飞行力学知识点
飞行力学知识点
1.最大飞行速度:飞机在某高度上以特定的重量和一定的发动机工作状态进行等速水平直线飞行所能达到的最大速度称为飞机在该高度上的最大平飞速度,各个高度上的最大平飞速度中的最大值,称为飞机的最大平飞速度。
2.最小平飞速度:指飞机在一定高度上能作定直平飞的最小速度3.实用静升限:飞机以特定的重量和给定的发动机工作状态做等速直线平飞时,还具有最大上升率为5(m/s)或0.5(m/s)的飞行高度。
4.理论静升限:飞机以特定的质量和给定的发动机工作状态能够保持等速直线平飞的飞行高度,也就是上升率等于零的飞行高度5.飞机的航程:飞机携带的有效载荷在标准大气及无风情况下,沿预定航线飞行,耗尽其可用燃油所经过的水平距离(包括上升和下滑的水平距离)。
6.飞机的航时:飞机携带的有效载荷在标准大气及无风条件下按照预定航线飞行,耗尽其可用燃油所能持续的飞行时间。
7.飞机的过载:作用在飞机上的气动力和发动机推力的合力与飞机重力之比,称为过载。
8.上升率:飞机以特定的重量和给定的发动机工作状态进行等速直线上升时在单位时间内上升的高度,也称上升垂直速度。
9.定常运动:运动参数不随时间而改变的运动。
10.飞机的平飞需用推力:飞机在某一高度以一定的速度进行等速直线平飞所需要的发动机推力11.铰链力矩:作用在舵面上的气动力对舵面转轴的力矩,称为铰链力矩12.最短上升时间:以最大上升率保持最快上升速度上升到预定高度所需要的时间13.小时耗油率:飞机飞行一小时发动机所消耗的燃油质量14.公里耗油率:飞机飞行一公里发动机所消耗的燃油质量15.飞机的最大活动半径:飞机由机场出发,飞到目标上空完成一定任务后,再飞回原机场所能达到的最远距离。
16.飞机的焦点:当迎角变化时,气动力对该点的力矩始终保持不变,这样的特殊点称为机翼的焦点17.尾旋:当飞机迎角超过临界迎角时,飞机同时绕三个机体轴旋转并沿小半径的螺旋轨迹急剧下降的运动18.升降舵平衡曲线:在满足力矩平衡(Mz=0)条件下,升降舵偏角与飞机升力系数之间的关系19.极曲线:反应飞行器阻力系数与升力系数之间的关系的曲线20.机体坐标系:平行于机身轴线或机翼的平均气动原点,位于飞机的质心;Oxb轴在飞机的对称面内,弦线指向前;Ozb轴也在对称面内,垂直于Oxb轴,指向下;Oyb轴垂直于对称面,指向右。
飞行力学复习
6、飞机的续航性能
基本性能
多高、多快
续航性能
多远、多久
定常直线飞行 准定常直线飞行
➢主要指标
航程L、航时T、活动半径R
➢按任务的两类续航性能计算问题
❖给定飞行状态,确定续航性能 ❖选择飞行状态和发动机工作状态,使得续航性能最佳
➢技术航程/航时,实用航程/航时
典型巡航飞行剖面
Lss
Lxh
Lxih
Tss
性。由M
z
(mz
)或M
C z
y
(
mzC
y
)的符号决定
(2)、纵向静稳定性与飞机重心和焦点之间的关系
mcy z
xG
xF
mcy z
0
xG
xF
纵向静稳定
mcy z
0
xG
xF
纵向静不稳定
mzcy=0 xG=xF 纵向中立静稳定
Cy
(3)静稳定裕度
Cy1
K n xF xG
(4)纵向平衡
Cy0 O
沉浮模态 长周期模态
特征 周期长,频率低,衰减慢的振荡运动; Δ α、ωz基本不变:该模态幅值小; 质心运动参数Δ V主要表现出沉浮模态特点;
原因
质量m,恢复力 YV V ,G 与阻尼 (PV QV )V 等
大
小
小
恢复慢,衰减慢(甚至发散)的振荡运动
典型参数
(7)纵向动态飞行品质要求
概述
飞行品质要求或规范是确保飞行安全和顺利完成预定 任务必须满足的要求,也是各类飞机的设计和使用过 程中必须满足的要求。
正常操纵响应(以定直平飞为基准)
• 油门—— 推油门加速,收油门减速; • 纵杆—— 推杆低头,拉杆抬头; • 横杆—— 左压杆左滚,右压杆右滚; • 脚蹬—— 左蹬舵左偏航,右蹬舵右偏航。
飞行原理知识点精讲
飞行原理基础知识大气状态参数1.大气密度ρ是指单位体积内的空气质量,用ρ表示。
由于地心引力的作用,ρ随高度H的增加而减小。
2.大气温度T是指大气层内空气的冷热程度,用T表示。
微观上来讲,温度体现了空气分子运动剧烈程度。
K=C+273.15。
3.大气压力P规定在海平面温度为15°C时的大气压力即为一个标准大气压,表示为760mmHg或1.013×105Pa。
随高度增加而减小。
4.粘性μ当流体内两相邻流层的流速不同时,两个流层接触面上便产生相互粘滞和互相牵扯的力,这种特性就叫粘性。
流体的动力粘性系数μ,液体>气体,随温度的升高,气体μ升高,液体μ降低。
5.可压缩性E是指一定量的空气在压力变化时,其体积发生变化的特性。
可压缩性用体积弹性模量E 来衡量。
E值越大,流体越难被压缩。
空气的E值很小,约为水的两万分之一,因此空气具有压缩性,而水则视为不可压缩流体。
飞机低速飞行(Ma<0.3)时,视为不可压缩流体;高速飞行(Ma≥0.3)时,则必须考虑空气的可压缩性。
6.声速c是指声波在介质中传播的速度,单位为m/s。
在海平面标准状态下,在空气中的声速只有341m/s。
7.马赫数Ma和雷诺数ReMa=v/c,是无量纲参数,作为空气受到压缩程度的指标。
Re是一种可以用来表征流体流动情况(层流、湍流)的无量纲参数。
国际标准大气对流层0-11km,平流层(同温层)11-50km。
国际标准大气具有以下的规定:1.大气是静止的、洁净的,且相对湿度为零。
2.空气被视为完全气体,即其物理参数(密度、温度和压力)的关系服从完全气体的状态方程p =ρRT。
3.海平面作为计算高度的起点,即H=0处。
密度ρ=1.225kg/m3,温度T=288.15K(15°C),压强p=101325Pa,声速c=341m/s。
低速飞行中的空气动力特性理想流体,不考虑流体粘性的影响。
不可压流体,不考虑流体密度的变化,Ma<0.3。
第一章飞行力学基础1
偏航角 俯仰角 滚转角
两坐标系之 间的欧拉角
机体轴与地轴系间转换关系
地轴系
体轴系
绕z轴
绕y轴
绕x轴
oxg yg zg
oxy zg
oxb yz
oxb yb zb
按坐标转换一般法则,由地轴系到体轴系的转换矩阵为:
Lbg Lx ()Ly ( )Lz ( )
coscos
