等差数列 专项练习题及解析
高二数学等差数列试题答案及解析

高二数学等差数列试题答案及解析1.等差数列中有两项和满足,,则该数列前mk项之和是()A.B.C.D.【答案】A【解析】设等差数列的首项为,公差为,由等差数列的性质以及已知条件得,∵,∴,∴,∴.【考点】等差数列的性质.2.等差数列{an }中,已知a1=,a2+a5=4,an=33,则n的值为( ).A.50B.49C.48D.47【答案】A【解析】由于是等差数列,所以a2+a5=a1+a6=4,a1=,可得,,又an=,解这个方程可得n=50.故选A.【考点】等差数列的通项公式.3.已知数列为等差数列,公差,、、成等比,则的值为()A.B.C.D.【答案】C【解析】,,解之得,.【考点】等差数列的通项公式的应用.4.已知是首项的递增等差数列,为其前项和,且.(1)求数列的通项公式;(2)设数列满足,为数列的前n项和.若对任意的,不等式恒成立,求实数的取值范围.【答案】(1);(2)。
【解析】(1)把式中的、用和进行代换得与联立方程组解出,即可求出通项公式;(2)由(1)可得的通项公式,通过观察求的前项和可通过裂项求得,求得后代入不等式,得到一个关于和的二元一次不等式,要求的取值范围可通过将分离出来,然后用不等式的基本性质及函数的基本性质即可求出的取值范围。
试题解析:(1)由,得(2分)(4分)(2)由(1)得所以(6分)由已知得:恒成立,因,所以恒成立,(7分)令,则当为偶数时,当且仅当,即时,,所以;(8分)当为奇数时,可知随的增大而增大,所以,所以(9分)综上所诉,的取值范围是(10分)(其他解法请酌情给分)【考点】1、等差数列通项公式及前项和公式;2、列项求和法;3、基本不等式;4、函数的单调性。
5.已知等差数列的前项和为,,,(1)求数列的通项公式;(2)若,求数列的前100项和.【答案】(1);(2).【解析】(1)由及得,,求解方程组可求出和;利用等差数列的通项公式即可求出;(2)由,利用裂项求和即可求解.试题解析:(1)由及得,,解得,所以.(2),从而有:.故数列的前100项和为.【考点】数列的求和;数列的概念及简单表示法.6.已知猜想的表达式为()A.B.C.D.【答案】B【解析】∵,,∴.∴数列是以为首项,为公差的等差数列.∴,.【考点】本题主要考查抽象函数求解析式,进而转化为数列研究数列的通项,考查灵活应用知识分析解决问题的能力和运算能力,知识的迁移能力.7.等差数列的前项和为,且,则为()A.-6B.-4C.-2D.2【答案】A【解析】由题意,得,解得,所以,故选A.【考点】1、等数列的通项公式;2、等数列的前项和公式.8.已知是等差数列,,,设,则数列的通项公式【答案】【解析】数列的公差为,则由题意可得,,【考点】等差(比)数列的通项公式9.已知数列是等差数列,且.(1)求数列的通项公式; (2)令,求数列前n项和.【答案】(1);(2)【解析】(1)数列{an}是等差数列,且a1=2,设公差为d,代入a1+a2+a3=12,求出d,求出数列{an}的通项公式;(2)数列{an }的通项公式为an=n+2n,可以利用数列的分组求和法,分别求一个等差数列与一个等比数列的前n项和.试题解析:(1)由已知 5分(2)10分【考点】(1)等差数列;(2)数列求和.10.已知数列的前n项和(1)求数列的通项公式,并证明是等差数列;(2)若,求数列的前项和.【答案】(1)通项公式,证明过程详见试题解析;(2).【解析】(1)先根据,求出当时的表达式;再验证时是否满足;证明是等差数列,即证明是定值即可;(2)先求出的表达式,再用裂项相消法求数列前n项和.试题解析:(1)当时, 3分当时,适合上式,所以 4分因为当时,为定值,所以是等差数列 6分(2),所以所以 10分【考点】数列通项公式的求和、数列求和.11.两个正数a、b的等差中项是,一个等比中项是,且则双曲线的离心率e 等于___________;【答案】【解析】因为两个正数a、b的等差中项是,一个等比中项是,所以,又所以,即,因此双曲线的离心率e等于【考点】等差中项及等比中项的概念12.为等差数列的前项和,,则 .【答案】21【解析】根据等差数列的求和公式和等差数列性质:可得.【考点】等差数列的求和公式和性质.13.已知等差数列满足:.的前项和为。
等差数列题目100道

等差数列题目100道一、基础概念类题目1. 已知数列{a_n}满足a_{n + 1}-a_n = 3,a_1 = 2,求数列{a_n}的通项公式。
- 解析:因为a_{n + 1}-a_n = d = 3(d为公差),a_1 = 2。
根据等差数列通项公式a_n=a_1+(n - 1)d,可得a_n=2+(n - 1)×3=3n - 1。
2. 在等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_{10}。
- 解析:首先求公差d,d=frac{a_{5}-a_{3}}{5 - 3}=(11 - 7)/(2)=2。
由a_3=a_1+(3 - 1)d,即7=a_1 + 2×2,解得a_1 = 3。
那么a_{10}=a_1+(10 -1)d=3+9×2 = 21。
3. 若数列{a_n}为等差数列,且a_2=5,a_6 = 17,求其公差d。
- 解析:根据等差数列通项公式a_n=a_m+(n - m)d,则a_6=a_2+(6 - 2)d,即17 = 5+4d,解得d = 3。
4. 已知等差数列{a_n}的首项a_1=-1,公差d = 2,求该数列的前n项和S_n的公式。
- 解析:根据等差数列前n项和公式S_n=na_1+(n(n - 1))/(2)d,将a_1=-1,d = 2代入可得S_n=-n+(n(n - 1))/(2)×2=n^2 - 2n。
5. 在等差数列{a_n}中,a_1 = 1,a_{10}=19,求S_{10}。
- 解析:根据等差数列前n项和公式S_n=(n(a_1 + a_n))/(2),这里n = 10,a_1 = 1,a_{10}=19,则S_{10}=(10×(1 + 19))/(2)=100。
二、性质应用类题目6. 在等差数列{a_n}中,若a_3+a_8+a_{13}=12,求a_8的值。
- 解析:因为在等差数列中,若m,n,p,q∈ N^+,m + n=p+q,则a_m + a_n=a_p + a_q。
等差数列测试题(带答案)

等差数列测试题(带答案)1.已知等差数列{an}的首项a1=1,公差d=2,则a4等于()A.5B.6C.7D.9答案:C2.在数列{an}中,若a1=1,an+1=an+2(n≥1),则该数列的通项公式an=()A.2n+1B.2n-1C.2nD.2(n-1)答案:B3.△ABC三个内角A、B、C成等差数列,则B=__________.解析:∵A、B、C成等差数列,∴2B=A+C.又A+B+C=180°,∴3B=180°,∴B=60°.答案:60°4.在等差数列{an}中,(1)已知a5=-1,a8=2,求a1与d;(2)已知a1+a6=12,a4=7,求a9.解:(1)由题意,知a1+-=-1,a1+-=2.解得a1=-5,d=1.(2)由题意,知a1+a1+-=12,a1+-=7.解得a1=1,d=2.∴a9=a1+(9-1)d=1+8×2=17.一、选择题1.在等差数列{an}中,a1=21,a7=18,则公差d=()A.12B.13C.-12D.-13解析:选C.∵a7=a1+(7-1)d=21+6d=18,∴d=-12.2.在等差数列{an}中,a2=5,a6=17,则a14=()A.45B.41C.39D.37解析:选B.a6=a2+(6-2)d=5+4d=17,解得d=3.所以a14=a2+(14-2)d=5+12×3=41.3.已知数列{an}对任意的n∈N*,点Pn(n,an)都在直线y=2x+1上,则{an}为()A.公差为2的等差数列B.公差为1的等差数列C.公差为-2的等差数列D.非等差数列解析:选A.an=2n+1,∴an+1-an=2,应选A.4.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n 的等差中项是()A.2B.3C.6D.9解析:选B.由题意得m+2n=82m+n=10,∴m+n=6,∴m、n的等差中项为3.5.下面数列中,是等差数列的有()①4,5,6,7,8,…②3,0,-3,0,-6,…③0,0,0,0,…④110,210,310,410,…A.1个B.2个C.3个D.4个解析:选C.利用等差数列的定义验证可知①、③、④是等差数列.6.数列{an}是首项为2,公差为3的等差数列,数列{bn}是首项为-2,公差为4的等差数列.若an=bn,则n的值为()A.4B.5C.6D.7解析:选B.an=2+(n-1)×3=3n-1,bn=-2+(n-1)×4=4n-6,令an=bn得3n-1=4n-6,∴n=5.二、填空题7.已知等差数列{an},an=4n-3,则首项a1为__________,公差d 为__________.解析:由an=4n-3,知a1=4×1-3=1,d=a2-a1=(4×2-3)-1=4,所以等差数列{an}的首项a1=1,公差d=4.答案:148.在等差数列{an}中,a3=7,a5=a2+6,则a6=__________.解析:设等差数列的公差为d,首项为a1,则a3=a1+2d=7;a5-a2=3d=6.∴d=2,a1=3.∴a6=a1+5d=13.答案:139.已知数列{an}满足a2n+1=a2n+4,且a1=1,an>0,则an=________.解析:根据已知条件a2n+1=a2n+4,即a2n+1-a2n=4,∴数列{a2n}是公差为4的等差数列,∴a2n=a21+(n-1)•4=4n-3.∵an>0,∴an=4n-3.答案:4n-3三、解答题10.在等差数列{an}中,已知a5=10,a12=31,求它的通项公式.解:由an=a1+(n-1)d得10=a1+4d31=a1+11d,解得a1=-2d=3.∴等差数列的通项公式为an=3n-5.11.已知等差数列{an}中,a1<a2<a3<…<an且a3,a6为方程x2-10x+16=0的两个实根.(1)求此数列{an}的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a3=2,a6=8.又∵{an}为等差数列,设首项为a1,公差为d,∴a1+2d=2a1+5d=8,解得a1=-2d=2.∴an=-2+(n-1)×2=2n-4(n∈N*).∴数列{an}的通项公式为an=2n-4.(2)令268=2n-4(n∈N*),解得n=136.∴268是此数列的第136项.12.已知(1,1),(3,5)是等差数列{an}图象上的两点.(1)求这个数列的通项公式;(2)画出这个数列的图象;(3)判断这个数列的单调性.解:(1)由于(1,1),(3,5)是等差数列{an}图象上的两点,所以a1=1,a3=5,由于a3=a1+2d=1+2d=5,解得d=2,于是an=2n-1.(2)图象是直线y=2x-1上一些等间隔的点(如图).(3)因为一次函数y=2x-1是增函数,所以数列{an}是递增数列.。
(完整版)等差数列典型例题及分析

第四章 数列[例1]已知数列1,4,7,10,…,3n+7,其中后一项比前一项大3.(1)指出这个数列的通项公式;(2)指出1+4+…+(3n -5)是该数列的前几项之和.正解:(1)a n =3n -2;(2) 1+4+…+(3n -5)是该数列的前n -1项的和.[例2] 已知数列{}n a 的前n 项之和为① n n S n -=22 ② 12++=n n S n求数列{}n a 的通项公式。
正解: ①当1=n 时,111==S a 当2≥n 时,34)1()1(2222-=-+---=n n n n n a n 经检验 1=n 时 11=a 也适合,∴34-=n a n ②当1=n 时,311==S a 当2≥n 时,nn n n n a n 21)1()1(122=-----++= ∴ ⎩⎨⎧=n a n 23)2()1(≥=n n [例3] 已知等差数列{}n a 的前n 项之和记为S n ,S 10=10 ,S 30=70,则S 40等于 。
正解:由题意:⎪⎪⎩⎪⎪⎨⎧=⨯+=⨯+7022930301029101011d a d a 得152,521==d a 代入得S 40 =1204023940401=⨯⨯+d a 。
[例5]已知一个等差数列{}n a 的通项公式a n =25-5n ,求数列{}||n a 的前n 项和;正解: ⎪⎪⎩⎪⎪⎨⎧≥+--≤-6,502)5)(520(5,2)545(n n n n n n[例6]已知一个等差数列的前10项的和是310,前20项的和是1220,由此可以确定求其前n 项和的公式吗?[例7]已知:nn a -+=12lg 1024 (3010.02lg =)+∈N n (1) 问前多少项之和为最 大?(2)前多少项之和的绝对值最小? 解:(1) ⎩⎨⎧<-=≥-+=+02lg 102402lg )1(10241n a n a n n 3403340112lg 10242lg 1024<<⇒+≤<⇒n n∴3402=n (2) 0)2lg (2)1(1024=--+=n n n S n 当n n S S 或0=近于0时其和绝对值最小 令:0=n S 即 1024+0)2lg (2)1(=--n n 得:99.680412lg 2048≈+=n ∵ +∈N n ∴6805=n [例8]项数是n 2的等差数列,中间两项为1+n n a a 和是方程02=+-q px x 的两根,求证此数列的和n S 2是方程 0)lg (lg lg )lg (lg lg 2222=+++-p n x p n x 的根。
高二数学等差数列试题答案及解析

高二数学等差数列试题答案及解析1.在等差数列3,7,11,…中,第5项为( ).A.15B.18C.19D.23【答案】C【解析】由等差数列3,7,11,…,得=3,d=4,则=19.故选C.【考点】等差数列的通项公式.2.等差数列{an }中,a2+a6=8,a3+a4=3,那么它的公差是( ).A.4B.5C.6D.7【答案】B【解析】由a2+a6=8,得a3+a5=8,又a3+a4=3,两式相减得d=5.故选B.【考点】等差数列的性质.3.在等差数列{an }中,a2=1,a4=5,则{an}的前5项和S5=()A.7B.15C.20D.25【答案】B【解析】由可知,答案选B.【考点】等差数列的通项公式(或性质)与求和公式4.已知数列的前n项和,那么数列()A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列【答案】B【解析】当时,,当时,,而也满足,所以的通项公式为;所以本题选B.【考点】数列的前项和与通项公式;5.已知等差数列的公差和首项都不等于0,且,,成等比数列,则( ) A.2B.3C.5D.7【答案】A【解析】设等差数列的公差为,由于成等差数列,整理的由于【考点】等差数列和等比数列的性质.6.已知数列的前项和,(1)写出数列的前5项;(2)数列是等差数列吗?说明理由.(3)写出的通项公式.【答案】(1),,,,;(2)不是等差数列,理由详见解析;(3).【解析】(1)题中条件给出了前项和的表达式,从而可以利用,可以写出数列的前项:,,,,;(2)若数列是等差数列,则须满足对所有的恒成立,而由(1)可知从而可以说明数列不是等差数列;(3)考虑到当时,,当时,,可得,,即数列的通项公式为.试题解析:(1)∵,∴,,,,;由(1)可知,,,∴,∴数列不是等差数列;(3)∵当时,,∴,,∴数列的通项公式为.【考点】1.等差数列的判断;2.数列通项公式.7.某体育馆第一排有5个座位,第二排有7个座位,第三排有9个座位,依次类推,那么第十五排有()个座位.A.27B.33C.45D.51【答案】B【解析】由题意,体育馆内从第一排起,每排的座位数构成首项为5,公差为2的等差数列,所以第十五排有个座位,故选B.【考点】等差数列的概念及通项公式.8.以下各数不能构成等差数列的是 ( )A.4,5,6B.1,4,7C.,,D.,,【答案】D【解析】显然A,B,C选项中,给出的三数均能构成等差数列,故选D.事实上,,,不能构成等差数列,证明如下:假设,,成等差数列,则2=+⇔12=7+2⇔5=2⇔25=40.这是不可能的.9.数列的前项和为,.(1)求数列的通项公式;(2)设求数列的前项和.【答案】(1);(2).【解析】(1)先由算出,当时,由得到,两式相减可得,从而可判断数列是一个等比数列,再由等比数列的通项公式可写出即可;(2)由(1)中求出的,计算出,这是一个关于的一次函数,故数列为等差数列,利用等差数列的前项和公式求和即可.试题解析:(1)当时,,∴ 2分当时,∴∴ 5分∴数列是首项为2,公比为2的等比数列∴ 7分(2) 9分11分∴ 13分.【考点】1.数列的通项公式;2.等比数列的定义及通项公式;3.等差数列的前项和公式.10.等差数列中,若,则等于()A.3B.4C.5D.6【答案】C【解析】等差数列中,若,则,因此,所以【考点】等差数列性质11.已知等差数列中满足,.(1)求和公差;(2)求数列的前10项的和.【答案】(1);(2).【解析】本题是等差数列基本量的计算问题.(1)将题中条件用首项与公差表示,可得,然后求解即可;(2)由(1)中计算得的,结合等差数列的前项和公式计算即可.试题解析:(1)由已知得 3分所以 5分(2)由等差数列前项和公式可得 8分所以数列的前10项的和为 10分.【考点】等差数列的通项公式及其前项和.12.在等差数列中,若,则数列的通项公式为( )A.B.C.D.【答案】A【解析】公差,所以。
高考数学等差数列选择题专项训练练习题及解析

