小学五年级解方程的方法详解

合集下载

五年级数学上册-解简易方程方法及难点归纳

五年级数学上册-解简易方程方法及难点归纳

五年级数学上册--解简易方程之方法及难点归纳
班级:姓名:学号:
重点概念:方程,方程的解,解方程,等式的基本性质(详见“知识点汇总”)
要点回顾:
“解方程”就是要运用“等式的基本性质”,对“方程”的左右两边同时进行运算,以求出“方程的解”的过程.(方程的解即是如同“X=6”的形式)
过程规范:
先写“解:”,“=”号对齐往下写,同时运算前左右两边要照抄,解的未知数写在左边.
一、一步方程
用逆运算抵消配角,减法和除法的主角永远是被减数、被除数。

二、两步方程
先算的部分先做主角,用逆运算抵消配角,简化成一步方程再求解
三、三步方程(能化简先化简)
难点:隐藏的因数或错看的未知数容易成为此类问题的难点和易错点.
四、总结
既然“解方程”是要得到形如“x=9”这样的“方程的解”,因此就应当将方程中多余的、不想要的部分去掉(通过同时同样的逆运算),而其关键就在于运用“等式的基本性质”——只要保证方程两边的同时同样的变化,哪怕绕了大弯,“方程”最终也一定能被解决!
附:方程的检验
方程的检验作为一种格式存在,只需要记忆即可,平时一般口算代入检验.。

小学五年级解方程计算步骤

小学五年级解方程计算步骤

小学五年级解方程计算步骤小学阶段解方程计算题一般有以下几个步骤,大家要认真把这几个步骤记住,看到相关题型就按照下面的方法去做就可以了。

一.移项所谓移项就是把一个数从等号的一边移到等号的另一边去。

注意,加减法移项和乘除法要把这个数原来前移项不一样,移项规则:当把一个数从等号的一边移到另一边去的时候,当把一个数从等号的一边移到另一边去的时候,要把这个数原来前面的运算符号改成和它相反的运算符号,比如“+”变成“-”,或是“×”变成“÷”请看例题:加减法移项:x + 4 = 9 x-8=19 x=9-4 x=19+8 x=5 x=27 乘除法移项:3x=27 x÷6=8  x=27÷3 x=8×6 x=9 x=48 1.常规题目,第一步,把所有跟未知数不能直接运算的数字,转移到与未知数相反的等号那一边。

比如:3x - 4 = 8 5x + 9 = 24 3x=8+4 5x=24 - 9 3x=12 5x=15 x=4 x=3 2.第二种情况请记住,当未知数前面出现“-”或是“÷”的时候,要把这两个符号变成“+”或是“×”,具体如何改变请看下面例题:20 – 3x=2 20=2 + 3x -----(注意:也就是前面提过的移项问题,改变符号在方程里面就是移项) 20-2=3x 18=3x x=6 36÷4x = 3 36=3×4x ----(注意:也就是前面提过的移项问题,改变符号在方程里面就是移项注意:也就是前面提过的移项问题,改变符号在方程里面就是移项) 36=12x x=3 3.未知数在小括号里面的情况,注意,这种情况要分两种,第一种是根据乘法分配律先把小括号去掉小括号去掉例如:3(3x+4) = 57  9x + 12=57  9x=57-12  9x=45  x=5 第二种情况就是,要看括号前面的那个数跟等号后面的那个数是否倍数关系,如果是倍数关系,可以互相除一下,当然,用这一种方法的前提就是等号另一边的数只有一个数字,如果有多个,则先要计算成一个。

五年级解方程的公式

五年级解方程的公式

在五年级的数学课程中,学生开始接触到简单的方程解题。

在解方程的过程中,学生需要运用各种基本的代数运算和推理能力。

下面将详细介绍五年级解方程的一些常见公式和解题方法。

一、一元一次方程1.方程的定义和解法一元一次方程是一个未知数和常数的线性等式。

它的一般形式为:ax + b = 0。

其中,a和b是常数,x是未知数。

要解一元一次方程,可以使用逆运算的原理。

逆运算意味着对方程两边同时进行相反的操作。

具体的步骤如下:(1)将方程化为标准形式,即将未知数x的系数移到等号右侧。

(2)将方程两边同时加上或减去一个数,以使得方程化为:x=常数。

(3)求得未知数x的值。

2.例题例题1:2x+3=9解法:将未知数系数移到等号右侧,得到2x=9-3,即2x=6两边同时除以2,得到x=6÷2,即x=3所以,方程的解为x=3例题2:3x-5=10解法:将未知数系数移到等号右侧,得到3x=10+5,即3x=15两边同时除以3,得到x=15÷3,即x=5所以,方程的解为x=5二、应用问题解方程可以应用于各种实际生活问题中。