xq yq
, ,
y y
p p
) )
x y
p p
r
xp
xp yp
cos( ) sin( )
sin( ) xq
cos(
)
yq
α
xq
xp yp
cos(x cos(y
p p
, ,
xq xq
) )
cos(xp , yq )xq
c
os
(y
p
,
yq
)
yq
由
xq
yq
X
Yg
Xg
p O
q
Y
r
Zg Z
角速度分量(p,q,r)与姿态角变化率之间的关系
5.机体坐标轴系的速度分量
机体坐标轴的三个速度分量是飞行速 度V在机体坐标轴系各轴上的投影。 ➢ u:与机体轴OX重合一致; ➢ v:与机体轴OY重合一致; ➢ w:与机体轴OZ重合一致;
6、坐标系间的关系:
Sg(地轴系)
(航迹倾斜角 航迹滚转角 航迹方位角)
飞机姿态角 (俯仰角、滚转角、
ห้องสมุดไป่ตู้偏航角)
s (速度轴系) a
气流角 (迎角、侧滑角)
sb(机体轴系)
飞行力学知识点
飞行力学知识点一、协议关键信息1、飞行力学的基本概念和原理定义:____________________________研究范围:____________________________重要性:____________________________ 2、飞行器的受力分析重力:____________________________升力:____________________________阻力:____________________________推力:____________________________3、飞行性能参数速度:____________________________高度:____________________________航程:____________________________续航时间:____________________________4、飞行器的稳定性和操纵性稳定性的类型:____________________________操纵性的要素:____________________________稳定性与操纵性的关系:____________________________5、飞行轨迹和导航常见的飞行轨迹:____________________________导航方法:____________________________导航系统的组成:____________________________二、飞行力学的基本概念和原理11 飞行力学的定义飞行力学是研究飞行器在空中运动规律的学科,它综合了力学、数学、物理学和工程学等多学科的知识,旨在揭示飞行器在不同飞行条件下的受力、运动状态和性能特征。
111 研究范围飞行力学的研究范围涵盖了飞行器的起飞、爬升、巡航、下降、着陆等各个飞行阶段,以及飞行器在不同气象条件、飞行高度和速度下的运动特性。
112 重要性飞行力学对于飞行器的设计、性能评估、飞行控制和飞行安全具有至关重要的意义。
飞行力学部分知识要点
飞⾏⼒学部分知识要点空⽓动⼒学及飞⾏原理课程飞⾏⼒学部分知识要点第⼀讲:飞⾏⼒学基础1.坐标系定义的意义2.刚体飞⾏器的空间运动可以分为两部分:质⼼运动和绕质⼼的转动。
描述任意时刻的空间运动需要六个⾃由度:三个质⼼运动和三个⾓运动3.地⾯坐标系, O 地⾯任意点,OX ⽔平⾯任意⽅向,OZ 垂直地⾯指向地⼼,OXY ⽔平⾯(地平⾯),符合右⼿规则在⼀般情况下。
4.机体坐标系, O 飞机质⼼位置,OX 取飞机设计轴指向机头⽅向,OZ 处在飞机对称⾯垂直指向下⽅,OY 垂直⾯指向飞机右侧,符合右⼿规则5.⽓流(速度)坐标系, O 飞机质⼼位置,OX 取飞机速度⽅向且重合,OZ 处在飞机对称⾯垂直指向下⽅,OY 垂直⾯指向飞机右侧,符合右⼿规则6.航迹坐标系, O取在飞机质⼼处,坐标系与飞机固连,OX轴与飞⾏速度V重合⼀致,OZ轴在位于包含飞⾏速度V在内的铅垂⾯内,与OX轴垂直并指向下⽅,OY轴垂直于OXZ平⾯并按右⼿定则确定7.姿态⾓, 飞机的姿态⾓是由机体坐标系和地⾯坐标系之间的关系确定的:8. 俯仰⾓—机体轴OX 与地平⾯OXY 平⾯的夹⾓,俯仰⾓抬头为正;9. 偏航⾓—机体轴OX 在地平⾯OXY 平⾯的投影与轴OX 的夹⾓,垂直于地平⾯,右偏航为正;10. 滚转⾓—机体OZ 轴与包含机体OX 轴的垂直平⾯的夹⾓,右滚转为正11. ⽓流⾓, 是由飞⾏速度⽮量与机体坐标系之间的关系确定的12. 迎⾓—也称攻⾓,飞机速度⽮量在飞机对称⾯的投影与机体OX 轴的夹⾓,以速度投影在机体OX 轴下为正;13. 侧滑⾓—飞机速度⽮量与飞机对称⾯的夹⾓14. 常规飞机的操纵机构主要有三个:驾驶杆、脚蹬、油门杆,常规⽓动舵⾯有三个升降舵、副翼、⽅向舵15. 作⽤在飞机上的外⼒,重⼒,发动机推⼒,空⽓动⼒16. 重⼒,飞机质量随燃油消耗、外挂投放等变化,性能计算中,把飞机质量当作已知的常量17. 空⽓动⼒中,升⼒,阻⼒,的计算公式,动压的概念。
第一章飞行力学基础2
e
CLt St M e SW
为升力系数对 e 的导数 ;
零升阻力:分为摩擦阻力、压差阻力和零升波阻 (激波引起)。 升致阻力:伴随升力的产生而出现的阻力。 诱导阻力: C Dt C L 升致波阻: C Dt C L sin
阻力: D CD QSW
0 M<0 升降舵偏角 e:平尾后缘下偏为正 e〉 0 L<0 副翼偏转角 a:右翼后缘下偏(右下左上)为正 a〉 0 N <0 方向舵偏转角 r:方向舵后缘向左偏为正 r〉 油门杆位置 : 0 加大油门、推力 T 向前推油门杆为正 T〉
T 288.15 0.0065 * High A 20.0648 * T g 9.80665 /(1 High / 6.356766e 6 ) 2
0 * (1 0.225577e 4 * High ) 4.25588
2、马赫数M
马赫数定义为气流速度(V)和当地音速 (a)之比, M=V/A。 马赫数M的大小表示空气受压缩的程度。
C mw C mw0 C Lw ( xcg xacw )
Cmw0
机翼零升力矩系数
Cmw C Lw ( xcg xacw ) xcg xacw 飞机纵向静稳定;
xcg xacw 飞机纵向静不稳定;
