软岩工程地质特性与研究

合集下载

水布垭工程软岩开挖料工程特性研究与利用

水布垭工程软岩开挖料工程特性研究与利用
组 成 。一 般 颗 粒 含 量 为 5 一1% 的 称 之 为 含 少 量 生 物 的碎 屑 % 0
对坝基岩体要求相对较低 的? 凝 土面板 堆石 坝作为优选 坝 型 , 昆
避开 了坝型选择存在 的地质 风险。
大坝正常蓄水位 40m, 0 坝前提高水头 23I, 0 I T 相应库容4 . 58
2 1 沉积 岩相 特征 .
栖霞组岩石富含碳 酸盐 泥和有机 质 的贫生物 碎屑颗 粒 , 缺 乏反映高能沉积环境 的颗粒 岩 , 水体能量整体是 较低 的, 仅局 部
层段 可能 出现过较强 的水扰动 ; 从生物群落特征 看 , 周期性 出现
较 浅水的藻类和群体 四射珊瑚层 , 生物扰动构造 也较 普遍 , 霞 栖
组沉 积环境水深之上 限应在 潮下低 能带 ( 基面 ) 浪 附近 ; 沉积环
境水 深之下限应在浅海陆棚 中部 。
从结构 角度来 看 , 酸盐 岩主要 由非骨 屑颗粒 、 屑颗 粒 、 碳 骨 泥 晶、 胶结物 4类组分构成 。栖霞组 中颗粒类 型较 单一 , 主要为 生物碎 屑 , 采用顿 哈姆 ( uam,92 分类 , 以下 几种类型 。 O n a 16 ) 有 ()灰 泥岩。颗粒含量小 于 1 %, 1 0 主要 由灰 泥 ( 酸盐泥 ) 碳
般约含 1 %, 岩性仍较 坚硬 , 0 故 生物碎 屑含量较 高 , 多数超 过
文献标识码 : A 中图分类号 : 55 P 8
1 概 述
水布垭水 电站 位于湖北 清江 中游河段 , 大坝建 坝 岩体为二
叠系上统龙潭组 (2 、 P. 下统茅 口组 ( I)栖 霞组( l 地层 , ) P 、 P。 ) 坝址 岩层缓倾 向上游 , 建坝岩体软硬相 问, 分布有较多层问剪切带和 缓倾角断层 , 还有煤 系地 层也卧伏于河床下 , 这样的坝基岩体决 定 了不适宜兴建混凝土高坝 , 以兴建 当地材料坝为宜 , 而 即选择

软岩工程地质研究及应用

软岩工程地质研究及应用

案。在原设计断 面的基础上 , 将巷道底板向下超挖 401T 待产生变形卸压后清理底板并进行支护 ; 0 I , TI I 巷道开挖达到设计断面要求后 , 立即向围岩表面薄 喷一层( 厚约 3m m~41T 净水泥浆 , I ) TI I 以封闭围岩 表面 , 提高围岩表面的粘结力; 进行全断面锚一梁一
肉眼已看不出层理面 , 而是很紊乱的叶理化 片理结
构, 滑面裂隙非常发育, 属于强裂剪碎带, 遇水膨胀 , 膨胀力达 03 &该巷采用砌碹支护后鳞片状页 . MP , 7
岩挤入碹缝使拱顶下沉垮落 。 b侧帮挤压 收敛。表现为巷道两侧内鼓 收敛 , .
收 稿 日期 :0 5 1 1 20.1 6
中 图 分 类 号 : ' 3 3; 3 2 5 D 1 TD 5 . I 文献标 识 码 : A 文 章 编 号 :6 25 5 10 60 —050 17 —0 0 2 0 }10 4 —3
李雅庄矿井 田煤层平均埋深 50 5 m~60m, 5 地
质 构造 复杂 , 矿压 显现 明显 , 之 围 岩结 构 疏 松 , 加 节
2 的层 位掘进 。 巷道顶 板 为泥 岩和 砂 泥互层 , 0m 其
3 巷道破坏基本形式
a顶板下 沉 垮 落 。 由于受 到构 造 的 强 烈 破坏 , .
特征为灰黑色 , 镜下鉴定具微层理 , 含炭质及植物碎 片, 平均厚度 2 5 底板为粉砂岩 , . m; 灰黑色、 泥质胶 结, 平行斜层理 , 含植物化石碎 片; 围岩矿物成分为 高岭石 、 蒙脱石及正长石。
压形成尖顶 , 使巷道宽仅有 2701T 多数巷道呈 I , 0 TI I
尖顶或扁桃形 , 两帮闭合变形 , 尖顶平均偏离巷道中

贵阳红层软岩工程地质性质研究

贵阳红层软岩工程地质性质研究
置是否合适 , 以及混凝土指标等 。
如果是干岩床 , 则岩床地基钻孔灌注 桩 的沉 降率较 小。然而 参 考 文 献 : 部分钻孔灌注桩 的基 底可 能会有水 , 在 这种情 况下 , 则 可 以导致 [ 1 ] D a v i d F . E s s e n t i a l s o f s o i l Me c h a n i c s a n d F o u n d a t i o n s , R e s t o n 沉降 ; 如果下 面承 重 的软 岩石浸 水之后 发生崩 解 , 甚至会 发 生剧
假设 钻孔灌注桩的基底部是基桩 。
钻的孔深 , 以及各种 土层 的厚 度。浇筑混凝 土时最好 不要 冲击
砂土地基钻孔灌注桩在任意深度 的沉 降情 况 , 大概是 在相 同 到孔 壁上 。如果施工需用到护简 , 则 往往在浇筑 混凝 土的 同时 移 的土层条件下且负载相 同的基桩沉 降的一半 J 。按照常规 经验 , 走。孔 内没有水的情况下 , 是浇筑混 凝土 的最好时机 。如果发 生 发生这样 的沉降没有什么危险 , 因为钻孔 灌注桩往往 基于致 密砂 漏水 或者渗水 , 则 可 以采 用水 下混凝 土浇筑 的方 法 ; 如需 钢筋笼 土并 且沉降很小 。砂土 层 的计 算方法 与砂 土地基 的基桩 沉 降计 加固 , 则应该在浇筑混凝土之前 完成。钻孔灌注 桩的质量 控制 内 算 方法相 同。但需要 注意的是 , 灌注桩 的沉降率是负 载相 同的基 容包括桩 位和桩径指 标是 否精确 、 桩 基承 载力 、 加 固钢 筋笼 的放 桩沉 降率的一半。
缩干裂 、 抗风化能力弱等特 性 , 自然状态下 的红层 区 , 表层 一般覆 环境条件 , 该气候 使地 表岩石 物质 遭受强 烈风 化作用 , 产 生大 量 盖有厚 2 m一6 m 的全风化松散黏性土 , 一般为 棕红色 , 偶 尔可见 风化产物——碎屑物质 , 同时 , 岩石受强烈 氧化作 用 , 使 岩石变 为 灰 白或浅黄色 , 此类 土蒙脱石含量高 , 具有很 强的膨 胀性 。 红色色调 , 另外 , 潮湿多雨 的气候环境 , 大气 降水 产生 大量 的地 表 贵 阳红层主要分布在贵 阳向斜轴部 的贵阳市小 孟工业 园区 , 水流 , 为 陆源碎 屑物质 的搬 运提供 了动力条 件 , 在 此环境 下 , 沉 积 随着贵 阳市小孟工 业园 区的开工 建设 , 工程 建设数 量不 断增 多 , 作用形成 了一套发 育齐全 、 沉 积旋 回清晰 的河 、 湖陆 相红 色碎 屑 规模不断扩大 , 在 红层 软 岩 区工程设 计 施工 中积 累了丰 富 的经 沉 积 岩— — 红 层 。 验, 在对 大量工程 实例 的分析 基础 上 , 对 贵阳红 层软岩 的工 程地 工程设计施工提供实用参考价值 。 2 ) 岩相特征。贵阳红层主要 由中生代侏 罗系 自流井 群 、 下 沙 段: 一段 为杂色粘 土岩 、 页岩与浅灰 、 灰 白色薄 一中厚层 细粒石 英 砂岩互层 , 下部夹碳质 页岩 或煤 线 , 地 表偶 见鲕状赤 铁矿透 镜体 , 质特征 、 物质成分 、 物理力学参数进行系统地研 究 总结 , 为 红层 区 溪庙组构成 , 厚度 8 5 0 m~1 4 6 0 m, 其岩相特征为 自流井群 , 分 五