一、等差数列选择题1.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之和为( ) A .24 B .39C .104D .52解析:D 【分析】根据等差数列的性质计算求解. 【详解】由题意()()357101341041073232236()1248a a a a a a a a a a ++++=⨯+⨯=+==,74a =,∴11313713()13134522a a S a +===⨯=. 故选:D .2.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51 B .57C .54D .72解析:B 【分析】根据等差数列的性质求出103a =,再由求和公式得出答案. 【详解】317102a a a += 1039a ∴=,即103a =()1191019191921935722a a a S +⨯∴===⨯= 故选:B3.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36 B .48C .56D .72解析:A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===.【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键. 4.在数列{}n a 中,11a =,且11nn na a na +=+,则其通项公式为n a =( ) A .211n n -+B .212n n -+C .221n n -+D .222n n -+解析:D 【分析】先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出2122n n n a -+=,进而求出n a . 【详解】 解:11nn na a na +=+, ()11n n n a na a ++=∴,化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:111n nn a a +-=, 即21111a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:213243111111+a a a a a a --+-+…111123n n a a -+-=+++…1n +-, 即111(1)2n n n a a --=, 2111(1)(1)2=1(2,)222n n n n n n n n n z a a ---+∴=++=≥∈, 又111a =也满足上式, 212()2n n n n z a -+∴=∈, 22()2n a n z n n ∴=∈-+. 故选:D.易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合. 5.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( ) A .24 B .23C .17D .16解析:A 【分析】 由题意可得5282045252a a d --===---,再由220a =可求出1a 的值 【详解】 解:根据题意,5282045252a a d --===---,则1220(4)24a a d =-=--=, 故选:A.6.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( ) A .9 B .12C .15D .18解析:A 【分析】在等差数列{a n }中,利用等差中项由95132a a a =+求解. 【详解】在等差数列{a n }中,a 5=3,a 9=6, 所以95132a a a =+,所以139522639a a a =-=⨯-=, 故选:A7.设等差数列{}n a 的前n 项和为n S ,且71124a a -=,则5S =( ) A .15 B .20C .25D .30解析:B 【分析】设出数列{}n a 的公差,利用等差数列的通项公式及已知条件,得到124a d +=,然后代入求和公式即可求解 【详解】设等差数列{}n a 的公差为d ,则由已知可得()()111261024a d a d a d +-+=+=, 所以()5115455254202S a d a d ⨯=+=+=⨯= 故选:B8.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237n n S n T n =+,则63a b 的值为( )A .511B .38C .1D .2解析:C 【分析】令22n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则63a b 可得. 【详解】令22n S n λ=,()37n T n n λ=+,可得当2n ≥时,()()221221221n n n a S S n n n λλλ-=-=--=-,()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,()232n b n λ=+故622a λ=,322b λ=,故631a b =. 【点睛】由n S 求n a 时,11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解. 9.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2m B .21m +C .22m +D .23m +解析:C 【分析】首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++==+,()()()1232322323<02m m m m a a S m a +++++==+, ()()()()1222212211>02m m m m m a a S m a a ++++++==++.故选:C.关键点睛:本题的第一个关键是根据公式11,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负.10.设等差数列{}n a 的前n 项和为n S ,10a <且11101921a a =,则当n S 取最小值时,n 的值为( ) A .21 B .20C .19D .19或20解析:B 【分析】 由题得出1392a d =-,则2202n dS n dn =-,利用二次函数的性质即可求解.【详解】设等差数列{}n a 的公差为d ,由11101921a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392a d =-,10a <,0d ∴>,()211+2022n n n dS na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.故选:B. 【点睛】方法点睛:求等差数列前n 项和最值,由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 11.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个 B .3个C .2个D .1个解析:B 【分析】设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断D .设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;所以7710217022128S d =⨯+≤-⨯=,B 错误;1(1)10(1)0n a a n d n d =+-=+-≥,解得101n d≤-+,11100n a a nd nd +=+=+≤,解得10n d≥-, 所以10101n d d-≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=, 当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由10n n a a +≥⎧⎨≤⎩求得.12.已知数列{}n a 的前n 项和221n S n n =+-,则13525a a a a ++++=( )A .350B .351C .674D .675解析:A 【分析】 先利用公式11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,再利用通项公式求出13525a a a a ++++的值.【详解】当1n =时,21112112a S ==+⨯-=;当2n ≥时,()()()22121121121n n n a S S n n n n n -⎡⎤=-=+---+--=+⎣⎦.12a =不适合上式, 2,121,2n n a n n =⎧∴=⎨+≥⎩.因此,()()3251352512127512235022a a a a a a ⨯+⨯+++++=+=+=;故选:A. 【点睛】易错点睛:利用前n 项和n S 求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,但需要验证1a 是否满足()2n a n ≥.13.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4 C .a 5=2 D .a 6=2解析:C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C14.设数列{}n a 的前n 项和21n S n =+. 则8a 的值为( ).A .65B .16C .15D .14解析:C 【分析】利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】由21n S n =+得,12a =,()2111n S n -=-+,所以()221121n n n a S S n n n -=-=--=-,所以2,121,2n n a n n =⎧=⎨-≥⎩,故828115a =⨯-=.故选:C. 【点睛】本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可.15.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161 B .155C .141D .139解析:B 【分析】画出图形分析即可列出式子求解. 【详解】所给数列为高阶等差数列,设该数列的第8项为x ,根据所给定义:用数列的后一项减去前一项得到一个新数列,得到的新数列也用后一项减去前一项得到一个新数列,即得到了一个等差数列,如图:由图可得:3612107y x y -=⎧⎨-=⎩ ,解得15548x y =⎧⎨=⎩.故选:B.二、等差数列多选题16.题目文件丢失!17.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】 由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题 18.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4 B .-2C .0D .2解析:AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<, ()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立, 对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确; 对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误; 对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.19.已知数列{}n a 满足112a =-,111n n a a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .3解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n n a a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.20.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <. 解析:ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <,所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题. 21.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为12解析:ACD 【分析】由题可得16a d =-,0d <,21322n d dS n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d dS n n =->,解出即可判断D. 【详解】设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,10a >,0d ∴<,且()21113+222n n n d d S na d n n -==-, 对于A ,81+7670a a d d d d ==-+=<,故A 正确;对于B ,21322n d d S n n =-的对称轴为132n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误; 对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822d d S d =⨯-⨯=-,故49S S =,故C 正确;对于D ,令213022n d dS n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.22.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减 D .数列{}n S 有最大值解析:ABD 【分析】由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD.23.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d < B .70a =C .95S S >D .170S <解析:ABD 【分析】结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案. 【详解】由67S S =,可得7670S S a -==,故B 正确;由56S S <,可得6560S S a -=>, 由78S S >,可得8780S S a -=<,所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确; 又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确; 又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <, 所以()117179171702a a S a +==<,故D 正确.故选:ABD. 【点睛】关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及()12n n n a a S +=,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题.24.定义11222n nn a a a H n-+++=为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,则( ) A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .2020202320202S = D .2S ,4S ,6S 成等差数列解析:AC 【分析】由题意可知112222n n nn a a a H n-+++==,即112222n n n a a a n -+++=⋅,则2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,可求解出1n a n =+,易知{}n a 是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出n S ,判断C ,D 的正误. 【详解】 解:由112222n n nn a a a H n-+++==,得112222n n n a a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,②得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 错, 所以()32n n n S +=,所以2020202320202S =,故C 正确. 25S =,414S =,627S =,故D 错,故选:AC . 【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般. 25.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为21解析:BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D . 【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对;由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+⎪⎝⎭ *n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错; 故选:BC 【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.。
经典等差数列性质练习题(含答案)