机翼——机体组合产生俯仰力矩:
Cmwb Cmw 0 CCmb 0 CLw [ xcg ( xacw xacb )] Cmwb 0 CLw ( xcg xacwb )
b2 展弦比: A SW
2 cA SW
0
b 2
北航飞行力学知识点总结
北航飞行力学知识点总结
飞行力学是研究飞行器在空中运动时所受力和运动规律的学科。
作为航空航天
工程的基础,飞行力学涉及到多个重要的知识点。
下面是对北航飞行力学知识点的总结:
1. 空气动力学:空气动力学研究飞行器在空气流动中所受到的气动力。
重要的
概念包括升力、阻力、推力和侧力。
其中,升力是支撑飞行器在空中飞行的力,阻力是对飞行器运动的阻碍力,推力是提供飞行器前进动力的力,侧力是使飞行器侧向移动的力。
2. 运动学:运动学研究飞行器在空中的运动轨迹和速度。
重要的概念包括速度、加速度、位移和轨迹。
通过运动学分析,可以确定飞行器的位置和速度的变化。
3. 飞行力学平衡:飞行力学平衡是指飞行器在垂直和水平方向上所受到的力平衡。
在水平方向上,重力和阻力平衡。
在垂直方向上,升力和重力平衡。
4. 飞行器的稳定性和操纵性:稳定性是指飞行器自身在飞行中保持平衡和稳定
的能力。
操纵性是指飞行器在飞行过程中对操纵杆或操纵面的指令做出的响应能力。
稳定性和操纵性是设计和控制飞行器的关键要素。
5. 飞行器的气动设计:气动设计是指通过改变飞行器的外形和气动特性来改善
飞行器的性能。
通过优化飞行器的气动外形和控制面的设计,可以减小阻力、增大升力和提高飞行器的稳定性。
总之,北航飞行力学涵盖了空气动力学、运动学、飞行力学平衡、飞行器的稳
定性和操纵性以及气动设计等多个重要知识点。
掌握这些知识可以帮助我们更好地理解和设计飞行器,为航空航天工程的发展做出贡献。
飞行力学知识点总结
飞行力学知识点总结一、飞行力学的基本概念1. 飞行力学的定义飞行力学是研究飞机在大气环境中的运动规律和飞行性能的科学学科。
它包括飞行动力学、飞行静力学和航向稳定性等内容。
2. 飞机的运动状态飞机的运动状态包括静止状态、匀速直线运动状态和加速直线运动状态等多种状态。
在进行飞机设计与分析时,需要充分考虑飞机在不同运动状态下的特性和性能。
3. 飞机的坐标系飞机通常采用本体坐标系和地理坐标系进行描述和分析。
本体坐标系是以飞机为参考物体建立的坐标系,用于描述和分析飞机内部的运动规律;地理坐标系是以地球表面为参考物体建立的坐标系,用于描述和分析飞机在大气中的运动规律。
4. 飞机的运动参数飞机的运动参数包括速度、加速度、位移、航向、倾角等多个参数,这些参数直接影响着飞机的飞行状态和性能。
二、风阻和升力1. 风阻的概念和特性风阻是飞机在飞行中受到的空气阻力,它随飞机速度和气动外形等因素变化。
风阻的大小直接影响飞机的燃油消耗和续航力。
2. 风阻的计算方法风阻的计算一般采用实验测定和理论计算相结合的方法,通过气动力学原理和风洞试验等手段来确定飞机在不同速度下的风阻系数和风阻大小。
3. 升力的概念和特性升力是飞机在飞行过程中所受到的向上的气动力,它是飞机能够在大气中持续飞行的重要保障。
升力的大小取决于飞机的气动外形、机翼面积和攻角等因素。
4. 升力的计算方法升力的计算一般采用理论推导和数值模拟相结合的方法,通过气动力学公式和实验数据来确定飞机在不同状态下的升力大小和升力系数。
三、飞机的稳定性和控制1. 飞机的平衡状态飞机的平衡状态包括静态平衡和动态平衡两种状态。
静态平衡是指飞机在静止状态下所处的平衡状态,动态平衡是指飞机在运动过程中所处的平衡状态。
2. 飞机的稳定性飞机的稳定性是指飞机在受到外界扰动时能够自动恢复到原来的平衡状态的能力。
飞机的稳定性直接影响着其飞行过程中的安全性和舒适性。
3. 飞机的控制系统飞机的控制系统包括飞行操纵系统、引擎控制系统和动力控制系统等多个部分,它们协同工作来保证飞机在飞行中能够保持稳定的运动状态和实现各种飞行任务。
飞行力学基础
第二章飞行力学基础2.1 飞行器空间运动的表示、飞行器操纵机构、稳定性和操纵性的概念2.1.1常用坐标系1)地面坐标系(地轴系)(Earth-surface reference frame)Sg-og xgygzg原点og 取自地面上某一点(例如飞机起飞点)。
ogxg轴处于地平面内并指向某方向(如指向飞行航线);og yg轴也在地平面内并指向右方;ogzg轴垂直地面指向地心。
坐标按右手定则规定,拇指代表og xg轴,食指代表ogyg轴,中指代表o g zg轴,如图2.1-1所示。
2)机体坐标系(体轴系)(Aircraft-body coordinate frame)Sb-oxyz 原点o取在飞机质心处,坐标与飞机固连。
Ox与飞机机身的设计轴线平行,且处于飞机对称平面内;oy轴垂直于飞机对称平面指向右方;oz轴在飞机对称平面内;且垂直于ox轴指向下方(参看图2.1-1)。
发动机推力一般按机体坐标系给出。
3)速度坐标系(Wind coordinate frame)Sa-oxa y aza速度坐标系也称气流坐标系。
原点取在飞机质心处,oxa轴与飞行速度V的方向一致。
一般情况下,V不一定在飞机对称平面内。
oza 轴在飞机对称面内垂x图2.1-1 机体坐标系与地面坐标系直于oxa轴指向机腹。
oy a 轴垂直于x a oz a 轴平面指向右方,如图2.1-2所示。
作用在飞机上的气动力一般按速度坐标系给出。
4)航迹坐标系(Path coordinate frame)Sk-ox k y k z k原点取在飞机质心处,ox k 轴与飞机速度V 的方向一致。
oz k 轴在包含ox k 轴的铅垂面内,向下为正;oy k 轴垂直于x k oz k 轴平面指向右方。
研究飞行器的飞行轨迹时,采用航迹坐标系可使运动方程形式较简单。
2.1.2 飞机的运动参数 1)飞机的姿态角 1.俯仰角θ(Pitch angle)机体轴ox 与地平面间的夹角。
飞行原理重点知识
际标准大气由国际民航组织 ICAO 制定,它 管扩*变粗,气流流过物体外凸处或受挤压,
是以北半球中纬度地区大气物理特性的平 流管收缩变细。气流流过物体时,在物体的
均值为依据,加以适当修订而建立的。
后部都要形成涡流区。
3. 实际大气与国际标准大气如何换算?