岩土工程中的软岩地质特性及处理技术

岩土工程中的软岩地质特性及处理技术

岩土工程中的软岩地质特性及处理技术岩土工程是一门研究岩石和土壤在工程施工和结构设计中的力学性质和工程行为的学科。

在岩土工程中,软岩地质是一个重要的研究领域。

本文将介绍软岩地质的特性以及在岩土工程中的处理技术。

一、软岩地质的特性软岩是岩石的一种,其强度较低,易于破碎和变形。

软岩地质的特性主要包括以下几个方面:1. 抗压强度较低:软岩的抗压强度一般较低,容易受到外界应力的影响导致破坏。

这对于工程结构的承载能力和稳定性提出了较高的要求。

2. 易于变形:软岩在外界应力的作用下容易发生各种形式的变形,如压缩变形、剪切变形等。

这种变形性质使得软岩地层在工程中易出现沉陷、变形等问题。

3. 含水量较高:软岩地质中一般存在大量的水分,导致岩土体的稳定性和抗冲刷能力较弱。

同时,软岩地层中的水分还会影响工程结构的抗渗性能。

4. 地质构造复杂:软岩地质往往伴随着复杂的地质构造,如断裂、节理等。

这些地质构造对于软岩地层的稳定性和工程施工带来了较大的挑战。

二、软岩地质的处理技术针对软岩地质的特性,岩土工程中采用了一系列的处理技术,以保证工程的顺利实施和结构的安全可靠。

以下是常用的软岩地质处理技术:1. 地质勘察与分析:在进行软岩地质处理之前,必须进行详尽的地质勘察和分析工作。

通过对软岩地层的地质构造、物理性质等进行综合研究,了解其力学性质和变形规律,为后续处理提供依据。

2. 计算机模拟与数值分析:采用计算机模拟和数值分析软件,可以对软岩地质进行模拟,预测和分析不同工况下的应力响应和变形规律,从而指导实际工程的设计和施工。

3. 改良处理技术:包括土体加固、注浆、灌浆、冻结法等。

通过改变软岩地层的物理性质和力学性质,提高其抗压强度和稳定性,并改善其渗透性和抗冲刷性能。

4. 支护结构设计:对于软岩地层的工程,需要设计合适的支护结构来保护和稳定岩土体。

常用的支护结构包括锚杆支护、喷射混凝土衬砌、预应力锚索等。

5. 施工与监测技术:软岩地质处理过程中,合理施工和监测工艺非常重要。

软岩变形特征

软岩变形特征

软岩变形特征软岩是指抗压强度小于100MPa的岩石,其变形特征与硬岩有很大的不同。

软岩在地质工程领域中广泛存在,如隧道、坑道、水电站等建设中都会遇到软岩问题。

因此,了解软岩的变形特征对于地质工程设计和施工具有重要意义。

一、软岩的分类根据国际上惯例,软岩可以分为三类:粉砂质岩石、泥质岩石和火山碎屑。

其中粉砂质岩石主要包括粉砂岩、灰质粉砂岩和白云岩等;泥质岩石主要包括泥页岩、泥灰质页岩和泥盆纪灰泥页岩等;火山碎屑主要包括玄武质凝灰角礫石、安山玄武流纹安山玄武流纹玄武凝灰角礫石等。