以下是一些常见的应用问题及其解题方法。

1.长方形的面积问题问题1:长方形的长是宽的2倍,面积为15平方厘米。

求长方形的长和宽分别是多少?解法:设长方形的宽为x,则长方形的长为2x。

根据面积公式,得到方程:2x*x=15化简得到2x^2=15将方程化为标准形式,得到2x^2-15=0。

解这个一元二次方程可以使用因式分解、配方法、求根公式等方法。

这里我们使用因式分解法。

2x^2-15=0(2x-5)(x+3)=0由因式分解可得,2x-5=0或者x+3=0。

解得,x=5/2或者x=-3但由题目可知,长方形的宽不可能为负数,所以x=-3不符合题意。

所以,长方形的宽为x=5/2,长方形的长为2*(5/2)=5所以,长方形的长和宽分别为5和5/2问题2:长方形的长是宽的2倍,面积为20平方厘米。

求长方形的长和宽分别是多少?解法:同样设长方形的宽为x,则长方形的长为2x。

五年级上册解简易方程之方法及难点归纳

五年级上册解简易方程之方法及难点归纳

五年级上册解简易方程之方法及难点归纳在五年级上册数学学习中,解简易方程是一个重要的内容。

通过解方程,我们可以找到未知数的值,从而解决一些实际问题。

本文将介绍解简易方程的方法以及解题时可能遇到的难点,并进行详细归纳。

一、解方程的方法解简易方程,可以采用逆运算的方法。

逆运算是指将方程中的运算逆向操作,从而将未知数分离出来。

以下将介绍两种常见的解方程方法。

1. 逆向运算法逆向运算法是最常用且简单的解方程方法之一。

我们可以通过逆向运算,将方程中的运算符号反向操作,从而求得未知数的值。

例如,对于方程2x + 3 = 9,我们可以先对方程进行逆向操作,即将3减去,得到2x = 6。

然后再通过除以2的运算,即可求得x的值,x = 3。

2. 代入法代入法是另一种常用的解方程方法。

通过代入法,我们可以将已知的数值代入方程中,从而求得未知数的值。

例如,对于方程3x - 4 = 5x + 7,我们可以将已知的数值代入,如将x = 2代入方程,得到3(2) - 4 = 5(2) + 7,简化计算后可得到准确的解。

二、解方程的难点在解简易方程的过程中,可能会遇到一些难点,以下是一些常见的难点归纳。

1. 消去系数问题当方程中存在系数时,解方程的过程中需要进行消去系数的操作。

这时我们可以通过两边同时乘以系数的倒数来消去系数,从而得到更简化的方程。

2. 分数运算问题当方程中存在分数时,解方程的过程中需要进行分数运算。

这时需要注意分数的运算法则,如分数的相加减、相乘除等操作,以确保计算的准确性。

3. 多步运算问题某些方程可能需要进行多步运算才能求得未知数的值。

在进行多步运算时,需要注意每一步的运算过程和顺序,以避免出现计算错误。

三、解方程示例以下给出一些解简易方程的示例,以便更好地理解解方程的方法和难点。

1. 示例一2x + 3 = 9解法:首先将方程进行逆向运算,得到2x = 6然后通过除以2的操作,求得x的值,x = 32. 示例二3x - 4 = 5x + 7解法:将已知的数值代入方程,如将x = 2代入,得到3(2) - 4 = 5(2) + 7简化计算后可得到准确的解,x = -5通过以上示例,我们可以看到解方程的方法和难点。