3. 利用连续性定理说明流管截面积变化与
确定实际大气与国际标准大气的温度偏差, 气流速度变化的关系。
即 ISA 偏差,ISA 偏差是指确定地点的实际 当流体流过流管时,在同一时间流过流管任
温度与该处 ISA 标准温度的差值,常用于飞 意截面的流体质量始终相等。因此,当流管
行活动中确定飞机性能的根本条件。
横截面积减小时,流管收缩,流速增大;当
流管横截面积增大时,流管扩*,流速增大。 在机翼上外表的压强低于大气压,对机翼产
16. 地面效应是如何影响飞机的气动性能
飞机的阻力系数,飞机的飞行动压,机翼的 的?
面
积
。 飞机贴近地面飞行时,流经机翼下外表的气
流受到地面的阻滞,流速减慢,压强增大,
形成所谓的气垫现象;而且地面的阻滞,使
原来从下翼面流过的一局部气流改道从上
翼面流过,是上翼面前段的气流加速,压强
14. 解释以下术语〔1〕最小阻力迎角〔2〕 临界迎角〔3〕升阻比 〔1〕在飞机的升阻比曲线中,当升阻比到 达最大值时所对应的迎角称为最小阻力迎 角。〔2〕在飞机的升力系数曲线中,当升力 系数到达最大值时所对应的迎角称为临界
小升力系数的作用。超音速飞机一般采用前缘削尖,相对厚度小的薄机翼。在大迎角飞行时,
机翼上外表就开场产生气流别离,最大升力系数降低。如放下前缘襟翼,一方面可以减小前
缘与相对气流之间的夹角,使气流能够平顺地沿上翼面流动,延缓气流别离;另一方面也增
最新飞行力学知识点
1.最大飞行速度:飞机在某高度上以特定的重量和一定的发动机工作状态进行等速水平直线飞行所能达到的最大速度称为飞机在该高度上的最大平飞速度,各个高度上的最大平飞速度中的最大值,称为飞机的最大平飞速度。
2.最小平飞速度:指飞机在一定高度上能作定直平飞的最小速度3.实用静升限:飞机以特定的重量和给定的发动机工作状态做等速直线平飞时,还具有最大上升率为5(m/s)或0.5(m/s)的飞行高度。
4.理论静升限:飞机以特定的质量和给定的发动机工作状态能够保持等速直线平飞的飞行高度,也就是上升率等于零的飞行高度5.飞机的航程:飞机携带的有效载荷在标准大气及无风情况下,沿预定航线飞行,耗尽其可用燃油所经过的水平距离(包括上升和下滑的水平距离)。
6.飞机的航时:飞机携带的有效载荷在标准大气及无风条件下按照预定航线飞行,耗尽其可用燃油所能持续的飞行时间。
7.飞机的过载:作用在飞机上的气动力和发动机推力的合力与飞机重力之比,称为过载。
8.上升率:飞机以特定的重量和给定的发动机工作状态进行等速直线上升时在单位时间内上升的高度,也称上升垂直速度。
9.定常运动:运动参数不随时间而改变的运动。
10.飞机的平飞需用推力:飞机在某一高度以一定的速度进行等速直线平飞所需要的发动机推力11.铰链力矩:作用在舵面上的气动力对舵面转轴的力矩,称为铰链力矩12.最短上升时间:以最大上升率保持最快上升速度上升到预定高度所需要的时间13.小时耗油率:飞机飞行一小时发动机所消耗的燃油质量14.公里耗油率:飞机飞行一公里发动机所消耗的燃油质量15.飞机的最大活动半径:飞机由机场出发,飞到目标上空完成一定任务后,再飞回原机场所能达到的最远距离。
16.飞机的焦点:当迎角变化时,气动力对该点的力矩始终保持不变,这样的特殊点称为机翼的焦点17.尾旋:当飞机迎角超过临界迎角时,飞机同时绕三个机体轴旋转并沿小半径的螺旋轨迹急剧下降的运动18.升降舵平衡曲线:在满足力矩平衡(Mz=0)条件下,升降舵偏角与飞机升力系数之间的关系19.极曲线:反应飞行器阻力系数与升力系数之间的关系的曲线20.机体坐标系:平行于机身轴线或机翼的平均气动原点,位于飞机的质心;Oxb轴在飞机的对称面内,弦线指向前;Ozb轴也在对称面内,垂直于Oxb轴,指向下;Oyb轴垂直于对称面,指向右。
航空航天工程师的飞行力学知识
航空航天工程师的飞行力学知识航空航天工程师是一个极具挑战性和技术要求高的职业,在他们的日常工作中需要掌握深入的飞行力学知识。
飞行力学是研究飞行器在大气中运动和控制的科学,对于航空航天工程师来说,它是必不可少的基础。
一、空气动力学力的作用在飞行力学中,空气动力学力的作用极为重要。
空气动力学力包括升力、阻力、推力和重力等等。
升力使得飞行器在大气中上升,阻力抵抗飞行器的前进方向,推力则通过推进剂提供动力,而重力是飞行器受到的地球引力。
飞行器的升力源于机翼的空气动力学特性。
机翼的形状和斜角会影响到飞行器产生的升力。
同时,附着到机翼上的襟翼和襟翼的操作也会对升力产生影响。
阻力则是飞行器前进时受到的空气阻碍,从而抑制了其速度的增加。
推力是由发动机提供的动力,足够大的推力可以克服阻力,使飞行器加速前进。
重力则是飞行器受到的地球引力,必须通过升力和推力来克服。
二、飞行器的运动学除了力的作用,航空航天工程师还需要了解飞行器的运动学知识。
在飞行力学中,飞行器的运动是三维的,并且受到外在力和力矩的影响。
外在力是指由空气动力学力所产生的力,如升力、阻力和推力等。
这些力会对飞行器产生推动、阻挡和转向的效果。
飞行器的外在力的大小和方向将直接影响到其运动状态。
此外,飞行器还会受到力矩的作用。
力矩会使得飞行器发生转动,并影响到其姿态和稳定性。
飞行器的推力和阻力分布、重心位置以及控制面的操作都会对力矩产生影响。
航空航天工程师通过研究飞行器的力矩,可以预测并控制飞行器的飞行轨迹和姿态。
三、飞行控制与稳定性在飞行力学中,航空航天工程师需要掌握飞行器的控制和稳定性。
飞行器的控制涉及到飞行器运动状态的改变,如姿态的调整和位置的变化。
而稳定性则是指飞行器在受到外界干扰后能够自动调整,并保持平稳飞行的能力。
飞行器的控制和稳定性主要依靠控制面实现。
控制面是飞行器上用于调整运动状态的活动部件,如副翼、方向舵和升降舵等。
航空航天工程师需要研究控制面的操纵和运动对飞行器的影响,以实现飞行器的精确控制和良好的稳定性。
飞行力学复习
飞行力学复习飞机第一章1. 连续介质模型:将流体看成是由无限多流体质点所组成的稠密而无间隙的连续介质。
2. 流体的弹性(压缩性):流体随着压强增大而体积缩小的特性。
压缩系数的倒数称为体积弹性模量E ,他表示单位密度变化所需压强增量:ρρβd dp E ==1 流体密度:单位体积中流体的质量。
表示流体稠密程度。
压缩系数β:一定温度下升高单位压强时,流体体积的相对缩小量。
{注:当流体速度大于0.3马赫时才考虑弹性模量}3. 完全气体状态方程:T nR mRT pV m =={kmolm m k kmol J m V R 3*414.228314==} 4. 流体粘性:在作相对运动的两流体层的接触面上,存在着一对等值而反向的作用力来阻碍两相邻流体层作相对运动。
5. 牛顿内摩擦定律:相邻两层流体作相对运动所产生的摩擦力F 与两层流体的速度梯度成正比;与两层的接触面积成正比;与流体的物理特性有关;与接触面上压强无关。
dy dV S F S dy dV F μτμ=== 注:切应力τ:快同慢反静无,只是层流。
6. 理想流体:不考虑粘性(粘性系数0=μ)的流体。
7. 流体内部一点处压强特点:大小与方向无关,处处相等。
8. 质量力(B F ){体积力}:作用在体积V 内每一流体质量或体积上的非接触力,其大小与流体质量或体积成正比,流体力学中,只考虑重力与惯性力。
表面力(S F ):作用在所取流体体积表面S 上的力,它是由与这块流体相接触的流体或物体的直接作用而产生的。
9. 等压面:在静止流体中,静压强相等的各点所组成的面。
性质:(1)在平衡流体中通过每点的等压面必与该点流体所受质量力垂直。
(2)等压面即为等势面。
(3)两种密度不同而又在不相混的流体处于平衡时,他们的分界面必为等压面。
第二章1. 流线:某一瞬时流场中存在这样的曲线,该曲线上每点速度矢量都与该曲线相切。
(欧拉法)迹线:将任何一个流体质点在流场中的运动轨迹。
民航飞力第一章
飞行器运转
飞行性能
稳定性、操纵性
运动操纵原理
飞机空气动力学 —— 飞机为什么会飞? 飞机飞行力学 —— 如何飞如何飞得更好?