等差数列基础习题选(附有详细解答)一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1 C.D.﹣12.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.264.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2 C.3 D.一25.两个数1与5的等差中项是()A.1 B.3 C.2 D.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣57.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1 B.2 C.3 D.48.数列的首项为3,为等差数列且,若,,则=()A.0 B.8 C.3 D.119.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25 B.24 C.20 D.1910.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5 B.3 C.﹣1 D.111.(2005•黑龙江)如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5 12.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1 B.﹣1 C.2 D.13.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()14.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()A.B.C.D.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6 B.7 C.8 D.916.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A.30 B.35 C.36 D.24 17.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5 B.6 C.5或6 D.6或718.(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.17619.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A.﹣1 B.0 C.1 D.220.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()A.6 B.7 C.8 D.921.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()A.4或5 B.5或6 C.4 D.522.等差数列{a n}中,a n=2n﹣4,则S4等于()A.12 B.10 C.8 D.423.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()A.230 B.140 C.115 D.9524.等差数列{a n}中,a3+a8=5,则前10项和S10=()A.5 B.25 C.50 D.10025.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于()A.1 B.2 C.3 D.426.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大()A.第10项B.第11项C.第10项或11项D.第12项27.如果数列{a n}满足:= _________ .28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)= _________ .29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为_________ .30.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式:(Ⅱ)若数列{a n}和数列{b n}满足等式:a n==(n为正整数),求数列{b n}的前n项和S n.参考答案与试题解析一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1 C.D.﹣1考点:等差数列.专题:计算题.分析:本题可由题意,构造方程组,解出该方程组即可得到答案.解答:解:等差数列{a n}中,a3=9,a9=3,由等差数列的通项公式,可得解得,即等差数列的公差d=﹣1.故选D点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.2.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列考点:等差数列.专题:计算题.分析:直接根据数列{a n}的通项公式是a n=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.解答:解:因为a n=2n+5,故选A.点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.26考点:等差数列.专题:综合题.分析:根据a1=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,让其等于2得到关于n的方程,求出方程的解即可得到n的值.解答:解:由题意得a3=a1+2d=12,把a1=13代入求得d=﹣,则a n=13﹣(n﹣1)=﹣n+=2,解得n=23故选A点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2 C.3 D.一2考点:等差数列.专题:计算题.分析:根据等差数列的前三项之和是6,得到这个数列的第二项是2,这样已知等差数列的;两项,根据等差数列的通项公式,得到数列的公差.解答:解:∵等差数列{a n}的前n项和为S n,S3=6,∴a2=2∵a4=8,∴8=2+2d∴d=3,故选C.点评:本题考查等差数列的通项,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的三倍,这样可以简化题目的运算.5.两个数1与5的等差中项是()A.1 B.3 C.2 D.考点:等差数列.专题:计算题.分析:由于a,b的等差中项为,由此可求出1与5的等差中项.解答:解:1与5的等差中项为:=3,故选B.点评:本题考查两个数的等差中项,牢记公式a,b的等差中项为:是解题的关键,属基础题.考点:等差数列.专题:计算题.分析:设等差数列{a n}的公差为d,因为数列前六项均为正数,第七项起为负数,所以,结合公差为整数进而求出数列的公差.解答:解:设等差数列{a n}的公差为d,所以a6=23+5d,a7=23+6d,又因为数列前六项均为正数,第七项起为负数,所以,因为数列是公差为整数的等差数列,所以d=﹣4.故选C.点评:解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.7.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1 B.2 C.3 D.4考点:等差数列的通项公式.专题:计算题.分析:设数列{a n}的公差为d,则由题意可得 2a1+4d=10,a1+3d=7,由此解得d的值.解答:解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得 2a1+4d=10,a1+3d=7,解得 d=2,故选B.点评:本题主要考查等差数列的通项公式的应用,属于基础题.8.数列的首项为3,为等差数列且,若,,则=()A.0 B.8 C.3 D.11考点:等差数列的通项公式.专题:计算题.分析:先确定等差数列的通项,再利用,我们可以求得的值.解答:解:∵为等差数列,,,∴∴b n=b3+(n﹣3)×2=2n﹣8∵∴b8=a8﹣a1∵数列的首项为3∴2×8﹣8=a8﹣3,9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25 B.24 C.20 D.19考点:等差数列的通项公式.专题:计算题.分析:(法一):根据两个等差数列的相同的项按原来的先后次序组成一个等差数列,且公差为原来两个公差的最小公倍数求解,(法二)由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解.解答:解法一:设两个数列相同的项按原来的前后次序组成的新数列为{a n},则a1=11∵数列5,8,11,…与3,7,11,…公差分别为3与4,∴{a n}的公差d=3×4=12,∴a n=11+12(n﹣1)=12n﹣1.又∵5,8,11,…与3,7,11,…的第100项分别是302与399,∴a n=12n﹣1≤302,即n≤25.5.又∵n∈N*,∴两个数列有25个相同的项.故选A解法二:设5,8,11,与3,7,11,分别为{a n}与{b n},则a n=3n+2,b n=4n﹣1.设{a n}中的第n项与{b n}中的第m项相同,即3n+2=4m﹣1,∴n= m﹣1.又m、n∈N*,可设m=3r(r∈N*),得n=4r﹣1.根据题意得 1≤3r≤100 1≤4r﹣1≤100 解得≤r≤∵r∈N*从而有25个相同的项故选A点评:解法一利用了等差数列的性质,解法二利用了不定方程的求解方法,对学生的运算能力及逻辑思维能力的要求较高.10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5 B.3 C.﹣1 D.1考点:等差数列的通项公式.专题:计算题.分析:根据递推公式求出公差为2,再由S3=9以及前n项和公式求出a1的值.解答:解:∵a n=a n﹣1+2(n≥2),∴a n﹣a n﹣1=2(n≥2),∴等差数列{a n}的公差是2,由S3=3a1+=9解得,a1=1.故选D.点评:本题考查了等差数列的定义,以及前n项和公式的应用,即根据代入公式进行求解.11.(2005•黑龙江)如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5解答:解:∵a1+a8﹣(a4+a5)=2a1+7d﹣(2a1+7d)=0∴a1+a8=a4+a5∴故选B点评:本题主要考查等差数列通项公式,来证明等差数列的性质.12.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1 B.﹣1 C.2 D.考点:等差数列的性质.专题:计算题.分析:充分利用等差数列前n项和与某些特殊项之间的关系解题.解答:解:设等差数列{a n}的首项为a1,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,∴====1,故选A.点评:本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用,已知等差数列{a n}的前n项和为S n,则有如下关系S2n﹣1=(2n﹣1)a n.13.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1 B.1 C.3 D.7考点:等差数列的性质.专题:计算题.分析:根据已知条件和等差中项的性质可分别求得a3和a4的值,进而求得数列的公差,最后利用等差数列的通项公式求得答案.解答:解:由已知得a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=a4﹣a3=﹣2.∴a20=a3+17d=35+(﹣2)×17=1.故选B点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用.解题的关键是利用等差数列中等差中项的性质求得a3和a4.14.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()A.B.C.D.分析:求出等差数列的通项,要求的和是一个等差数列与一个等比数列的积构成的数列,利用错位相减法求出数列的前n项的和.解答:解:∵等差数列{a n}中,a2=4,a6=12;∴公差d=;∴a n=a2+(n﹣2)×2=2n;∴;∴的前n项和,=两式相减得=∴故选B点评:求数列的前n项的和,先判断通项的特点,据通项的特点选择合适的求和方法.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6 B.7 C.8 D.9考点:等差数列的性质.专题:计算题.分析:由a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①,根据等差数列的前n项和公式可得,,联立可求d,a1,代入等差数列的通项公式可求解答:解:等差数列{a n}中,a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①根据等差数列的前n项和公式可得,所以 a1+a7=6②②﹣①可得d=2,a1=﹣3所以a7=9故选D点评:本题主要考查了等差数列的前n项和公式及等差数列的性质的综合应用,属于基础试题.考点:等差数列的性质.专题:计算题.分析:利用等差中项的性质求得a3的值,进而利用a1+a6=a3+a4求得a1+a6的值,代入等差数列的求和公式中求得答案.解答:解:a1+a3+a5=3a3=15,∴a3=5∴a1+a6=a3+a4=12∴s6=×6=36故选C点评:本题主要考查了等差数列的性质.特别是等差中项的性质.17.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5 B.6 C.5或6 D.6或7考点:等差数列的前n项和;等差数列的通项公式.专题:计算题.分析:由,知a1+a11=0.由此能求出数列{a n}的前n项和S n取得最大值时的项数n.解答:解:由,知a1+a11=0.∴a6=0,故选C.点评:本题主要考查等差数列的性质,求和公式.要求学生能够运用性质简化计算.18.(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.176考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:根据等差数列的定义和性质得 a1+a11=a4+a8=16,再由S11=运算求得结果.解答:解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选B.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.19.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A.﹣1 B.0 C.1 D.2分析:由等差数列得性质可得:5a5=10,即a5=2.同理可得5a6=20,a6=4,再由等差中项可知:a4=2a5﹣a6=0解答:解:由等差数列得性质可得:a1+a9=a3+a7=2a5,又a1+a3+a5+a7+a9=10,故5a5=10,即a5=2.同理可得5a6=20,a6=4.再由等差中项可知:a4=2a5﹣a6=0故选B点评:本题考查等差数列的性质及等差中项,熟练利用性质是解决问题的关键,属基础题.20.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()A.6 B.7 C.8 D.9考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:先利用公式a n=求出a n,再由第k项满足4<a k<7,建立不等式,求出k的值.解答:解:a n==∵n=1时适合a n=2n﹣9,∴a n=2n﹣9.∵4<a k<7,∴4<2k﹣9<7,∴<k<8,又∵k∈N+,∴k=7,故选B.点评:本题考查数列的通项公式的求法,解题时要注意公式a n=的合理运用,属于基础题.21.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()A.4或5 B.5或6 C.4 D.5考点:等差数列的前n项和.专题:计算题.分析:把数列的前n项的和S n看作是关于n的二次函数,把关系式配方后,又根据n为正整数,即可得到S n取得最小值时n的值.解答:解:因为S n=2n2﹣17n=2﹣,又n为正整数,所以当n=4时,S n取得最小值.故选C点评:此题考查学生利用函数思想解决实际问题的能力,是一道基础题.22.等差数列{a n}中,a n=2n﹣4,则S4等于()A.12 B.10 C.8 D.4分析:利用等差数列{a n}中,a n=2n﹣4,先求出a1,d,再由等差数列的前n项和公式求S4.解答:解:∵等差数列{a n}中,a n=2n﹣4,∴a1=2﹣4=﹣2,a2=4﹣4=0,d=0﹣(﹣2)=2,∴S4=4a1+=4×(﹣2)+4×3=4.故选D.点评:本题考查等差数列的前n项和公式的应用,是基础题.解题时要认真审题,注意先由通项公式求出首项和公差,再求前四项和.23.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()A.230 B.140 C.115 D.95考点:等差数列的前n项和.专题:综合题.分析:分别利用等差数列的通项公式化简已知的两个等式,得到①和②,联立即可求出首项和公差,然后利用求出的首项和公差,根据公差数列的前n项和的公式即可求出数列前10项的和.解答:解:a3=a1+2d=4①,a8=a1+7d=19②,②﹣①得5d=15,解得d=3,把d=3代入①求得a1=﹣2,所以S10=10×(﹣2)+×3=115故选C.点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.24.等差数列{a n}中,a3+a8=5,则前10项和S10=()A.5 B.25 C.50 D.100考点:等差数列的前n项和;等差数列的性质.专题:计算题.分析:根据条件并利用等差数列的定义和性质可得 a1+a10=5,代入前10项和S10 =运算求得结果.解答:解:等差数列{a n}中,a3+a8=5,∴a1+a10=5,∴前10项和S10 ==25,故选B.点评:本题主要考查等差数列的定义和性质,以及前n项和公式的应用,求得a1+a10=5,是解题的关键,属于基础题.25.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于()A.1 B.2 C.3 D.4考点:等差数列的前n项和.专题:计算题.分析:由S1,S2,S4成等比数列,根据等比数列的性质得到S22=S1S4,然后利用等差数列的前n项和的公式分别表示出各项后,代入即可得到首项和公差的关系式,根据公差不为0,即可求出公差与首项的关系并解出公差d,然后把所求的式子利用等差数列的通项公式化简后,把公差d的关系式代入即可求出比值.解答:解:由S1,S2,S4成等比数列,∴(2a1+d)2=a1(4a1+6d).∵d≠0,∴d=2a1.∴===3.故选C点评:此题考查学生掌握等比数列的性质,灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道综合题.26.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大()A.第10项B.第11项C.第10项或11项D.第12项考点:等差数列的前n项和;二次函数的性质.专题:转化思想.分析:方法一:由a n,令n=1求出数列的首项,利用a n﹣a n﹣1等于一个常数,得到此数列为等差数列,然后根据求出的首项和公差写出等差数列的前n项和的公式,得到前n项的和与n成二次函数关系,其图象为开口向下的抛物线,当n=﹣时,前n项的和有最大值,即可得到正确答案;方法二:令a n大于等于0,列出关于n的不等式,求出不等式的解集即可得到n的范围,在n的范围中找出最大的正整数解,从这项以后的各项都为负数,即可得到正确答案.解答:解:方法一:由a n=﹣2n+21,得到首项a1=﹣2+21=19,a n﹣1=﹣2(n﹣1)+21=﹣2n+23,则a n﹣a n﹣1=(﹣2n+21)﹣(﹣2n+23)=﹣2,(n>1,n∈N+),所以此数列是首项为19,公差为﹣2的等差数列,则S n=19n+•(﹣2)=﹣n2+20n,为开口向下的抛物线,当n=﹣=10时,S n最大.所以数列{a n}从首项到第10项和最大.方法二:令a n=﹣2n+21≥0,解得n≤,因为n取正整数,所以n的最大值为10,所以此数列从首项到第10项的和都为正数,从第11项开始为负数,则数列{a n}从首项到第10项的和最大.故选A点评:此题的思路可以先确定此数列为等差数列,根据等差数列的前n项和的公式及二次函数求最值的方法得到n 的值;也可以直接令a n≥0,求出解集中的最大正整数解,要求学生一题多解.二.填空题(共4小题)27.如果数列{a n}满足:= .考点:数列递推式;等差数列的通项公式.专题:计算题.分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项,根据等差数列的通项公式写出数列,进一步得到结果.解答:解:∵根据所给的数列的递推式∴数列{}是一个公差是5的等差数列,∵a1=3,∴=,∴数列的通项是∴故答案为:点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列的通项公式写出通项,本题是一个中档题目.28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)= 101 .考点:数列递推式;等差数列的通项公式.专题:计算题.分析:由f(n+1)=f(n)+1,x∈N+,f(1)=2,依次令n=1,2,3,…,总结规律得到f(n)=n+1,由此能够求出f(100).解答:解:∵f(n+1)=f(n)+1,x∈N+,f(1)=2,∴f(2)=f(1)+1=2+1=3,f(3)=f(2)+1=3+1=4,f(4)=f(3)+1=4+1=5,…∴f(n)=n+1,∴f(100)=100+1=101.故答案为:101.点评:本题考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答.29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为58 .考点:数列的求和;等差数列的通项公式.专题:计算题.分析:先求出等差数列的前两项,可得通项公式为a n=7﹣2n,从而得到n≤3时,|a n|=7﹣2n,当n>3时,|a n|= 2n﹣7.分别求出前3项的和、第4项到第10项的和,相加即得所求.解答:解:由于等差数列{a n}的前n项的和,故a1=s1=5,∴a2=s2﹣s1=8﹣5=3,故公差d=﹣2,故a n=5+(n﹣1)(﹣2)=7﹣2n.当n≤3时,|a n|=7﹣2n,当n>3时,|a n|=2n﹣7.故前10项之和为 a1+a2+a3﹣a4﹣a5﹣…﹣a10=+=9+49=58,故答案为 58.点评:本题主要考查等差数列的通项公式,前n项和公式及其应用,体现了分类讨论的数学思想,属于中档题.30.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式:(Ⅱ)若数列{a n}和数列{b n}满足等式:a n==(n为正整数),求数列{b n}的前n项和S n.考点:数列的求和;等差数列的通项公式.专题:计算题.分析:(1)将已知条件a3a6=55,a2+a7=16,利用等差数列的通项公式用首项与公差表示,列出方程组,求出首项与公差,进一步求出数列{a n}的通项公式(2)将已知等式仿写出一个新等式,两个式子相减求出数列{b n}的通项,利用等比数列的前n项和公式求出数列{b n}的前n项和S n.解答:解(1)解:设等差数列{a n} 的公差为d,则依题设d>0由a2+a7=16.得2a1+7d=16①由a3•a6=55,得(a1+2d)(a1+5d)=55 ②由①得2a1=16﹣7d 将其代入②得(16﹣3d)(16+3d)=220.即256﹣9d2=220∴d2=4,又d>0,∴d=2,代入①得a1=1∴a n=1+(n﹣1)•2=2n﹣1所以a n=2n﹣1(2)令c n=,则有a n=c1+c2+…+c n,a n+1=c1+c2+…+c n﹣1两式相减得a n+1﹣a n=c n+1,由(1)得a1=1,a n+1﹣a n=2∴c n+1=2,c n=2(n≥2),即当n≥2时,b n=2n+1又当n=1时,b1=2a1=2∴b n=<BR>于是S n=b1+b2+b3…+b n=2+23+24+…+2n+1=2+22+23+24+…+2n+1﹣4=﹣6,即S n=2n+2﹣6点评:求一个数列的前n项和应该先求出数列的通项,利用通项的特点,然后选择合适的求和的方法.。
等差数列+练习 解析版

1.等差数列的定义一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d __表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项如果A =a +b2,那么A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A 、B 为常数). 7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最__大__值;若a 1<0,d >0,则S n 存在最__小__值. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ ) (3)等差数列{a n }的单调性是由公差d 决定的.( √ )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( × ) (5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( × )(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ )1.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n =____________________________________. 答案 6解析 设等差数列{a n }的公差为d , ∵a 1+a 9=a 4+a 6=-6,且a 1=-11, ∴a 9=5,从而d =2.∴S n =-11n +n (n -1)=n 2-12n , ∴当n =6时,S n 取最小值.2.设S n 是公差不为0的等差数列{a n }的前n 项和,若a 1=2a 8-3a 4,则S 8S 16=________.答案310解析 由已知得a 1=2a 1+14d -3a 1-9d , ∴a 1=52d ,又S 8S 16=8a 1+28d 16a 1+120d ,将a 1=52d 代入化简得S 8S 16=310.3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=________. 答案 88解析 S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7=________. 答案 28解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.5.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为________.(2)已知在等差数列{a n }中,a 2=7,a 4=15,则前10项和S 10=________. 答案 (1)52(2)210解析 (1)由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×(10-1)2×12=52.(2)因为a 2=7,a 4=15,所以d =4,a 1=3, 故S 10=10×3+12×10×9×4=210.思维升华 (1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(1)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=________.(2)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是________.答案 (1)5 (2)2解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3, ∴a 1+a 3+a 5=3a 3=3,得a 3=1, ∴S 5=5(a 1+a 5)2=5a 3=5.(2)∵S n =n (a 1+a n )2,∴S n n =a 1+a n 2,又S 33-S 22=1,得a 1+a 32-a 1+a 22=1,即a 3-a 2=2, ∴数列{a n }的公差为2.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52.所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),探求数列{a n }的通项公式.解 由已知可得a n +1n +1=a nn +1,即a n +1n +1-a n n=1,又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n .思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是________.①公差为3的等差数列 ②公差为4的等差数列 ③公差为6的等差数列 ④公差为9的等差数列(2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为______________.答案 (1)③ (2)a n =1n解析 (1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2) =(a 2n -1-a 2n -3)+2(a 2n -a 2n -2) =2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列. (2)由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n .题型三 等差数列的性质及应用命题点1 等差数列的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案 (1)10 (2)60解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10.(2)∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-30=10+2×10=30,∴S 30=60. 命题点2 等差数列前n 项和的最值例4 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53 =-53n +653.得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0. ∴当n =12或13时,S n 取得最大值, 且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n=-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 方法三 由S 10=S 15得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 引申探究例4中,若条件“a 1=20”改为a 1=-20,其他条件不变,求当n 取何值时,S n 取得最小值,并求出最小值.解 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0, ∴a 13=0.又a 1=-20,∴a 12<0,a 14>0, ∴当n =12或13时,S n 取得最小值, 最小值S 12=S 13=13(a 1+a 13)2=-130.思维升华 (1)等差数列的性质:①项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差. ②和的性质:在等差数列{a n }中,S n 为其前n 项和,则a .S 2n =n (a 1+a 2n )=…=n (a n +a n +1);b .S 2n -1=(2n -1)a n .(2)求等差数列前n 项和S n 最值的两种方法:①函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解. ②邻项变号法:a .当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ;b .当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m .(1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是________.(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为________.(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________. 答案 (1)6 (2)5或6 (3)110解析 (1)依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6.(2)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大. (3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得, S n =na 1+n (n -1)2d =20n -n (n -1)2×2=-n 2+21n =-⎝⎛⎭⎫n -2122+⎝⎛⎭⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.6.等差数列的前n 项和及其最值典例 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10=________.(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.(3)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.思维点拨 (1)求等差数列前n 项和,可以通过求解基本量a 1,d ,代入前n 项和公式计算,也可以利用等差数列的性质:a 1+a n =a 2+a n -1=…;(2)求等差数列前n 项和的最值,可以将S n 化为关于n 的二次函数,求二次函数的最值,也可以观察等差数列的符号变化趋势,找最后的非负项或非正项. 解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45.(2)方法一 设数列{a n }的公差为d ,首项为a 1, 则⎩⎨⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.方法二 因为S 100-S 10=(a 11+a 100)×902=-90,所以a 11+a 100=-2, 所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110.(3)因为⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,所以⎩⎪⎨⎪⎧a 5>0,a 6<0,所以S n 的最大值为S 5. 答案 (1)45 (2)-110 (3)S 5温馨提醒 (1)利用函数思想求等差数列前n 项和S n 的最值时,要注意到n ∈N *; (2)利用等差数列的性质求S n ,突出了整体思想,减少了运算量.[方法与技巧]1.在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解.2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n 项和公式法判定一个数列是否为等差数列.3.等差数列性质灵活使用,可以大大减少运算量.4.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定. [失误与防范]1.当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数. 2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.A 组 专项基础训练(时间:40分钟)1.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9的值等于________. 答案 54解析 根据题意及等差数列的性质,知2a 8-a 11=a 5=6,根据等差数列的求和公式,知S 9=a 1+a 92×9=2a 52×9=6×9=54. 2.(2015·北京改编)设{a n }是等差数列,下列结论中正确的是________. ①若a 1+a 2>0,则a 2+a 3>0; ②若a 1+a 3<0,则a 1+a 2<0; ③若0<a 1<a 2,则a 2>a 1a 3; ④若a 1<0,则(a 2-a 1)(a 2-a 3)>0. 答案 ③解析 设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故①错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故②错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,所以a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,所以a 2>a 1a 3,故③正确;若a 1<0,则(a 2-a 1)·(a 2-a 3)=d ·(-d )=-d 2≤0,故④错.3.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =________. 答案 5解析 ∵数列{a n }为等差数列,且前n 项和为S n ,∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.∴S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0, 解得m =5,经检验为原方程的解.4.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=________. 答案 3解析 设{b n }的公差为d ,∵b 10-b 3=7d =12-(-2)=14,∴d =2. ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6. ∴b 1+b 2+…+b 7=7b 1+7×62d=7×(-6)+21×2=0.又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为________. 答案 7或8解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或8.6.(2015·常州模拟)已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________.答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4,故a 10=14.7.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.答案 2n -1解析 设等差数列的公差为d ,∵a 3=a 22-4,∴1+2d =(1+d )2-4,解得d 2=4,即d =±2.由于该数列为递增数列,故d =2. ∴a n =1+(n -1)×2=2n -1.8.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.9.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12. (1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n. 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式. 故a n =⎩⎨⎧12,n =1,-12n (n -1),n ≥2.10.等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解 方法一 由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1. 从而S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 又a 1>0,所以-a 113<0.故当n =7时,S n 最大. 方法二 由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由方法一可知a =-a 113<0,故当n =7时,S n 最大. 方法三 由方法一可知,d =-213a 1.要使S n 最大, 则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0, 即⎩⎨⎧ a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大.方法四 由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.B 组 专项能力提升(时间:20分钟)11.设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则下列说法正确的是________.①S n 的最大值是S 8②S n 的最小值是S 8③S n 的最大值是S 7④S n 的最小值是S 7答案 ④解析 由条件得S n n <S n +1n +1,即n (a 1+a n )2n <(n +1)(a 1+a n +1)2(n +1),所以a n <a n +1,所以等差数列{a n }为递增数列.又a 8a 7<-1,所以a 8>0,a 7<0,即数列{a n }前7项均小于0,第8项大于零,所以S n 的最小值为S 7.12.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k=-12,则正整数k =________. 答案 13解析 S k +1=S k +a k +1=-12+32=-212, 又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝⎛⎭⎫-3+322=-212,解得k =13. 13.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案1941 解析 ∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,∴a 6b 6=1941. 14.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a n a n,若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________. 答案 (-8,-7)解析 依题意得b n =1+1a n,对任意的n ∈N *,都有b n ≥b 8,即数列{b n }的最小项是第8项,于是有1a n ≥1a 8.又数列{a n }是公差为1的等差数列,因此有⎩⎪⎨⎪⎧ a 8<0,a 9>0,即⎩⎪⎨⎪⎧a +7<0,a +8>0,由此解得-8<a <-7,即实数a 的取值范围是(-8,-7).15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c . 解 (1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4. 所以通项a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝⎛⎭⎫n -142-18. 所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c, 所以b 1=11+c ,b 2=62+c ,b 3=153+c.因为数列{b n }是等差数列, 所以2b 2=b 1+b 3,即62+c ×2=11+c +153+c , 所以2c 2+c =0,所以c =-12或c =0(舍去), 经验证c =-12时,{b n }是等差数列, 故c =-12.。
高考数学数学等差数列选择题专项训练的专项培优练习题(附解析