小学五年级下册数学能力提升解方程的方法与策略

小学五年级下册数学能力提升解方程的方法与策略

小学五年级下册数学能力提升解方程的方法与策略数学作为一门基础学科,在小学五年级下册中变得更加复杂和抽象。

解方程是数学学习中的一个重要环节,它能够培养学生的逻辑思维能力和问题解决能力。

为了帮助五年级学生提升解方程的能力,本文将介绍一些有效的方法和策略。

一、掌握基本概念和符号在解方程之前,学生需要掌握一些基本的概念和符号。

例如,理解什么是未知数、系数、常数项等等。

学生还需要熟悉加减乘除运算,并理解它们在方程中的运用。

这些基础知识的掌握对于后续解方程的步骤至关重要。

二、借助图像进行解方程对于五年级的学生来说,图像解方程是一个很好的入门方法。

通过将方程所表示的问题用图像表达出来,可以帮助学生更好地理解问题,从而更容易解决方程。

例如,当遇到一道题目:“一个数与5的和是20,求这个数”,学生可以画出一个表示未知数的小圆圈,然后再画出一个表示常数的长方形。

将长方形分成五等分,每一份代表5,然后将这五份和圆圈相加,得到20。

通过观察,学生可以发现这个数等于15,从而解出方程。

三、应用反三角函数当遇到问题需要用到三角函数时,例如“已知一直角三角形的斜边长为7,其中一个锐角的正弦值为0.6,求这个角”,可以借助反三角函数来解答。

学生可以利用反正弦函数sin^(-1)来求出这个角的角度,然后代入三角函数得到具体的角度数值。

这种方法不仅能够帮助学生解决三角函数方程,也能够提高他们的空间想象力和逻辑推理能力。

四、利用逆运算解方程的过程中,逆运算是非常常见且重要的。

在应用逆运算时,需要将等式两边同时进行相同的逆运算,保持等号平衡。

例如,遇到一道题目:“某数减去4的结果等于12,求这个数”,学生可以借助逆运算,将等式转化为x-4=12,然后通过逆运算将4移动到等号右边,得到x=16。

逆运算是解方程的基础,学生在掌握逆运算的过程中能够培养他们的数学推理能力和逻辑思维能力。

五、进行合理的化简在解方程的过程中,化简是一个必不可少的步骤。

小学五年级解方程技巧

小学五年级解方程技巧

小学五年级解方程技巧小学五年级解方程技巧有以下几点:1,利用等式性质解方程。

2,简化法解方程。

3,加减乘除各部分关系解方程。

1,利用等式性质解方程:首先我们利用等式方程来解方程,首先我们要了解到的就是方程左右两边同时加上或者减去同一个数,方程的解是不会变化的,方程左右两边同时乘一个不为0的数,方程的解是不会变化的,方程左右两边同时除以一个不为0的数。

方程的解是不会变化的。

利用这样的一个等式的性质来解方程是比较方便的也不会出现错误,最终可以将方程化简为一个比较简单的式子,直接可以得出答案。

简化法解方程:对于一些比较复杂的方程来说,对于方程的式子做一个简化是相当关键的,所以在简化的时候需要对于方程内部的一些式子根据等式的性质来做出一个化简,最终将一个两步方程或者是三步方程化简成为一个一步方程。

3,加减乘除各部分关系解方程:加减乘除作为四则运算方式,在方程中是一定会存在的,可以根据加法,减法,乘法,除法四个方面的关系来解方程,在减法的过程中可以利用被减数=差+减数的关系,而且乘法是可以用一个因数=积除以另外一个因数来解答。

其中加法和除法都是一样的,只不过需要反过来计算。

解方程之后还有一步是最关键的,就是需要通过检验,用检验来验证一个得出来的解是不是成立的,主要是将这个得出来的解带入到所求的一个未知数里面,这样看一下等式是不是成立。

这样才能得出一个原方程的解,如果等式没办法成立的话,则是意味着解是错误的,应该重新计算。

解方程介绍使方程左右两边相等的未知数的值,叫做方程的解。

求方程全部的解或判断方程无解的过程叫做解方程。

必须含有未知数等式的等式才叫方程。

等式不一定是方程,方程一定是等式。

解方程五年级上册详细方法

解方程五年级上册详细方法

解方程五年级上册详细方法解方程是数学中最基本的操作之一,可用于解决实际问题。

五年级学生正处于解方程的入门阶段,他们将开始学习如何解方程。

特别地,在五年级上册,学生将学会使用一下原则找出方程的解。

第一,学生将学习什么是方程。

孩子们应该知道什么是方程,以及什么不是方程。

比方说,2x+3=7,就是一个方程,而2x+3<7,则不是方程。

第二,学生将学习如何写出数学方程。

学生要明白,一个方程里面只能有一个未知数。

同时,孩子们要知道,每个方程还要有一个等号,将两边的表达式对称分成左右两部分。

第三,学生将学习方程的解、系数和求解过程。

孩子们需要明白所有的方程都有一定的解,称为系数;同时,孩子们要明白如何根据方程的特点,按照一定的运算步骤,解出方程的解。

第四,学生将学习如何检查解的正确性。

解出一个方程的结果,不但要用正确的解法,还要用回原来的方程去验证答案。

比如,如果
你把x=2代入原来的方程3x+1=7,结果是7,那么就说明你解出的结果是正确的。

考虑到学生年龄和能力水平,这四道原则仍属于学习解方程的入门课程。

最后,学生要通过不断实践,养成解决数学问题的能力,在掌握各种技巧中不断进步。

总之,解方程是一项需要长期练习的艰苦技能,需要学生不断积累知识和经验,也需要耐心的一点一滴的积累。

最后,我们希望孩子们能尽快掌握此项技能,熟练掌握数学解方程的技巧,并利用这些技巧解决实际的数学问题。

五年级数学解方程方法

五年级数学解方程方法

解方程是数学中的一种重要方法,它可以帮助我们求出未知数的值。

在五年级的数学课程中,我们主要学习一元一次方程的解法。

下面是五年级数学解方程方法的详细说明。

一、方程的基本概念1.方程:是由等号连接的含有未知数的式子,如:2x+3=7、(2x+3是方程的左边,7是方程的右边,等号将左边和右边连接在一起。

)2.未知数:在方程中没有具体的数值,需要我们求解的数,通常用字母表示,如:x。

3.解:使方程成立的未知数的取值,如:当x=2时,2x+3=7成立,这时x=2就是方程的解。

二、一元一次方程的解法1.收集同类项:将方程中的同类项进行合并,如:2x+3+4x-5=9,可以合并为6x-2=92.移项:将方程中的含有未知数的项移动到一边,将常数项移动到另一边,如:将6x-2=9变形为6x=9+23.合并同类项:将移项后的式子再次合并同类项,如:将6x=9+2合并为6x=114.求解未知数:将方程中的未知数的系数化为1,如:将6x=11化为x=11÷65.检验解的正确性:将求得的未知数代入原方程进行验证,如:将x=11÷6代入2x+3+4x-5=9,计算左边等于右边,验证解的正确性。