主要内容:
飞机的稳定性及操纵性 飞机飞行性能分析
保持和改变飞 行状态的能力。 必须考虑绕质 心的转动。 将飞机看作质 点系(刚体或弹性 体)。 外力作用下飞机 质心运动的规律。如: 基本飞行性能、续航 性能、机动性能、起 飞着陆性能等。 将飞机看作可控 质心。
规定:上升时为正。
飞机坐标系 地面坐标系 机体坐标系 航迹坐标系 半机体坐标系 ……
俯仰角 坡度 偏航角
迎角 侧滑角
轨迹俯仰角
三、绕各坐标轴的角速度 (一)角速度的向量表示法(如图1-9)
角速度是向量(矢量),即有大小又有方向。
线段长短表示角速度大小; 可用带箭头的线段表示
箭头方向表示角速度方向。
3. 放减速板对飞机纵向平衡的影响
图1-17 放减速板对纵向平衡的影响
各型飞机减速板安装位置不同而影响不同。 在机身后段两侧 在机身下部 在机身两侧和下部
⑴ 装在机身两侧: 使流过平尾的气流向下弯曲,平尾产生向下附加升 力,形成抬头力矩. ⑵ 装在机身下部: 产生向下附加力矩——抬头力矩; 产生附加阻力且在重心之下——下俯力矩。 ⑶ 装在机身两侧和下部。
飞机以零升迎角飞行时,总升力为零,但存在机 翼正升力和尾翼负升力,它们构成一个上仰力矩,称
为零升力矩。
2.俯仰稳定力矩(Mzs)
由于迎角变化而产生的飞机附加升力的着力点, 叫做焦点。 由于迎角变化而产生的飞机附加升力对重心形成 的力矩,称为俯仰稳定力矩。
3.俯仰操纵力矩(Mzc)
由于飞机升降舵(或平尾)偏转所产生的升力 对飞机重心构成的力矩,称为俯仰操纵力矩。
航空航天工程师的飞行力学知识
航空航天工程师的飞行力学知识航空航天工程师是一个综合性较强的职业,需要具备相关的专业知识和技能。
其中,飞行力学是航空航天工程师所必备的核心知识之一。
本文将介绍航空航天工程师在飞行力学方面需要了解的内容,以及其在工程设计和飞行控制中的应用。
一、飞行原理飞行力学研究的基础是飞行原理。
在航空航天领域,飞行原理包括气动力学、重力学和运动学等方面的知识。
气动力学研究空气对飞机的作用力和运动产生的影响,重力学研究地球引力对飞机的作用力,而运动学则研究飞机的运动状态和路径。
二、飞行力学模型为了研究飞行器的运动,需要建立相应的力学模型。
常用的飞行力学模型有单刚体模型和多刚体模型等。
单刚体模型适用于研究简单、对称的飞行器,如常见的飞机。
多刚体模型适用于研究非对称、复杂的飞行器,如卫星和航天飞机等。
根据实际需求,航空航天工程师可以选择合适的模型进行分析和计算。
三、飞行力学方程为了描述飞行器的运动,需要建立相应的运动方程。
在飞行力学中,最常用的方程是牛顿第二定律和欧拉运动方程。
牛顿第二定律描述了物体的质量和加速度之间的关系,欧拉运动方程描述了物体的力矩和角加速度之间的关系。
通过这些方程,可以计算飞行器在不同飞行状态下的运动轨迹和力学参数。
四、飞行器稳定性与操纵性飞行器的稳定性与操纵性是设计飞行器的重要考虑因素。
稳定性是指飞行器在受到干扰后能够自动恢复到平衡状态的能力,而操纵性是指飞行器在操纵员的控制下能够按照预期进行操纵的能力。
航空航天工程师需要通过飞行力学的知识,设计出满足稳定性和操纵性要求的飞行器结构和控制系统。
五、飞行动力学飞行动力学研究飞行器的动力学特性,包括加速度、速度、高度和姿态等方面的运动。
通过飞行动力学的分析,可以优化飞行器的设计,提高其性能和安全性。
此外,飞行动力学还研究飞行器的机动性能和航迹控制等问题,为飞行员提供飞行操作指导。
六、飞行力学在航空航天工程中的应用飞行力学在航空航天工程中有广泛的应用。
飞行力学知识点
飞行力学知识点集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-1.最大飞行速度:飞机在某高度上以特定的重量和一定的发动机工作状态进行等速水平直线飞行所能达到的最大速度称为飞机在该高度上的最大平飞速度,各个高度上的最大平飞速度中的最大值,称为飞机的最大平飞速度。
2.最小平飞速度:指飞机在一定高度上能作定直平飞的最小速度3.实用静升限:飞机以特定的重量和给定的发动机工作状态做等速直线平飞时,还具有最大上升率为5(m/s)或0.5(m/s)的飞行高度。
4.理论静升限:飞机以特定的质量和给定的发动机工作状态能够保持等速直线平飞的飞行高度,也就是上升率等于零的飞行高度5.飞机的航程:飞机携带的有效载荷在标准大气及无风情况下,沿预定航线飞行,耗尽其可用燃油所经过的水平距离(包括上升和下滑的水平距离)。
6.飞机的航时:飞机携带的有效载荷在标准大气及无风条件下按照预定航线飞行,耗尽其可用燃油所能持续的飞行时间。
7.飞机的过载:作用在飞机上的气动力和发动机推力的合力与飞机重力之比,称为过载。
8.上升率:飞机以特定的重量和给定的发动机工作状态进行等速直线上升时在单位时间内上升的高度,也称上升垂直速度。
9.定常运动:运动参数不随时间而改变的运动。
10.飞机的平飞需用推力:飞机在某一高度以一定的速度进行等速直线平飞所需要的发动机推力11.铰链力矩:作用在舵面上的气动力对舵面转轴的力矩,称为铰链力矩12.最短上升时间:以最大上升率保持最快上升速度上升到预定高度所需要的时间13.小时耗油率:飞机飞行一小时发动机所消耗的燃油质量14.公里耗油率:飞机飞行一公里发动机所消耗的燃油质量15.飞机的最大活动半径:飞机由机场出发,飞到目标上空完成一定任务后,再飞回原机场所能达到的最远距离。