一、等差数列选择题1.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若p m n q <<<且()*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )A .22p p S p a =⋅B .p q m n a a a a >C .1111p q m na a a a +<+ D .1111p q m nS S S S +>+ 解析:D 【分析】利用等差数列的求和公式可判断A 选项的正误;利用作差法结合等差数列的通项公式可判断B 选项的正误;利用p q m n a a a a <结合不等式的基本性质可判断C 选项的正误;利用等差数列的求和公式结合不等式的基本性质可判断D 选项的正误. 【详解】对于A 选项,由于()()1221222p pp p p p a a Sp a a pa ++==+≠,故选项A 错误;对于B 选项,由于m p q n -=-,则()()p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅⎡⎤⎡⎤⎣⎦⎣⎦()()()()()22m n m n m n a q n d a q n d a a q n a a d q n d =--⋅+--=----⎡⎤⎡⎤⎣⎦⎣⎦()()()2220q n n m d q n d =-----<,故选项B 错误;对于C 选项,由于1111p q m n m n p q p q p q m n m na a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误; 对于D 选项,设0x q n m p =-=->,则()()()20pq mn m x n x mn x n m x -=-+-=---<,从而pq mn <,由于222222p q m n p q pq m n mn +=+⇔++=++,故2222p q m n +>+.()()()()()()111111p q pq p q mn m n m n --=-++<-++=--,故()()22221122p q m n p q p q m n m nS S p q a d m n a d S S +--+--+=++>++=+.()()()()()221111112112224p q p p q q pq p q pq p q S S pa d qa d pqa a d d--+---⎡⎤⎡⎤⋅=+⋅+=++⎢⎥⎢⎥⎣⎦⎣⎦()()()221121124mn m n mn p q mna a d d+---<++()()()221121124m n mn m n mn m n mna a d d S S +---<++=,由此1111p q m n p q p q m n m nS S S S S S S S S S S S +++=>=+,故选项D 正确. 故选:D. 【点睛】关键点点睛:本题考查等差数列中不等式关系的判断,在解题过程中充分利用基本量来表示n a 、n S ,并结合作差法、不等式的基本性质来进行判断.2.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36 B .48C .56D .72解析:A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键. 3.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25 B .11C .10D .9解析:D 【分析】利用等差数列的性质直接求解. 【详解】 因为131,5a a ==,315529a a a a =+∴=,故选:D .4.等差数列{}n a 的前n 项和为n S ,已知58a =,36S =,则107S S -的值是( ) A .48 B .60C .72D .24解析:A 【分析】根据条件列方程组,求首项和公差,再根据107891093S S a a a a -=++=,代入求值. 【详解】由条件可知114832362a d a d +=⎧⎪⎨⨯+=⎪⎩,解得:102a d =⎧⎨=⎩, ()10789109133848S S a a a a a d -=++==+=.故选:A5.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=( )A .10B .145C .300D .320解析:C 【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解。
高三数学等差数列试题答案及解析

高三数学等差数列试题答案及解析1.已知等差数列{an}的公差不为零,a1+a2+a5>13,且a1,a2,a5 成等比数列,则a1 的取值范围为.【答案】【解析】设等差数列{an}的公差为,则由a1,a2,a5成等比数列得:,由a1+a2+a5>13,得【考点】等差数列2.(本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列满足.(1)若,求的取值范围;(2)若是公比为等比数列,,求的取值范围;(3)若成等差数列,且,求正整数的最大值,以及取最大值时相应数列的公差.【答案】(1);(2);(3)的最大值为1999,此时公差为.【解析】(1)比较容易,只要根据已知列出不等式组,即可解得;(2)首先由已知得不等式,即,可解得。
又有条件,这时还要忘记分类讨论,时,,满足,当时,有,解这不等式时,分类,分和进行讨论;(3)由已知可得∴,∴,,这样我们可以首先计算出的取值范围是,再由,可得,从而,解得,即最大值为1999,此时可求得.试题解析:(1)由题得,(2)由题得,∵,且数列是等比数列,,∴,∴,∴.又∵,∴当时,对恒成立,满足题意.当时,∴①当时,,由单调性可得,,解得,②当时,,由单调性可得,,解得,(3)由题得,∵,且数列成等差数列,,∴,∴,,所以时,,时,,所以.∴又∵,∴∴,∴,解得,,∴的最大值为1999,此时公差为.【考点】解不等式(组),数列的单调性,分类讨论,等差(比)数列的前项和.3.在等差数列中,,则()A.5B.8C.10D.14【答案】B【解析】设等差数列的公差为,由题设知,,所以,所以,故选B.【考点】等差数列通项公式.4.设等差数列的前项和为,若,则的值是()A.B.C.D.【答案】C【解析】∵,∴,∴,∴,∴.【考点】等差数列的性质、等差数列的前n项和公式.5. (2013·天津模拟)已知数列{an }的前n项和为Sn,且Sn=2an-2(n∈N*),数列{bn}满足b1=1,且点P(bn ,bn+1)(n∈N*)在直线y=x+2上.(1)求数列{an },{bn}的通项公式.(2)求数列{an ·bn}的前n项和Dn.(3)设cn =an·sin2-bn·cos2(n∈N*),求数列{cn}的前2n项和T2n.【答案】(1)an =2an-1(n≥2) b n=2n-1(2)Dn=(2n-3)2n+1+6 (3)-2n2-n【解析】(1)当n=1时,a1=2,当n≥2时,an =Sn-Sn-1=2a n-2a n-1,所以an =2an-1(n≥2),所以{a n}是等比数列,公比为2,首项a1=2,所以a n=2n,又点P(bn ,bn+1)(n∈N*)在直线y=x+2上,所以b n+1=b n+2,所以{bn }是等差数列,公差为2,首项b1=1,所以bn=2n-1.(2)由(1)知an ·bn=(2n-1)×2n,所以Dn=1×21+3×22+5×23+7×24+…+(2n-3)×2n-1+(2n-1)×2n,①2Dn =1×22+3×23+5×24+7×25+…+(2n-3)×2n+(2n-1)×2n+1.②①-②得-Dn=1×21+2×22+2×23+2×24+…+2×2n-(2n-1)×2n+1=2+2×-(2n-1)×2n+1=(3-2n)2n+1-6,则Dn=(2n-3)2n+1+6.(3)cn=,T2n =(a1+a3+…+a2n-1)-(b2+b4+…+b2n)=2+23+…+22n-1-[3+7+…+(4n-1)]=-2n2-n.6.数列{an }满足an+1+(﹣1)n an=2n﹣1,则{an}的前60项和为()A.3690B.3660C.1845D.1830【答案】D【解析】由于数列{an }满足an+1+(﹣1)n an=2n﹣1,故有 a2﹣a1=1,a3+a2=3,a4﹣a3=5,a 5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得 a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a11=2,a 16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{an}的前60项和为 15×2+(15×8+)=1830,故选D.7.已知数列满足,且,设的项和为,则使得取得最大值的序号的值为()A.7B.8C.7或8D.8或9【答案】C【解析】由已知得,,故是公差为的等差数列,又,所以,令,得,故当7或8时,取得最大值.【考点】1、等差数列通项公式;2、等差数列前n项和.8.等比数列中,已知.(1)求数列的通项公式;(2)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和.【答案】(1);(2),.【解析】﹙1﹚将已知条件化为公比,求得公比,进而求得通项;(2)将条件利用数列的首项和公比表示,进而可求得数列的通项公式与前项和.试题解析:(1)设的公比为,由已知得,解得,所以.(2)由(I)得,,则,设的公差为,则有解得,从而,所以数列的前项和.【考点】1、等差数列通项与前n项和;2、等比数列的通项公式.9.设{an }是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);(2)若{bn}是等差数列,证明:c=0.【答案】(1)见解析(2)见解析【解析】∵{an }是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和,∴Sn=na+ d.(1)∵c=0,∴bn==a+ d.∵b1,b2,b4成等比数列,∴=b1b4,∴,∴ad-d2=0,∴d=0.∵d≠0,∴a=d,∴d=2a,∴Sn=na+d=na+2a=n2a,∴左边=Snk =(nk)2a=n2k2a,右边=n2Sk=n2k2a,∴左边=右边,∴原式成立.(2)∵{bn }是等差数列,∴设公差为d1,∴bn =b1+(n-1)d1代入bn =,得b1+(n-1)d1=,∴n3+n2+cd1n=c(d1-b1)对n∈N*恒成立,∴∴d1= d.∵d≠0,∴d1≠0.10.等差数列{an }中,a7=4,a19=2a9.(1)求{an}的通项公式;(2)设bn =,求数列{bn}的前n项和Sn.【答案】(1) an = (2) Sn=【解析】解:(1)设等差数列{an}的公差为d,则an =a1+(n-1)d.因为所以解得a1=1,d=.所以{an}的通项公式为an=.(2)因为bn===-,所以Sn=(-)+(-)+…+(-) =.11.已知等差数列{an }的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列的前n项和.【答案】(1)an=2-n.(2)【解析】(1)设{an }的公差为d,则Sn=na1+d.由已知可得解得故{an }的通项公式为an=2-n.(2)由(1)知=,从而数列的前n项和为.12.已知数列{an }为等差数列,且a3+a7+a11=4π,则tan(a1+a13)=()A.-B.±C.±D.【答案】A【解析】因为{an}为等差数列,所以a3+a7+a11=3a7=4π,故a7=,2a7=,故tan(a1+a13)=tan2a7=tan=-.故选A.13.在数列{an }和等比数列{bn}中,a1=0,a3=2,bn=2an+1(n∈N*).(1)求数列{bn }及{an}的通项公式;(2)若cn =an·bn,求数列{cn}的前n项和Sn.【答案】(1)an =n-1(2)Sn=4+(n-2)·2n+1【解析】(1)方法一,依题意b1=2,b3=23=8,设数列{bn }的公比为q,由bn=2an+1>0,可知q>0.由b3=b1·q2=2·q2=8,得q2=4,又q>0,则q=2,故bn =b1q n-1=2·2n-1=2n,又由2an +1=2n,得an=n-1.(2)依题意cn=(n-1)·2n.Sn=0·21+1·22+2·23+…+(n-2)·2n-1+(n-1)·2n,①则2Sn =0·22+1·23+2·24+…+(n-2)·2n+(n-1)·2n+1,②①-②得-Sn=22+23+…+2n-(n-1)·2n+1=-(n-1)·2n+1,即-Sn =-4+(2-n)·2n+1,故Sn=4+(n-2)·2n+1.方法二,(1)依题意{bn}为等比数列,则=q(常数),由bn =2an+1>0,可知q>0.由=2an+1-a n=q,得an+1-a n=log2q(常数),故{a n}为等差数列.设{an }的公差为d,由a1=0,a3=a1+2d=0+2d=2,得d=1,故an=n-1.(2)同方法一.14.若数列{an }是等差数列,且a3+a7=4,则数列{an}的前9项和S9等于()A.9B.18C.36D.72【答案】B【解析】S9==1815.已知数列{an },an+1=a n+2,a1=1,数列的前n项和为,则n=________.【答案】18【解析】因为an+1=a n+2,所以数列是公差为2的等差数列,所以a n=2n-1.又因为=,所以Sn=(-+-+…+-)===,解得n=18.16.设等差数列{an }的前n项和为Sn,已知(a4-1)3+2 013(a4-1)=1,(a2 010-1)3+2 013(a2 010-1)=-1,则下列结论中正确的是()A.S2 013=2 013,a2 010<a4B.S2 013=2 013,a2 010>a4C.S2 013=2 012,a2 010≤a4D.S2 013=2 012,a2 010≥a4【答案】A【解析】设f(x)=x3+2 013x,显然f(x)为奇函数和增函数,由已知得f(a4-1)=-f(a2 010-1),所以f(a4-1)=f(-a2 010+1),a4-1=-a2 010+1,a4+a2 010=2,S2 013==2 013;显然1>-1,即f(a4-1)>f(a2 010-1),又f(x)为增函数,故a4-1>a2 010-1,即a4>a2 010.17.数列{an }的前n项和为Sn=2an-2,数列{bn}是首项为a1,公差不为零的等差数列,且b1,b3,b11成等比数列.(1)求数列{an }与{bn}的通项公式;(2)求证: <5.【答案】(1)bn=3n-1(2)见解析【解析】(1)当n≥2时,an =Sn-Sn-1=(2an-2)-(2an-1-2)=2an-2an-1,得an=2an-1.又由a1=S1=2a1-2,得a1=2,所以数列{an}是以2为首项,2为公比的等比数列,所以数列{an }的通项公式为an=2n.b 1=a1=2,设公差为d,则由b1,b3,b11成等比数列,得(2+2d)2=2×(2+10d),解得d=0(舍去)或d=3,所以数列{bn }的通项公式为bn=3n-1.,(2)证明:令Tn==,①2Tn=2+,②②-①得Tn=2+,所以Tn=,又 >0,故Tn<5.18.已知等差数列{an }的前n项和为Sn,a5=5,S5=15,则数列的前100项和为 ().A.B.C.D.【答案】A【解析】设等差数列{an }的首项为a1,公差为d.∵a5=5,S5=15,∴⇒⇒an=n.∴==,S100=++…+=1-=.19.若-9,a,-1成等差数列,-9,m,b,n,-1成等比数列,则ab=().A.15B.-15C.±15D.10【答案】A【解析】由已知得a==-5,b2=(-9)×(-1)=9且b<0,∴b=-3,∴ab=(-5)×(-3)=15.20.已知公差不为0的等差数列{an }满足a1,a3,a4成等比数列,Sn为数列{an}的前n项和,则的值为 ().A.2B.3C.D.【答案】A【解析】由题意,a1(a1+3d)=(a1+2d)2,d≠0,∴a1=-4d,∴==2.21.在等差数列{an }中,Sn为其前n项和,若a1=-3,S5=S10,则当Sn取最小值时n的值为().A.5B.7C.8D.7或8【答案】D【解析】由S5=S10,得a6+a7+a8+a9+a10=0,即a8=0,又a1=-3,所以当Sn取最小值时n的值为7或8.22.观察下列等式:…照此规律, 第n个等式可为 .【答案】【解析】通过观察等式的左边是一个的形式,右边的符号是一正一负的排列形式,正负号可以这样确定左边有偶数项的时候是正的,奇数项是负的.另外除符号外,数字就是左边的底数的和.所以.故填.【考点】1.数列的思维.2.合情推理.3.等差数列的求和.23.已知数列为等差数列,且(1)求数列的通项公式;(2)证明:【答案】(1) (2)参考解析【解析】(1)因为数列为等差数列,又因为所以通过这两项求出首项与公差.从而求出数列的通项公式,即可求出数列的通项公式,本小题的关键是对一个较复杂的数列的理解.(2)因为由(1)的到数列的通项公式,根据题意需要求数列前n项和公式,所以通过计算可求出通项公式,再利用等比数列的求和公式,即可得到结论.试题解析:(I)解:设等差数列的公差为.由即=1.所以即(II)证明:,∴【考点】1.对数的运算.2.等差数列的性质.3.等比数列的性质.4.构造转化的思想.24.已知{}为等差数列,若,,则________.【答案】20【解析】由题意可知,,则等差数列{}的公差,又因为.【考点】等差中项的应用.25.已知首项为的等比数列{an }是递减数列,其前n项和为Sn,且S1+a1,S2+a2,S3+a3成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)已知,求数列{bn}的前n项和.【答案】(I)an =a1=()n;(Ⅱ).【解析】(I){an }是一等比数列,且a1=.设等比数列{an}的公比为q,由S1+a1,S2+a2,S3+a3成等差数列,可得一个含公比q的方程,解这个方程便得公比q,从而得数列{an}通项公式. (Ⅱ)由题设及(I)可得:bn =anlog2an=-n∙()n,由等差数列与等比数列的积或商构成的新数列,求和时用错位相消法.试题解析:(I)设等比数列{an }的公比为q,由题知 a1=,又∵ S1+a1,S2+a2,S3+a3成等差数列,∴ 2(S2+a2)=S1+a1+S3+a3,变形得S2-S1+2a2=a1+S3-S2+a3,即得3a2=a1+2a3,∴q=+q2,解得q=1或q=, 4分又由{an}为递减数列,于是q=,∴an =a1=()n. 6分(Ⅱ)由于bn =anlog2an=-n∙()n,∴,于是,两式相减得:∴. 12分【考点】1.等差数列;2.等比数列的通项公式;3.错位相消法求和.26.已知数列为等差数列,若,,则( )A.36B.42C.45D.63【答案】C【解析】∵数列为等差数列,,∴,解得∴故选C.【考点】等差数列的性质.27.等差数列的前项和记为,若,,则的最大值为 .【答案】16【解析】等差数列的前项和为,,,即,,,,解得,.【考点】本题考查等差数列的通项公式.28.在等差数列中,若,则的前项和A.B.C.D.【答案】B【解析】.【考点】等差数列及其前项和.29.已知数列,满足,,且对任意的正整数,和均成等比数列.(1)求、的值;(2)证明:和均成等比数列;(3)是否存在唯一正整数,使得恒成立?证明你的结论.【答案】(1),;(2)详见解析;(3)详见解析.【解析】本题考查数列的求值,等比数列的证明和研究不等式的恒成立问题.(1)通过题设条件给出的数列关系,求出数列的初始值;(2)根据等比数列的定义,分别得到证明,其中应说明第一项不为零;(3)探求是否存在唯一的正整数使得恒成立分两步求解,先通过数列,的单调性得到,再证明证整数时唯一的,求解有关数列的综合问题,主要是要明确解题方向,合理利用数列的相关性质化难为易,化繁为简,同时还要注意解题步骤的规范性和严谨性.试题解析:(1)依题意,;(2)证明:依题意,对任意正整数有,即,,又,数列是首项为,公比为的等比数列,,又,数列是首项为,公比为的等比数列.(3)由(2)得,解得,显然,数列是单调递增的数列,是单调递减的数列,即存在正整数,使得对任意的,有,又令得,而,,,,解得,即对任意的且时,,正整数也是唯一的.综上所述,存在唯一的正整数,使得对任意的,有.【考点】等差数列、等比数列的性质,数列不等式的恒成立问题.30.已知为等比数列,是等差数列,(Ⅰ)求数列的通项公式及前项和;(2)设,,其中,试比较与的大小,并加以证明.【答案】(Ⅰ),;(Ⅱ)当时,;当时,;当时,.【解析】(Ⅰ)求数列的通项公式及前项和,由已知是等差数列,且,只需求出公差即可,由已知,且为等比数列,,只需求出公比即可,由得,,讨论是否符合条件,从而得,这样问就可以解决;(Ⅱ)设,,其中,试比较与的大小,关键是求出与的关系式,由已知是等差数列,由(Ⅰ)知,即可写出,,两式作差得,讨论即可.试题解析:(Ⅰ)设的公比为,由得,,。
小学奥数:等差数列计算题.专项练习及答案解析

