基于MATLAB的汽车动力性模拟仿真方法
[精品]基于MATLAB的汽车动力性和燃油经济性仿真
[精品]基于MATLAB的汽车动力性和燃油经济性仿真1. 简介汽车动力性和燃油经济性是评价一辆汽车性能的两个重要指标。
基于MATLAB的仿真可以帮助工程师和研究人员更好地理解汽车的动力性能和燃油经济性,从而优化设计和改进汽车技术。
本文将介绍基于MATLAB的汽车动力性和燃油经济性仿真的方法和技术。
2. 动力性仿真汽车的动力性指的是汽车加速性能、最高速度、扭矩特性等。
基于MATLAB的动力性仿真可以通过建立数学模型来预测和评估汽车的动力性能。
以下是一个基本的汽车动力性仿真流程:- 建立车辆动力学模型:可以使用MATLAB的Simulink工具箱,将汽车的运动学、动力学和能量转换等方程建立为一个系统模型。
- 定义输入信号:输入信号可以包括驾驶员的驾驶指令、动力系统的输入等。
例如,加速踏板的输入信号可以用一个阶跃函数模拟。
- 仿真和分析:运行仿真模型,获取汽车的速度、加速度、油耗等数据。
通过对仿真结果的分析,可以评估汽车的动力性能,比较不同设计和控制策略的效果。
3. 燃油经济性仿真燃油经济性是指车辆在单位里程下消耗的燃油量,通常以百公里行驶的油耗来表示。
基于MATLAB的燃油经济性仿真可以通过模拟车辆的行驶过程和能量转换来评估汽车的油耗。
以下是一个基本的燃油经济性仿真流程:- 建立车辆行驶模型:可以使用MATLAB的Simulink工具箱,将车辆的行驶阻力、发动机效率、行驶工况等建立为一个系统模型。
- 设置行驶循环:选择合适的行驶循环来模拟不同的驾驶工况,如城市驾驶、高速驾驶等。
- 仿真和分析:运行仿真模型,获取车辆的行驶速度、驱动力、油耗等数据。
通过对仿真结果的分析,可以评估汽车的燃油经济性,比较不同设计和控制策略的效果。
4. 结论基于MATLAB的汽车动力性和燃油经济性仿真可以为汽车工程师和研究人员提供一个快速、准确和可靠的评估工具。
通过仿真分析,可以优化汽车的设计和控制策略,提高汽车的性能和燃油经济性。
汽车理论课程设计:基于Matlab的汽车动力性的仿真
2009 届海南大学机电工程学院汽车工程系汽车理论课程设计题目:汽车动力性的仿真学院:机电工程学院专业:09级交通运输姓名:黄生锐学号:20090504指导教师:编号名称件数页数编号名称件数页数1 课程设计论文 1 3Matlab编程源程序 12 设计任务书 12012年6月20日成绩汽车理论课程设计任务书姓名黄生锐学号20090504 专业09交通运输课程设计题目汽车动力性的仿真内容摘要:本设计的任务是对一台Passat 1.8T手动标准型汽车的动力性能进行仿真。
采用MATLAB编程仿真其性能,其优点是:一是能过降低实际成本,提高效率;二是获得较好的参数模拟,对汽车动力性能提供理论依据。
主要任务:根据该车的外形、轮距、轴距、最小离地间隙、最小转弯半径、车辆重量、满载重量以及最高车速等参数,结合自己选择的适合于该车的发动机型号求出发动机的最大功率、最大扭矩、排量等重要的参数。
并结合整车的基本参数,选择适当的主减速比。
依据GB、所求参数,结合汽车设计、汽车理论、机械设计等相关知识,计算出变速器参数,进行设计。
论证设计的合理性。
设计要求:1、动力性分析:1)绘制汽车驱动力与行驶阻力平衡图;2)求汽车的最高车速、最大爬坡度;3)用图解法或编程绘制汽车动力特性曲线4)汽车加速时间曲线。
2、燃油经济性分析:1) 汽车功率平衡图;完成内容:1.Matlab编程汽车驱动力与行驶阻力平衡图2.编程绘制汽车动力特性曲线图3.编程汽车加速时间曲线图4.课程设计论文1份汽车动力性仿真摘要本文是对Passat 1.8T 手动标准型汽车的动力性能采用matlab 编制程序,对汽车动力性进行计算。
从而对汽车各个参数做出准确的仿真研究,为研究汽车动力性提供理论依据,本文主要进行的汽车动力性仿真有:最高车速、加速时间和最大爬坡度。
及相关汽车燃油性经济。
关键词:汽车;动力性;试验仿真;matlab1. Passat 1.8T 手动标准型汽车参数功率Pe (kw )转速n (r/min )15 1000 36 1750 50 2200 66 2850 80 3300 90 4000 110 5100 1055500各档传动比主减速器传动比第1档 3.665 4.778第2档 1.999 第3档 1.407 第4档 1 第5档 0.472 车轮半径0.316(m )传动机械效率0.91 假设在良好沥青或水泥路面上行驶,滚动阻力系数 0.014 整车质量1522kgC D A2.4m22. 最高车速汽车的最高车速是指汽车标准满载状态,在水平良好的路面(混凝土或沥青路面)上所能达到的最高行驶速度。
汽车动力性matlab仿真源程序
汽车动力性matlab仿真源程序clcn=[1500:500:5500];%转速范围T=[78.59 83.04 85.01 86.63 87.09 85.87 84.67 82.50 80.54];%对应各转矩dt=polyfit(n,T,3);%对发动机输出转矩特性进行多项式拟合,阶数取4n1=1000:100:5500;%t=polyval(dt,n1);figure(1)title('发动机外特性')plot(n1,t,n,T,'o'),grid on%图示发动机输出转矩特性%汽车驱动力计算G=input('整车重力/N,G=');%输入970*9.8ig=[3.416 1.894 1.28 0.914 0.757];%变速器速比k=1:5;%5个前进档r=0.272;i0=4.388;eta=0.9;ngk=[800 800 800 800 800];ngm=[5500 5500 5500 5500 5500];ugk=0.377.*r.*ngk(k)./(ig(k).*i0);%计算每一档发动机800rpm 时的最低行驶速度ugm=0.377.*r.*ngm(k)./(ig(k).*i0);%计算每一档发动机5400rpm最高行驶速度for k=1:5%依次计算5个档的驱动力u=ugk(k):ugm(k);n=ig(k)*i0.