二、软岩的力学特性1. 抗压强度小:软岩抗压强度一般小于100MPa,远低于硬性差的花崗岩、砂岩等。

2. 塑性变形大:软岩的塑性变形较大,因此在荷载作用下容易发生塑性变形,甚至发生流动现象。

3. 水分敏感性强:软岩的水分敏感性较强,当软岩中含有过多的水分时,其抗压强度会明显降低。

4. 粉化现象严重:软岩在受到荷载作用下容易出现粉化现象,表现为表面剥落、破碎等。

三、软岩的变形特征1. 塑性变形软岩在受到荷载作用下会发生塑性变形。

这种变形不仅会导致体积减小和密度增大,还会使得软岩表面产生裂缝。

当荷载超过一定限度时,软岩会出现流动现象,如泥流、泥石流等。

2. 粉化破碎粉化是指软岩表面或内部出现微小裂缝后,在荷载作用下逐渐扩展并最终导致整块岩石破碎。

粉化是软岩最常见的一种变形方式,也是造成隧道、地铁等软岩工程事故的主要原因之一。

3. 坍塌滑移坍塌滑移是指软岩在受到一定荷载作用下,由于内部结构弱化、粘聚力减小等原因,导致整块岩石发生向下滑动或向外倾斜的现象。

坍塌滑移是软岩变形中比较严重的一种,会对地质工程造成严重的影响。

4. 裂缝变形裂缝变形是指软岩在荷载作用下产生裂缝,并随着荷载大小和时间的变化而逐渐扩展和变形。

裂缝变形会导致软岩体积减小、密度增大、抗压强度降低等问题,对地质工程造成不利影响。

四、软岩的加固方法为了保证地质工程的安全可靠,需要对软岩进行加固。

岩土工程中的软岩力学特性

岩土工程中的软岩力学特性

岩土工程中的软岩力学特性岩土工程是研究土壤和岩石力学性质及其在工程中的应用的学科,而软岩则是岩土体中一种特殊的岩石类型。

软岩具有一些与常规岩石不同的力学特性,这些特性对工程设计和施工具有重要影响。

本文将探讨软岩力学特性的相关内容。

一、软岩的定义和组成软岩是一种岩石类型,其力学性质介于岩石和土壤之间。

软岩通常由破碎的岩石颗粒、胶结物质和孔隙组成。

软岩的颗粒尺寸一般较小,胶结物质的含量较高,使得其整体的强度和稳定性相对较差。

软岩的含水量通常较高,孔隙度比较大,因此其渗透性较强,水在软岩体内的流动会对岩土体的力学性能产生显著影响。

此外,软岩的岩石颗粒之间的结合力较弱,容易发生变形和破坏。

二、软岩的力学特性1. 强度特性软岩的强度与其孔隙结构、胶结物质的类型和含量紧密相关。

一般来说,软岩的强度较低,既没有岩石的强度,也没有土壤的韧性。

软岩的强度通常由其内聚力和摩擦力决定。

由于软岩的颗粒较小、胶结物质较多,其内聚力往往较弱。

同时,软岩的孔隙度较大、胶结物质的性能较差,导致岩石颗粒间的摩擦力较小。

这些因素使得软岩在外力作用下容易发生破坏和变形。

2. 变形特性软岩的变形特性与其内部结构和高水分含量密切相关。

软岩具有较大的刚度和较小的延性。

在应力作用下,软岩会发生较大的弹性变形,而且变形过程中会伴随着较大的能量耗散。

软岩的变形行为常常表现为剪切破裂和塑性变形。

由于软岩的颗粒间结合较弱,所以在剪切应力下会出现剪切面,形成明显的破裂带。

同时,软岩还会发生塑性变形,即在一定应力作用下,整个软岩体会发生一定程度的非弹性变形。

3. 渗透特性由于软岩的孔隙度较大,孔隙间连通性好,软岩的渗透性较强。

水在软岩中的渗透速度相对较快,水流对软岩体的稳定性和强度产生较大影响。

渗透特性的研究在岩土工程中具有重要意义。

了解软岩的渗透性能可以帮助工程师评估软岩地基的稳定性和水文特征,为工程设计和施工提供科学依据。

三、软岩力学特性的工程应用1. 岩土工程中的支护设计软岩地质条件下的施工常常需要进行支护设计,以保证施工过程的顺利进行和工程的安全。

探究滇中引水工程红层软岩力学特性

探究滇中引水工程红层软岩力学特性

探究滇中引水工程红层软岩力学特性摘要:红层软岩是滇中地区引水工程中需要重点勘察的地质环境因素。

因此,本文将对滇中地区红层软岩进行试验检测并分析其力学特性对引水工程的影响。

关键词:滇中;引水工程;红层软岩;力学特性前言:滇中地区的红层软岩主要是在侏罗系以及白垩系时期形成,这些红层软岩大多数都是陆相碎屑不断聚集堆积形成,在第三系时期也有一部分形成,由于其主要颜色为红色,因此命名为红层软岩。

在滇中地区进行引水工程施工时需要穿越红层软岩所在的地区,因此需要对红层软岩的力学性质进行分析,保证引水工程的安全和质量。

一、红层软岩的地质特性(一)沉积及成岩结构根据对滇中红层软岩的成分进行分析发现,其中主要的构成成分为泥岩、砂岩、泥灰岩以及粉砂等。

在三叠世晚期,由于滇中地区出现了剧烈的地壳运动,进而造成了该地区地质沉积环境出现了极大的变动[1]。

(二)红层软岩的成分构成滇中新生沉积盆地地区红层软岩的特征最为明显。

其沉积岩内部受滇中古陆的沉降以及差异运动的影响严重。

此外,西南地区的气候长期变化以及地壳不断运动也影响着当地的红层软岩结构。

(三)红层软岩的结构特点滇中地区的红层软岩主要为碎屑岩石组成,在这一地区由于河流湖泊的不断沉积,岩石的大部分由泥岩或者砂岩构成。

因此,滇中地区的红层软岩最大的力学特点就是各个岩石层是由不同力学特性岩石层组成的,很少有单一性质的岩石,主要都是由泥岩与粉砂岩等岩石相互组合形成。

所以,在这种岩石性质的情况下,在滇中地区进行引水工程施工需要充分的考虑红层软岩的结构性质,参考岩石性质设计合理的引水路线。

当前滇中地区的引水工程需要经过厚层硬岩构成的层状结构地区、软硬相间的砂泥岩构成的互层结构地区、软质泥质岩构成的层状结构地区。

(四)红层软岩得的风化性质在对红层软岩进行实验分析后,获得其风化程度的特征分布,从实验的数据可以看出,实验岩体的风化情况差异较大,其中弱风化层的下限为0-90m,而强风化层的下限为0-55m,尤其是在大里程方向,岩体的强风化下限不断增长。

沙坡头水利枢纽坝基软岩工程地质特性研究

沙坡头水利枢纽坝基软岩工程地质特性研究
过竣:验收 . 】 .
坝基岩石经 x射线衍射 、差热分 析 、薄片鉴定 ,灰 质 泥岩 、杂色泥岩黏粒含量较高 ,多在 4 %~ 0 0 7 %。岩石 主要 由伊 利石 、高岭 石 、蒙脱石 、绿 泥石 组 成 ,含少 量石 膏 、 针铁矿 、黄铁矿和有机质 ,以黏土矿物为主 。
泥 、页岩 颗 粒 组 成 以 黏 粒 和 粉 粒 为 主 , 天然 容 重 2 .~ 05 2.k / 1 Nm .干 容 重 1.~8 Nm ,孔 隙 比 02 ~ .1 比 5 79 l. k / 7 . 05 , 6
1 地 质 条 件
黄 河 沙 坡 头 水 利 枢 纽 位 于 香 山 山脉 北 麓 . 东 北 侧 为 卫
表面积 17 13mz ,塑性 指数 1 _~ 1 ,反 映出泥 、页 0 ~ 2 / g 03 2 . 8
岩 以 黏 土 矿物 为 主 的特 点 。 21 可 溶 岩 及 有 机 质 含 量 ._ 2
宁盆地 ,北侧 紧邻腾 格里沙漠 。地 势西南高 而东北低 ,属 侵蚀 、剥蚀 中山一 低中山地 貌 坝址 区分布地 层有石炭 系 、第 三系和第 四系 。河 床 电
岩及杂色 泥岩为 主 ,岩体 透水性弱 、强度低 。5 泄 洪闸至 南十电站地基 以石炭 系砂 岩夹粉砂质泥岩 、炭质 页岩为主 ,
砂岩透水性和强度稍高 。
11 . %。除杂色泥岩外 ,泥页岩中 s l 3 o - 含量稍高 ,一般 离子
为 1 7 一21% , 占阴离 子 总 量 的 6 %~ 6 . % .6 。 0 0 7 %。 灰 质 泥 岩 和 炭 质 页 岩 中 有 机 质 含 量 一 般 为 31% ~ . 7 58 % 。个 别 含 量 较 高 。 杂 色 泥 岩 中有 机 质 含 量 偏 低 , 为 . 7

深部软岩工程的研究进展与挑战

深部软岩工程的研究进展与挑战

深部软岩工程的研究进展与挑战一、本文概述随着地下工程建设的不断深入,深部软岩工程逐渐成为土木工程领域的研究热点。

深部软岩工程涉及地质环境复杂、工程条件多变、施工难度大等诸多问题,其研究进展与挑战对于地下工程建设的安全与稳定具有重要意义。

本文旨在综述深部软岩工程的研究现状,分析当前面临的主要挑战,并提出相应的研究展望,以期为相关领域的研究人员和实践工程师提供参考和借鉴。

我们将对深部软岩工程的基本概念、特点及其在工程实践中的应用进行简要介绍;我们将重点回顾深部软岩工程在岩石力学特性、工程稳定性分析、支护结构设计等方面的研究进展;我们将探讨深部软岩工程目前面临的主要挑战,包括地质环境的不确定性、施工技术的局限性以及工程安全性的保障等,并提出相应的解决策略和发展方向。