等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=⑵13578799++++++=⑶471013404346+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:34567677783787623078()+++++++=+⨯÷=⑵算式中的等差数列一共有50项,所以:13578799(199)5022500++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。
高二数学等差数列试题答案及解析

高二数学等差数列试题答案及解析1.等差数列{an }中,已知a1=,a2+a5=4,an=33,则n的值为( ).A.50B.49C.48D.47【答案】A【解析】由于是等差数列,所以a2+a5=a1+a6=4,a1=,可得,,又an=,解这个方程可得n=50.故选A.【考点】等差数列的通项公式.2.已知等差数列的首项为,若此数列从第项开始小于,则公差的取值范围【答案】【解析】由于是等差数列,根据此数列从第项开始小于,可以判断出此数列从第15项大于或者等于,可得,解此不等式组,即可得出答案.试题解析:设首项是,公差是d,有题意,得,将代入,得,解得【考点】等差数列的通项公式.3.在等差数列{an }和等比数列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差数列,a 2,b2,a3+2成等比数列,数列{bn}的前n项和为Sn.(Ⅰ)求数列{an },{bn}的通项公式;(Ⅱ)若Sn +an>m对任意的正整数n恒成立,求常数m的取值范围.【答案】(Ⅰ)an =3n﹣2,bn=2•3n﹣1;(Ⅱ){m|m<3}【解析】(Ⅰ)设等差数列{an }的公差为d,等比数列{bn}的公比为q(q>0),由已知得,解得d=q=3,所以an =3n﹣2,bn=2•3n﹣1;(Ⅱ)由(Ⅰ)知,从而,则3n+3n﹣3>m对任意的正整数n恒成立,构造函数f (n)=3n+3n﹣3,则f(n+1)﹣f(n)=2•3n﹣3>0即f(n)单调递增,所以m<f(1)=3,答案为{m|m<3}.试题解析:(Ⅰ)设等差数列{an }的公差为d,等比数列{bn}的公比为q(q>0).由题意,得,解得d=q=3.∴a n =3n ﹣2,b n =2•3n ﹣1;(Ⅱ)∵S n +a n >m 对任意的正整数n 恒成立, ∴3n +3n ﹣3>m 对任意的正整数n 恒成立,令f (n )=3n +3n ﹣3,则f (n+1)﹣f (n )=2•3n ﹣3>0, ∴f (n )单调递增, ∴m <f (1)=3.∴常数m 的取值范围{m|m<3}【考点】1.等差数列和等比数列的通项公式;2.等比数列的求和公式;3.与正整数有关的不等式恒成立问题4. 在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55. (1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值 相等的概率. 【答案】,;(2)【解析】(1)根据等差数列的首项和公差求通项公式;(2)根据等比数列的首项和公比求通项公式;注意题中限制条件;(3)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;(4)当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举,当基本事件总数较多时,注意去分排列与组合;试题解析:解:(1)设{a n }的公差为d ,{b n }的公比为q.依题意得 S 10=10+d =55,b 4=q 3=8, 2分解得d =1,q =2, 4分 所以a n =n ,b n =2n -1. 6分(2)分别从{a n },{b n }的前3项中各随机抽取一项,得到的基本事件有9个: (1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4). 8分 符合题意的基本事件有2个:(1,1),(2,2). 10分 故所求的概率P = 12分【考点】(1)等差数列和等比数列的通项公式;(2)古典概型概率公式的应用.5. 已知数列中,,,若为等差数列,则( )A .B .C .D .【答案】A【解析】设等差数列的公差为,则,从而,所以,选择A.【考点】等差数列及通项公式.6. 已知等差数列的前项和为,,,(1)求数列的通项公式; (2)若,求数列的前100项和. 【答案】(1);(2). 【解析】(1)由及得,,求解方程组可求出和;利用等差数列的通项公式即可求出;(2)由,利用裂项求和即可求解.试题解析:(1)由及得,,解得,所以. (2),从而有:.故数列的前100项和为.【考点】数列的求和;数列的概念及简单表示法.7.已知数列满足,,则A.B.C.D.【答案】B【解析】因为,所以数列是以为首项,公差为3的等差数列故【考点】等差数列的定义及前n项和公式8.已知数列是等差数列,且.(1)求数列的通项公式; (2)令,求数列前n项和.【答案】(1);(2)【解析】(1)数列{an}是等差数列,且a1=2,设公差为d,代入a1+a2+a3=12,求出d,求出数列{an}的通项公式;(2)数列{an }的通项公式为an=n+2n,可以利用数列的分组求和法,分别求一个等差数列与一个等比数列的前n项和.试题解析:(1)由已知 5分(2)10分【考点】(1)等差数列;(2)数列求和.9.在ABC中,三个内角A,B,C的对边分别为,且A,B,C成等差数列,成等比数列,求证ABC为等边三角形.【答案】证明过程详见试题解析.【解析】由已知条件可得,即;而成等比数列,得,由余弦定理可得,即 A="C" ,所以ABC为等边三角形.试题解析:证明:由A,B,C成等差数列,有2B=A+C ①因为A,B,C为ABC的内角,所以A+B+C=②由①②,得 B=③由成等比数列,有④ 6分由余弦定理及③,可得再由④,得即因此从而有A=C ⑤由②③⑤,得A=B=C=所以ABC为等边三角形.(本题为选修1-2 P37例3) 12分【考点】等差中项、等比中项、余弦定理.10.已知等差数列,为其前项和,若,且,则()A.B.C.D.【答案】C【解析】由,得,∵==,∴,∴.【考点】等差数列的性质、前n项和.11.已知等比数列中,,.(1)求数列的通项公式;(2)若,分别为等差数列的第3项和第5项,试求数列的通项公式及前项和.【答案】(1) ;(2) , .【解析】(1) 设等比数列的公比为,由求出公比的值,从而得到等比数列的通项公式.(2)首先根据(1)所得通项公式求出,,从而得出等差数列的第3项和第5项.设等差数列的公差为,则有解方程组得和公差,即可代入公式求数列的通项公式及前项和.试题解析:(1)设等比数列的公比为由,得解得 3分∴数列的通项公式,即 5分(2)由(1)得,,则, 6分设等差数列的的公差为,则有∴,解得 8分∴数列的通项公式 9分∴数列的前项和 10分12分【考点】1、等差数列、等比数列的定义及通项公式;2、等差数列的前项和.12.等差数列{}的公差不为零,首项=1,是和的等比中项,则数列的前10项之和是( )A.90B.100C.145D.190【答案】B【解析】设等差数列的公差为,由是和的等比中项得,又,所以,即,解得(不合题意),所以,故正确答案为B.【考点】1.等差数列;2.等比中项公式.13.三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列,求这三个数.【答案】或,【解析】根据等比数列的定义,巧设所求三个数为,,,则有,解此方程可得、的值,从而得到所求的三个数.试题解析:设三数为或则三数为或,【考点】1.等比数列中项公式;2.等差数列中项公式.14.设是公比大于1的等比数列,为数列的前项和.已知,且构成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.【答案】(1)(2)【解析】(1)求等差等比数列的通项公式只要求出基本量就可以.由已知条件可以构建方程组求出和.利用通项公式能够求解通项.(2)因为所以一个等差乘以一个等比,利用错位相减法求和.试题解析:(Ⅰ)由已知解得.设数列的公比为,由,可得.又,可知,即,解得.由题意得..故数列的通项为. 6分(Ⅱ)由于,所以两式相减得:-----12分【考点】等比数列求通项、数列求和15.已知等差数列的前n项和为等于()A.-90B.-27C.-25D.0【答案】C【解析】设数列的首项为,公差为,则,所以,.【考点】等差数列的通项公式,前项和公式.16.已知等差数列,公差不为零,,且成等比数列;⑴求数列的通项公式;⑵设数列满足,求数列的前项和.【答案】(1) ;(2).【解析】(1)利用等差数列的通项公式,和等比数列的中项知识.(2)通过裂项法求数列的前n项和.试题解析:⑴由成等比数列得,,即,解得,或(舍), ,(2)=,.【考点】1.等差数列的通项公式.2.等比中项.3.裂项求和法.17.在等差数列中,已知,则____________________.【答案】20【解析】解法(一)设首项为,公差为d,由可得2+9d=10,又因为=20.解法(二)数列是等差数列,所以,由==20.【考点】1.等差数列的通项公式.2.等差数列的性质.18.在等差数列中,若,则的值为()A.20B.22C.24D.28【答案】C【解析】利用等差数列的性质:是等差数列,,本题显然有,故,.【考点】等差数列的性质.19.已知为等差数列,且,为的前项和.(Ⅰ)求数列的通项公式及;(II)设,求数列的通项公式及其前项和.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)确定等差数列需要两个独立的条件,由,可得,代入,中可得;(Ⅱ)由(Ⅰ)可得,求数列前项和,要根据通项公式的具体形式,选择适合的求和方法,常用的数列求和法有①裂项相消法;②错误相减法;③分组求和法;④奇偶项分析法等,该题=,利用裂项相消法.试题解析:(Ⅰ)设数列的公差为d,由题意得,解得, 2 分所以, 4分, 6分(Ⅱ)=, 8分∴=. 10分.【考点】1、等差数列的通项公式和前项和;2、裂项相消法求数列前项和.20. .等差数列满足则()A.17B.18C.19D.20【答案】B【解析】由,又,带入可得,或者根据推广后的通项公式,直接带入可得:,可得,故选B.【考点】等差数列的通项公式.21.观察下表12 3 43 4 5 6 74 5 6 7 8 9 10…………则第________________行的个数和等于20092。
等差数列练习题(带解析)

等差数列练习题一、单选题(共10题;共0分)1.数列前项和为,,,,若,则=()A. B. C. D.2.在数列中,,则的值为()A.−2B.C.D.3.数列,,,,的第14项是A. B. C. D.4.已知数列的前n项和为,且,则数列的通项公式为A. B. C. D.5.已知数列{a n}满足a1=1,,则254是该数列的()A.第14项B.第12项C.第10项D.第8项6.等比数列{a n}的前n项和为S n,己知S2=3,S4=15,则S3=( )A.7B.-9C.7或-9D.7.等差数列的前项和为,若,则()A. B. C. D.8.《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布585尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺9.将正整数按如图所示的规律排列下去,且用表示位于从上到下第行,从左到右n列的数,比如,若,则有()A. B.C. D.10.世界上最古老的数学著作《莱茵德纸草书》中有一道这样的题目:把磅面包分给个人,使每人所得成等差数列,且使较大的两份之和的是较小的三份之和,则最小的份为()A.磅B.磅C.磅D.磅二、填空题(共10题;共0分)11.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第个图案中正六边形的个数是.由,,,…,可推出________.12.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作,第2个五角形数记作,第3个五角形数记作,第4个五角形数记作,……,若按此规律继续下去,若,则________.13.某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度相等,两两夹角为120°;二级分形图是在一级分形图的每条线段末端出发再生成两条长度为原来的线段,且这两条线段与原线段两两夹角为120°,……,依此规律得到n级分形图.则n级分形图中共有________条线段.14.已知圆的有条弦,且任意两条弦都彼此相交,任意三条弦不共点,这条弦将圆分成了个区域,(例如:如图所示,圆的一条弦将圆分成了2(即)个区域,圆的两条弦将圆分成了4(即)个区域,圆的3条弦将圆分成了7(即)个区域),以此类推,那么与之间的递推式关系为:________.15.如图,数表满足:第n行首尾两数均为n;(2)表中递推关系类似杨辉三角,记第n(n>1)行第2个数为a(n).根据表中上下两行数据关系,可以求得当n≥2时,a(n)=________.16.数列由,确定,则________.17.已知数列满足,,,则 ________.18.已知等比数列中,则其前3项的和的取值范围是________.19.(2018•北京)设是等差数列,且a1=3, a2+a5= 36,则的通项公式为________20.数列满足, ,数列的前项和为=________.三、解答题(共4题;共0分)21.已知等差数列的首项,公差,前项和为,.(1)求数列的通项公式;(2)设数列前项和为,求.22.在数列中,,.(1)求证:数列是等差数列;(2)求数列的前n项和.23.在数列中,,,设.(1)证明:数列是等比数列,并求的通项公式;(2)求的前项和.24.设正项数列的前项和为,且满足,,.(1)求数列的通项公式;(2)若正项等比数列满足,,且,数列的前项和为,求证.等差数列练习题答案部分第 1 题:【答案】C【解析】【解答】由题意有:当时,,两式作差可得:,由于,故,即数列的奇数项、偶数项分别构成一个公差为3的等差数列,,据此可得,则数列的通项公式为:,,,加2后能被3整除,则.故答案为:C.【分析】本题利用对n进行分类讨论,再利用S求a的方法求出第k项,从而求出k的值。
等差数列基础习题选(附详细答案解析)