*u./r/0.377;t=54.8179+2.2441.*(n./100)-4.8003.*(n./1000).^2+2.815e-10.*n.^3Ft=t.*ig(k).*i0*eta/r;figure(2)plot(u,Ft)hold on,grid on %保证K的每次循环的图形都保留显示end%行驶阻力计算f0=0.009;f1=0.002;f4=0.0003;%三者都是轿车滚动阻力系数% disp'空气阻力系数Cd=0.3--0.41,迎风面积A=1.7--2.1'Cd=input('空气阻力系数Cd=');%输入0.3A=input('迎风面积/m2,A=');%输入2.3u=0:10:180;f=f0+f1.*(u./100)+f4.*(u./100).^4;Ff=G*f;%计算滚动阻力Fw=Cd*A.*u.^2./21.15;%计算空气阻力F=Ff+Fw;%滚动阻力、空气阻力之和title('驱动力-阻力图(五档速比为3.416 1.894 1.28 0.914 0.757)')plot(u,F,'mo-');grid on%图解法求最高车速for u=50:180;k=5;n=ig(k)*i0.*u./r/0.377;t=54.8179+2.2441.*(n./100)-4.8003.*(n./1000).^2+2.815e-10.*n.^3;Ft=t.*ig(k).*i0*eta/r;f=f0+f1.*(u./100)+f4.*(u./100).^4;Ff=G*f;Fw=Cd*A.*u.^2./21.15;F=Ff+Fw;if abs(Ft-F)<1;umax=u;breakendenddisp('== == =汽车动力性能仿真计算结果== == =')disp('驱动力-行驶阻力平衡图及最高车速')fprintf('汽车理论最高车速(驱动力与行驶阻力曲线交点)Vmax=%3.3f km/h\n',umax)(注:文档可能无法思考全面,请浏览后下载,供参考。
汽车整体动力性MATLAB仿真计算
车各种性能中最基本、最重要的性能。
动力性评价指标
汽车动力性评价指标有最高车速、加速 时间、最大爬坡度等,与之对应的试验内容 有最高车速的测试、汽车起步连续换挡加速 时间与超车加速时间的测试和汽车最大爬坡 度的测试。另外,按照我国标准,动力性评 价试验均在满载情况下进行。
M文件
发动机输出功率计算,具体程序如下:
for k=1:5 u=ugk(k):ukm(k); n=ig(k)*i0*u/r/0.377; pe=polyval(dp,n); figure(4) plot(u,pe) hold on,grid on%保证每次循环的图形都保留显示
end
M文件
发动机阻力功率计算,具体程序如下:
M文件
图解法求解最高车速,具体程序如下:
for u=50:0.1:180; k=5; n=ig(k)*i0*u/r/0.377; t=polyval(dt,n); Ft=t*ig(k)*i0*eta/r; f=f0+f1*(u/100)+f4*(u/100).^4; Ff=G*f; %计算滚动阻力 Fw=Cd*A*u.^2./21.15; %计算空气阻力 F=Ff+Fw; if abs(Ft-F)<1; %当驱动力与行驶阻力差值小于1N时,近似认为为理论最高车速 umax=u;break end
仍然取先前国产某小型轿车进行仿真计算,整车综合性 能参数如前所述。发动机输出功率特性可由台架试验获得, 如下表2所示:
表2 发动机输出功率特性
转矩/(r/min) 1500 2000 2500 3000 3500 4000 4500 5000 5500 输出功率/kW 10.6 13.4 17.6 21.8 25.2 27.5 31.1 35.4 31.6
基于MATLAB的车辆动力性和制动性仿真分析
基于MATLAB的车辆动力性和制动性仿真分析发布时间:2022-06-22T02:20:51.317Z 来源:《科学与技术》2022年2月4期(下)作者:邹彦冉张竹林* 蒋德飞阮帅房冠霖曹士杰[导读] 动力性和制动性是评价车辆性能的关键指标,在对关键部件进行定参数、零部件选型、匹配优化时需要进行大量计算邹彦冉张竹林* 蒋德飞阮帅房冠霖曹士杰山东交通学院汽车工程学院,山东济南 250357摘要:动力性和制动性是评价车辆性能的关键指标,在对关键部件进行定参数、零部件选型、匹配优化时需要进行大量计算,现在企业多采用EXCEL进行计算,导致效率低下、直观性不强。
本文基于MATLAB软件的App Designer模块,开发了车辆动力性和制动性仿真分析软件,具有良好的人机界面和曲线输出功能,并以某型号汽车的实际参数进行了动力性和制动性仿真验证,证明了软件仿真分析的可行性,能够为汽车设计提供良好的支撑,提高设计效率。
关键词:汽车;MATLAB;仿真分析;App Designer 中图分类号:U462.3 文献标志码:A 0 引言近年来国内外汽车行业发展迅猛,截至2021年7月,全国家用车保有量达3.84亿辆。
我国正由汽车制造大国往汽车制造强国过渡,汽车的正向研发技术越来越受到各汽车设计单位的重视。
车辆的动力性和制动性是评价车辆性能的关键指标之一[1],其性能的好坏影响到车辆的品质和市场。
如今国内外对App Designer在各领域的应用进行了研究[2],韦超毅[3]等采用App Designer对汽车的爬坡能力进行建模与仿真,开发设计了一款软件,测试了试验车的爬坡性能;张晓荣[4]等针对调节阀工作流量特性的畸变问题,设计了工作流量校正算法,并采用App Designer 开发了操作简单、功能完整的操作界面;李晶[5]等基于MATLAB对实际汽车进行动力性仿真,假设节气门开度处于最大情况下,通过仿真分析绘制出该工况下车辆动力性曲线并分析结合实际实验测量数据,验证了该仿真系统的准确性;陈利娜[6]使用MATLAB对汽车制动性能分析,获得了车辆制动力分配曲线,为汽车制动性仿真分析提供了准确的操作方法与可视化数据。
基于MATLAB和VC_的汽车动力性仿真