三、实例演练例如,解方程2x+3=71.收集同类项:方程中的同类项为2x和3,将其合并为2x+32.移项:将3移到等号右边,得2x=7-33.合并同类项:合并后的式子为2x=44.求解未知数:将2x化为x,得x=4÷2,即x=25.验证解的正确性:将x=2代入原方程2x+3=7,计算左边等于右边,验证解的正确性。

四、解方程的注意事项1.方程两边同时加上或减去相同的数,方程仍然成立。

2.方程两边同时乘以或除以非零数,方程仍然成立。

3.通过移项可以改变方程的形式,但解的值不变。

4.解方程的最后一步是验证解的正确性,以确保解是正确的。

五、数学解方程的应用1.数学解方程在代数中有广泛的应用,例如在计算中可以根据已知条件求解未知数的值。

五年级数学解方程方法

五年级数学解方程方法

五年级数学解方程方法在五年级数学中,解方程是一个重要的内容。

解方程可以帮助我们找到未知数的值,从而解决各种实际问题。

下面我们来介绍几种常见的解方程方法。

一、逐次代入法:逐次代入法是最基本的解方程方法之一,适用于一元一次方程。

首先,我们将方程中的未知数代入一个合适的值,然后逐步计算,直到找到满足方程的解。

例如,我们要解方程2x + 3 = 9,我们可以首先代入x = 1,计算得到2(1) + 3 = 5,不满足方程。

然后,我们再代入x = 2,计算得到2(2) + 3 = 7,仍然不满足方程。

最后,我们代入x = 3,计算得到2(3) + 3 = 9,满足方程。

因此,方程的解为x = 3。

二、倒退法:倒退法也是解一元一次方程的一种方法。

与逐次代入法不同的是,倒退法是从方程右边开始,通过逆向运算,一步一步地倒退求解未知数的值。

例如,我们要解方程2x + 3 = 9,我们可以首先将方程右边的3减去,得到2x = 6。

然后,我们再将方程左边的系数2除以2,得到x = 3。

所以,方程的解为x = 3。

三、平移法:平移法适用于解带有系数为1的一元一次方程。

它的思路是通过平移等式的形式,将方程化简为x与常数的关系。

例如,我们要解方程x + 5 = 9,我们可以将方程左边的5移到等号的另一边,得到x = 9 - 5,化简为x = 4。

所以,方程的解为x = 4。

以上是五年级数学中解一元一次方程的几种方法,通过不同的解方程方法,我们可以在解决实际问题时更加灵活和准确地求得未知数的值。

希望同学们能够掌握这些方法,并灵活运用于解题中。

五年级数学上册《解方程》6大基本解题方法汇总

五年级数学上册《解方程》6大基本解题方法汇总

五年级数学上册
《解方程》6大基本类型
①未知数是加数,比如,x+3=6,6+x=8
方法:用等式的性质等1等式两边同时减去另一个加数。

x+3=6 6+x=8
解:x+3-3=6-3 解:6+x-6=8-6
x=3 x=2
②未知数是被减数,比如,x-3=6
方法:用等式的性质1,等式两边同时加上减数。

x-3=6
解:x-3+3=6+3
x=9
③未知数是因数,比如,5x=10
方法:用等式的性质2,等式两边同时除以另一个因数。

5x=10
解:5x÷5=10÷5
x=2
④未知数是被除数,比如,x÷3=6
方法:用等式的性质2,等式两边同时乘除数。

x÷3=6
解:x÷3×3=6×3
x=18
⑤未知数是减数,比如,20-x=9
方法:用的等式的性质1,等式两边同时加上x,把未知数转化到右边,再把左右交换位置,变成未知数是加数的类型进行求求解。

20-x=9
解:20-x+x=9+x
20=9+x
9+x=20
9+x-9=20-9
x=11
⑥未知数是除数,比如:21÷x=3
方法:用的等式的性质2,等式两边同时乘x,把未知数转化到右边,再把左右交换位置,变成未知数是因数的类型进行求解。