通过本文的阐述,我们期望能够为深部软岩工程的研究与实践提供有益的参考和启示。

二、深部软岩工程的特性与挑战深部软岩工程是一种特殊的岩土工程,其特性与挑战主要体现在以下几个方面。

深部软岩的工程特性复杂多变。

由于软岩通常具有低强度、高变形性、低渗透性等特点,使得在深部开采过程中,岩石的物理力学性质发生显著变化,给工程设计和施工带来极大困难。

同时,深部软岩还常常伴随着高地应力、高地温、高水压等极端环境,这些环境因素会进一步加剧软岩的变形和破坏,使得工程稳定性问题更加突出。

深部软岩工程面临着诸多技术挑战。

在深部开采过程中,由于软岩的强度和稳定性较差,易发生大变形和破坏,因此需要采取一系列特殊的技术措施来确保工程的顺利进行。

例如,需要采用高强度支护结构来承受地应力和水压的作用,采用注浆加固技术来提高软岩的强度和稳定性,采用地下水控制技术来降低水压等。

这些技术措施的实施需要综合考虑多种因素,如地质条件、工程规模、施工环境等,因此具有一定的技术难度和复杂性。

深部软岩工程还面临着诸多环境挑战。

在深部开采过程中,由于岩石的破坏和地下水的排放,会对周边环境产生一定的影响,如地面沉降、水体污染等。

王甫洲水利枢纽坝基极软岩的工程地质特性与工程地质问题

王甫洲水利枢纽坝基极软岩的工程地质特性与工程地质问题

粗 砂岩 、 砂砾 岩 。在前期 勘察 阶段 , 由于采 用钻 探 未 能
取 到 “ 松状 砂 岩 ” “ 松 状 砂 砾 岩 ” 柱 状 岩 芯 , 疏 、疏 的 一
直未能 进行这 类 岩石 的室 内物理 力学试 验 , “ 对 疏松 状 砂 岩” “ 、疏松 状砂砾 岩 ” 的胶结 程 度和 物理 力学 性质 一
中 图分 类 号 :P 4 ; V 1 6 2 F 6 文 献 标 识 码 :A 文 章 编 号 :17 6 1—1 1 (O 8 s 0 2 0 2 l 2O ) 3— 0 0— 5
1 工 程 概 况
汉 江王 甫洲水 利枢 纽位 于湖北 省 老河 口 市下 游 约
3k m处 。枢 纽 建筑 物 包 括 泄水 闸 、 常 溢 洪 道 、 石 非 土
杂基约 占 1% , 中紫红色者泥质 含量较多胶结较好 , 0 其 灰 白色者 泥质含量少胶结较差 , 单层厚度 2~ l 5n。 细砂 岩 : 物成 分 主要 为 石 英 , 量 4 % ~5 % , 矿 含 0 0
长 石 次 之 , 量 1 % ~3 % , 结 物 为 方 解 石 和 泥 质 含 0 0 胶
此 , 疏松状砂 岩” “ 对“ 、 疏松 状砂 砾岩 ” 的胶 结程 度 才有
清楚 的认识 , 过现场试验基 本上掌 握 了岩体 的物 理力 通 学性质 。本工 程对该 极软 岩组 的勘 察研 究 成 果 和研 究
方法对于 同类 工程 柯较好 的借鉴意义 。
和少量泥质 ( 蒙脱石 、 伊利石 、 高岭石 ) 。有胶结 尚好 的, 也有半 胶结 的 , 还有微 胶结 的 。单 层厚 度 1~ l 3n。 含砾 中粗 砂岩 、 砂砾 岩 : 为灰 白色 、 灰绿 色 , 粒组 颗 成变化大 , 石含量 5 一 0 , 中砾径 以 l 2 砾 % 5% 其 0— 0

第二章 软岩和软土

第二章 软岩和软土

第二节工程建没中经常遇到的重大工程地质问题之一. 软弱夹层是水工,铁路,矿山等工程建没中经常遇到的重大工程地质问题之一. 如软弱夹层中有泥化错动面,则对坝基岩体抗滑稳定起控制作用,给大坝的安全造成 如软弱夹层中有泥化错动面,则对坝基岩体抗滑稳定起控制作用, 很大的威胁,影响到设计方案,施工工期和工程投资.我国对软弱夹层的研究始于20 很大的威胁,影响到设计方案,施工工期和工程投资.我国对软弱夹层的研究始于20 世纪50年代狮子滩水电站建设.该电站坝址岩性为上侏罗统重庆组红色地层,由砂岩, 世纪50年代狮子滩水电站建设.该电站坝址岩性为上侏罗统重庆组红色地层,由砂岩, 50年代狮子滩水电站建设 砂质页岩,砂质粘土岩及粘土岩组成.由于钻探中采用了冲洗钻进,未发现软弱层, 砂质页岩,砂质粘土岩及粘土岩组成.由于钻探中采用了冲洗钻进,未发现软弱层, 直至基础开挖时才发现砂岩裂隙及层面间有厚为0. ~ 的夹泥层; 直至基础开挖时才发现砂岩裂隙及层面间有厚为 .5~4cm的夹泥层;风化破碎带中 的夹泥层 夹层厚达10~30cm,抗剪强度甚低(塑性夹泥f=0.20,液性夹泥f=0.15),造成了 夹层厚达10~30cm,抗剪强度甚低(塑性夹泥f 20,液性夹泥f 15), 10 30cm 勘测,设计,施工上的被动,紧张局面.经查明软弱夹层的分布和力学特性后, 勘测,设计,施工上的被动,紧张局面.经查明软弱夹层的分布和力学特性后,采取 了挖除夹层回填混凝土,钢筋锚固及夹层分布地段做防渗帷幕等工程措施. 了挖除夹层回填混凝土,钢筋锚固及夹层分布地段做防渗帷幕等工程措施.据国内已 建和设计中的大坝资料统计,由于软弱夹层问题而改变设计,降低坝高, 建和设计中的大坝资料统计,由于软弱夹层问题而改变设计,降低坝高,增加工程量 或后期加固的约占总数的1 或后期加固的约占总数的1/3.国内外发生事故或失事的许多工程,大多数都和软弱 国内外发生事故或失事的许多工程, 夹层问题有关.这就需要系统地研究软弱夹层的成因类型,分布规律,基本特性和长 夹层问题有关.这就需要系统地研究软弱夹层的成因类型,分布规律, 期渗水条件下的演变趋势,并结合电算,模型试验等,以便采取有效的工程措施. 期渗水条件下的演变趋势,并结合电算,模型试验等,以便采取有效的工程措施.