第16卷 第3期2008年9月山东交通学院学报J OURNAL OF SHANDONG JI AOTONG UNI VERS I TY Vo.l 16No .3Sep.2008收稿日期:2008-08-08作者简介:张竹林(1979 ),男,山东青岛人,山东交通学院讲师,工学硕士,主要研究方向为计算机仿真和汽车多体动力学.基于MATLAB 和VC++的汽车动力性仿真张竹林,吴芷红(山东交通学院汽车工程系,山东济南 250023)摘要:介绍了M ATLA B 在汽车动力性仿真中的应用,以及开发仿真程序的方法。
首先建立汽车的动力学模型,然后用V C ++开发人机界面和利用数据库对数据进行管理,再利用MATLAB 的强大数学计算功能和绘图功能进行仿真运算输出。
结果表明,该方法具有处理数据速度快、精度高等优点,为汽车动力性仿真提供了一种切实可行的方法。
关 键 词:动力性;M ATLAB ;V C ++;仿真中图分类号:U 461.2 文献标识码:A 文章编号::1672-0032(2008)03-0015-03MATLAB 是美国M ath W orks 公司开发的功能强大的科学计算软件,是当今国际上最具有影响力和活力的软件,能方便地处理矩阵变换运算、多项式运算、图形绘制、微积分运算以及微分方程求解等,编程简洁,在各行各业得到了广泛的应用。
将MATLAB 应用于汽车动力性仿真,能够提高产品开发速度和验证传动系统匹配优化效果。
但MATLAB 解释性语言执行效率低,不便于良好的人机交互界面开发,不利于商业开发。
利用MATLAB 强大的计算功能和绘图功能,利用VC ++开发友好界面,编制汽车动力性仿真程序,本程序可以和发动机台架试验台进行通讯,自动读取试验数据,然后根据传动系统参数进行整车动力性仿真,可以对新车的动力性进行评价,为产品的开发提供一个方便实用的工具。
1 动力性数学模型在进行动力性估算时,一般沿用稳定工况时发动机台架试验所得到的外特性中的功率与转矩曲线。
基于matlab的纯电动汽车建模及动力特性仿真分析
杨三英,等·基于 matlab 的纯电动汽车建模及动力特性仿真分析
图 1 锂离子蓄电池模型
2) 功率限制模块( limit power) : 防止电池负载电流的
功率超出 SOC,等效电路和电动机控制器最小允许电压。
3) 电池负载电流计算模块 ( compute current) : 根据
pack Voc. Rint 模块输出电压及内阻、limit power 模块输出
Simulation and Analysis of Model and Dynamic Characteristics for Electric Vehicle Based on Matlab
YANG San-ying,ZHOU Yong-jun,MA Yuan ( Central South University of Forestry and Technology,Changsha 410004,China)
2 模型的建立
2. 1 蓄电池仿真模型
本文建立的锂离子蓄电池模型如图 1 所示。 该模型以电池的开路电压及电池内阻的特性函数为 基础,以电池荷电状态( state of charge,SOC) 的变化趋势 为依据建立起来的。模型主要包含以下五大模块。 1) 电池开路电压和内阻计算模块( pack Voc. rint) : 根据当前蓄电池的功率需求、电池温度以及实时的 SOC 值来计算单个电池的开路电压和内阻。
图 4 车速变化曲线
电动机的输出转矩是电动汽车动力特性的重要指标。 电动机驱动车轮工作时,转矩为正值; 在汽车制动时,转矩 为负值,有效地回收了制动能量,这对电动汽车节省能量、 增加行驶里程非常有意义。从图中看出,车辆在行驶过程 中,转矩输出 变 化 比 较 稳 定,提 高 了 车 辆 的 行 驶 平 稳 性。 车辆的电动机输出转矩及电动机转矩随转速变化曲线如 图 6 和图 7 所示。
基于MATLAB的汽车运动控制系统设计仿真
基于MATLAB的汽车运动控制系统设计仿真汽车运动控制系统是指通过电子控制单元(ECU)对汽车进行控制和管理的系统。
在汽车行驶过程中,运动控制系统可以通过调整引擎、悬挂、制动和转向等部件的工作状态,来实现对汽车行驶性能和稳定性的控制。
本文将基于MATLAB对汽车运动控制系统进行设计和仿真。
首先,需要建立汽车的动力学模型。
汽车的动力学模型包括车辆的运动学和动力学两个方面。
运动学模型描述了车辆的位置、速度和加速度之间的关系;动力学模型描述了车辆受到的作用力与车辆运动状态之间的关系。
在MATLAB中可以使用车辆动力学工具箱(Vehicle Dynamics Blockset)来建立汽车的动力学模型。
其次,需要设计车辆控制器。
车辆控制器负责根据车辆的状态和控制要求生成控制指令,并将其发送给相应的执行器。
控制器可以采用基于硬件的控制器,也可以采用基于软件的控制器。
在MATLAB中可以使用Simulink进行控制系统的建模和设计。
接下来,需要设计和实现车辆运动控制算法。
车辆运动控制算法可以包括速度控制、转向控制、制动控制等。
在MATLAB中可以使用控制系统工具箱(Control System Toolbox)和优化工具箱(Optimization Toolbox)来设计和实现车辆运动控制算法。
最后,需要对车辆运动控制系统进行仿真和验证。
在MATLAB中可以使用Simulink和Simscape进行车辆运动控制系统的仿真。
通过仿真可以评估和验证车辆控制系统的性能和稳定性,并进行必要的调整和优化。
综上所述,基于MATLAB的汽车运动控制系统设计仿真包括建立汽车动力学模型、设计车辆控制器、实现运动控制算法以及进行仿真和验证等步骤。
通过仿真和验证可以评估和优化车辆运动控制系统的性能和稳定性,为实际应用提供参考和指导。
基于MatlabSimulink的电动汽车仿真模型设计与应用
基于MatlabSimulink的电动汽车仿真模型设计与应用一、本文概述随着全球能源危机和环境污染问题的日益严重,电动汽车作为一种清洁、高效的交通工具,受到了越来越多的关注和推广。
在电动汽车的研发过程中,仿真模型的建立与应用发挥着至关重要的作用。