21÷x=3
解:21÷x×x=3×x
21=3x
3x=21
3x÷3=21÷3
x=7。

小学五年级解方程汇总

小学五年级解方程汇总

小学五年级解方程汇总1、形如x+a=b的方程根据等式性质1,方程两边同时减去a即可。

例如:x+4=9x+4-4=9-4x=5检验:方程左边=x+4=5+4=9=方程右边所以,x=5是该方程的解。

2、形如x-a=b的方程根据等式性质1,方程两边同时加上a即可。

例如:x-8=10x-8+8=10+8x=18检验:方程左边=x-8=18-8=10=方程右边所以,x=18是该方程的解。

3、形如ax=b的方程根据等式性质2,方程两边同时除以a即可。

例如:2x=62x÷2=6÷2x=3检验:方程左边=2x=2×3=6=方程右边所以,x=3是该方程的解。

4、形如x÷a=b的方程根据等式性质2,方程两边同时乘a即可。

例如:x÷2=5x÷2×2=5×2x=10检验:方程左边= x÷2=10÷2=5=方程右边所以,x=10是该方程的解。

5、形如a-x=b的方程根据等式性质1,方程两边同时加上x即可。

例如:7-x=57-x+x=5+x7=5+x5+x=7x=2检验:方程左边=7-x=7-2=5=方程右边所以,x=2是该方程的解。

6、形如a÷x=b的方程根据等式性质2,方程两边同时乘x即可。

例如:8÷x=28÷x×x=2×x8=2×x2×x=82×x÷2=8÷2x=4检验:方程左边=8÷x=8÷4=2=方程右边所以,x=2是该方程的解。

7、形如ax+c=b的方程先根据等式性质1,方程两边同时减去c;再根据等式性质2,方程两边同时除以a即可。

例如:2x+1=72x+1-1=7-12x=62x÷2=6÷2x=3检验:方程左边=2x+1=2×3+1=6+1=7=方程右边所以,x=3是该方程的解。

小学五年级数学《方程》教案范例三篇:轻松掌握解方程的方法

小学五年级数学《方程》教案范例三篇:轻松掌握解方程的方法

小学五年级数学《方程》教案范例一:简单解方程引言:方程是数学中非常重要的一个概念,它描述了一组变量之间的关系,并且通过求解方程可以得到这些变量的值。

在小学五年级的数学中,学生开始接触一些简单的方程,本文将介绍一些简单的解方程的方法。

一、理解方程学生需要首先理解什么是方程以及方程的含义。

可以通过示意图、实例等方式来加深学生的理解,并且让学生尝试用自己的话来描述方程。

二、移项法移项法是解方程的一种常用方法。

这里介绍一个简单的例子:3x+2=11,要求解出x的值。

首先将2移项,得到3x=11-2=9,然后将3移项,得到x=9/3=3。

通过这个例子,可以让学生掌握移项法的基本思想,并且让学生多练习一些简单的实例。

三、因式分解法因式分解法是解方程的另一种常用方法。

这里介绍一个简单的例子:2x+4=0,要求解出x的值。

首先将2x+4分解因式,得到2(x+2)=0,然后根据乘积为0的性质可知,要使整个方程成立,那么必定有x+2=0,因此x=-2。

通过这个例子,可以让学生掌握因式分解法的基本思想,并且让学生多练习一些简单的实例。

四、综合练习为了让学生更好地掌握解方程的方法,需要给学生提供一些综合练习。

教师可以编写一些包含多种解方程方法的题目,并且要求学生用不同的方法来解决这些问题。

五、小结通过本篇文章的介绍,相信学生已经初步掌握了解方程的方法,并且能够通过练习来进一步加深理解。

小学五年级数学《方程》教案范例二:解二元一次方程引言:在小学五年级的数学中,学生不仅需要掌握一元一次方程的解法,还需要掌握二元一次方程的解法。

本文将介绍一些简单的解二元一次方程的方法。

一、理解二元一次方程学生需要首先理解什么是二元一次方程以及二元一次方程的含义。

可以通过示意图、实例等方式来加深学生的理解,并且让学生尝试用自己的话来描述二元一次方程。

二、消元法消元法是解二元一次方程的一个常用方法。

这里介绍一个简单的例子:x+y=5,2x-y=1,要求解出x和y的值。

小学五年级数学解方程口诀及知识点汇总(附习题)

小学五年级数学解方程口诀及知识点汇总(附习题)

小学五年级数学解方程口诀及知识点汇总(附习题)
解方程口诀、知识点
解方程一直是小学数学的重难点,类型多且容易混淆,如何快速有效的让学生掌解方程,通过总结分析,我汇总了各类方程的解决的技巧,编纂了一首口诀帮助记忆:
一般方程很简单,
具体数字帮你办,
加减乘除要相反。

特殊方程别犯难,
减去除以未知数,
加上乘上变一般。

若遇稍微复杂点,
舍远取近便了然。

具体分析如下:
我们可以把课本中出现的方程分为三大类:一般方程,特殊方程,稍复杂的方程。

形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。

形如:a- x =b,a÷x =b这两种方程,我们可以称为特殊方程。

形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。

我们知道,对于一般方程,如果方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,如果方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个具体的数字。

