尺规作图个优秀课件
合集下载
《尺规作图》课件PPT课件
在机械装配过程中,装配图纸是指导工人如何组装机械的重要依据。使用尺规作图可以绘制出详细的装配图纸, 包括各个零件的尺寸、位置和连接方式等。
05
习题与练习
基本题
题目1
作一个角等于已知角
题目2
经过一点作已知直线的垂线
题目3
过直线外一点作已知直线的平行线
进阶题
01
02
03
题目4
作一个三角形,使其三边 长度分别为3cm、4cm、 5cm
02
通过一个点作圆
使用尺规,选取一个点作为圆心,再选取一个长度作为半径,然后以该
点为起点,以该长度为半径,画出一个圆。
03
通过两个点作圆
使用尺规,选取两个点作为圆上的点,再选取这两个点之间的中点作为
圆心,然后以该中点到每个点的距离为半径,分别画出两个圆,这两个
圆就是所求的两个圆。
圆弧的作法
圆弧的基本性质
题目5
作一个角,使其是已知两 角的和
题目6
经过一点作已知直线的垂 直平分线
挑战题
题目7
作一个正方形,使其面积 等于已知三角形的面积
题目8
经过两个已知点作一条直 线的平行线
题目9
作一个五边形,使其内角 和等于已知四边形的内角 和
THANKS FOR WATCHING
感谢您的观看
在几何学中,尺规作图被广泛应用于解决各种几何问题,如求作线段的中点、等分 线段、求作圆的切线等。
在代数和解析几何中,尺规作图也有着广泛的应用,如求作函数的图像、求作方程 的根等。
在数学竞赛中,尺规作图是重要的解题工具之一,能够解决一些复杂的几何构造问 题。
02
尺规作图的基本技能
直线的作法
直线的基本性质
05
习题与练习
基本题
题目1
作一个角等于已知角
题目2
经过一点作已知直线的垂线
题目3
过直线外一点作已知直线的平行线
进阶题
01
02
03
题目4
作一个三角形,使其三边 长度分别为3cm、4cm、 5cm
02
通过一个点作圆
使用尺规,选取一个点作为圆心,再选取一个长度作为半径,然后以该
点为起点,以该长度为半径,画出一个圆。
03
通过两个点作圆
使用尺规,选取两个点作为圆上的点,再选取这两个点之间的中点作为
圆心,然后以该中点到每个点的距离为半径,分别画出两个圆,这两个
圆就是所求的两个圆。
圆弧的作法
圆弧的基本性质
题目5
作一个角,使其是已知两 角的和
题目6
经过一点作已知直线的垂 直平分线
挑战题
题目7
作一个正方形,使其面积 等于已知三角形的面积
题目8
经过两个已知点作一条直 线的平行线
题目9
作一个五边形,使其内角 和等于已知四边形的内角 和
THANKS FOR WATCHING
感谢您的观看
在几何学中,尺规作图被广泛应用于解决各种几何问题,如求作线段的中点、等分 线段、求作圆的切线等。
在代数和解析几何中,尺规作图也有着广泛的应用,如求作函数的图像、求作方程 的根等。
在数学竞赛中,尺规作图是重要的解题工具之一,能够解决一些复杂的几何构造问 题。
02
尺规作图的基本技能
直线的作法
直线的基本性质
《尺规作图》PPT优秀课件2
B’
C’
2、作一个角等于已知角 •已知: AOB(图1)
•求作: A`O`B`,使
A`O`B`= AOB
B
O
A
画一画
作法与示范
作法 示范
(1)作射线O′A′: (2)以点O为圆心,以任意长为半径画弧, 交OA于点C,交OB于点D;
(3)以点O′为圆心,以OC长为半径画弧, 交O′ A′于点C′;
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