本文旨在探讨基于Matlab/Simulink的电动汽车仿真模型设计与应用,旨在为电动汽车的设计、优化和控制提供理论支持和实践指导。
本文将对电动汽车仿真模型的重要性进行阐述,指出其在电动汽车研发过程中的地位和作用。
接着,将详细介绍Matlab/Simulink在电动汽车仿真模型设计中的应用,包括其强大的建模功能、灵活的仿真能力以及高效的算法处理能力等。
在此基础上,本文将重点讨论电动汽车仿真模型的设计方法。
包括电动汽车动力系统的建模、控制系统的建模以及整车模型的集成等。
将结合具体案例,对电动汽车仿真模型在实际应用中的效果进行展示和分析,以验证其有效性和可靠性。
本文还将对电动汽车仿真模型的发展趋势进行展望,探讨其在未来电动汽车研发中的潜在应用前景。
通过本文的研究,希望能够为电动汽车仿真模型的设计与应用提供有益的参考和启示,推动电动汽车技术的不断发展和进步。
二、电动汽车仿真模型设计基础电动汽车(EV)仿真模型的设计是一个涉及多个学科领域的复杂过程,其中包括电力电子、控制理论、车辆动力学以及计算机建模等。
在Matlab/Simulink环境中,电动汽车仿真模型的设计基础主要包括对车辆各子系统的理解和建模,以及如何利用Simulink提供的各种模块和工具箱进行模型的构建和仿真。
电动汽车的主要子系统包括电池管理系统(BMS)、电机控制系统(MCS)、车辆控制系统(VCS)以及车辆动力学模型。
这些子系统都需要根据实际的电动汽车设计和性能参数进行精确的建模。
电池管理系统(BMS)建模:电池是电动汽车的能源来源,因此,BMS建模对于电动汽车的整体性能至关重要。
BMS模型需要包括电池的荷电状态(SOC)估计、电池健康状况(SOH)监测、电池热管理以及电池能量管理等功能。
基于MATLAB的汽车动力性仿真实验
基于MATLAB的汽车动力性仿真实验【摘要】文章从车辆动力学的角度建立了汽车动力性数学模型,用MATLAB编程,对某轻型货车的动力性能参数进行计算并仿真出其驱动力-行驶阻力平衡图、行驶加速度及加速度倒数曲线图,计算出该轻型货车的最高车速及II档起步加速到70km/h所需的时间,为研究该型载货汽车的动力性能提供了很好的依据。
【关键词】MATLAB;轻型货车;动力性能;仿真一、前言汽车动力性是评价汽车性能的重要指标,通常用汽车的最高车速、加速时间和最大爬坡度来评定。
绘出汽车驱动力-行驶阻力平衡图和汽车加速度曲线图是求出最高车速、加速时间和最大爬坡度的前提,本文通过MATLAB仿真求出实验用轻型货车的动力性指标,使其参数指标优化轻型货车的动力性匹配实验。
二、实验用轻载货汽车本实验用使用的汽车是福田轻型厢式货车。
其主要的技术参数见表1。
变速器传动比数据见表2。
三、建立汽车动力性数学模型1.发动机的外特性利用FZD发动机综合实验台测出该型厢式货车汽车的外特性的功率与转矩曲线,利用多项式拟合求出发动机的转矩多项式,(1)式中,为发动机转矩();为发动机转速(r/min);系数可由曲线拟合中的最小二乘法来确定;k取4。
求得:发动机最低转速=600r/min,最高转速=4000r/min2.汽车行驶方程的建立及计算模型汽车行驶时的一般方程式为:式中:分别是驱动力、滚动阻力、空气阻力、坡度阻力和加速阻力;为发动机转矩;分别为变速器传动比、主减速器传动比;为传动系机械效率;为滚动阻力系数;为空气阻力系数;A为迎风面积;为车速;为道路坡度;为汽车旋转质量换算系数;分别为汽车质量、行驶加速度。
不考虑坡度阻力和加速阻力时,方程(2)变为:(3)可得最高车速:(4)不考虑坡度阻力由汽车行驶方程可得加速时间:(5)由动力学可知:(6)汽车等速行驶时得到最大坡度:四、仿真过程1.汽车汽车驱动力-行驶阻力平衡图仿真编写程序在MATLAB中做出汽车驱动力-行驶阻力平衡图,图1。
Matlab中的动力系统建模与仿真方法
Matlab中的动力系统建模与仿真方法Matlab是一种流行的科学计算软件,广泛应用于各个领域中的数据处理和建模仿真。
在动力系统领域,Matlab也提供了丰富的工具和函数,方便用户进行系统建模和仿真。
本文将介绍Matlab中常用的动力系统建模方法和仿真技术。
一、动力系统建模方法1.1 状态空间表示法在动力系统建模时,常使用状态空间表示法来描述系统的动态行为。
状态空间表示法将系统的状态变量和输入输出变量联系起来,通过矩阵形式表示系统的数学模型。
Matlab提供了函数来求解状态空间模型的时间响应、频率响应等重要特性。
1.2 传递函数表示法传递函数表示法是另一种常用的动力系统建模方法。
它将系统的输入输出关系表示为一个分子多项式除以分母多项式的形式。
Matlab中的Control System Toolbox提供了丰富的函数和工具箱来处理传递函数模型,如函数tf、bode、step 等。
1.3 符号计算方法符号计算是一种基于代数运算的方法,可以在符号层面上进行系统的数学推导和分析。
Matlab中的Symbolic Math Toolbox提供了强大的符号计算功能,包括求解方程组、求导、积分、线性化等。
通过符号计算,可以得到系统的解析解或近似解,进一步分析系统的特性。
1.4 神经网络建模方法除了传统的数学建模方法外,神经网络也被广泛应用于动力系统的建模和仿真。
Matlab中的Neural Network Toolbox提供了丰富的函数和工具来构建神经网络模型,并进行训练和仿真。
神经网络可以通过学习系统的输入输出数据来建立模型,具有一定的非线性拟合能力。
二、动力系统仿真技术2.1 数值解法动力系统的仿真一般采用数值解法来求解微分方程。
Matlab提供了丰富的数值求解函数,如ode45、ode23、ode15s等,可以根据系统的特点选择合适的数值求解方法。
数值解法通过离散化时间和空间,将连续的微分方程转化为差分方程,以逼近真实系统的连续演化过程。
基于MATLAB和VC++的汽车动力性仿真
作 者简 介 : 张竹 林 (9 9 ) 男 , 东青 岛人 , 东 交通 学 院 讲 师 , 学 硕 士 , 要 研 究 方 向为 计 算 机 仿 真 和 汽 车 多体 动 力 学 17 一 , 山 山 工 主
维普资讯
!