总结一句话就是:一般方程很简单,具体数字帮你办,加减乘除要相反。

五年级上册数学解方程二

五年级上册数学解方程二

五年级上册数学解方程二,主要涉及的是一元一次方程的解法。

以下是解一元一次方程的步骤:
去分母:将方程两边的分数进行通分,得到一个整式方程。

去括号:根据去括号法则,将方程中的括号去掉,并将括号前的系数与括号内的每一项相乘。

移项:将方程中的未知数项移到等号的左边,常数项移到等号的右边。

合并同类项:将等号左边的未知数项和等号右边的常数项分别合并。

化系数为1:将方程两边的未知数系数化为1,得到未知数的解。

举个例子,我们解方程3x - 4 = 5 + x:
去分母和去括号:3x - 4 = 5 + x
移项:3x - x = 5 + 4
合并同类项:2x = 9
化系数为1:x = 9 / 2
得到的解是x = 4.5。

五年级上册数学5 简易方程解简易方程之方法及难点归纳

五年级上册数学5 简易方程解简易方程之方法及难点归纳

五年级上册解简易方程之方法及难点归纳重点概念:方程,方程的解,解方程,等式的基本性质(详见“知识点汇总”)要点回顾:“解方程”就是要运用“等式的基本性质”,对“方程”的左右两边同时进行运算,以求出“方程的解”的过程。

(方程的解即是如同“X=6”的形式)“解方程”就好像是要把复杂的绳结解开,因此一般要按照“绳结”形成的过程逆向操作(逆运算)。

过程规范:先写“解:”,“=”号对齐往下写,同时运算前左右两边要照抄,解的未知数写在左边。

注意事项:以下内容除了标明的外,全都是正确的方程习题示例,且没有跳步,请仔细观看其中每步的解题意图。

带“*”号的题目不会考查,但了解它们有助于掌握解复杂方程的一般方法,对简单的方程也就自然游刃有余了。

一、一步方程只有一步计算的方程,直接逆运算除未知数外的部分。

难点:当未知数出现在减数和除数时,要先逆运算含未知数的部分。

二、两步方程两步方程中,若是只有同级运算,也可以先计算,后当做一步方程求解。

注意要“带符号移动”,增添括号时还要注意符号的变化。

如果含有两级运算,就“逆着运算顺序”同时变化,如含有未知数的一边是“先乘后减”,则先逆运算减法(即两边同加),再逆运算乘法(即两边同时除以),依此类推。

难点:当未知数出现在减数和除数时,要先把含有未知数的部分看作一个整体(可以看成是一个新的未知数),就相当于简化成了一步方程。

例题中,“64÷x”、“7.2-x”和“6÷x”被看成新的未知数(y),因此原方程就可以看成是6+y=10,5y=6和10-y=8的形式。

三、三步方程(一)应用乘法分配律,共同因数是已知数的具有乘法分配律的形式,即两个有共同因数的乘积(或具有相同除数的除法式子)相加或相减,而共同因数(或除数)是已知数的,既可以逆用乘法分配律提取共同因数而将其简化为两步方程,也可以直接算出已知部分而化简。

通过比较可以看出,一般来说提取共同因数的方法确实计算量要少一些,不容易算错。

(完整版)小学五年级解方程计算步骤及对应的习题

(完整版)小学五年级解方程计算步骤及对应的习题

小学五年级解方程计算步骤小学阶段解方程计算题一般有以下几个步骤,大家要认真把这几个步骤记住,看到相关题型就按照下面的方法去做就可以了。

一.移项所谓移项就是把一个数从等号的一边移到等号的另一边去。

注意,加减法移项和乘除法移项不一样,移项规则:当把一个数从等号的一边移到另一边去的时候,要把这个数原来前面的运算符号改成和它相反的运算符号,比如“+”变成“-”,或是“×”变成“÷”请看例题:加减法移项:x + 4 = 9 x-8=19x=9-4 x=19+8x=5 x=27乘除法移项:3x=27 x÷6=8x=27÷3 x=8×6x=9 x=481.常规题目,第一步,把所有跟未知数不能直接运算的数字,转移到与未知数相反的等号那一边。

比如:3x - 4 = 8 5x + 9 = 243x=8+4 5x=24 - 93x=12 5x=15x=4 x=32.第二种情况请记住,当未知数前面出现“-”或是“÷”的时候,要把这两个符号变成“+”或是“×”,具体如何改变请看下面例题:20 – 3x=220=2 + 3x -----(注意:也就是前面提过的移项问题,改变符号在方程里面就是移项)20-2=3x18=3xx=636÷4x = 336=3×4x ----(注意:也就是前面提过的移项问题,改变符号在方程里面就是移项)36=12xx=33.未知数在小括号里面的情况,注意,这种情况要分两种,第一种是根据乘法分配律先把小括号去掉例如:3(3x+4) = 579x + 12=579x=57-129x=45x=5第二种情况就是,要看括号前面的那个数跟等号后面的那个数是否倍数关系,如果是倍数关系,可以互相除一下,当然,用这一种方法的前提就是等号另一边的数只有一个数字,如果有多个,则先要计算成一个。