励志学习的名言警句 1、在强者的眼中,没有最好,只有更好。 2、成功是努力的结晶,只有努力才会有成功。 3、只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。 4、拥有梦想只是一种智力,实现梦想才是一种能力。 5、生命之灯因热情而点燃,生命之舟因拼搏而前行。 6、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 7、没有天生的信心,只有不断培养的信心。 8、成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。 9、自己打败自己的远远多于比别人打败的。 10、当一个小小的心念变成行为时,便能成了习惯,从而形成性格,而性格就决定你一生的成败。 11、忍耐力较诸脑力,尤胜一筹。 12、高峰只对攀登它而不是仰望它的人来说才有真正意义。 13、你可以这样理解impossible(不可能)——I'm possible(我是可能的)。 14、自己打败自己是最可悲的失败,自己战胜自己是最可贵的胜利。 15、你可以选择这样的三心二意:信心恒心决心;创意乐意。 16、成功与不成功之间有时距离很短——只要后者再向前几步。 17、呈概率分布,关键是你能不能坚持到成功开始呈现的那一刻。 18、书是易事,思索是难事,但两者缺一,便全无用处 19、动是成功的阶梯,行动越多,登得越高。 20、天比昨天好,就是希望。 21、力的人影响别人,没能力的人,受人影响。 22、做的事情总找得出时间和机会; 23、要自卑,你不比别人笨。不要自满,别人不比你笨。 24、面对机遇,不犹豫;面对抉择,不彷徨;面对决战,不惧怕! 25、个人先从自己的内心开始奋斗,他就是个有价值的人。 26、超越自己,向自己挑战,向弱项挑战,向懒惰挑战,向陋习挑战。 27、不必每分钟都学习,但求学习中每分钟都有收获。 28、取时间就是争取成功,提高效率就是提高分数。 29、紧张而有序,效率是关键。 30、永远不要以粗心为借口原谅自己。
尺规作图 —初中数学课件PPT
数学
广东中考
解:(1)如图,点A1的坐标为(﹣1,1). (2)如图.
数学
首页
末页
谢谢!
数学
首页
末页
4
数学
首页
末页
考点梳理
1.作一条线段等于已知线段
作法:①作射线AB;②在射线AB上截取AC=a,则 线段AC就是所求作的线段,如图所示.作一条线段
等于已知线段是作有关线段的基础,利用它可以作 出已知线段的和、差、倍等线段. 2.作一个角等于已知角
作法:①作射线O′A′;②以点O为圆心,以任意 长为半径画弧,交OA于点C,交OB于点D;③以O′ 为圆心,以OC的长为半径画弧,交O′A′于点C′ ;④以C′为圆心,以CD的长为半径画弧,交前弧 于点D′;⑤过点D′作射线O′B′,则 ∠数学A′O′B′就是所求作的角,如图所示首页. 末页
数学
首页
末页
广东中考
解:(1)如图所示: (2)DE∥AC
∵DE平分∠BDC,
∴∠BDE= ∠BDC,
∵∠ACD=∠A,∠ACD+∠A=∠BDC,
∴∠A= ∠BDC,
∴∠A=∠BDE,
∴DE∥AC.
数学
首页
末页
广东中考
14. (2013广州)已知四边形ABCD是平行四边 形(如图),把△ABD沿对角线BD翻折180°得到 △A′BD.利用尺规作出△A′BD.(要求保留作 图痕迹,不写作法).
数的学 面积.
首页
末页
课堂精讲
考点4平移作图、旋转作图和对称作图 解:(1)如图,△A1B1C1即为所求. (2)如图,△A2B1C2即为所求.
(3)扫过区域的面积为 .
90 32 9
360 4
广东中考
解:(1)如图,点A1的坐标为(﹣1,1). (2)如图.
数学
首页
末页
谢谢!