查 兰堕 堡 銮 兰
!! 笙 皇 旦 堂
k h为 路 度m 汽 质 ,; 汽 旋 质 换 系 , 1 +. 其 1 车 m ; 道 坡 ;为 车 量k6 车 转 量 算 数6 + I. 中 w / g为 : ≥ 2, 2 为
轮 的转动 惯量 ,gI , 为飞轮 的转 动惯量 ,g 1 ; 为行 驶加 速度 ,1s。 k ・I , T k ・I T n/ / 同时还要 考虑 附着力 , 需要 进行 校核 。
1 1 最 高车速 .
汽车 最高 车速 是在水 平 的路面 上所 能达 到 的最 高速 度 。求 汽车 最 高 车速 时 , 速 踏板 踩 到 底 , 设 加 假
加 速阻力 和坡 道阻 力 为 0 此 时存 在 2种情 况 , , 一种 是 驱动 力始 终 大于 行驶 阻力 , 车 的最 高 车速 由发 动 汽 机 的最高 转速决 定 ; 另一 种是 驱动力 与行驶 阻 力平衡 达 到最 高车 速 , 由式 ( ) 1 得
,
。 可 由最小 二乘 法来 决定 。 用V+ C +编写 动 态 库 文件 , 照 发 动 机 台架 试 验 的 A 按 K协 议 进 行 通讯 , 采取 的数 据 自动 写 入 A cs ces
的数据 库 中 , 拟合程 序 中基 于 O B 在 D C数据 库进 行数 据 读取 和利 用 MA L B函数进 行拟 合 。 TA
车辆工程基于MATLAB的动力性仿真分析及优化设计程序
n=linspace(600,4000,100);%均分计算指令,600最低转速,4000最高转速,均分为100等分r=0.367;i0=5.83;nt=0.85;G=3880*9.8;f=0.013;CDA=2.77;If=0.218;Iw1=1.798;Iw2=3.598;m=3880;L=3.2;a=1.947;hg=0.9;ig=[6.09,3.09,1.71,1.00];%输入已知参数ua1=0.377*r*n/i0/ig(1);ua2=0.377*r*n/i0/ig(2);ua3=0.377*r*n/i0/ig(3);ua4=0.377*r*n/i0/ig(4);%各转速各挡位下的速度Tq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000 ).^4;%从600~4000rpm油拟合公式计算发动机转距Ft1=Tq*i0*ig(1)*nt/r;Ft2=Tq*i0*ig(2)*nt/r;Ft3=Tq*i0*ig(3)*nt/r;Ft4=Tq*i0*ig(4)*nt/r;%从600~4000rpm各挡位的驱动力Ff=G*f;ua=linspace(0,200,100);Fw=CDA*ua.*ua/21.15;%空气阻力plot(ua1,Ft1,ua2,Ft2,ua3,Ft3,ua4,Ft4,ua,Ff+Fw);%画出各挡位的Ua-Ft,及Ua-Ff+Ft xlabel('ua/ km/h');ylabel('F/N');%标注横纵轴title('汽车驱动力-行驶阻力平衡图');%标注图形题目gtext('Ft1'),gtext('Ft2'),gtext('Ft3'),gtext('Ft4'),gtext('Ff+Fw');%给每根线条添加符号legend('Ft1','Ft2','Ft3','Ft4','Ff+Fw');%标注图例umax=max(ua4);disp('汽车最高车速=');disp(umax);disp('km/h');imax=tan(asin(max((Ft1-(Ff+Fw))/G)));%最大爬坡度的公式disp('汽车最大爬坡度=');disp(imax);%输出最高车速,与最大爬坡度的结果n=600:1:4000;%600最低转速,4000最高转速,相邻数组间隔1 r=0.367;i0=5.83;eff=0.85;f=0.013;CdA=2.77;m=3880;g=9.8; %输入已知参数G=m*g;Ttq=-19.313+295.27*n/1000-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000) .^4;%从600~4000rpm油拟合公式计算发动机转距for ig=[6.09,3.09,1.71,1.00]Ua=0.377*r*n/ig/i0; %各转速各挡位下的速度Pe=Ttq.*n/9550; %各转速下的功率plot(Ua,Pe);hold on; %使当前轴及图形保持而不被刷新,准备接受此后将绘制的图形,多图共存endUa=0:0.1:max(Ua);Pf=G*f*Ua/3600; %滚动阻力Pw=CdA*Ua.^3/76140; %空气阻力plot(Ua,(Pf+Pw)/eff);title('汽车的功率平衡图'),xlabel('Ua/(km/h)'),ylabel('P/kw');%画出汽车的功率平衡图gtext('Ft1'),gtext('Ft2'),gtext('Ft3'),gtext('Ft4'),gtext('(Pf+Pw)/nt'); legend('Ⅰ','Ⅱ','Ⅲ','Ⅳ','Pf+Pw/nt');n=600:1:4000;%600最低转速,4000最高转速,相邻数组间隔r=0.367;i0=5.83;nt=0.85;f=0.013;CdA=2.77;m=3880;g=9.8; %输入已知参数G=m*g;Ttq=-19.313+295.27*n/1000-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000) .^4;%从600~4000rpm油拟合公式计算发动机转距for ig=[6.09,3.09,1.71,1.00]Ua=0.377*r*n/ig/i0;Ft=Ttq*i0*ig*nt/r;Fw=CdA*Ua.