关于地质软岩与工程软岩的探讨

关于地质软岩与工程软岩的探讨

关于地质软岩与工程软岩的探讨摘要:关于软岩,在工程界早已经被人知晓,但许多工程技术人员对于软岩的概念还是模糊的,到底什么样的的岩石才能叫做软岩,软到什么程度,软具有什么衡量判定标准,全世界关于软岩的定义有很多种分类,软弱岩石是岩体力学与和工程地质研究也是始终在进行,但对于软岩主要分为地质软岩与工程软岩2种。

本文结合荣华一矿井下巷道揭露岩石情况进行探讨。

关键词:软岩、岩体、地质一、前言地质软岩单轴抗压强度<25兆帕的岩石,是天然形成的复杂的地质介质;工程软岩定义在力作用下能产生显著塑性变形的工程岩体。

通过看两种定义分析,如巷道埋深较低较浅,地应力水平也较低,<25兆帕的岩石也不会产生软岩的特征;而>25兆帕的岩石,其巷道埋深较深,地应力水平也较高,也可以产生软岩的大变形、大地压和难支护的现象。

二、荣华一矿地质条件荣华一矿井田地层自上而下为新生界的第四系,第三系,中生界的下白垩系、侏罗系,基底为元古界前寒武系。

本区含煤地层有新生界的平阳镇组,虎林组,中生界的穆棱组、城子河组。

泥岩和粉砂岩天然放射性含量高,6D往下6-20米有一层发育稳定的低电阻率,高伽玛异常反映的厚凝灰粉砂岩,是该区城子河区组中部对比的主要标志。

据钻探取芯验证,城子河组地层的主要岩石的视电阻率及天然放射性含量好下表:井田位于鸡西煤田南部,井田内共有主要断层98条。

其中正断层94条,逆断层4条;落差小于30m的18条,30~50m的17条,50~100m的33条,100~200m的16条,大于200m的14条。

另外有49条只断掉个别层位的小断层。

井田内火成岩活动不甚剧烈,对煤层破碎不大,只有燕山晚期的闪长玢岩在井田西部242孔附近呈岩床侵入9煤层,在340孔及315孔附近呈岩脉状侵入6煤层群和2~5煤之间,侵入体使煤变为天然焦,对煤层有局部破坏作用。

喜马拉雅山晚期次辉绿岩侵入虎林组或麻山群中。

三、荣华一矿岩石状况根据工程地质钻孔对7煤及顶板和底板内岩层进行取样分析,岩性主要为砂岩,主要由各种粒级的砂岩、粉砂岩,泥岩、煤和炭质岩及泞灰岩夹层组成,岩石胶结较松散,抗压强度低。

第二章软岩和软土的工程地质研究

第二章软岩和软土的工程地质研究

泥化夹层:
粒度 厚度
全泥型 泥夹 角砾 角砾含量<10 %;的粘性土层 型
泥化夹层 厚度大于3mm,不含角砾的 粘土、粉粘、粉土
泥 粒度 化 夹 厚度 层
泥夹粉砂、 和粉砂夹泥 泥膜型
角砾含量<10 %的粉土层 大多数为不含角砾%的薄粘土层 角砾含量>10 %<50%的粘性土层
角砾夹究意义: 强度最低的关键部位,稳定性起控制作 用 2.不容易被准确勘察,需配合特殊设备:双层单动岩心管,结合 内电视、摄影等综合方法
第二章 软岩和软土的工程地质 研究
第1节、软弱岩石的含义
第2节、软弱夹层的工程地质研究
第3节、风化岩石的工程地质研究 第4节、构造岩石的工程地质研究
第5节、软土的工程地质研究
第1节 软弱岩石的涵义
( 岩 成性 因类 别 ) 物 理 力 学 特 征
低强度 变形模量小 水理性质差 流变效应明显 1 软质岩石(软岩)

次生型软弱夹层特点: 产状不稳定,厚度变化大,成层条件不好,分布于风化卸载 带地下水循环带内, 向下逐渐变薄—消失 先研究岩体风化特征、卸载带范围内地下水径流途径 构造型与原生型区别: 构造型:厚度偏大, 可通过几种岩性 倾角变化大,有时可相交 注意:工程实践中的软弱夹层-----综合作用的结果 软弱夹层分类: 葛洲坝工程4类: (1)软岩夹层 常见的有粘土岩、疏松泥灰岩、石膏层、 碳质条带、斑脱岩等。这类夹层易风化,浸 水崩解、膨胀或溶解,其变形和强度的时间 效应明显。
(三)泥化夹层水理性质 1.膨胀性
粘土成分
微结构面发育程度
1.伊利石+高岭石+ 微结构面不发育
膨胀量<1%
决定
膨胀量 膨胀力

软岩的地质特征及其研究现状与发展方向

软岩的地质特征及其研究现状与发展方向

第一章软岩的地质特征及其研究现状与发展方向软岩,虽然这个名词在工程界已为人们所熟知,但实际上人们对软岩的概念还是模糊的,怎样才算软?软岩的定义又是什么?在本章中将尽可能给出明确的说明。

软岩在世界上分布非常广泛,泥岩与页岩就占地球表面所有岩石的50%左右。

它与工程建设息息相关,特别是对大坝、遂洞、边坡的稳定性起控制作用,如丹江口、葛洲坝、铜街子、小浪底、恒仁、、上犹江、朱庄等大型水电工程坝基都存在软岩类的软弱夹层,其中葛洲坝工程是一个典型,坝基下埋藏产状近水平的软弱夹层有50多层,为探明软弱夹层成因类型和分布规律,采用小口径钻孔、大口径钻孔、平洞、探井、钻孔彩色电视与地球物理勘探以及现场地应力测量等方法;达开水库输水隧道软岩引起的坍方占坍方量的70%;四川中江县马鞍山遂洞粘土岩膨胀导致变形与垮坍;贵州各地区边坡滑动灾害中由软弱层引起约占60%。

在世界沙上有关水工建筑物事故的统计中,由于软岩的存在而引发的,可以举出如下一些较突出的实例:美国圣佛兰西斯坝,因粘土胶结的沙砾岩被水浸润软化而引起滑动;美国俄亥河26号坝,沿坝基下5cm厚的页岩层发生滑动;美国奥斯丁重力圬工坝,沿石灰岩内的页岩夹层而滑动;法国布泽坝,沿坝基龟裂的红色砂岩上的粘土层发生滑动;印度的堤格拉坝,在砂页岩互层中发生滑动等等。

因此,探讨软岩的成因类型与空间展布规律、物质成分与结构特征、软岩与围岩的接触形态、地质时代与强度的关系都是研究软岩特殊工程性质和优化工程治理的致关重要问题。

软岩的分类及特征是作为工程环境和对象的软岩发挥工程功能的物理基础,为此,本章将对其作较详细的叙述。

一、软岩分类软岩的分类是当前国际力学与基础工程界、岩石力学与工程地质界所关注的问题;许多研究者认为,软岩是介于松散介质和坚硬岩石之间的岩类。

它可以来源于松散介质沉积作用,成岩作用向坚硬岩石过渡的岩类,也可以来源于坚硬岩经构造作用或风化作用向松散介质转化的岩类。

例如蓄厚增提出图1-1的软岩形成基本模式。

第二章 软岩与软土的工程地质研究总结

第二章 软岩与软土的工程地质研究总结


(2)化学成分
活动性强的元素:K、Na等 活动性弱的元素:Fe、Al、Si等 同一种元素,所组成的化合物不同,岩石的
抗风化能力也不同

(3)结构特点
单一矿物组成的岩石抗风化能力较强:单矿
岩>复矿岩 矿物成分相同:等粒结构>不等粒结构 单粒结构岩石抗风化能力较强 Si质胶结>Ca质胶结>泥质胶结
1.3.2 影响岩体风化的因素
1、岩石的成分与结构

(1)矿物成分(影响抗风化能力): 氧化物>硅酸盐>碳酸盐和硫化物 最稳定的造岩矿物:石英 岩浆岩:酸性岩>中性岩>基性岩>超基性岩
(花岗岩)(闪长岩、安山岩)(玄武岩)(橄榄岩)