数学
首页
末页
4
数学
首页
末页
考点梳理
1.作一条线段等于已知线段
作法:①作射线AB;②在射线AB上截取AC=a,则 线段AC就是所求作的线段,如图所示.作一条线段
等于已知线段是作有关线段的基础,利用它可以作 出已知线段的和、差、倍等线段. 2.作一个角等于已知角
作法:①作射线O′A′;②以点O为圆心,以任意 长为半径画弧,交OA于点C,交OB于点D;③以O′ 为圆心,以OC的长为半径画弧,交O′A′于点C′ ;④以C′为圆心,以CD的长为半径画弧,交前弧 于点D′;⑤过点D′作射线O′B′,则 ∠数学A′O′B′就是所求作的角,如图所示首页. 末页
数学
首页
末页
广东中考
解:(1)如图所示: (2)DE∥AC
∵DE平分∠BDC,
∴∠BDE= ∠BDC,
∵∠ACD=∠A,∠ACD+∠A=∠BDC,
∴∠A= ∠BDC,
∴∠A=∠BDE,
∴DE∥AC.
数学
首页
末页
广东中考
14. (2013广州)已知四边形ABCD是平行四边 形(如图),把△ABD沿对角线BD翻折180°得到 △A′BD.利用尺规作出△A′BD.(要求保留作 图痕迹,不写作法).
数的学 面积.
首页
末页
课堂精讲
考点4平移作图、旋转作图和对称作图 解:(1)如图,△A1B1C1即为所求. (2)如图,△A2B1C2即为所求.
(3)扫过区域的面积为 .
90 32 9
360 4
《尺规作图》课件
作线段AB = c; 以A为圆心b为半径作弧, 以B为圆心a为半径作弧与 前弧相交于C; 连接AC,BC. 则△ABC就是所求作的三角形.
5(2)、已知两边及夹角作三角形.
已知:如图,线段m,n,∠1.
求作:△ABC,使∠A=∠1,AB=m,AC=n.
作法:Βιβλιοθήκη 作∠A=∠1; 在AB上截取AB=m ,AC=n;
1
2
6、7、过一点作已知直线的垂线
探索研究: 三条公路两两相交,交点分别为A, B,C,现计划建一个加油站,要求 到三条公路的距离相等,问满足要求 的加油站地址有几种情况?
A B
C
反思与提高
对尺规作图再认识的过程中,你有何 新的收获?
实际作图
几何作图
基本作图
4.作已知角的平分线.
1、在OA和OB上,分别截取OD、OE,使 OD=OE.
2、分别以D、E为圆心,大于DE的长为半径作弧, 在∠AOB内,两弧交于点C.
3、作射线OC.
4、OC就是所求的射线.
B
E
C
O
D
5(1)、已知三边作三角形. 已知:如图,线段a,b,c. 求作:△ABC,使AB = c,AC = b,BC = a. 作法:
1、用直尺和圆规作一个角等于已知角 的示意图如下,则说明的 ∠ A O B ∠ A O B 依据是( )
A.SAS B.ASA C.AAS D.SSS
3.作已知线段的垂直平分线.
步骤: 1、以点M为圆心,以大于MN一半的长为半径画弧; 2、以点N为圆心,以同样的长为半径画弧, 两弧的交点分别记为P、Q,连结PQ,则PQ是线段 AB的垂直平分线.
2.作一个角等于已知角
1、作射线O'B'. 2、以点O为圆心,以任意长为半径作弧,交OA于
5(2)、已知两边及夹角作三角形.
已知:如图,线段m,n,∠1.
求作:△ABC,使∠A=∠1,AB=m,AC=n.
作法:Βιβλιοθήκη 作∠A=∠1; 在AB上截取AB=m ,AC=n;
1
2
6、7、过一点作已知直线的垂线
探索研究: 三条公路两两相交,交点分别为A, B,C,现计划建一个加油站,要求 到三条公路的距离相等,问满足要求 的加油站地址有几种情况?
A B
C
反思与提高
对尺规作图再认识的过程中,你有何 新的收获?
实际作图
几何作图
基本作图
4.作已知角的平分线.
1、在OA和OB上,分别截取OD、OE,使 OD=OE.