WORD文档下载可编辑等差数列基础习题选(附有详细解答)一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣12.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.264.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2C.3D.一25.两个数1与5的等差中项是()A.1B.3C.2D.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣57.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.48.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.119.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25 B.24 C.20 D.1910.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1 D.111.(2005•黑龙江)如果数列{a n}是等差数列,则()A.a+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5112.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1 C.2D.13.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1 B.1C.3D.714.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()A.B.C.D.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6B.7C.8D.916.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A.30 B.35 C.36 D.2417.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5B.6C.5或6 D.6或718.(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.17619.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A.﹣1 B.0C.1D.220.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()A.6B.7C.8D.921.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()A.4或5 B.5或6 C.4D.522.等差数列{a n}中,a n=2n﹣4,则S4等于()A.12 B.10 C.8D.423.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()A.230 B.140 C.115 D.9524.等差数列{a n}中,a3+a8=5,则前10项和S10=()A.5B.25 C.50 D.10025.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于()A.1B.2C.3D.426.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大()A.第10项B.第11项C.第10项或11项D.第12项二.填空题(共4小题)27.如果数列{a n}满足:= _________ .28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)= _________ .29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为_________ .30.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式:(Ⅱ)若数列{a n}和数列{b n}满足等式:a n==(n为正整数),求数列{b n}的前n项和S n.参考答案与试题解析一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣1考点:等差数列.专题:计算题.分析:本题可由题意,构造方程组,解出该方程组即可得到答案.解答:解:等差数列{a}中,a3=9,a9=3,n由等差数列的通项公式,可得解得,即等差数列的公差d=﹣1.故选D点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.2.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列考点:等差数列.专题:计算题.分析:直接根据数列{a}的通项公式是a n=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.n解答:解:因为a=2n+5,n所以 a1=2×1+5=7;a n+1﹣a n=2(n+1)+5﹣(2n+5)=2.故此数列是以7为首项,公差为2的等差数列.故选A.点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.26考点:等差数列.专题:综合题.分析:根据a=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,让其1等于2得到关于n的方程,求出方程的解即可得到n的值.解答:解:由题意得a3=a1+2d=12,把a1=13代入求得d=﹣,则a n=13﹣(n﹣1)=﹣n+=2,解得n=23故选A点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2C.3D.一2考点:等差数列.专题:计算题.分析:根据等差数列的前三项之和是6,得到这个数列的第二项是2,这样已知等差数列的;两项,根据等差数列的通项公式,得到数列的公差.解答:解:∵等差数列{a}的前n项和为S n,nS3=6,∴a2=2∵a4=8,∴8=2+2d∴d=3,故选C.点评:本题考查等差数列的通项,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的三倍,这样可以简化题目的运算.5.两个数1与5的等差中项是()A.1B.3C.2D.考点:等差数列.专题:计算题.分析:由于a,b的等差中项为,由此可求出1与5的等差中项.解答:解:1与5的等差中项为:=3,故选B.点评:本题考查两个数的等差中项,牢记公式a,b的等差中项为:是解题的关键,属基础题.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣5考点:等差数列.专题:计算题.分析:设等差数列{a n}的公差为d,因为数列前六项均为正数,第七项起为负数,所以,结合公差为整数进而求出数列的公差.解答:解:设等差数列{a}的公差为d,n所以a6=23+5d,a7=23+6d,又因为数列前六项均为正数,第七项起为负数,所以,因为数列是公差为整数的等差数列,所以d=﹣4.故选C.点评:解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.7.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.4考点:等差数列的通项公式.专题:计算题.分析:设数列{a}的公差为d,则由题意可得 2a1+4d=10,a1+3d=7,由此解得d的值.n解答:解:设数列{a}的公差为d,则由a1+a5=10,a4=7,可得 2a1+4d=10,a1+3d=7,解得 d=2,n故选B.点评:本题主要考查等差数列的通项公式的应用,属于基础题.8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.11考点:等差数列的通项公式.专题:计算题.分析:先确定等差数列的通项,再利用,我们可以求得的值.解答:解:∵为等差数列,,,∴∴b n=b3+(n﹣3)×2=2n﹣8∵∴b8=a8﹣a1∵数列的首项为3∴2×8﹣8=a8﹣3,∴a8=11.故选D点评:本题考查等差数列的通项公式的应用,由等差数列的任意两项,我们可以求出数列的通项,是基础题.9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25 B.24 C.20 D.19考点:等差数列的通项公式.专题:计算题.分析:(法一):根据两个等差数列的相同的项按原来的先后次序组成一个等差数列,且公差为原来两个公差的最小公倍数求解,(法二)由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解.解答:解法一:设两个数列相同的项按原来的前后次序组成的新数列为{a},则a1=11n∵数列5,8,11,…与3,7,11,…公差分别为3与4,∴{a n}的公差d=3×4=12,∴a n=11+12(n﹣1)=12n﹣1.又∵5,8,11,…与3,7,11,…的第100项分别是302与399,∴a n=12n﹣1≤302,即n≤25.5.又∵n∈N*,∴两个数列有25个相同的项.故选A解法二:设5,8,11,与3,7,11,分别为{a n}与{b n},则a n=3n+2,b n=4n﹣1.设{a n}中的第n项与{b n}中的第m项相同,即3n+2=4m﹣1,∴n= m﹣1.又m、n∈N*,可设m=3r(r∈N*),得n=4r﹣1.根据题意得1≤3r≤100 1≤4r﹣1≤100 解得≤r≤∵r∈N*从而有25个相同的项故选A点评:解法一利用了等差数列的性质,解法二利用了不定方程的求解方法,对学生的运算能力及逻辑思维能力的要求较高.10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1 D.1考点:等差数列的通项公式.专题:计算题.分析:根据递推公式求出公差为2,再由S=9以及前n项和公式求出a1的值.3解答:解:∵a=a n﹣1+2(n≥2),∴a n﹣a n﹣1=2(n≥2),n∴等差数列{a n}的公差是2,由S3=3a1+=9解得,a1=1.故选D.点评:本题考查了等差数列的定义,以及前n项和公式的应用,即根据代入公式进行求解.11.(2005•黑龙江)如果数列{a n}是等差数列,则()A.a+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a51考点:等差数列的性质.分析:用通项公式来寻求a+a8与a4+a5的关系.1解答:解:∵a+a8﹣(a4+a5)=2a1+7d﹣(2a1+7d)=01∴a1+a8=a4+a5∴故选B点评:本题主要考查等差数列通项公式,来证明等差数列的性质.12.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1 C.2D.考点:等差数列的性质.专题:计算题.分析:充分利用等差数列前n项和与某些特殊项之间的关系解题.解答:解:设等差数列{a}的首项为a1,由等差数列的性质可得na1+a9=2a5,a1+a5=2a3,∴====1,故选A.点评:本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用,已知等差数列{a n}的前n项和为S n,则有如下关系S2n﹣1=(2n﹣1)a n.13.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1 B.1C.3D.7考点:等差数列的性质.专题:计算题.分析:根据已知条件和等差中项的性质可分别求得a和a4的值,进而求得数列的公差,最后利用等差数列的通项3公式求得答案.解答:解:由已知得a+a3+a5=3a3=105,1a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=a4﹣a3=﹣2.∴a20=a3+17d=35+(﹣2)×17=1.故选B点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用.解题的关键是利用等差数列中等差中项的性质求得a3和a4.14.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()A.B.C.D.考点:数列的求和;等差数列的性质.专题:计算题.分析:求出等差数列的通项,要求的和是一个等差数列与一个等比数列的积构成的数列,利用错位相减法求出数列的前n项的和.解答:解:∵等差数列{a}中,a2=4,a6=12;n∴公差d=;∴a n=a2+(n﹣2)×2=2n;∴;∴的前n项和,=两式相减得=∴故选B点评:求数列的前n项的和,先判断通项的特点,据通项的特点选择合适的求和方法.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6B.7C.8D.9考点:等差数列的性质.专题:计算题.分析:由a+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①,根据等差数列的前n项和公式可得,2,联立可求d,a1,代入等差数列的通项公式可求解答:解:等差数列{a}中,a2+a5=4,S7=21n根据等差数列的性质可得a3+a4=a1+a6=4①根据等差数列的前n项和公式可得,所以 a1+a7=6②②﹣①可得d=2,a1=﹣3所以a7=9故选D点评:本题主要考查了等差数列的前n项和公式及等差数列的性质的综合应用,属于基础试题.16.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A.30 B.35 C.36 D.24考点:等差数列的性质.专题:计算题.分析:利用等差中项的性质求得a的值,进而利用a1+a6=a3+a4求得a1+a6的值,代入等差数列的求和公式中求得答3案.解答:解:a+a3+a5=3a3=15,1∴a3=5∴a1+a6=a3+a4=12∴s6=×6=36故选C点评:本题主要考查了等差数列的性质.特别是等差中项的性质.17.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5B.6C.5或6 D.6或7考点:等差数列的前n项和;等差数列的通项公式.专题:计算题.分析:由,知a1+a11=0.由此能求出数列{a n}的前n项和S n取得最大值时的项数n.解答:解:由,知a1+a11=0.∴a6=0,故选C.点评:本题主要考查等差数列的性质,求和公式.要求学生能够运用性质简化计算.18.(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.176考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:根据等差数列的定义和性质得 a1+a11=a4+a8=16,再由S11=运算求得结果.解答:解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选B.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.19.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A.﹣1 B.0C.1D.2考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:由等差数列得性质可得:5a=10,即a5=2.同理可得5a6=20,a6=4,再由等差中项可知:a4=2a5﹣a6=05解答:解:由等差数列得性质可得:a+a9=a3+a7=2a5,又a1+a3+a5+a7+a9=10,1故5a5=10,即a5=2.同理可得5a6=20,a6=4.再由等差中项可知:a4=2a5﹣a6=0故选B点评:本题考查等差数列的性质及等差中项,熟练利用性质是解决问题的关键,属基础题.20.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()A.6B.7C.8D.9考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:先利用公式a n=求出a n,再由第k项满足4<a k<7,建立不等式,求出k的值.解答:解:a n==∵n=1时适合a n=2n﹣9,∴a n=2n﹣9.∵4<a k<7,∴4<2k﹣9<7,∴<k<8,又∵k∈N+,∴k=7,故选B.点评:本题考查数列的通项公式的求法,解题时要注意公式a n=的合理运用,属于基础题.21.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()A.4或5 B.5或6 C.4D.5考点:等差数列的前n项和.专题:计算题.分析:把数列的前n项的和S看作是关于n的二次函数,把关系式配方后,又根据n为正整数,即可得到S n取得n最小值时n的值.解答:解:因为S n=2n2﹣17n=2﹣,又n为正整数,所以当n=4时,S n取得最小值.故选C点评:此题考查学生利用函数思想解决实际问题的能力,是一道基础题.22.等差数列{a n}中,a n=2n﹣4,则S4等于()A.12 B.10 C.8D.4考点:等差数列的前n项和.专题:计算题.分析:利用等差数列{a}中,a n=2n﹣4,先求出a1,d,再由等差数列的前n项和公式求S4.n解答:解:∵等差数列{a}中,a n=2n﹣4,n∴a1=2﹣4=﹣2,a2=4﹣4=0,d=0﹣(﹣2)=2,∴S4=4a1+=4×(﹣2)+4×3=4.故选D.点评:本题考查等差数列的前n项和公式的应用,是基础题.解题时要认真审题,注意先由通项公式求出首项和公差,再求前四项和.23.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()A.230 B.140 C.115 D.95考点:等差数列的前n项和.专题:综合题.分析:分别利用等差数列的通项公式化简已知的两个等式,得到①和②,联立即可求出首项和公差,然后利用求出的首项和公差,根据公差数列的前n项和的公式即可求出数列前10项的和.解答:解:a=a1+2d=4①,a8=a1+7d=19②,3②﹣①得5d=15,解得d=3,把d=3代入①求得a1=﹣2,所以S10=10×(﹣2)+×3=115故选C.点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.24.等差数列{a n}中,a3+a8=5,则前10项和S10=()A.5B.25 C.50 D.100考点:等差数列的前n项和;等差数列的性质.专题:计算题.分析:根据条件并利用等差数列的定义和性质可得 a1+a10=5,代入前10项和S10 =运算求得结果.解答:解:等差数列{a}中,a3+a8=5,∴a1+a10=5,n∴前10项和S10 ==25,故选B.点评:本题主要考查等差数列的定义和性质,以及前n项和公式的应用,求得a+a10=5,是解题的关键,属于基础1题.25.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于()A.1B.2C.3D.4考点:等差数列的前n项和.专题:计算题.分析:由S,S2,S4成等比数列,根据等比数列的性质得到S22=S1S4,然后利用等差数列的前n项和的公式分别表1示出各项后,代入即可得到首项和公差的关系式,根据公差不为0,即可求出公差与首项的关系并解出公差d,然后把所求的式子利用等差数列的通项公式化简后,把公差d的关系式代入即可求出比值.解答:解:由S,S2,S4成等比数列,1∴(2a1+d)2=a1(4a1+6d).∵d≠0,∴d=2a1.∴===3.故选C点评:此题考查学生掌握等比数列的性质,灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道综合题.26.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大()A.第10项B.第11项C.第10项或11项D.第12项考点:等差数列的前n项和;二次函数的性质.专题:转化思想.分析:方法一:由a,令n=1求出数列的首项,利用a n﹣a n﹣1等于一个常数,得到此数列为等差数列,然后根据n求出的首项和公差写出等差数列的前n项和的公式,得到前n项的和与n成二次函数关系,其图象为开口向下的抛物线,当n=﹣时,前n项的和有最大值,即可得到正确答案;方法二:令a n大于等于0,列出关于n的不等式,求出不等式的解集即可得到n的范围,在n的范围中找出最大的正整数解,从这项以后的各项都为负数,即可得到正确答案.解答:解:方法一:由a=﹣2n+21,得到首项a1=﹣2+21=19,a n﹣1=﹣2(n﹣1)+21=﹣2n+23,n则a n﹣a n﹣1=(﹣2n+21)﹣(﹣2n+23)=﹣2,(n>1,n∈N+),所以此数列是首项为19,公差为﹣2的等差数列,则S n=19n+•(﹣2)=﹣n2+20n,为开口向下的抛物线,当n=﹣=10时,S n最大.所以数列{a n}从首项到第10项和最大.方法二:令a n=﹣2n+21≥0,解得n≤,因为n取正整数,所以n的最大值为10,所以此数列从首项到第10项的和都为正数,从第11项开始为负数,则数列{a n}从首项到第10项的和最大.故选A点评:此题的思路可以先确定此数列为等差数列,根据等差数列的前n项和的公式及二次函数求最值的方法得到n 的值;也可以直接令a n≥0,求出解集中的最大正整数解,要求学生一题多解.二.填空题(共4小题)27.如果数列{a n}满足:= .考点:数列递推式;等差数列的通项公式.专题:计算题.分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项,根据等差数列的通项公式写出数列,进一步得到结果.解答:解:∵根据所给的数列的递推式∴数列{}是一个公差是5的等差数列,∵a1=3,∴=,∴数列的通项是∴故答案为:点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列的通项公式写出通项,本题是一个中档题目.28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)= 101 .考点:数列递推式;等差数列的通项公式.专题:计算题.分析:由f(n+1)=f(n)+1,x∈N+,f(1)=2,依次令n=1,2,3,…,总结规律得到f(n)=n+1,由此能够求出f(100).解答:解:∵f(n+1)=f(n)+1,x∈N+,f(1)=2,∴f(2)=f(1)+1=2+1=3,f(3)=f(2)+1=3+1=4,f(4)=f(3)+1=4+1=5,…∴f(n)=n+1,∴f(100)=100+1=101.故答案为:101.点评:本题考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答.29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为58 .考点:数列的求和;等差数列的通项公式.专题:计算题.分析:先求出等差数列的前两项,可得通项公式为a=7﹣2n,从而得到n≤3时,|a n|=7﹣2n,当n>3时,|a n|=n2n﹣7.分别求出前3项的和、第4项到第10项的和,相加即得所求.解答:解:由于等差数列{a n}的前n项的和,故a1=s1=5,∴a2=s2﹣s1=8﹣5=3,故公差d=﹣2,故a n=5+(n﹣1)(﹣2)=7﹣2n.当n≤3时,|a n|=7﹣2n,当n>3时,|a n|=2n﹣7.故前10项之和为 a1+a2+a3﹣a4﹣a5﹣…﹣a10=+=9+49=58,故答案为 58.点评:本题主要考查等差数列的通项公式,前n项和公式及其应用,体现了分类讨论的数学思想,属于中档题.30.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{a n}的通项公式:(Ⅱ)若数列{a n}和数列{b n}满足等式:a n==(n为正整数),求数列{b n}的前n项和S n.考点:数列的求和;等差数列的通项公式.专题:计算题.分析:(1)将已知条件aa6=55,a2+a7=16,利用等差数列的通项公式用首项与公差表示,列出方程组,求出首项3与公差,进一步求出数列{a n}的通项公式(2)将已知等式仿写出一个新等式,两个式子相减求出数列{b n}的通项,利用等比数列的前n项和公式求出数列{b n}的前n项和S n.解答:解(1)解:设等差数列{a} 的公差为d,则依题设d>0n由a2+a7=16.得2a1+7d=16①由a3•a6=55,得(a1+2d)(a1+5d)=55 ②由①得2a1=16﹣7d 将其代入②得(16﹣3d)(16+3d)=220.即256﹣9d2=220∴d2=4,又d>0,∴d=2,代入①得a1=1∴a n=1+(n﹣1)•2=2n﹣1所以a n=2n﹣1(2)令c n=,则有a n=c1+c2+…+c n,a n+1=c1+c2+…+c n﹣1两式相减得a n+1﹣a n=c n+1,由(1)得a1=1,a n+1﹣a n=2∴c n+1=2,c n=2(n≥2),即当n≥2时,b n=2n+1又当n=1时,b1=2a1=2∴b n=<BR>于是S n=b1+b2+b3…+b n=2+23+24+…+2n+1=2+22+23+24+…+2n+1﹣4=﹣6,即S n=2n+2﹣6点评:求一个数列的前n项和应该先求出数列的通项,利用通项的特点,然后选择合适的求和的方法.。
高中数学等差数列选择题专项训练测试试题附解析