变质岩:浅变质岩>中等变质岩>深变质岩 抗风化能力:沉积岩>岩浆岩>变质岩
4、研究意义:
水工建筑物的坝基、道路工程的大桥桥基和高层建
筑物地基岩体内如有软弱岩石,往往会使建筑物地基 发生不均一沉陷或滑动变形,影响建筑物安全;峡谷 边坡或傍山道路边坡岩体内如有软弱岩石,易产生斜 坡失稳和崩滑。因此工程建设中应予以充分注意。
1.2 软弱夹层的工程地质研究 一、 软弱结构面的相关知识
2、矿物成分以粘土矿物为主; 泥化夹层是多种矿物组成的复杂的高分散体 系,主要的粘土矿物是蒙脱石、伊利石(水云母) 和高岭石。泥化夹层的矿物成分与母岩性质和后期 改造程度有关。 3、粒度成分以粘粒和粉粒为主; 4、水理性质: 具有明显的膨胀性。尤以蒙脱石为主时,膨胀 量可达8%; 渗流层状分带性以及集中渗流。


软弱结构面是岩体中具有一定厚度的软弱带(层), 与两盘岩体相比具有高压缩和低强度等特征,在产 状上多属缓倾角结构面。 主要包括原生软弱夹层、构造及挤压破碎带、泥化 夹层及其他夹泥层等。 特性: 1、由原岩的超固结胶结式结构变成了泥质散状结 构或泥质定向结构 2、粘粒含量很高 3、含水量接近或超过塑限 4、密度比原岩小 5、常具有一定的胀缩性 6、力学性质比原岩差 7、强度低 8、压缩性高 9、易产生渗透变形

岩土工程中的软土特性

岩土工程中的软土特性

岩土工程中的软土特性软土是指土体的压缩性和液化性较高,强度较低的土壤。

在岩土工程中,对软土的特性进行准确的了解和分析十分重要,因为软土的特性对于工程设计、施工和地基处理具有重要的影响。

本文将探讨岩土工程中软土的特性。

一、软土的形成和成分分析软土的形成和成分通常与沉积环境有关。

软土主要由粘性颗粒组成,如粘土、粉砂等。

其含水量较高,呈现流塑性和可塑性。

软土的结构松散,容易发生压缩和液化现象。

软土的含水量是其特性的重要参数。

其含水量高,颗粒间的间隙较大,导致土体结构松散,抗剪强度较低。

当软土受到外力作用时,颗粒之间的微观结构发生调整,土体发生塑性变形。

二、软土的力学特性软土的力学特性主要表现为强度低、压缩性大、液化风险高等。

这些特性是工程设计和施工中需要特别关注的问题。

1. 强度低:软土由于结构松散,颗粒间接触面积小,抗剪强度较低。

软土在施工和荷载作用下容易发生变形和破坏,因此在软土地区的建筑设计中,需要考虑增加地基的承载力和稳定性。

2. 压缩性大:软土因为含水量高、颗粒间接触较少,容易发生压缩变形。

在工程设计中,需要充分考虑软土的压缩性,采取适当的地基处理措施,以确保工程的稳定性和安全性。

3. 液化风险高:软土在地震或其他外力作用下,容易发生液化现象。

液化会导致土体的强度和稳定性急剧下降,对工程造成严重破坏。

因此,在软土地区的工程设计中,需要进行液化分析和相应的抗震设计。

三、软土的地基处理方法针对软土的特性,需要采取适当的地基处理方法来提高软土的承载力和稳定性。

1. 土体加固:通过土体加固的方法,可以提高软土的抗剪强度和稳定性。

常见的土体加固方法包括土壤改良、灌注桩、振动加固等。

2. 增加地基面积:增加地基面积可以分散荷载,减小软土的承载压力。

这可以通过扩大基础底面、采取悬挑结构等方式实现。

3. 排水处理:软土中的高含水量是导致其压缩性和液化风险的重要原因之一。

通过进行适当的排水处理,可以减小软土的含水量,提高软土的稳定性。

岩石力学-软岩工程

岩石力学-软岩工程
二、软岩的工程特性和力学属性
软岩具有可塑性、膨胀性、崩解性、流变性, 并具有扰动性和两个基本力学指标,即软化临界荷 载和软化临界深度。
①软化临界荷载
当所施加的荷载小于某一荷载水平时,岩石处 于稳定变形状态,蠕变曲线趋于某一变形值,随时 间延伸而不再变化;当所施加的荷载大于某一荷载 水平时,岩石出现明显的塑性变形加速现象,即产 生不稳定变形,这一荷载,称为软岩的软化临界荷 载。
三、软岩的工程分类 1、软岩的工程分类 ①膨胀性软岩(swelling soft rock,简称S型) ②高应力软岩(high stressed soft rock,简称
H型) ③节理化软岩(jointed soft rock,简称J型) ④复合型软岩 2、软岩工程分类和设计对策
四、软岩变形力学机制
第五节 软岩工程
一、软岩定义 1、地质软岩定义
地质软岩是指单轴抗压强度小于 25MPa的松散、破碎、软弱及风化膨胀性 一类岩体的总称。该类岩石多为泥岩、页 岩、粉砂岩和泥质岩石等强度较低的岩石, 是天然形成的复杂的地质介质。
2、工程软岩概念 工程软岩是指在工程力作用下能产生显著塑性
变形的工程岩体。
(6-91)
(6-92)
在残余构造应力或其他附加应力均存在矿区,其公式为
(6-93) (6-94)
式中,HCS 为软化临界深度,m; CS 为软化临界荷载,
MPa;CS 为残余应力(包括构造残余应力、膨胀应力、 动荷载附加应力等),MPa; i 为上覆岩层第i岩层容
重 厚,度,kmN ;m;3NH为为上上覆覆岩岩层层层总数厚。度,m;hi 为上覆岩层第i层
不同的软岩在其特定的地质力学环境中所表现 出的变形机制不同。软岩工程之所以具有大变形、 大地压、难支护的特点,是因为软岩工程围岩并非 具有单一的变形力学机制,而是同时具有多种变形 力学机制的“并发症”和“综合症”-复合型变形 力学机制。

岩土中的软硬岩分类及性质

岩土中的软硬岩分类及性质

岩土中的软硬岩分类及性质岩土工程是土木工程的重要分支,主要研究土体和岩石在工程上的性质和行为。

在岩土中,常常遇到软岩和硬岩两种不同的岩石类型。

本文将探讨软岩和硬岩的定义、分类以及它们在岩土工程中的性质和特点。

一、软岩的定义与分类软岩是指由于地质历史发育和构造变形的影响,岩石在地层演化过程中所形成的一种相对较软、较易破碎的岩石。

一般来说,软岩的抗压强度较低,长期承受外界力作用容易出现失稳、滑动和变形等问题。

根据软岩的成因、特征以及力学性质,可以将软岩分为以下几类:1. 克隆岩:受褶皱变形影响,呈山羊背状的块状岩体,密度较高,稳定性较好;2. 褶皱岩:呈波浪状的沉积层,由于受到褶皱构造的影响而变形;3. 杂岩:不同的岩层在运动过程中混合在一起形成的岩石,由于成分的不均匀性,其物理性质和力学特性也会有所差异;4. 孔洞岩:岩石中存在较多的孔洞或裂缝,其抗压强度较低,容易发生破坏。