2、分别以D、E为圆心,大于DE的长为半径作弧, 在∠AOB内,两弧交于点C.
3、作射线OC.
4、OC就是所求的射线.
B
E
C
O
D
5(1)、已知三边作三角形. 已知:如图,线段a,b,c. 求作:△ABC,使AB = c,AC = b,BC = a. 作法:
1、用直尺和圆规作一个角等于已知角 的示意图如下,则说明的 ∠ A O B ∠ A O B 依据是( )
A.SAS B.ASA C.AAS D.SSS
3.作已知线段的垂直平分线.
步骤: 1、以点M为圆心,以大于MN一半的长为半径画弧; 2、以点N为圆心,以同样的长为半径画弧, 两弧的交点分别记为P、Q,连结PQ,则PQ是线段 AB的垂直平分线.
2.作一个角等于已知角
1、作射线O'B'. 2、以点O为圆心,以任意长为半径作弧,交OA于
《尺规作图》PPT课件(上课用)
下,改变模样。
•
6、人生中总会有一段艰难的路,需要自己独自走完,没人帮助,没人陪伴,不必畏惧,昂头走过去就是了,经历所有的挫折与磨难,你会发现,自己远比想象中要强大得多。多走弯路,才会找到捷径,经历也是人生,修炼一颗强大的内心,做更好的自己!
•
7、“一定要成功”这种内在的推动力是我们生命中最神奇最有趣的东西。一个人要做成大事,绝不能缺少这种力量,因为这种力量能够驱动人不停地提高自己的能力。一个人只有先在心里肯定自己,相信自己,才能成就自己!
•
1、有时候,我们活得累,并非生活过于刻薄,而是我们太容易被外界的氛围所感染,被他人的情绪所左右。
•
2、身材不好就去锻炼,没钱就努力去赚。别把窘境迁怒于别人,唯一可以抱怨的,只是不够努力的自己。
•
3、大概是没有了当初那种毫无顾虑的勇气,才变成现在所谓成熟稳重的样子。
•
4、世界上只有想不通的人,没有走不通的路。将帅的坚强意志,就像城市主要街道汇集点上的方尖碑一样,在军事艺术中占有十分突出的地位。
•
10、生活中,有人给予帮助,那是幸运,没人给予帮助,那是命运。我们要学会在幸运青睐自己的时候学会感恩,在命运磨练自己的时候学会坚韧。这既是对自己的尊重,也是对自己的负责。
•
11、人生的某些障碍,你是逃不掉的。与其费尽周折绕过去,不如勇敢地攀登,或许这会铸就你人生的高点。
•
12、有些压力总是得自己扛过去,说出来就成了充满负能量的抱怨。寻求安慰也无济于事,还徒增了别人的烦恼。
•
2、时间是最公平的,活一天就拥有24小时,差别只是珍惜。你若不相信努力和时光,时光一定第一个辜负你。有梦想就立刻行动,因为现在过的每一天,都是余生中最年轻的一天。
•
3、无论正在经历什么,都请不要轻言放弃,因为从来没有一种坚持会被辜负。谁的人生不是荆棘前行,生活从来不会一蹴而就,也不会永远安稳,只要努力,就能做独一无二平凡可贵的自己。
第28讲 尺规作图(可编辑)ppt课件
研真题·优易 栏目索引
;
试真题·练易
试真题·练易 栏目索引
命题点 尺规作图
1.(2021·佛山顺德)如图,一条公路的转弯处是一段圆弧( A︵B). ︵
(1)用直尺和圆规作出 AB所在圆的圆心O;(要求保管作图痕迹,不写作法)
︵
︵
(2)假设AB 的中点C到弦AB的间隔为20 m,AB=80 m,求AB 所在圆的半径.
;
研真题·优易 栏目索引
命题亮点 此题调查尺规作图——根本作图,线段的垂直平分线的性质,菱形的性质等知 识,解题的关键是灵敏运用所学知识处理问题,属于常考题型. 解题思绪 (1)分别以A、B为圆心,大于1 AB长为半径画弧,过两弧的交点作直线即可; (2)根据∠DBF=∠ABD-∠A2BF计算即可. 开放解答
︵
即 AB所在圆的半径是50 m.