^2/21.15;D=(Ft-Fw)/G %汽车动力因子公式plot(Ua,D); %画出汽车动力特性图hold on; %使当前轴及图形保持而不被刷新,准备接受此后将绘制的图形,多图共存endf=0.0076+0.000056*Ua%滚动阻力与速度之间的关系plot(Ua,f); %画出速度与滚动阻力图title('汽车动力特性图'),%给图加题目xlabel('Ua/(km/h)'),ylabel('D');gtext('Ⅰ'),gtext('Ⅱ'),gtext('Ⅲ'),gtext('Ⅳ'),gtext('f');legend('Ⅰ','Ⅱ','Ⅲ','Ⅳ','f');n=600:10:4000; %600最低转速,4000最高转速,相邻数组间隔10m=3880;g=9.8;nmin=600;nmax=4000;G=m*g;ig=[6,09 3.09 1.71 1.00];nT=0.85;r=0.367;f=0.013;CDA=2.77;i0=5.83;L=3.2;a=1.947;hg=0.9;If=0.218;Iw1=1.798;Iw2=3.598;%输入已知参数Tq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000 ).^4;%从600~4000rpm油拟合公式计算发动机转距Ft1=Tq*ig(1)*i0*nT/r;Ft2=Tq*ig(2)*i0*nT/r;Ft3=Tq*ig(3)*i0*nT/r;Ft4=Tq*ig(4)*i0*nT/r; %各转速各挡位下的驱动力ua1=0.377*r*n/ig(1)/i0;ua2=0.377*r*n/ig(2)/i0;ua3=0.377*r*n/ig(3)/i0;ua4=0.377*r*n/ig(4)/i0; %各挡位各转速下的速度Fw1=CDA*ua1.^2/21.15;Fw2=CDA*ua2.^2/21.15;Fw3=CDA*ua3.^2/21.15;Fw4=CDA*ua4.^2/21.15; %不同速度下的空气阻力Ff=G*f;deta1=1+(Iw1+Iw2)/(m*r^2)+(If*ig(1)^2*i0^2*nT)/(m*r^2);deta2=1+(Iw1+Iw2)/(m*r^2)+(If*ig(2)^2*i0^2*nT)/(m*r^2);deta3=1+(Iw1+Iw2)/(m*r^2)+(If*ig(3)^2*i0^2*nT)/(m*r^2);deta4=1+(Iw1+Iw2)/(m*r^2)+(If*ig(4)^2*i0^2*nT)/(m*r^2); %不同挡位下的汽车旋转质量换算系数a1=(Ft1-Ff-Fw1)/(deta1*m);ad1=1./a1;a2=(Ft2-Ff-Fw2)/(deta2*m);ad2=1./a2;a3=(Ft3-Ff-Fw3)/(deta3*m);ad3=1./a3;a4=(Ft4-Ff-Fw4)/(deta4*m);ad4=1./a4; %各挡位下的加速度plot(ua1,ad1,ua2,ad2,ua3,ad3,ua4,ad4);title('汽车的加速度倒数曲线');xlabel('ua(km/h)'); ylabel('1/a)'); %作汽车加速度倒数曲线gtext('1/a1'),gtext('1/a2'),gtext('1/a3'),gtext('1/a4');legend('1/a1','1/a2','1/a3','1/a4');n=600:10:4000;m=3880;g=9.8;nmin=600;nmax=4000;G=m*g;ig=[6.09 3.09 1.71 1.00];nT=0.85;r=0.367;f=0.013;CDA=2.77;i0=5.83;L=3.2;a=1.947;hg=0.9;If=0.218;Iw1=1.798;Iw2=3.598; %输入已知参数Tq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000 ).^4;%从600~4000rpm油拟合公式计算发动机转距Ft1=Tq*ig(1)*i0*nT/r;Ft2=Tq*ig(2)*i0*nT/r;Ft3=Tq*ig(3)*i0*nT/r;Ft4=Tq*ig(4)*i0*nT/r;%各转速各挡位下的驱动力ua1=0.377*r*n/ig(1)/i0;ua2=0.377*r*n/ig(2)/i0;ua3=0.377*r*n/ig(3)/i0;ua4=0.377*r*n/ig(4)/i0;%各挡位各转速下的速度Fw1=CDA*ua1.^2/21.15;Fw2=CDA*ua2.^2/21.15;Fw3=CDA*ua3.^2/21.15;Fw4=CDA*ua4.^2/21.15;%不同速度下的空气阻力Ff=G*f;i1=asin((Ft1-Ff-Fw1)/G);i2=asin((Ft2-Ff-Fw2)/G);i3=asin((Ft3-Ff-Fw3)/G);i4=asin((Ft4-Ff-Fw4)/G);%不同档位下的坡度plot(ua1,i1,ua2,i2,ua3,i3,ua4,i4);title('汽车的爬坡度图');xlabel('ua/(km*h^-1)');ylabel('i/%');%作汽车的坡度图gtext('Ⅰ'),gtext('Ⅱ'),gtext('Ⅲ'),gtext('Ⅳ');m=3880;g=9.8;r=0.367;nt=0.85;f=0.013;CdA=2.77;i0=5.83;pg=7.1;%汽油的重度取7.1N/Lig=[6.09 3.09 1.71 1];n=600:1:4000;n0=[815 1207 1614 2012 2603 3006 3403 3804];B00=[1326.8 1354.7 1284.4 1122.9 1141.0 1051.2 1233.9 1129.7];B10=[-416.46 -303.98 -189.75 -121.59 -98.893 -73.714 -84.478 -45.291];B20=[72.379 36.657 14.524 7.0035 4.4763 2.8593 2.9788 0.71113];B30=[-5.8629 -2.0553 -0.51184 -0.18517 -0.091077 -0.05138 -0.047449 -0.00075215]; B40=[0.17768 0.043072 0.0068164 0.0018555 0.00068906 0.00035032 0.00028230 -0.000038568]; %输入已知参数B0=spline(n0,B00,n);B1=spline(n0,B10,n);B2=spline(n0,B20,n);B3=spline(n0,B30,n);B4=spline(n0,B40,n);%使用三次样条插值,保证曲线的光滑连续ua3=0.377*r*n/ig(3)/i0;ua4=0.377*r*n/ig(4)/i0; %求出发动机转速范围内对应的3、4档车速Pe3=(m*g*f*ua3/3600+CdA*ua3.