一、等差数列选择题1.已知数列{x n }满足x 1=1,x 2=23,且11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(23)n -1B .(23)n C .21n + D .12n + 解析:C 【分析】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫⎨⎬⎩⎭的通项公式,进而得出答案. 【详解】由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,且121131,2x x ==,故公差12d = 则()1111122n n n x +=+-⨯=,故21n x n =+故选:C2.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36 B .48 C .56 D .72解析:A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键.3.已知数列{}n a 满足25111,,25a a a ==且*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19 B .20C .21D .22解析:B 【分析】由等差数列的性质可得数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,再由等差数列的通项公式可得1n n a ,进而可得1n a n=,再结合基本不等式即可得解. 【详解】因为*121210,n n n n a a a ++-+=∈N ,所以12211n n n a a a ++=+, 所以数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,设其公差为d ,由25111,25a a a ==可得25112,115a a a ==⋅, 所以111121145d a d a a ⎧+=⎪⎪⎨⎪+=⋅⎪⎩,解得1111a d ⎧=⎪⎨⎪=⎩,所以()1111n n d n a a =+-=,所以1n a n=,所以不等式100n n a a +≥即100n a n+≥对任意的*n N ∈恒成立,又10020n n +≥=,当且仅当10n =时,等号成立, 所以20a ≤即实数a 的最大值是20. 故选:B. 【点睛】关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用. 4.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则99S a =( ) A .9 B .5C .1D .59解析:B 【分析】由已知条件,结合等差数列通项公式得1a d =,即可求99S a . 【详解】4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,∴1999()452a a S d ⨯+==,99a d =,且0d ≠,∴995S a =. 故选:B5.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21 B .15C .10D .6解析:C 【分析】根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】 因为134222a a a a +=⎧⎨-=⎩,所以122222a d d +=⎧⎨=⎩,所以101a d =⎧⎨=⎩,所以5154550101102S a d ⨯=+=⨯+⨯=, 故选:C.6.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12 B .20C .40D .100解析:B 【分析】由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:1011045100S a d =+=,12920a d ∴+=, 4712920a a a d ∴+=+=.故选:B.7.等差数列{}n a 的前n 项和为n S ,已知58a =,36S =,则107S S -的值是( ) A .48 B .60C .72D .24解析:A 【分析】根据条件列方程组,求首项和公差,再根据107891093S S a a a a -=++=,代入求值. 【详解】由条件可知114832362a d a d +=⎧⎪⎨⨯+=⎪⎩,解得:102a d =⎧⎨=⎩,()10789109133848S S a a a a a d -=++==+=.故选:A8.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( ) A .9 B .12C .15D .18解析:A 【分析】在等差数列{a n }中,利用等差中项由95132a a a =+求解. 【详解】在等差数列{a n }中,a 5=3,a 9=6, 所以95132a a a =+,所以139522639a a a =-=⨯-=, 故选:A9.已知等差数列{}n a 的公差d 为正数,()()111,211,n n n a a a tn a t +=+=+为常数,则n a =( )A .21n -B .43n -C .54n -D .n解析:A 【分析】由已知等式分别求出数列的前三项,由2132a a a =+列出方程,求出公差,利用等差数列的通项公式求解可得答案. 【详解】11a =,()()1211n n n a a tn a ++=+,令1n =,则()()121211a a t a +=+,解得21a t =-令2n =,则()()2322121a a t a +=+,即()2311t a t -=-,若1t =,则20,1a d ==,与已知矛盾,故解得31a t =+{}n a 等差数列,2132a a a ∴=+,即()2111t t -=++,解得4t =则公差212d a a =-=,所以()1121n a a n d n =+-=-. 故选:A10.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .47B .1629C .815D .45解析:D 【分析】设该妇子织布每天增加d 尺,由等差数列的前n 项和公式即可求出结果【详解】设该妇子织布每天增加d 尺, 由题意知2020192042322S d ⨯=⨯+=, 解得45d =. 故该女子织布每天增加45尺. 故选:D11.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且713n n S n T n -=,则55a b =( ) A .3415B .2310C .317D .6227解析:D 【分析】利用等差数列的性质以及前n 项和公式即可求解. 【详解】 由713n n S n T n-=, ()()19551991955199927916229239272a a a a a a Sb b b b b b T ++⨯-======++⨯. 故选:D12.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29 B .38 C .40 D .58解析:A 【分析】根据等差中项的性质,求出414a =,再求10a ; 【详解】因为{}n a 为等差数列,所以264228a a a +==, ∴414a =.由59410a a a a +=+43=,得1029a =, 故选:A.13.已知数列{}n a 的前n 项和221n S n n =+-,则13525a a a a ++++=( )A .350B .351C .674D .675解析:A 【分析】先利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,再利用通项公式求出13525a a a a ++++的值.【详解】当1n =时,21112112a S ==+⨯-=;当2n ≥时,()()()22121121121n n n a S S n n n n n -⎡⎤=-=+---+--=+⎣⎦.12a =不适合上式,2,121,2n n a n n =⎧∴=⎨+≥⎩.因此,()()3251352512127512235022a a a a a a ⨯+⨯+++++=+=+=;故选:A. 【点睛】易错点睛:利用前n 项和n S 求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,但需要验证1a 是否满足()2n a n ≥.14.设等差数列{}n a 的前n 项和为n S ,公差1d =,且6210S S ,则34a a +=( )A .2B .3C .4D .5解析:B 【分析】根据等差数列的性质,由题中条件,可直接得出结果. 【详解】因为n S 为等差数列{}n a 的前n 项和,公差1d =,6210S S , 所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=. 故选:B.15.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72 B .90 C .36 D .45解析:B 【分析】由题意结合248,,a a a 成等比数列,有2444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S . 【详解】由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,∴2444(4)(8)a a a =-+,解之得48a =,∴143862a a d =-=-=,则1(1)2n a a n d n =+-=,∴99(229)902S ⨯+⨯==,故选:B 【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 1、由,,m k n a a a 成等比,即2k m n a a a =; 2、等差数列前n 项和公式1()2n n n a a S +=的应用. 二、等差数列多选题16.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小 B .130S =C .49S S =D .70a =解析:BCD 【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题.17.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >解析:ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.18.题目文件丢失!19.题目文件丢失!20.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( ) A .31a =-B .201912a =C .332S = D . 2 01920192S =解析:ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD .【详解】由题意211122a =-=,311112a =-=-,A 正确,3132122S =+-=,C 正确;41121a =-=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;20193201967322S =⨯=,D 正确.故选:ACD . 【点睛】本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解. 21.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2 B .5C .3D .4解析:BD 【分析】利用递推关系可得1211n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵23n n n S a +=, ∴2n ≥时,112133n n n n n n n a S S a a --++=-=-, 化为:112111n n a n a n n -+==+--, 由于数列21n ⎧⎫⎨⎬-⎩⎭单调递减,可得:2n =时,21n -取得最大值2. ∴1n n a a -的最大值为3. 故选:BD . 【点睛】本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题. 22.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大B .在数列{}n a 中,3a 或4a 最大C .310S S =D .当8n ≥时,0n a < 解析:AD 【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题. 23.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数)B .数列{}n a -是等差数列C .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列D .1n a +是n a 与2n a +的等差中项解析:ABD 【分析】由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项. 【详解】A.因为数列{}n a 是等差数列,所以1n n a a d +-=,即1n n a a d +=+,所以A 正确;B. 因为数列{}n a 是等差数列,所以1n n a a d +-=,那么()()()11n n n n a a a a d ++---=--=-,所以数列{}n a -是等差数列,故B 正确;C.111111n n n n n n n n a a d a a a a a a ++++---==,不是常数,所以数列1n a ⎧⎫⎨⎬⎩⎭不是等差数列,故C 不正确;D.根据等差数列的性质可知122n n n a a a ++=+,所以1n a +是n a 与2n a +的等差中项,故D 正确.故选:ABD【点睛】本题考查等差数列的性质与判断数列是否是等差数列,属于基础题型.24.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}n a 是等方差数列B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k N k ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列解析:BCD【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误; 对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数, {(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a , 数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k a a a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k k k k k k k k a a a a a a a a kp +++++--+-+-++-=,222k k a a kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+ {}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD.【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题.25.无穷数列{}n a 的前n 项和2n S an bn c =++,其中a ,b ,c 为实数,则( )A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列解析:ABC【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴=所以当0c 时,{}n a 是等差数列, 00a cb ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列.故选:A B C【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.。
数学等差数列试题答案及解析

数学等差数列试题答案及解析1.(本题满分14分)公差不为0的等差数列中,且成等比数列. (I)求的通项公式;(Ⅱ)设试比较与的大小,并说明理由.【答案】(I)an =n+1(Ⅱ)bn+1>b n【解析】(Ⅰ)设等差数列{an}的公差为d.由已知得注意到d≠0,解得a1=2,d=1.所以an=n+1.(Ⅱ)由(Ⅰ)可知b n =++…+,bn+1=++…+,因为bn+1-b n=+-=->0,所以bn+1>b n.2.(本题满分12分)已知数列为等比数列,其前项和为,已知,且对于任意的有成等差数列;(Ⅰ)求数列的通项公式;(Ⅱ)已知(),求.【答案】(Ⅰ)(Ⅱ)【解析】设公比为,因为成等差数列,所以即解得 2分又,所以, 5分故. 6分(Ⅱ),7分10分. 12分【考点】本题主要考查等差数列、等比数列的基础知识,考查“错位相减法”求和,意在考查考生的运算能力,逻辑思维能力.3.已知数列满足:,则__________.【答案】【解析】由题设知是等差数列,公差为1,所以.【考点】本题考查等差数列基础知识.4.已知等差数列{}的前n项和为Sn,公差d≠0,且S3=9,a1,a3,a7成等比数列.(1)求数列{}的通项公式;(2)设=,求数列{}的前n项和.【答案】(1)an=n+1;(2).【解析】(1),即(a1+2d)2=a1(a1+6d),化简得,d=0(舍去).∴,得a1=2,d=1.∴an =a1+(n-1)d=2+(n-1)=n+1,即an=n+1.(6分)(2)∵bn =2an=2n+1,∴b1=4,.∴{bn}是以4为首项,2为公比的等比数列,∴.(12分)5.已知等差数列{an }的前n项和为Sn,a5=5,S5=15,则数列的前100项和为A.B.C.D.【答案】A【解析】由,得,所以,所以,又,选A.6.在直角坐标平面上有一点列,对一切正整数,点位于函数的图象上,且的横坐标构成以为首项,-为公差的等差数列。
高三数学数学等差数列选择题专项训练的专项培优练习题(及解析

一、等差数列选择题1.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之和为( ) A .24 B .39C .104D .52解析:D 【分析】根据等差数列的性质计算求解. 【详解】由题意()()357101341041073232236()1248a a a a a a a a a a ++++=⨯+⨯=+==,74a =,∴11313713()13134522a a S a +===⨯=. 故选:D .2.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .32B .92C .2D .9解析:A 【分析】由2a 和4a 求出公差d ,再根据54a a d =+可求得结果. 【详解】 设公差为d ,则423634222a a d --===--, 所以5433322a a d =+=-=. 故选:A3.在1与25之间插入五个数,使其组成等差数列,则这五个数为( ) A .3、8、13、18、23 B .4、8、12、16、20 C .5、9、13、17、21 D .6、10、14、18、22解析:C 【分析】根据首末两项求等差数列的公差,再求这5个数字. 【详解】在1与25之间插入五个数,使其组成等差数列, 则171,25a a ==,则712514716a a d --===-, 则这5个数依次是5,9,13,17,21. 故选:C4.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51 B .57C .54D .72解析:B 【分析】根据等差数列的性质求出103a =,再由求和公式得出答案. 【详解】317102a a a += 1039a ∴=,即103a =()1191019191921935722a a a S +⨯∴===⨯=故选:B5.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则99S a =( ) A .9 B .5C .1D .59解析:B 【分析】由已知条件,结合等差数列通项公式得1a d =,即可求99S a . 【详解】4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,∴1999()452a a S d ⨯+==,99a d =,且0d ≠, ∴995S a =. 故选:B6.已知等差数列{}n a 的前n 项和为n S ,且2n S n =.定义数列{}n b 如下:()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b ++++=( )A .25B .50C .75D .100解析:B 【分析】先求得21n a n =-,根据n a m ≥,求得12m n +≥,进而得到21212k k b --=,结合等差数列的求和公式,即可求解. 【详解】由题意,等差数列{}n a 的前n 项和为n S ,且2n S n =,可得21n a n =-,因为n a m ≥,即21n m -≥,解得12m n +≥, 当21m k =-,(*k N ∈)时,1m m b k m+=,即()()11212m m m mk m b m m +===++, 即21212k k b --=, 从而()13519113519502b b b b ++++=++++=.故选:B.7.设等差数列{}n a 的前n 项和为n S ,且71124a a -=,则5S =( ) A .15 B .20C .25D .30解析:B 【分析】设出数列{}n a 的公差,利用等差数列的通项公式及已知条件,得到124a d +=,然后代入求和公式即可求解 【详解】设等差数列{}n a 的公差为d ,则由已知可得()()111261024a d a d a d +-+=+=, 所以()5115455254202S a d a d ⨯=+=+=⨯= 故选:B8.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( ) A .12尺布 B .518尺布 C .1631尺布 D .1629尺布 解析:D 【分析】设该女子第()N n n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,根据15a =,30390S =可求得d 的值. 【详解】设该女子第()N n n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,由题意可得30130293015015293902S a d d ⨯=+=+⨯=,解得1629d =.故选:D.9.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则612SS =( )A .177B .83C .143D .103解析:D 【分析】由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列, 所以()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =.又()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而126103S S =. 故选:D 【点睛】 思路点睛:(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列, (2)()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =.10.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个 B .3个C .2个D .1个解析:B 【分析】设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断D . 【详解】设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;所以7710217022128S d =⨯+≤-⨯=,B 错误;1(1)10(1)0n a a n d n d =+-=+-≥,解得101n d≤-+,11100n a a nd nd +=+=+≤,解得10n d≥-, 所以10101n d d-≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=, 当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由10n n a a +≥⎧⎨≤⎩求得.11.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n - B .322n - C .3122n - D .3122n + 解析:C 【分析】根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】因为数列{}n a 为等差数列,11a =,34a =, 则公差为31322a a d -==, 因此通项公式为()33111222n a n n =+-=-. 故选:C.12.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n - B .nC .21n -D .2n解析:B 【分析】根据条件列出关于首项和公差的方程组,求解出首项和公差,则等差数列{}n a 的通项公式可求. 【详解】因为3518a S +=,633a a =+,所以11161218523a d a d a d +=⎧⎨+=++⎩,所以111a d =⎧⎨=⎩,所以()111n a n n =+-⨯=,故选:B.13.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S =( ) A .16 B .-16 C .4 D .-4解析:A 【详解】 由()()18458884816222a a a a S +⨯+⨯⨯====.故选A.14.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10C .12D .14解析:C 【分析】利用等差数列的通项公式即可求解. 【详解】 {a n }为等差数列,S 3=12,即1232312a a a a ++==,解得24a =. 由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=. 故选:C15.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200 B .100C .90D .80解析:C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C二、等差数列多选题16.已知数列{}n a 满足:12a =,当2n ≥时,)212n a =-,则关于数列{}n a 的说法正确的是 ( )A .27a =B .数列{}n a 为递增数列C .221n a n n =+- D .数列{}n a 为周期数列解析:ABC 【分析】由)212n a =-1=,再利用等差数列的定义求得n a ,然后逐项判断. 【详解】当2n ≥时,由)212n a =-,得)221n a +=,1=,又12a =,所以是以2为首项,以1为公差的等差数列,2(1)11n n =+-⨯=+, 即221n a n n =+-,故C 正确; 所以27a =,故A 正确;()212n a n =+-,所以{}n a 为递增数列,故正确;数列{}n a 不具有周期性,故D 错误; 故选:ABC17.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列 C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列 解析:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 18.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( ) A .2- B .23 C .32D .3解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n na a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.19.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <. 解析:ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=,根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题. 20.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S > D .若67S S >则56S S >.解析:BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 21.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d > D .数列{}na 也是等差数列解析:AB 【分析】根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项. 【详解】依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,1149249,2a d a d =-=-. 对于A 选项,24912490a a a d +=+=,所以A 选项正确. 对于C 选项,1492a d =-,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛⎫=+-=-+-=- ⎪⎝⎭,令0n a ≥得51510,22n n -≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确.对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列{}na 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误.故选:AB 【点睛】等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解.22.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =- B .310na nC .228n S n n =-D .24n S n n =-解析:AD 【分析】设等差数列{}n a 的公差为d ,根据已知得1145460a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故25n a n =-,24n S n n =-.【详解】解:设等差数列{}n a 的公差为d ,因为450,5S a ==所以根据等差数列前n 项和公式和通项公式得:1145460a d a d +=⎧⎨+=⎩,解方程组得:13,2a d =-=,所以()31225n a n n =-+-⨯=-,24n S n n =-.故选:AD.23.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d < B .70a =C .95S S >D .170S <解析:ABD 【分析】结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案. 【详解】由67S S =,可得7670S S a -==,故B 正确; 由56S S <,可得6560S S a -=>, 由78S S >,可得8780S S a -=<,所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确; 又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确; 又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <, 所以()117179171702a a S a +==<,故D 正确.故选:ABD. 【点睛】关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及()12n n n a a S +=,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题.24.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T >D .当数列{}n a 为等比数列时,20210T < 解析:AC 【分析】 将3201911111a a e e +≤++变形为32019111101212a a e e -+-≤++,构造函数()1112x f x e =-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112xf x e =-+, ()()1111101111x x x x x e f x f x e e e e --+=+-=+-=++++,所以()1112xf x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********a a S +=≥;当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021202110110T a =>.故选:AC 【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 25.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k N k ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 解析:BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n nn a a---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k aa a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k kk k k k kk aa a a a a a a kp +++++--+-+-++-=,222k k aa kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD. 【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题.。
等差数列多选题专项训练复习题及解析