16.飞机的焦点:当迎角变化时,气动力对该点的力矩始终保持不变,这样的特殊点称为机翼的焦点17.尾旋:当飞机迎角超过临界迎角时,飞机同时绕三个机体轴旋转并沿小半径的螺旋轨迹急剧下降的运动18.升降舵平衡曲线:在满足力矩平衡(Mz=0)条件下,升降舵偏角与飞机升力系数之间的关系19.极曲线:反应飞行器阻力系数与升力系数之间的关系的曲线20.机体坐标系:平行于机身轴线或机翼的平均气动原点,位于飞机的质心;Oxb轴在飞机的对称面内,弦线指向前;Ozb轴也在对称面内,垂直于Oxb轴,指向下;Oyb轴垂直于对称面,指向右。
飞行力学基础
第二章飞行力学基础2.1 飞行器空间运动的表示、飞行器操纵机构、稳定性和操纵性的概念2.1.1常用坐标系1)地面坐标系(地轴系)(Earth-surface reference frame)Sg-og xgygzg原点og 取自地面上某一点(例如飞机起飞点)。
ogxg轴处于地平面内并指向某方向(如指向飞行航线);og yg轴也在地平面内并指向右方;ogzg轴垂直地面指向地心。
坐标按右手定则规定,拇指代表og xg轴,食指代表ogyg轴,中指代表o g zg轴,如图2.1-1所示。
2)机体坐标系(体轴系)(Aircraft-body coordinate frame)Sb-oxyz 原点o取在飞机质心处,坐标与飞机固连。
Ox与飞机机身的设计轴线平行,且处于飞机对称平面内;oy轴垂直于飞机对称平面指向右方;oz轴在飞机对称平面内;且垂直于ox轴指向下方(参看图2.1-1)。
发动机推力一般按机体坐标系给出。
3)速度坐标系(Wind coordinate frame)Sa-oxa y aza速度坐标系也称气流坐标系。
原点取在飞机质心处,oxa轴与飞行速度V的方向一致。
一般情况下,V不一定在飞机对称平面内。
oza 轴在飞机对称面内垂x图2.1-1 机体坐标系与地面坐标系直于ox a 轴指向机腹。
oy a 轴垂直于x a oz a 轴平面指向右方,如图2.1-2所示。
作用在飞机上的气动力一般按速度坐标系给出。
4)航迹坐标系(Path coordinate frame)Sk-ox k y k z k原点取在飞机质心处,ox k 轴与飞机速度V 的方向一致。
oz k 轴在包含ox k 轴的铅垂面内,向下为正;oy k 轴垂直于x k oz k 轴平面指向右方。
研究飞行器的飞行轨迹时,采用航迹坐标系可使运动方程形式较简单。
2.1.2 飞机的运动参数 1)飞机的姿态角 1.俯仰角θ(Pitch angle)机体轴ox 与地平面间的夹角。
第一章 飞行力学基础(1)
假设有一矢量r,在两个原 点重合的坐标系中的分量 分别为(xp, yp), (xq, yq) yp α yq r xp α O xq
xq cos( ) yq sin( )
xq cos(xq , x p ) cos(xq , y p ) x p cos( y , x ) cos( y , y ) y q p q p q yp
1.1 坐标系
二、 常用坐标系的定义(欧美坐标系)
1. 地面坐标系 2. 机体坐标系 3. 气流坐标系 4. 稳定坐标系 5. 航迹坐标系 三轴方向符合右手定则
1、地面坐标系(地轴系)
Sg –ogxgygzg
ground
这个坐标系与视作平面的地球表面相固联。 原点Og:地面上某点,如飞机起飞点; 纵轴OgXg:在地平面内并指向应飞航向,坐标 OgXg 表示航程。 横轴OgYg:也在地平面内并与纵轴垂直,向右 为正,坐标OgYg表示侧向偏离。 立轴OgZg:垂直地面指向地心,坐标OgZg表示 飞行高度。
飞机机体坐标系
飞机机体坐标系
飞机机体坐标系
3、气流坐标轴系 (wind coordinate frame)
原点O:取在飞机质心处,坐标系与飞机固连。 纵轴OXa:与飞机速度的方向一致,不一定在 飞机对称平面内。 立轴OZa:在飞机对称平面内且垂直于OXa轴指 向机腹 横轴OYa:垂直于XaOZa平面指向右方。
或简写为:
rq Lqp rp
从数学的角度讲,坐标变化的旋转顺序是不唯一的, 但无论以何种顺序旋转,最终的变化矩阵是相同的. 旋转顺序不同,相应的欧拉角也不同。一般选择有 明确物理意义的一组欧拉角进行旋转变换。
1.3.3 常用坐标系之间的关系
航天器飞行力学考点
一、名字解释1、自转公转转移进动章动:自转:地球的自转是绕地轴进行的公转:地球绕太阳的转动进动:太阳和月球经常对地球赤道隆起部分施加引力,这是一种不平衡的力,由于地球自转的存在,上述作用力不会使地轴趋于黄轴,而是以黄轴为轴作期性的圆锥运动,这就是地轴的进动。
2、真太阳日、平太阳、平太阳日:真太阳日:太阳相继两次通过观察者所在子午圈所经历的时间间隔为一个真太阳日。
平太阳:设想一个“假太阳”,它和真太阳一样,以相同的周期及同一方向与地球作相对运动。
但有两点不同:(1)它的运动平面是赤道平面而不是黄道平面;(2)运动速度是均匀的,等于“真太阳”在黄道平面内运动速度的平均值。
平太阳:设想一个“假太阳”,它和真太阳一样,以相同的周期及同一方向与地球作相对运动。
但有两点不同:(1)它的运动平面是赤道平面而不是黄道平面;(2)运动速度是均匀的,等于“真太阳”在黄道平面内运动速度的平均值;平太阳日:将“假太阳”两次过地球用一子午线的时间间隔为一个太阳日,这个太阳日就称为“平太阳日”3、重力:如地球外一质量为的质点相对于地球是静止的,该质点受到地球的引力为,另由于地球自身在以角速度旋转,故该质点还受到随同地球旋转而引起的离心惯性力,将该质点所受的引力和离心惯性力之和称为该质点所受的重力。
4、比冲:发动机在无限小时间间隔t δ内产生的冲量p t δ与该段时间间隔内消耗的推进剂重量0 m&g δt之比。