二、硬岩的定义与分类与软岩相对,硬岩是指由于地质历史演化和构造变形的影响,形成了结晶体结构较完整、抗压强度较高的岩石。

硬岩通常具有较高的力学强度,承受外界力作用的能力较强。

根据硬岩的成因、特征以及力学性质,可以将硬岩分为以下几类:1. 结晶质岩石:由于长时间的高温和高压作用,岩石中的矿物晶体结构较完整,整体强度较高;2. 自然块状岩石:自然剥落或裂缝形成的岩石块体,具有较高的抗压强度和稳定性;3. 粘土质硬岩:在地质历史演化过程中,由于水的侵蚀和侵蚀物质的输运,粘土质硬岩形成;4. 高含铁质硬岩:含有大量铁元素的硬岩,机械性质较硬,强度较高。

三、软岩与硬岩的性质及特点1. 软岩的性质与特点软岩的抗压强度一般较低,容易发生变形和破坏,强度参数较难准确确定;软岩具有较高的水分敏感性,受水分变化的影响较大;软岩的强度与压力、温度等外界因素有关,易受到环境因素的影响;软岩的孔隙度较高,导致其渗透性较强,承载力及稳定性较差。

2. 硬岩的性质与特点硬岩的抗压强度较高,具有较好的稳定性和承载力;硬岩的机械性质相对稳定,容易确定岩石的强度参数;硬岩具有较低的水分敏感性,对水分变化的影响较小;硬岩具有较低的渗透性,岩层稳定性较好,适合作为工程基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随着地下工程建设规模不断扩大,在城乡建设、水电、交通、矿山、港口以及国防军事等领域都涉及软岩问题,而国家西部大开发的战略实施,大量的交通、能源与水利工程在西部的兴建,地下工程软弱围岩的稳定性和支护方法更已成为地下工程中迫切需要解决的问题。

在我国天生桥、二滩、小浪底、乌江构皮滩、瀑布沟等大型水电工程中,均存在软弱岩体的流变性及围岩的稳定性问题;许多煤矿开采时间较长,由于资源开采深度的增加,使一些生产矿井软岩巷道大变形、大地压、难支护的工程问题更加突出;在软岩地区修建的桥隧工程中,围岩的稳定性同样是工程设计和施工中的重点和难点,且常常由于围岩地质条件多变,围岩、支护结构失稳事故时有发生,给人民生命财产造成巨大损失。

1 软岩的概念及其物理力学特征1.1 软岩的概念关于软岩的定义,总括起来,大体上可分为描述性定义、指标化定义和工程定义3类。

1984年12月在昆明召开的煤矿矿山压力名词讨论会,将软岩界定为“强度低、孔隙度大、胶结程度差、受构造面切割及风化影响显著或含有大量膨胀性粘土矿物的松、散、软、弱岩层”,并从地质岩体分类的角度指出该类岩石的常见种类多为泥岩、页岩、粉砂岩和泥质矿岩,是天然形成的复杂的地质介质。

这是一种典型的描述性定义方式。

而到了1990年至1993年间,国际岩石力学学会逐步将软岩明确定义为单轴抗压强度( c)在0.5~25MPa之间的一类岩石。

虽然此种包含具体指标的定义方式考虑了岩石的物理力学性质,但这种分类仍然属于从地质角度定义软岩的范畴,未考虑施工条件和使用环境的差异,将该定义用于工程实践中会出现一些矛盾。

如地下硐室所处深度足够的浅,地应力水平足够的低,则单轴抗压强度小于25MPa的岩石也不会产生软岩的特征,工程实践中,采用比较经济的一般支护技术即可奏效;相反,单轴抗压强度大于25MPa的岩石,当其工程部位所处的深度足够的深、地应力水平足够的高,也可以产生软岩的大变形、大地压和难支护的现象。

因此,地质软岩的定义用于工程实践时往往产生歧义。

近些年,工程软岩的概念被提了出来,它是指在工程力作用下能产生显著塑性变形的工程岩体。

如果说目前流行的软岩定义强调了软岩的软、弱、松、散等低强度的特点,那么工程软岩的定义不仅重视软岩的强度特性,而且强调软岩所承受的工程力荷载的大小,强调从软岩的强度和工程力荷载的对立统一关系中分析、把握软岩的相对性实质。

工程软岩要满足的条件是:][ ][U U ≥≥且σσ (1-1)式中,σ为工程荷载,MPa ;[σ]为工程岩体强度,MPa ;U 为岩体变形,mm ;[U ]为允许变形,mm 。

此定义揭示了软岩的相对性实质,即取决于工程力与岩体强度的相互关系。

其中,工程力包括重力、构造应力、渗透力、工程扰动力以及温度应力等等。

而定义中的“显著塑性变形”则是指以塑性变形为主体,变形量超过了工程设计的允许变形值并影响了工程的正常使用。

对同种岩体,在较低工程力的作用下,表现为硬岩的小变形特性,而在较高工程力作用下则可能表现为软岩的大变形特性。

换句话说,当工程荷载相对于工程岩体(如泥页岩等)的强度足够小时,地质软岩不产生软岩显著塑性变形力学特征,不作为工程软岩,只有在工程力作用下发生了显著变形的地质软岩,才作为工程软岩。

1.2 软岩中遭遇的工程问题实例近些年,在软岩中兴建地下工程,面临的工程地质问题多样,其影响也较为突出。

在软岩地层中兴建地下工程,都会遇到塌方、大变形等问题,甚至在施工和运营期间造成人员伤亡、设备损失、工期延误、投资增加等恶劣影响。

以下给出几个具体的实例:1) 施工过程中塌方频繁。

引大入秦盘道岭隧洞,特软岩隧洞长度12830m ,岩性为第三系半胶结状态砂岩,岩石单轴饱和抗压强度仅为0.2~0.8MPa 。

,其中最大一次为冒顶塌方。

东深供水工程的雁田隧洞,施工过程中发生3次冒顶塌方。

珠海湾仔供水隧洞施工过程中发生过8次塌方、3次冒顶塌方。

2) 岩体结构松散,多含易膨胀粘土矿物。

位于甘肃省金昌市的金川矿区是我国大型镍矿基地,矿区地质条件复杂。

矿区的许多隧道位于层状碎裂与碎裂岩体中,是典型的破碎型软岩隧道,在基建和开采过程中曾发生严重变形和破坏。

矿区岩体整体强度低,仅为岩石强度的10%以下,隧道开挖后,围岩迅速卸载,产生回弹和扩容,掘进工作面附近最初几天变形速率大,一般在4~6 mm/d ;岩块间裂隙中有粘土矿物,遇水膨胀产生膨胀地压并崩解,使岩体松散、离层和冒落。