;
2.(2021·江阴)尺规作图题:如图,△ABC中,∠C=90°. (1)用圆规和直尺作出∠CAB的平分线AD交BC于D; (2)在(1)的根底上作出点D到AB的垂线段DE; (3)按以上作法,DE=CD吗?
试真题·练易 栏目索引
;
解析 (1)如下图:
试真题·练易 栏目索引
;
夯基础·学易 栏目索引
(3)⑥作知线段的垂直平分线; (4)⑦作知角的平分线; (5)⑧过一点作知直线的垂线. 3.尺规作图题的步骤: (1)知:当作图是文字言语表达时,要学会根据文字言语用数学言语写出题 目中的条件; (2)求作:能根据标题写出要求作出的图形及此图形应满足的条件; (3)作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,普通 要保管作图痕迹,对于较复杂的作图,可先⑨画出草图,使它同所要作的图⑩ 大致一样,然后借助 草图寻觅 作法.;
1.1尺规作图PPT课件(华师大版)
a
求作:求作一线段,使它长
b
度等于2a+b-c
c
已知:线段a,b,c.
a
求作:△ABC,使得三边b来自为线段a、b、c。c
作法:
(1)画一条线段AB,使得AB=c。
(2)以点A为圆心,以线段b的长为半径画弧;再以点B为 圆心,以线段a的长为半径画弧;两弧交于点C。
(3)连结AC,BC。
∴ △ABC即为所求。
交前面的弧于点D’ ,
(5) 过点D’作射线O’B’。
示
范
DB
O
CA
B’ D’
O’ C’
A’
∴∠A’O’B’就是所求的角。
思考: 为什么说∠A’O’B’= ∠AOB?
证明: 在△ODC和△O’D’C’中:
DB
OD=O’D’(相同半径) OC=O’C’(相同半径) O DC=D’C’(相同半径) ∴ △ODC≌△O’D’C’(SSS)
请拿出你的课本、彩色笔和练习 本等用品,还有你的激情和坐姿。
学而不思则罔 思而不探则空
第13章 尺规作图
13.4.1 作一条线段等于已知线段 13.4.1 作一个角等于已知角
华东师范大学出版社
在几何里,把限定用没有刻度的直尺和圆规来画图,称 为尺规作图。
最基本、最常用的尺规作图,通常称基本作图。
已知:线段AB。 求作:线段A’B’,使A’B’=AB
作法与示范:
作法
(1) 作射线A’C’ ; (2) 以点A’为圆心,
以AB的长为半径 画弧, 交射线A’C’于点B’,
∴ A’B’就是所求作的线段。 A’
A
B
示范
B’
C’
已知线段AB和CD,如下图,求作一线段,使 它的长度等于AB+CD。
中考复习专题:尺规作图课件(共38张PPT)
优秀ppt公开课ppt免费课件下载免费 课件20 20年 中考复 习专题 :尺规 作图课 件(共38 张PPT)
下列结论中错误的是( C )
A.∠CEO=∠DEO
C.∠OCD=∠ECD
B.CM=MD D.S 四边形 OCED=12CD·OE
优秀ppt公开课ppt免费课件下载免费 课件20 20年 中考复 习专题 :尺规 作图课 件(成:过不在同一直线上的三点作圆;作三角形的外接圆、内 切圆;作圆的内接正方形和正六边形.
4.在尺规作图中,了解作图的道理,保留作图的痕迹,不要求写出作法.
考情分析:尺规作图是中考的高频考点,但是很少单独考查,具有鲜明的特点:
一是利用尺规作图作三角形、作已知角的平分线、作已知线段的垂直平分线以及过 一点作已知直线的垂线等,同时给出作图语言让学生补全图形,并结合图形条件进 行推理和计算;二是利用尺规作图结合图形变化进行图案设计,均为解答题.考查 的难度、操作与开放的力度或会增加,建议复习时要特别关注作图要求的训练落 实.