5、过载:我们把火箭飞行中除重力以外作用在火箭上的所有其他外力称作过载。
6、三个宇宙速度:7、二体问题:在卫星轨道的分析问题中,常假定卫星在地球中心引力场中运动,忽略其他各种摄动力的因素(如地球形状非球形、密度分布不均匀引起的摄动力和太阳、月球的引力等)。
这种卫星轨道称为二体轨道,分析这种轨道的特性称为二体问题。
8、升交点、降交点、交点线:卫星轨道与赤道的交点9、星下点、星下点轨迹:星下点:卫星星下点是卫星向径与地球表面交点的地心经、纬度星下点轨迹:星下点轨迹是卫星星下点在地球表面通过的路径,是卫星轨道运动和地球自转运动的合成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.最大飞行速度:飞机在某高度上以特定的重量和一定的发动机工作状态进行等速水平直线飞行所能达到的最大速度称为飞机在该高度上的最大平飞速度,各个高度上的最大平飞速度中的最大值,称为飞机的最大平飞速度。
2.最小平飞速度:指飞机在一定高度上能作定直平飞的最小速度3.实用静升限:飞机以特定的重量和给定的发动机工作状态做等速直线平飞时,还具有最大上升率为5(m/s)或0.5(m/s)的飞行高度。
4.理论静升限:飞机以特定的质量和给定的发动机工作状态能够保持等速直线平飞的飞行高度,也就是上升率等于零的飞行高度5.飞机的航程:飞机携带的有效载荷在标准大气及无风情况下,沿预定航线飞行,耗尽其可用燃油所经过的水平距离(包括上升和下滑的水平距离)。
6.飞机的航时:飞机携带的有效载荷在标准大气及无风条件下按照预定航线飞行,耗尽其可用燃油所能持续的飞行时间。
7.飞机的过载:作用在飞机上的气动力和发动机推力的合力与飞机重力之比,称为过载。
8.上升率:飞机以特定的重量和给定的发动机工作状态进行等速直线上升时在单位时间内上升的高度,也称上升垂直速度。
9.定常运动:运动参数不随时间而改变的运动。
10.飞机的平飞需用推力:飞机在某一高度以一定的速度进行等速直线平飞所需要的发动机推力11.铰链力矩:作用在舵面上的气动力对舵面转轴的力矩,称为铰链力矩12.最短上升时间:以最大上升率保持最快上升速度上升到预定高度所需要的时间13.小时耗油率:飞机飞行一小时发动机所消耗的燃油质量14.公里耗油率:飞机飞行一公里发动机所消耗的燃油质量15.飞机的最大活动半径:飞机由机场出发,飞到目标上空完成一定任务后,再飞回原机场所能达到的最远距离。
16.飞机的焦点:当迎角变化时,气动力对该点的力矩始终保持不变,这样的特殊点称为机翼的焦点17.尾旋:当飞机迎角超过临界迎角时,飞机同时绕三个机体轴旋转并沿小半径的螺旋轨迹急剧下降的运动18.升降舵平衡曲线:在满足力矩平衡(Mz=0)条件下,升降舵偏角与飞机升力系数之间的关系19.极曲线:反应飞行器阻力系数与升力系数之间的关系的曲线20.机体坐标系:平行于机身轴线或机翼的平均气动原点,位于飞机的质心;Oxb轴在飞机的对称面内,弦线指向前;Ozb轴也在对称面内,垂直于Oxb轴,指向下;Oyb轴垂直于对称面,指向右。
(书上版:是固联于飞机并随飞机运动的一种动坐标系。
它的原点O位于飞机的质心;Oxt 轴与翼弦或机身轴线平行,指向机头为正;Oyt轴位于飞机对称面内,垂直于Oxt轴,指向上方为正;Ozt轴垂直飞机对称面,指向右翼为正。
)21.翼载荷:飞机重力与及面积的比值22.纵向静稳定力矩:由迎角引起的那部分俯仰力矩称之为纵向静稳定力矩23.航向静稳定性:飞行器在平衡状态下受到外界非对称干扰而产生侧滑时,在驾驶员不加操纵的条件下,飞行器具有减小侧滑角的趋势1.作用在飞机上的外力主要有飞机重力G、空气动力R、发动机推力P2.飞机的过载分为切向过载n x、法向过载n y组成3.飞机的着陆过程可分为:下滑、拉平、平飞减速、飘落、地面滑跑。
4.对于具有静稳定性的飞机来说,当焦点位置一定,飞机质心向前移动,其静稳定性则增强;向后移动,静稳定性则减弱。
5.在定常曲线飞行中,衡量飞机机动性的指标单位过载舵偏角δZ ny、单位过载杆力增量PZ ny。
6.升降舵下偏、舵偏角为正;升降舵上偏,舵偏角为负。
7.影响飞机纵向静稳定性的主要部件:机翼、机身、水平尾翼8.机翼的后掠角增大,则飞机的横向静稳定性增大9.在飞机的性能计算中,通常将飞机阻力分为零升阻力和升致阻力10.根据飞机的飞行转台不同,涡轮喷气发动机的工作状态包括加力状态、最大状态、额定状态、巡航状态、慢车状态。
11.飞机跃升分为进入跃升、跃升直线段、改出跃升。
12.飞行力学主要研究内容包括飞行性能和稳定性和操纵性13.飞机的机动性是指飞机改变速度、高度以及方向的能力14.通常飞机的俯冲过程可以分为:进入俯冲、俯冲直线、改出俯冲。
15.对于具有一定过载静稳定性的飞机,纵向扰动运动可分为短周期模态和长周期模态。
16.飞机的升力由机翼、机身、平尾和舵面产生。
1.简述最大升阻比Kmax随M数的变化规律并绘图,解释其变化原因答:小M数时,Kmax基本不变;在跨音速区,由于Cx0剧增,使Kmax显着减小;在超音速区,M 数增加时,A值和Cx0值几乎保持同一比例而按相反方向变化,使二者乘积基本保持不变,使Kmax变化不大。
2.飞机设计师为提高在亚音速范围的飞机性能,通常采用哪些措施?答:减小Cxo;增大展弦比λ;较小的后掠角x;尽可能采用高升阻比的布局型式。
3.采用哪些措施可以改善飞机的航程和航时答:从气动布局上提高飞机的升阻比;尽量利用飞机内部空间携带更多的燃油;利用外部大气环境,如采用顺风飞行。