^3/76140)/0.85;Pe4=(m*g*f*ua4/3600+CdA*ua4.^3/76140)/0.85; %发动机功率for i=1:1:3401 %用拟合公式求出各个燃油消耗率b3(i)=B0(i)+B1(i)*Pe3(i)+B2(i)*Pe3(i).^2+B3(i)*Pe3(i).^3+B4(i)*Pe3(i).^4;b4(i)=B0(i)+B1(i)*Pe4(i)+B2(i)*Pe4(i).^2+B3(i)*Pe4(i).^3+B4(i)*Pe4(i).^4; %插值得出对应速度的燃油消耗率endQ3=Pe3.*b3./(1.02.*ua3.*pg);Q4=Pe4.*b4./(1.02.*ua4.*pg); %3.4挡等速百公里燃油消耗量plot(ua3,Q3,ua4,Q4);title('最高档与次高档等速百公里油耗曲线'); %画出最高档与次高档等速百公里油耗曲线xlabel('ua(km/h)'); ylabel('百公里油耗(L/100km)');gtext('3档'),gtext('4档');。
基于MATLAB的汽车动力性和燃油经济性仿真
以上给出的只是仿真结果的一部分,从仿真结果来看与实际情况已很 接近,可以为车辆的前期设计提供预见性分析。
5 结束语 本文基于MATLAB编写了汽车动力性和燃油经济性的计算机仿真程序, 该程序具有较高的准确性和实用性,通过对汽车动力性和燃油经济性分 析,为发动机和变速器的设计、传动系传动比的合理选择提供了理论计算 依据。
力和加速阻力;
为发动机转矩; 分别为变速器传动比、主减速器传动比; 为 传动系机械效率,本文计算时取 =0.95; 为车轮滚动半径; 为整车重
2.1 最高车速 无风条件下,汽车在水平良好路面上行驶,行驶阻力与驱动力相平衡 时达到的稳定车速,最高车速为:
为起步时间; 为起步过程结束时汽车最低车速, 为道路负荷 增加系数(轿车取该值为0)。
0 引言 汽车的动力性是指汽车在良好的路面上直线行驶时由汽车受到的纵向 外力决定的所能达到的平均行驶速度[1]。在进行车辆动力性和燃油经济性 计算时,需要以下原始数据: 1)整车原始数据:整备质量、迎风面积等[2]; 2)发动机的原始特性数据:如发动机不同转速下的输出转矩及燃油 消耗率等; 3)传动系各部件的原始特性数据:变速器及主减速器的传动比、传 动效率等; 4)行走机构及路面原始特性数据。 1 汽车发动机数学模型 发动机数学模型包括外特性数学模型和万有特性数学模型。利用 MATLAB中的曲线拟合Polyfit,Polyval,Polyconf等函数可以很好的对发 动机的特性曲线进行拟合[3],进而建立发动机性能参数之间的关系。本 文以发动机台架实验数据为依据,采用插值法描述发动机万有特性;采用 最小二乘法曲线拟合描述发动机外特性。 2 动力性计算 确定汽车的动力性就是确定汽车沿行驶方向的运动状况,为此,需要 掌握沿汽车行驶方向作用于汽车的各种外力,根据这些力的平衡关系建立 汽车行驶方程式,进而估算汽车的各项动力性能。 汽车的行驶方程式为:
汽车整体动力性MATLAB仿真计算ppt
02
汽车整体动力性概述
汽车整体动力性的概念与特点
汽车整体动力性是指汽车在良好路 面上行驶时所表现出来的快速、安 全、稳定和舒适的运动性能。它包 括加速性能、减速性能、操控性能 、行驶平顺性和燃油经济性等多个 方面。这些性能的优劣直接影响到 驾驶员和乘客的感受以及车辆的运 行效率。
VS
汽车整体动力性的特点可以概括为 以下几点:综合性、时变性、非线 性以及不确定性。这些特点使得汽 车整体动力性的研究变得复杂和困 难,需要通过仿真计算等方法来进 行分析和优化。
汽车整体动力性的研究现状与发展趋势
国内外学者对汽车整体动力性的研究已经开展了多年,取得了很多成果。目前,常用的研究方法包括 实车试验、仿真计算和理论分析等。其中,仿真计算因为具有高效、安全、低成本等优点而得到了广 泛应用。
在发展趋势方面,未来的研究将更加注重以下几个方面:智能化仿真、多学科协同、精细化建模以及 多目标优化。通过这些研究,可以进一步提高汽车的整体动力性能,降低能耗和排放,满足人们对安 全、舒适和环保等方面的需求。
参数设置
根据车型和实际工况,设置仿真计算的参 数,如高程差、非铺装路面阻力等。
仿真计算
进行仿真计算,得出SUV在给定工况下的 动力性能,如爬坡能力、脱困能力等。
结果分析
对仿真计算结果进行分析,为车辆优化设 计提供依据。
某型跑车整体动力性仿真计算
模型建立
建立跑车整车模型,重点考虑空气动力学效应和轻量化设计。
续的优化和改进提供可靠的依据。
03
MATLAB仿真计算方法
MATLAB仿真计算的概念与特点
概念
MATLAB仿真计算是一种基于数值模拟方 法的计算技术,通过构建数学模型并利用 计算机进行模拟实验,以实现对现实系统 或过程的逼真再现。
基于MatlabSimulink环境四轮驱动混合动力汽车建模与仿真
1 前言能源危机和环境污染是当前汽车工业面临的两大主要压力。
汽车是油耗大户,又是重要的污染源。
国内汽车产品水平与国外差距很大,使汽车工业面临的压力更大。
上个世纪以来世界各国和各大汽车公司以及国内各大科研机构和高等院校纷纷致力于开发清洁节能汽车,混合动力系统已经被证明是现阶段最切实可行的清洁汽车技术。
仿真一直是汽车开发中的一个重要环节,通过合理有效的仿真可以加快汽车开发进度,节约开发成本。
伴随着混合动力技术的发展,其建模和仿真技术也在飞速发展。
2 混合动力车的建模仿真技术混合动力电动汽车仿真的研究是伴随着19世纪60年代几种样车的发展而出现的。
随着计算机技术的飞速发展,计算机仿真已经是混合合动力汽车设计开发的有力辅助工具,仿真分析有利于深入理解混合动力系统的工作过程,分析控制策略中占主要影响的动力学因素;并可用来分析整车能量消耗和评估整车性能,验证和优化设计方案。
随着研究的深入,国内外已经开发出多款混合动力汽车计算机仿真软件,用以预测一个或者多个领域的性能,如燃油经济性、排放特性、加速性能、爬坡性能。