等差数列多选题专项训练复习题及解析一、等差数列多选题1.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( )A .2d =-B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值解析:AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d , 则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;2.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( ) A .2n S n = B .223n S n n =-C .21n a n =-D .35n a n =-解析:AC 【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S . 【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =,∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212nn n S n +-==故选:AC . 【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.3.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S > 解析:ABC 【分析】根据等差数列性质依次分析即可得答案. 【详解】解:对于A.,若59S S =,则67890a a a a +++=,所以781140a a a a +=+=,所以()114141402a a S +==,故A 选项正确; 对于B 选项,若59S S =,则780+=a a ,由于10a >,公差0d ≠,故0d <,故780,0a a ><,所以7S 是n S 中最大的项;故B 选项正确;C. 若67S S >,则70a <,由于10a >,公差0d ≠,故0d <,故80a <,6a 的符号不定,故必有78S S >,56S S >无法确定;故C 正确,D 错误. 故选:ABC . 【点睛】本题考查数列的前n 项和的最值问题与等差数列的性质,是中档题. 4.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ⋅< B .224154a a +≥C .15111a a +> D .1524a a a a ⋅>⋅解析:ABC 【分析】由已知求得公差d 的范围:01d <<,把各选项中的项全部用d 表示,并根据01d <<判断各选项. 【详解】由题知,只需1220010a d d d =->⎧⇒<<⎨>⎩, ()()2242244a a d d d ⋅=-⋅+=-<,A 正确;()()2222415223644a a d d d d +=-++=-+>≥,B 正确; 21511111122221a a d d d +=+=>-+-,C 正确; ()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅+=-<,所以1524a a a a ⋅<⋅,D 错误. 【点睛】本题考查等差数列的性质,解题方法是由已知确定d 的范围,由通项公式写出各项(用d 表示)后,可判断.5.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( ) A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥解析:BC 【分析】 设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断.【详解】 设公差d 不为零, 因为38a a =,所以1127a d a d +=+, 即1127a d a d +=--, 解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误;()()()()()()221101110910,10102222n n n n n n dd na d n n n a n n S S d ----=+=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误;故选:BC6.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤ D .当且仅当0nS <时,26n ≥解析:AB 【分析】根据等差数列的性质及717S S =可分析出结果. 【详解】因为等差数列中717S S =, 所以89161712135()0a a a a a a ++++=+=,又10a >,所以12130,0a a ><,所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()2502a a S a +==<,故D 错误, 故选:AB 【点睛】关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到12130,0a a ><,考查学生逻辑推理能力.7.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =- B .310na nC .228n S n n =-D .24n S n n =-解析:AD 【分析】设等差数列{}n a 的公差为d ,根据已知得1145460a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故25n a n =-,24n S n n =-.【详解】解:设等差数列{}n a 的公差为d ,因为450,5S a == 所以根据等差数列前n 项和公式和通项公式得:1145460a d a d +=⎧⎨+=⎩,解方程组得:13,2a d =-=,所以()31225n a n n =-+-⨯=-,24n S n n =-.故选:AD.8.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=解析:AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.9.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S < 解析:BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】A 选项,若1011091002S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,又因为10a >,所以前8项为正,从第9项开始为负,因为()()116168916802a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确; C 选项,若()115158151502a a S a +==>,()()116168916802a a S a a +==+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC . 【点睛】本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型. 10.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 解析:AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d d a a d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.11.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 解析:ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换. 12.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin 2n n a π= D .cos(1)1n a n π=-+解析:BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设; 选项D :1cos012,a =+=2cos 10,a π=+=3cos212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题. 13.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 解析:ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确.【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+-20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题. 14.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4 B .-2C .0D .2解析:AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++,则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<, ()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立, 对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确; 对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确; 对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误; 对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题. 15.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( ) A .31a =-B .201912a =C .332S = D . 2 01920192S =解析:ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD .【详解】由题意211122a =-=,311112a =-=-,A 正确,3132122S =+-=,C 正确; 41121a =-=-,∴数列{}n a 是周期数列,周期为3.2019367331a a a ⨯===-,B 错; 20193201967322S =⨯=,D 正确. 故选:ACD .【点睛】本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解.16.题目文件丢失!17.题目文件丢失!18.(多选)在数列{}n a 中,若221(2,,n n a a p n n N p *--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}n a 是等方差数列B .(){}1n- 是等方差数列 C .{}2n是等方差数列. D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列解析:BD【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可.【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}na 不是等方差数列,故A 错误; 对于B ,数列(){}1n -中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确; 对于C ,数列{}2n 中,()()22221112234n n n n n a a ----=-=⨯不是常数,{}2n ∴不是等方差数列,故C 错误;对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BD.【点睛】关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断.19.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( )A .数列{}n a 的前n 项和为1S 4n n =B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1{}nS 为递增数列 解析:AD【分析】 先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a .【详解】11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+=11104n n n S S S -≠∴-= 因此数列1{}n S 为以114S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n=+-=∴=,即A 正确; 当2n ≥时111144(1)4(1)n n n a S S n n n n -=-=-=--- 所以1,141,24(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,即B ,C 不正确; 故选:AD【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.20.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( )A .68S a =B .733S =C .135********a a a a a ++++= D .2222123202020202021a a a a a a ++++=解析:BCD【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误.【详解】对A ,821a =,620S =,故A 不正确;对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得135********a a a a a +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n a a a ++=+,2121a a a =,则()222312321a a a a a a a a =-=-, ()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-,故2222123202020202021a a a a a a +++⋅⋅⋅+=,故D 正确.故选:BCD【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列 专项练习题【重温课标】1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.体会等差数列与一次函数的关系.【解读考情】1.运用基本量法求解等差数列的基本量问题.2.在解答题中对所求结论的运算进行等差数列的判断与证明.3.在具体情景中能识别具有等差关系的数列,并会用等差数列的性质解决相应问题.【知识点归纳】一、等差数列1.定义:a n +1-a n =d (常数)(n ∈N *).2.通项公式:①a n =a 1+(n -1)d ;②a n =a m +(n -m )d .3.前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2.4.a ,b 的等差中项A =a +b 2.【温馨提示】1.若已知首项a 1和公差d ,则S n =na 1+12n (n -1)d .2.若已知末项a n 和公差d ,则S n =na n -12n (n -1)d .【方法规律总结】证明、判断{a n }为等差数列的方法:(1)用定义证明:a n -a n -1=d (d 为常数,n ≥2) ⇔ {a n }为等差数列;(2)用等差中项证明:2a n +1=a n +a n +2 ⇔ {a n }为等差数列;(3)通项法:a n 为n 的一次函数⇔ {a n }为等差数列;(4)前n 项和法:S n =An 2+Bn 或S n =n (a 1+a n )2.(注意:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.)二、等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和.(1)若m ,n ,p ,q ,k 是正整数,且m +n =p +q =2k ,则a m +a n =a p +a q =2a k .(2)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为kd .(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…,也是等差数列,公差为2m d .例1.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.【解析】因为S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,所以S 30-30=10+2×10=30,所以S 30=60.(4){}n S n 成公差为2d 的等差数列.例2.记S n 为等差数列{a n }前n 项和,若S 33-S 22=1,则其公差d =(). A .12B .2C .3D .4 【解析】解法一 由S 33-S 22=1,得a 1+a 2+a 33-a 1+a 22=1,即a 1+d -⎝⎛⎭⎫a 1+d 2=1,所以d =2.选B .解法二 利用结论(4) 可以秒解.例3.(新课标全国Ⅰ卷)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =().A .3B .4C .5D .6【解析】解法一 因为S m -1=-2,S m =0,S m +1=3, 所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,所以公差d =a m +1-a m =1,由S n =na 1+n (n -1)2d =na 1+n (n -1)2,得⎩⎪⎨⎪⎧ma 1+m (m -1)2=0,①(m -1)a 1+(m -1)(m -2)2=-2, ②由①得a 1=1-m 2,代入②可得m =5.解法二 因为数列{a n }为等差数列,且前n 项和为S n ,所以数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.所以S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0,解得m =5.经检验为原方程的解.故选C .(5)d =a n -a m n -m =f (n )-f (m )n -m .(即在等差数列{a n }中,a m -a n =(m -n )d ⇔ a m -a n m -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.)(6)项数为偶数2n 的等差数列{a n },设S 奇,S 偶分别为数列中所有奇数项的和与所有偶数项的和.则:①S 2n =n (a 1+a 2n )=…=n (a n +a n +1)(a n 与a n +1为中间的两项);②S 偶-S 奇=nd ;(即 n 为偶数时,S 偶-S 奇=n 2d );③S 奇S 偶=a n a n +1.(7)项数为奇数(2n -1)的等差数列{a n },则:①S 2n -1=(2n -1)a n (a n 为中间项);②S 奇-S 偶=a 中;③S 奇S 偶=n n -1.(8)在等差数列中,若a p =q ,a q =p ,则a p +q =0;(9)在等差数列{a n }中,若S m =n ,S n =m ,则S m +n =-(m +n ).【解析】设{a n }的公差为d ,则由S n =m ,S m =n ,得⎩⎪⎨⎪⎧S n =na 1+n (n -1)2d =m ,S m =ma 1+m (m -1)2d =n .①②②-①得(m -n )a 1+(m -n )(m +n -1)2·d =n -m ,因为m ≠n ,所以a 1+m +n -12d =-1.所以S m +n =(m +n )a 1+(m +n )(m +n -1)2d =(m +n )⎝⎛⎭⎫a 1+m +n -12d =-(m +n ).(10)首项和公差都为d 的等差数列,则a n =nd .三、等差数列与一次函数的区别与联系等差数列一次函数解析式a n =kn +b (n ∈N *) f (x )=kx +b (k ≠0)不同点定义域为N *,图象是一系列孤立的点 (在直线上),k 为公差 定义域为R ,图象是一条直线, k 为斜率相同点数列的通项公式与函数解析式都是关于自变量的一次函数.①k ≠0时,数列a n =kn +b (n ∈N *)图象所表示的点均匀分布在函数f (x )=kx +b (k ≠0)的图象上②k >0时,数列为递增数列,函数为增函数③k <0时,数列为递减数列,函数为减函数注意:等差数列在d ≠0时,a n =dn +(a 1-1)是关于n 的一次函数,一次项系数为d ;前n 项和公式S n =na 1+12n (n -1)d 可变形为S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,其形式为:S n =An 2+Bn 中,其中A =d 2,即d =2A ,即: S n 是关于n 的二次函数,二次项系数为d 2,且常数项为0,它的图象是抛物线y =d 2x 2+⎝⎛⎭⎫a 1-d 2x 上横坐标为正整数的均匀分布的一群孤立的点.【规律方法总结】求等差数列前n 项和的最值的方法:(1)运用配方法转化为二次函数,借助二次函数的单调性以及数形结合的思想,从而使问题得解.(2)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q 2时,S n 最大;②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大. (3)邻项变号法:①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ; ②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m . 【例题示范】例1.(辽宁卷)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=()A .58B .88C .143D .176【解析】解法一 设数列{a n }的公差为d ,则a 4+a 8=16,即a 1+3d +a 1+7d =16,即a 1=8-5d ,所以S 11=11a 1+11×102d =11(8-5d )+55d =88-55d +55d =88.解法二 由a 1+a 11=a 4+a 8=16,得 S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88.例2.(多选)已知等差数列{a n }的前n 项和为S n ,若S 7=a 4,则( )A .a 1+a 3=0B .a 3+a 5=0C .S 3=S 4D .S 4=S 5【解析】由S 7=7(a 1+a 7)2=7a 4=a 4,得a 4=0,所以a 3+a 5=2a 4=0,S 3=S 4,故选BC. 例3.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40【解析】设这个数列有2n 项,则由等差数列的性质可知:偶数项之和减去奇数项之和等于nd ,即25-15=2n ,故2n =10,即数列的项数为10.例4.(多选) 设{a n }是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论正确的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值【解析】S 6=S 5+a 6>S 5,则a 6>0,S 7=S 6+a 7=S 6,则a 7=0,则d =a 7-a 6<0,S 8=S 7+a 8<S 7,a 8<0.a 6+a 8=a 5+a 9=2a 7=0,所以S 5=S 9,由a 7=0,a 6>0知S 6,S 7是S n 中的最大值.从而ABD 均正确.选ABD .例5.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.【分析】由a 1=20及S 10=S 15可求得d ,进而求得通项,由通项得到此数列前多少项为正,或利用等差数列的性质,判断出数列从第几项开始变号.【解析】解法一 因为a 1=20,S 10=S 15,所以10×20+10×92d =15×20+15×142d ,所以d =-53. 所以a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653.令a n ≥0得n ≤13,即当n ≤12时,a n >0;n ≥14时,a n <0.所以当n =12或13时,S n 取得最大值,且最大值为 S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130.解法二 同解法一得d =-53.又由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0.所以5a 13=0,即a 13=0.所以当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.解法三 利用S n =An 2+Bn ,由二次函数图象对称性知道对称轴为10152522x +==,所以当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.例6.(浙江高考)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.【解析】(1) 由题意得,a 1·5a 3=(2a 2+2)2,由a 1=10,{a n }为公差为d 的等差数列得,d 2-3d -4=0,解得d =-1或d =4.所以a n =-n +11(n ∈N *)或a n =4n +6(n ∈N *).(2)设数列{a n }的前n 项和为S n .因为d <0,由(1) 得d =-1,a n =-n +11,所以当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n ;当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n|=⎩⎨⎧-12n 2+212n ,n ≤11,12n 2-212n +110, n ≥12.【其他规律】(1)如果数列{a n }满足a n +a m =a n +m ,数列{a n }是首项和公差都为a 1等差数列,所以a n =na 1.(2)如果S n +S m =S n +m ,则{ S n }是首项和公差都为a 1等差数列,所以S n =na 1,a n =a 1.例7.(多选)已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m (m ,n ∈N *)且a 1=6,那么a 10=()A .S 1=6B .S 10=60C .a 10=6D .a 11=54【解析】由S n +S m =S n +m ,得S 1+S 9=S 10.又由于a 10=S 10-S 9=S 1=a 1=6,故a 10=6,S 10=60.选ABC .例8.(多选)已知数列{a n }满足:a n +a m =a n +m (m ,n ∈N *)且a 1=6,那么a 10=( )A .S 1=6B .a 10=60C .S 10=60D .a 11=66【解析】显然S 1=6,由a n +a m =a n +m ,得a n =na 1=6n ,故a 10=60,a 11=66.选ABD .。