1.分别以点A,B为圆心,以 大大于于12AABB的的长长 为 半径,两弧交于M,N两点;2.作直线MN,则 直直线线MMNN 即为线段AB的垂直平分线
过一点作已
知直线的垂 线(已知点P 和直线l)
点P在直线l上
大于 1AB 的长 1.以点P为圆心,以适当长2 为半径 作弧,分别交 直线l于A,B两点;2.分别以点A,B为圆心,以 大于适当长A为B半的径长 为半径作弧,交于M,N两点; 3.过点M,N作直线,则直线MN即为所求垂线
人教版九年级数学
中考复习专题
尺规作图
课标解读:1.能用尺规完成以下基本作图:作一条线段等于已知线段;作一个
角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的 垂线.
人教版八年级数学上册13.1.2 尺规作图 (共13张PPT)
•
新课讲解
作法:(1)分别以点A和B为圆心,
以大于1 AB的长为半径作弧,
2
两弧交于C、D两点.
A
(2)作直线CD.
CD就是所Байду номын сангаас作的直线.
C B
D
特别说明:这个作法实际上就是线段垂直平分线的尺规作图, 我们也可以用这种方法确定线段的中点.
新课讲解
2 作轴对称图形的对称轴
【想一想】下图中的五角星有几条对称轴?如何作出这
距离相等的两点,即线段AB的垂直平分线上的两点,从 而作出线段AB的垂直平分线.
•
9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。21.8.1021.8.10T uesday, August 10, 2021
•
10、阅读一切好书如同和过去最杰出 的人谈 话。21:41:1121:41:1121:418/10/2021 9:41:11 PM
些对称轴呢?
l
作法:(1)找出五角星的一对
A
B
对称点A和B,连结AB.
(2)作出线段AB的垂直平分线l.
则l就是这个五角星的一条对称轴.
用同样的方法,可以找出五条对称轴, 所以五角星有五条对称轴.
新课讲解
方法总结:对于轴对称图形,只要找到任意一组对称点,作出 对称点所连线段的垂直平分线,就能得此图形的对称轴.
•
15、一年之计,莫如树谷;十年之计 ,莫如 树木; 终身之 计,莫 如树人 。2021年8月下 午9时41分21.8.1021:41August 10, 2021
•
16、提出一个问题往往比解决一个更 重要。 因为解 决问题 也许仅 是一个 数学上 或实验 上的技 能而已 ,而提 出新的 问题, 却需要 有创造 性的想 像力, 而且标 志着科 学的真 正进步 。2021年8月10日星期 二9时41分11秒21:41:1110 August 2021
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知:线段a,b(a﹥b) 求作:一条线段,使它等于2a-b.
a b
作法:1.画射线AE. 2.在射线AE上顺次截取AB=BC=a. 3.在线段AC上截取CD=b.
线段AD就是所要画的线段.
A
BD
C
E
基本作图2
作一个角等于已知角
作一个角等于已知角
已知:∠AOB.
求作: A'O'B',使 A'O'B' AO
D
A
OC就是所求作的射线
1、如图,点C在直线上,试过 点C画出直线的垂线.
2、如图,如果点C不在直线上,试和同学 讨论,应采取怎样的步骤,过点C画出直 线的垂线?
课内探究
经过已知直线上一点如何作已知直线的垂线?
已知:直线l 和其上一点C.
求作:l 的垂线,使它经过点C.
作法: 1.作平角ACB的平分线CM; 2.反向延长射线CM; 所以直线CM就是所求的垂线.
尺规作图个优秀课件
教学目标:
1.了解什么是尺规作图. 2.能够用尺规完成下列基本作图:作
一条线段等于已知线段;作一个角等 于已知角;作角的平分线;经过一点 画已知直线的垂线。
尺规作图:在几何里,把只用直
尺和圆规画图的方法称为尺规作图.