最著名最先进的混合动力汽车软件是美国国家可回收能源实验室开发的ADVISOR,它基Matlab/Simulink的可视化模块示意图编程环境,具有很大的灵活性,可以对任何类型的混合动力电动汽车或内燃机汽车进行建模。
其它还开发出许多混合动力汽车仿真软件。
这些软件的仿真都是首先计算满足驱动循环要求的功率,然后利用各部件的传动效率计算出总线输出功率。
同时具有绘制输出数据图表或存储仿真中每一时间步长数据的功能。
混合动力系统属于既有连续环节又有时间离散环节的“采样控制系统”,模拟和分析其复杂行为的核心是建立其动态和非线性的仿真模型。
由于混合动力系统本身的复杂性,必须按目标和研究对象的不同建立仿真模型,以兼顾结果的准确性和仿真效率。
目前对混合动力电动汽车的仿真有后向仿真和前向仿真两种基本方法。
后向仿真模型以目标车速(如标准行驶循环试验工况)为输入,计算驱动系统中需要的扭矩、转速和功率。
基于matlab的车辆工程仿真实例
基于matlab的车辆工程仿真实例基于MATLAB的车辆工程仿真实例MATLAB是一种强大的数学计算软件,广泛应用于各种领域,包括车辆工程。
在车辆工程中,MATLAB可以用于模拟和优化车辆的性能,例如加速、制动、悬挂、转向等。
本文将介绍一个基于MATLAB的车辆工程仿真实例,以展示MATLAB在车辆工程中的应用。
本实例是一个简单的车辆加速仿真,目的是评估车辆的加速性能。
仿真模型包括车辆、发动机、变速器和轮胎等组成部分。
车辆模型采用简化的二自由度模型,发动机模型采用简单的动力学方程,变速器模型采用离散化的传动比,轮胎模型采用简单的摩擦力模型。
仿真过程中,输入加速踏板位置信号,输出车辆速度和加速度信号。
下面是仿真的主要步骤:1. 定义车辆模型参数,包括质量、惯性、轮距、轴距、重心高度等。
2. 定义发动机模型参数,包括最大功率、最大扭矩、转速范围等。
3. 定义变速器模型参数,包括传动比、换挡时间等。
4. 定义轮胎模型参数,包括摩擦系数、轮胎半径等。
5. 编写仿真程序,包括车辆动力学方程、变速器控制逻辑、轮胎摩擦力计算等。
6. 运行仿真程序,输入加速踏板位置信号,输出车辆速度和加速度信号。
7. 分析仿真结果,评估车辆的加速性能,例如0-100km/h加速时间、最大加速度等。
通过这个实例,我们可以看到MATLAB在车辆工程中的强大应用。
MATLAB提供了丰富的数学计算和仿真工具,可以帮助工程师快速建立车辆模型、优化车辆性能、评估车辆安全性等。
同时,MATLAB还可以与其他工具和平台集成,例如Simulink、CANape 等,进一步扩展其应用范围。
MATLAB是车辆工程中不可或缺的工具之一,它可以帮助工程师更好地理解和优化车辆性能,提高车辆的安全性、舒适性和环保性。
基于MATLAB的汽车动力性及燃油经济性的计算机仿真
SCIENCE &TECHNOLOGY VISION 科技视界0引言动力性和燃油经济性是汽车性能的重要指标,石油价格的飞速上涨,对汽车性能有了更高的要求。
动力性和燃油经济性的计算机仿真能准确、快速、有效的预测性能指标。
节省实车试验中不必要的巨额浪费及实车道路试验中驾驶员、道路环境、气候等因素对汽车使用性能测定的影响,在新车设计中迅速且经济地选择最佳方案。
1发动机数学模型发动机数学模型是整车动力性和燃油经济性仿真计算的重要依据,包括外特性数学模型和万有特性数学模型。
本文以发动机台架实验数据为依据,采用插值法描述发动机万有特性;采用最小二乘法曲线拟合描述发动机外特性。
1.1发动机的外特性在进行动力性估算时,一般仍沿用稳态工况时发动机台架试验所得到的使用外特性中的功率与转矩曲线。
稳定工况时发动机转矩曲线基本呈抛物线形状,并且为转速的一元函数,所以采用最小二乘法曲线拟合法描述。
T tq =a 0+a 1n+a 2n 2+…+a k nk式中n 为发动机转速(r/min);T tq 为稳定工况下发动机转矩(N ·m);系数a 0,a 1,a 2,…,a k 可由最小二乘法来确定;拟合阶数k 随特性曲线而异,一般在2、3、4、5中选取。
1.2发动机万有特性发动机的万有特性是个二元函数,燃油消耗率b 是发动机转速n 和功率p 的函数,国内外多采用试验数据的矩阵描述方法,需要时插值提取;国内也有采用曲面拟合法的,但要小心其系数矩阵可能出现病态。
本文采用插值法比较迅速,精度的高低取决于数据点的疏密程度,可真实的反映万有特性的局部特点。
二元插值公式:b=b (n ,p )=i+2m =i∑i+2k =jb (n j ,p i )[]j =m{其中n k ,p m ,b(n k ,p m )为给定的万有特性上的节点。
发动机转矩、油门开度与转速之间的关系复杂,通过试验测试只能得到部分点值。
为了得到任意工况下的燃油消耗率值,必须仿真出燃油消耗率值与发动机转速和转矩之间的函数关系,建立发动机燃油消耗率模型。
基于MATLAB的汽车动力性模拟仿真方法
基于MATLAB的汽车动力性模拟仿真方法
朱荣;陈文丰;杜宁宁
【期刊名称】《农业装备与车辆工程》
【年(卷),期】2014(52)12
【摘要】为了快速、准确地预测汽车动力性,介绍了一种基于MATLAB的车辆动
力性模拟仿真系统方法.通过建立整车的动力性数学模型,在MATLAB软件的图形
用户界面开发环境下,用M语言完成仿真过程.基于此种仿真方法能够消除实际道路试验中驾驶者、道路条件、气候等因素对汽车动力性能测定的影响,具有可比性好、重复性强等优点.
【总页数】4页(P66-69)
【作者】朱荣;陈文丰;杜宁宁
【作者单位】710064陕西省西安市长安大学汽车学院;710064陕西省西安市长
安大学汽车学院;710064陕西省西安市长安大学汽车学院
【正文语种】中文
【中图分类】U461
【相关文献】
1.基于MATLAB的某专用越野汽车动力性能分析 [J], 邓小雯;陈育荣;龚青山
2.基于MATLAB的汽车动力性仿真研究 [J], 裴泽健;周志强
3.基于MATLAB/GUI的汽车动力性和经济性仿真软件开发 [J], 厉晓飞;王孟志;孙鹏
4.基于MATLAB的汽车动力性参数的确定 [J], 李静;李晓锋
5.基于MATLAB的汽车动力性能的仿真与分析 [J], 常高爽;孙江
因版权原因,仅展示原文概要,查看原文内容请购买。