O-Si-化学键结合,同时在玻璃纤维表面缩聚成膜,形成有机基团R朝外的结构。
7. 真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构。
8. 复合材料界面上特有的晶态结构是横晶,其形成与化学键以及基体的收缩有关。
9. 聚合物基复合材料的树脂基体可分为热固性树脂和热塑性树脂;用作复合材料基体的热固性树脂最主要的是不饱和聚酯树脂、环氧树脂和酚醛树脂。
10. 玻璃纤维增强塑料俗称玻璃钢,是由玻璃纤维和基体树脂组成的复合材料。
12. 若纤维与基体界面结合适度,当复合材料破坏时,界面脱粘和基体破坏同时发生,从基体中拔出的纤维表面,可粘附有许多基体树脂残迹。
13.增强纤维经表面处理后,表面的化学组成发生变化,表面产生了一些活性功能团,通过功能团的化学反应,增强了与基体树脂的界面结合。
简答题:1.解释协同效应?复合材料为什么会产生协同效应?复合材料的性能不是组成材料性能的简单加和,而产生了1+1>2的作用,称为协同效应。