例如3(3x+4) = 57 2(4x - 6) = 30+9-33x+4 = 57÷3 2(4x-6) = 363x+4 = 19 4x – 6=36÷23x = 19-4 4x-6=183x = 15 4x=18+6x = 5 4x=24x=64.第四种情况就是未知数在等号的两边都有,这种情况就是要把未知数都移项到一边,把其它的数字移项到另一边,具体规则,如果两个未知数前面的运算符号不一样,要把未知数前面是“-”的移到“+”这一边来,如果两个未知数前面的运算符号一样,则要把小一点的未知数移到大一点的未知数那一边去。

五年级上册数学列方程式讲解

五年级上册数学列方程式讲解

五年级上册数学列方程式讲解
好的,我会为你提供五年级上册数学列方程式的讲解。

首先,我们要理解什么是方程式。

方程式是一种数学表达方式,它表示两个数学表达式相等。

在方程式中,我们通常会看到一些未知数,这些未知数是我们需要找到的。

让我们来看一个简单的例子:
假设我们有一个方程式 3x + 5 = 14,这里 x 是一个未知数。

我们的任务是找到 x 的值,使得方程式成立。

要解这个方程式,我们可以使用以下步骤:
1. 先将方程式 3x + 5 = 14 中的常数移到等号的右边,得到 3x = 9。

2. 然后,我们将方程式两边都除以3,得到 x = 3。

这样我们就找到了 x 的值,使得方程式成立。

所以,列方程式的基本步骤是:
1. 确定未知数。

2. 根据题目描述,写出方程式。

3. 解方程式,找到未知数的值。

希望这个讲解能帮助你理解列方程式的方法。

如果你还有其他问题,欢迎继续提问。

五年级数学上册解方程的三种方法

五年级数学上册解方程的三种方法

五年级数学上册解方程的三种方法数学是学习中很重要的一门学科。

方程是数学中比较常见的一个概念,在每一门数学学科里都有所涉及。

解方程是中学生学习中比较重要的一个部分,特别是五年级的学生们,很多学生对解方程比较疑惑,很容易混淆,不知道从何处着手。

二、解决方程的三种方法1、抽象化法抽象化法是学习解决方程的一种方法,主要是根据方程中出现的特殊词语,运用抽象思维进行分析问题,做出正确的解决方案。

比如:已知方程“3x+1=5”,首先从中可以看出,x表示未知数,3x表示3倍未知数,1表示一个单位,5表示一个数值,这里可以把未知数看作一个基础的单位,然后用3倍这个基础单位加上一个基础单位(1)就能等于一个固定数值(5),这里就要求未知数是2,也就是把方程中未知数解释为一个数值,从而得到最终的结果。

2、数量化法数量化法是一种常用的解决方程的方法,它是通过分析和推导数量关系来解决问题。

对于“3x+1=5”的方程,先把3x一边的值变成5,再把1一边的值变成0,最后把等式右边的5改成0,就可以得到3x=4,最后把4除以3,就得到了最终解。

3、图形化法图形化法是一种使用数学图形加以诠释,从而求得方程解的方法。

比如:对“3x+1=5”方程,可以把x轴和y轴进行分解,把3x+1=5中的3x变成y=3x+1的一次函数,并在x轴和y轴分别取一个坐标点(0,1)(2,5),画出形状,然后求出两个坐标点之间的斜率,就可以再推导出未知数的值。

三、结论以上三种方法各有优缺点,并不是适合每一种方程的计算。

对于五年级的学生来说,要能比较好的解决方程,需要多熟悉方程,多练习,多总结,多注意观察特殊词语。

最重要的是,要能把解方程这一抽象概念变成实际的计算,运用数学知识来处理问题,帮助学生正确理解解决方程的方法。

小学五年级解方程的方法详解

小学五年级解方程的方法详解

小学五年级解方程的方法详解方程:含有未知数的等式叫做方程。

如4x-3=21,6x-2(2x-3)=20方程的解:使方程成立的未知数的值叫做方程的解。

如上式解得x=6 解方程:求方程的解的过程叫做解方程。

解方程的依据:方程就是一架天平,“=”两边是平衡的,一样重!1. 等式性质:(1)等式两边同时加上或减去同一个数,等式仍然成立;(2)等式两边同时乘以或除以同一个非零的数,等式仍然成立。