隧道开挖后自稳时间短,若支护不及时,岩体极易松散,发生片帮、冒顶。

崔家沟隧道是梅七线上的一座越岭隧道,全长3 885 m ,洞身通过地层为三叠系泥质页岩、粉砂质页岩和砂页岩互层,岩体膨胀性显著。

谢桥煤矿东风井,其井底车场及其附近的东一、东二隧道围岩属于极软岩,岩体强度底,胶结性能极差,裂隙很发育。

由于岩体中膨胀性粘土矿物含量高达30%~60%,岩体亲水性强,浸水后很易膨胀、崩解或泥化。

隧道掘出后不到半年,围岩变形量就达到100cm 以上,支护遭到严重破坏,致使隧道多处完全瘫痪,隧道持续高速流变,对水、应力扰动等极为敏感。

隧道掘出一年后,顶板下沉、巷帮位移速度仍达2~3 mm/d,底鼓速度仍达5 mm/d。

隧道每隔3~6个月就需彻底翻修,每米隧道的年维修费高达2~3万元。

3)隧洞开挖后,围岩易发生塑性变形或挤入性变形。

在软弱岩层或不良岩层中开挖隧洞或巷道,因围岩具有流变变形特性,隧洞开挖之后,由于地应力的作用围岩往往会向开挖空间缓慢的移动收敛,表现为,隧洞的侧墙逐步向内移动,底板缓慢隆起,拱顶挤压开裂等。

例如70年代初在海平面以下的梅山铁矿坑道,由于泥岩膨胀变形导致支护破坏,变形破坏非常严重,后采用联合支护并进行二次衬砌才保证了其稳定。

某运输巷道围岩属强风化粉质砂岩,埋深z =100 m,半径R0= 2 m,围岩容重dγ= 25 kN/m3。

按原设计方案,巷道开挖后立即进行支护,不足半年大部分衬砌发生明显的破坏与变形。

通过现场测试发现,围岩具有明显的流变特性。

4)地下水的软化作用显著。

宜万铁路全线第二长隧,七大控制工程之一的堡镇隧道,穿越岩性主要为粉砂质页岩,泥质页岩,多软弱泥质夹层带,强度极低,且多处于高地应力环境,地下水发育,长期饱水对其力学性质具有较强的软化作用。

5)软弱围岩存在大变形及岩爆等工程地质问题。

以南水北调西线一期工程为例,引水隧洞长达73km,最大埋深1100m,大变形和岩爆问题尤为突出。

2软岩地区兴建地下工程问题防治及其研究现状1990年兴建的天生桥二级水电站引水隧洞,较早的借助了TBM(隧道掘进机)进行掘进施工,其后,此类大型施工设备被越来越广泛地应用于工程建设中,如1999年兴建的秦岭隧道等。

通过在通过不良地质地段时选择适宜的辅助设备包括超前钻机、锚杆机、环梁安装器、砼喷射系统等,对工作人员进行安全技术等方面的培训,合理选择优化掘进参数,积极开展施工地质超前预报工作,必要时进行超前处理及进行临时支护,从而达到了安全施工的目的。

甘肃省湟水白川引水式水电站,设计引水流量171m3/s,最大水头27.05m,装机容量36MW,引水隧洞长4.128km,隧洞断面为马蹄形,隧洞围岩岩性为白垩系下统河口群碎屑岩类,该地层岩性软弱,强度低,模量低,特别是遇水后表面易软化、崩解,失水后易干缩开裂,开挖暴露时间长时岩体风化加剧,干湿效应显著。

地质编录与预报对施工进度和投资起到了重要作用,为采用的新奥法施工提供了重要的信息,同时,在施工过程中重视围岩中地下水或施工用水对围岩浸泡的破坏,及时支护封闭以防围岩蠕变、松弛和崩解破坏。

遵循“弱爆破、短进尺、强支护、快循环、早衬砌、勤排水、勤量测”的原则,最大限度杜绝了事故发生,保证了施工安全。

构皮滩水电站坝址区软岩分布范围较广。

软岩段围岩不稳定或极不稳定,自稳时间短,成洞条件差。

施工过程中,根据软岩特性与计算分析,提出了“短进尺、弱爆破、及时支护”的开挖与支护原则,在运用各种试验与监测手段查明软岩的特性、分布及变形规律的基础上,施工中采取分层开挖、多期支护等合理的开挖程序与工艺,以及支护措施,成功克服了软岩成洞条件差、安全风险大等工程难题。

西安黑河引水工程零号隧洞位于周至县境内的黑河出山口,即黑河引水工程自流渠的最上游。

隧洞全长897 m。

隧洞穿过地层中断层、褶皱和火成岩侵入等地质构造交相出现,地质产状约在10 m范围内就发生一次较大的变化,产状很不规律。

隧洞穿过地层主要为泥质云母片岩,层厚一般在10 mm以下。

该泥质云母片岩极易风干崩解,遇水膨胀泥化,稳定性极差。

隧洞上部山坡比较平缓,局部岩石裸露,天然降水是其主要补给水源。

隧洞上部还有一古滑坡,岩石破碎,含水量大,导水性强。

受其影响,隧洞穿过地层富含地下水,最大涌水量达40 m3/h,给施工带来困难。

经分析研究,采用了激光束导向测量,上导洞超前掘进,水泥卷封孔爆破,耙斗机上下装岩,双快硬锚喷支护,运输车侧洞调会,多工序平行作业,条带跳槽衬砌等措施,经过3个月抢险施工,于1996年2月底顺利贯通零号隧洞。

重庆轻轨新牌坊~郑家院子区间隧道(简称新郑区间)为重庆轻轨三号线一期工程,包括两条并行单洞单线隧道。

在浅埋、上软下硬地层、软弱夹层岩柱等不良条件下,采用小净距隧道掘进——净距仅5.8 m和爆破减振技术,保证围岩与支护结构的稳定性、光爆良好效果和地下管线安全。

乌鹅隧道位于厦蓉高速贵州境,所处的工程地质条件较为复杂,隧道进口段埋深浅、风化强,泥质板岩部分全风化成黄褐色黏土,软硬相间,结合差,岩层倾向洞口,加上地下水丰富,极易坍塌失稳,对隧道施工安全提出了严峻的挑战。

施工存在的主要工程地质问题是浅埋段软弱围岩、岩体破碎带、软弱夹层、地下水等。

在施工期应用物探方法开展施工期超前地质预报,有针对性的对围岩地质条件进行探测,较好地预测了该隧道的围岩地质情况,保障了工程施工安全和质量。

这些工程的成功经验说明,在软岩地区兴建工程,只要认真对待、对地质条件充分调查、重视实验和现场观测、重视超前预报并及时开展分析,是可以在软岩中开展大规模工程实践的。

以下分别从软岩的工程地质勘察、室内实验、现场观测、数值模拟试验等方面对国内外的研究情况做一概述。

2.1 不同种类软岩性质的研究如前所述,软岩地区的工程实践,普遍遭遇到了岩性软弱强度低、开挖断面变形大、岩体遇水软化崩解等问题,给工程稳定性带来了极大挑战。

为了使软岩地区的工程实践能够更为安全,实践中,首先要对软岩的工程地质特性进行辨识,特别是对软弱围岩的类别划分进行研究,并据此考虑施工中所应采用的开挖及支护型式以及其他控制围岩稳定的措施和方法。

从工程地质的角度,软岩具有跟一般硬岩明显不同的特性,传统的根据钻孔取芯所获得的信息进行岩体分类的方法虽然仍然可以使用,但,对软岩的分类,更为重要的是查明对其工程性质影响最为突出的因素,并据此按相应指标(如强度特性、泥质含量、结构面特点、塑性变形力学特点等)进行定性的分类。

相关文档
最新文档