基本作图:最基本、最常用的尺规
作图,通常称为基本作图.
基本作图1 作一条线段等于已知线段.
2、如图,如果点C不在直线上,试和同学 讨论,应采取怎样的步骤,过点C画出直 线的垂线?
(1)任取一点M,使点M和点C在的两侧; (2)以C点为圆心,以CM长为半径画弧,交于A
、B两点;
(3)分别以A、B两点为圆心,以大于1 A B 长为半径画弧,两弧相交于D点; 2
(4)过C、D两点作直线CD. 所以,直线CD就是所求作的.
B
O
A
作法: 1.作射线'A O'.
2 . 以 点 O 为 圆 心 任, 意以 长 为
半径作弧,交, OA交于OCB于DD. B
3.以点O'为圆心,以OC长为
半径作弧,交'OA'于C'. O
4.以点C'为圆心,以CD长为
半径作弧,交前弧于'.D
C D’
A
B’
5 . 过'点 作D射'线 B'. O
O’
C’
A’
A'O'B'就 是 所 求 作 的 角 .
基OC=∠BOC
作法:1、在OA和OB上,
B
分别截取OD、OE,使
OD=OE
2以、大分于别以D、的1 DE长E为为圆半心径, 作弧,在∠A2 OB内,两 弧交于点C
3、作射线OC
E
C
O
a b
作法:1.画射线AE. 2.在射线AE上顺次截取AB=BC=a. 3.在线段AC上截取CD=b.
线段AD就是所要画的线段.
A
BD
C
E
基本作图2
作一个角等于已知角
作一个角等于已知角
已知:∠AOB.
求作: A'O'B',使 A'O'B' AO
D
A
OC就是所求作的射线
1、如图,点C在直线上,试过 点C画出直线的垂线.
2、如图,如果点C不在直线上,试和同学 讨论,应采取怎样的步骤,过点C画出直 线的垂线?
课内探究
经过已知直线上一点如何作已知直线的垂线?
已知:直线l 和其上一点C.
求作:l 的垂线,使它经过点C.
作法: 1.作平角ACB的平分线CM; 2.反向延长射线CM; 所以直线CM就是所求的垂线.
尺规作图个优秀课件
教学目标:
1.了解什么是尺规作图. 2.能够用尺规完成下列基本作图:作
一条线段等于已知线段;作一个角等 于已知角;作角的平分线;经过一点 画已知直线的垂线。
尺规作图:在几何里,把只用直
尺和圆规画图的方法称为尺规作图.
基本作图:最基本、最常用的尺规
作图,通常称为基本作图.
基本作图1 作一条线段等于已知线段.
2、如图,如果点C不在直线上,试和同学 讨论,应采取怎样的步骤,过点C画出直 线的垂线?
(1)任取一点M,使点M和点C在的两侧; (2)以C点为圆心,以CM长为半径画弧,交于A
、B两点;
(3)分别以A、B两点为圆心,以大于1 A B 长为半径画弧,两弧相交于D点; 2
(4)过C、D两点作直线CD. 所以,直线CD就是所求作的.
B
O
A
作法: 1.作射线'A O'.
2 . 以 点 O 为 圆 心 任, 意以 长 为
半径作弧,交, OA交于OCB于DD. B
3.以点O'为圆心,以OC长为
半径作弧,交'OA'于C'. O
4.以点C'为圆心,以CD长为
半径作弧,交前弧于'.D
C D’
A
B’
5 . 过'点 作D射'线 B'. O
O’
C’
A’
A'O'B'就 是 所 求 作 的 角 .
基OC=∠BOC
作法:1、在OA和OB上,
B
分别截取OD、OE,使
OD=OE
2以、大分于别以D、的1 DE长E为为圆半心径, 作弧,在∠A2 OB内,两 弧交于点C
3、作射线OC
E
C
O