2. 加减乘除法的变形:(1) 加法:a + b = 和则 a = 和-b b = 和-a例:4+5=9 则有:4=9-5 5=9-4(2) 减法:被减数a –减数b = 差则:被减数a = 差+减数b 被减数a-差 = 减数b例:12-4=8 则有:12=8+4 12-8=4(3) 乘法:乘数a ×乘数b = 积则:乘数a = 积÷乘数b 乘数b= 积÷乘数a例:3×7=21 则有:3=21÷7 7=21÷3(4) 除法:被除数a ÷除数b = 商则:被除数a= 商×除数b 除数b=被除数a ÷商例:63÷7=9 则有:63=9×7 7=63÷9解方程的步骤:1、去括号:(1)运用乘法分配律;(2)括号前边是“-”,去掉括号要变号;括号前边是“+”,去掉括号不变号。

2、移项:法1——运用等式性质,两边同加或同减,同乘或同除;法2——符号过墙魔法,越过“=”时,加减号互变,乘除号互变。

注意两点:(1)总是移小的;(2)带未知数的放一边,常数值放另一边。

3、合并同类项:未知数的系数合并;常数加减计算。

4、系数化为1:利用同乘或同除,使未知数的系数化为1。

5、写出解:未知数放在“=”左边,数值(即解)放右边;如x=66、验算:将原方程中的未知数换成数,检查等号两边是否相等!注意:(1)做题开始要写“解:”(2)上下“=”要始终对齐【例1】解方程:x-5=13 【例2】解方程:3(x+5)-6=18 【例3】解方程:3(x+5)-6=5(2x-7)+2解方程练习(写出详细过程):(1)4+x=7 (2) x+6=9 (3) 4+x=7+5(4)4+x-2=7 (5)x-6=9 (6)17-x=9(7)x-6=9+3 (8) 9+3=17-x (9) 16+2x =24+x (10)4x=16 (11) 15=3x (12) 4x+2=18 (13)24-x =15+2x (14) 2+5x=18+3x (15)6x-2=3x+10(16)3(x+6) =2+5x (17)2(2x-1)=3x+10 (18)30-4(x-5)=2x-16 (19)2(x+4) -3=2+5x (20) 100-3(2x-1)=3-4x (21) 30+4(x-5)=2x-26 (22)20x-50=50 (23) 28+6 x =88 (24) 32-22 x =10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学五年级解方程的方法详解
方程:含有未知数的等式叫做方程。

如4x-3=21,6x-2(2x-3)=20
方程的解:使方程成立的未知数的值叫做方程的解。

如上式解得x=6
解方程:求方程的解的过程叫做解方程。

解方程的依据:方程就是一架天平,“=”两边是平衡的,一样重!
1. 等式性质:
(1)等式两边同时加上或减去同一个数,等式仍然成立;
(2)等式两边同时乘以或除以同一个非零的数,等式仍然成立。

2. 加减乘除法的变形:
(1) 加法:a + b = 和则 a = 和-b b = 和-a
例:4+5=9 则有:4=9-5 5=9-4
(2) 减法:被减数a –减数b = 差
则:被减数a = 差+减数b 被减数a-差= 减数b
例:12-4=8 则有:12=8+4 12-8=4
(3) 乘法:乘数a ×乘数b = 积
则:乘数a = 积÷乘数b 乘数b= 积÷乘数a
例:3×7=21 则有:3=21÷7 7=21÷3
(4) 除法:被除数a ÷除数b = 商则:
被除数a= 商×除数b 除数b=被除数a ÷商
例:63÷7=9 则有:63=9×7 7=63÷9
解方程的步骤:
1、去括号:(1)运用乘法分配律;
(2)括号前边是“-”,去掉括号要变号;括号前边是“+”,去掉括号不变号。

2、移项:法1——运用等式性质,两边同加或同减,同乘或同除;
法2——符号过墙魔法,越过“=”时,加减号互变,乘除号互变。

注意两点:(1)总是移小的;(2)带未知数的放一边,常数值放另一边。

3、合并同类项:未知数的系数合并;常数加减计算。

4、系数化为1:利用同乘或同除,使未知数的系数化为1。

5、写出解:未知数放在“=”左边,数值(即解)放右边;如x=6
6、验算:将原方程中的未知数换成数,检查等号两边是否相等!
注意:(1)做题开始要写“解:”(2)上下“=”要始终对齐
【例1】解方程:x-5=13 【例2】解方程:3(x+5)-6=18
【例3】解方程:3(x+5)-6=5(2x-7)+2
解方程练习(写出详细过程):
(1)4+x=7 (2)x+6=9
(3)4+x=7+5
(4)4+x-2=7 (5)x-6=9 (6)17-x=9
(7)x-6=9+3 (8)9+3=17-x
(9)16+2x =24+x
(10)4x=16 (11)15=3x
(12)4x+2=18
(13)24-x =15+2x (14)2+5x=18+3x (15)6x-2=3x+10
(16)3(x+6) =2+5x (17)2(2x-1)=3x+10 (18)30-4(x-5)=2x-16
(19)2(x+4) -3=2+5x (20)100-3(2x-1)=3-4x (21)30+ 4(x-5)=2x-26
(22)20x-50=50 (23)28+6 x =88 (2 4)32-22 x =10。

相关文档
最新文档