4.影响飞机进行正常盘旋时要考虑的三种限制因素答:飞机结构强度和刚度以及人的生理条件对最大过载的限制;从飞行安全角度考虑受允许升力系数的限制;发动机最大可用推力的限制。
5.简述飞机的气流坐标系(包括X、Y、Z轴及相关角度)答:气流坐标系原点位于飞机的质心;ox轴始终指向飞机的空速方向;oy轴位于飞机的对称面内,垂直于ox轴,指向上方为正;oz轴垂直于飞机对称面,指向右翼为正6.简述飞机的机体坐标系(包括X、Y、Z轴以及相关角度)答:机体坐标系原点位于飞机的质心;Ox轴与翼弦或机身轴线平行,指向机头为正;Oy 轴位于飞机的对称面内,指向上方为正;Oz轴垂直于飞机对称面,指向右翼为正。
气流坐标系和风轴系之间的夹角包括迎角和侧滑角。
7.简述差动副翼及其意义答:差动副翼是一边副翼的上偏角大于另一边副翼的下偏角。
采用差动副翼,目的加大型阻去平衡增大的升致阻力,从而使偏航力矩为零,提高副翼操纵效能。
8.航迹坐标系答:飞机质心为原点,Oxh轴始终指向飞机的地速方向,Oyh轴则位于包含Oyh轴的铅垂面内,垂直于Oxh轴,指向上为正,Ozh轴垂直于OxhOyh平面,指向右翼为正9.简述在第一平飞范围内,飞机的速度变化与驾驶员的操作之间的关系。
答:在第一平飞范围内,若飞机由低速平飞改为高速平飞,减小增大飞机的迎角和增大飞机的推力,驾驶员应前推驾驶杆和油门;若飞机由高速平飞改为低速平飞,增大增大飞机的迎角和减小飞机的推力,驾驶员应后拉驾驶杆和油门。
10.试叙述基本飞行性能计算时的假设条件。
答:假定地球为平面大地;飞机为理想刚体;假定大气为静止的标准大气11.飞机的最大允许升力系数主要受那些因素的限制答:飞机的迎角,飞机的马赫数,平尾极限偏转角,抖动升力系数Cydd12.飞机定直平飞的最小速度受到那些因素的限制?而最大速度又受到哪些因素的限制?答:最大升力系数,抖动升力系数,平尾偏角,发动机可用推力,结构最大允许气动载荷,最大承受温度。
13.试分析静推重比Pky/G及翼载荷G/S对飞机起落性能(基本飞行性能)的影响答:G/S越大。
Vld越大,起落性能越差,必须设法减小重量G,不但可以降低Vld和Vjd。
而且可使机轮对地面的摩擦力减小。
是起飞时加速快,缩短起飞滑跑距离;飞机的Pky/G 越大,起飞过程中的加速力越大,可以在较短的路程上达到离地速度,从而缩短起飞滑跑距离。
14.为提高飞机的Kmax,对亚音速飞机和超音速飞机在气动布局上各采用哪些措施答:亚音速:大展弦比,较大的相对厚度,小后掠角,小根梢比超音速:小展弦比,较小的相对厚度,大后掠角,变后掠机翼和边条机翼15.升致阻力系数因子A随M变化规律答:亚音速时,A与机翼有效展弦λyx成反比,当M>Mij,A将随M增大而增大;大概M)/4随M M>1时,对于钝头机翼,A值增加不多,在超音速前缘下,A=1/Cαy≈(1-2M成正比增大;若机翼前缘不带弯度且为尖锐前缘,则A=1/Cαy(整增加,A大致与1-2个M内)16.纵向运动与横航向运动分开分析需要满足那些条件?(推导飞机运动方程时的假设条件)答:小扰动;飞机有一个纵向对称面,(气动外形和质量分布均对称),且略却飞机内部转动部件的影响;未扰动运动为对称定常直线飞行,即飞机仅在于铅锤平面相重合的纵向对称面内等速直线飞行17.说明飞机在跨音速区域飞行时产生“自动俯冲”的现象及原因?(图)答:现象:假定驾驶员在A点作定常直线飞行,对应的平衡舵偏角再为φA,由于外界扰动使速度增加到B点,此时偏角并没有变化,仍然保持φA,可这个值对B点平衡而言不够大,向上偏角太小,因而在飞机上作用有不平衡的低头力矩,使飞机转入俯冲而进一步增加它的速度,到“C”点为正,由速度不稳定而引起的下俯现象,称“自动俯冲”。
原因:空气压缩性对焦点位置和力矩系数的影响,使飞机失去了速度静稳定性。
18.从概念上说明m z wz与m zα有何区别及产生原因答:纵向阻尼导数m z wz:由俯仰角速度Wz引起的纵向力矩洗流时差导数m zα:α引起的气动力或力矩主要是由于平尾洗流时差作用产生19.说明Xjd和(Xjd)sg的物理含义,如果质心位置处于二者之间,即(Xjd)sg<X G<Xjd,则对飞机的操纵性有何影响答:Xjd握杆激动点:相当于定常曲线运动中,迎角变化产生的升力增量△Y(α)=△nyG与角速度Wz产生的升力增量△Ypw(wz)的合力作用点(Xjd)sg松杆机动点:当质心与该点重合时,为了使飞机增加法向过载并不需要额外地施力于驾驶杆为获得正△ny,驾驶员向后拉杆,正常操纵(δz ny<0)驾驶员向后拉杆,过载减小,△ny<0,反操纵(P z ny>0)20.怎么判别飞机是否具有航向静稳定性?(横向)影响航向静稳定性的主要因素是什么?答:m y B<0,则飞机具有航向静稳定性;m x B<0,则飞机具有横向静稳定性航:(垂尾)m y B cw垂尾的航向静稳定导数,垂尾的面积横:(机翼)上反角Ψ,部件干扰21.怎样提高副翼操纵效能m xδx?答:改善横向:在机翼上表面安装扰流板,在副翼前缘之前安装涡流发生器;纵向:在机翼表面安装翼刀,采用锯齿形前缘,采用差动副翼,增加抗扭刚度。
22.试分析飞机横航向扰动中三种典型模态特性答:1.滚转模态:在扰动运动的初期,主要是大的负实根起作用,飞机滚转角速度及滚转角迅速变化,而其他的参数变化很小。
2.荷兰滚模态:在滚转阻尼运动基本结束后,共轭复根的作用变得十分明显,主要表现为各个参数都随时间按震荡方式周期性的变化。
飞机一方面来回滚转,一方面左右偏航,同时待有侧滑。
3.螺旋模态:到了扰动运动的后期,主要是小实根起作用,此时各参数变化都很小,因而作用于飞机上的侧力和横航向力矩也很小,结果使运动参数表现为单调而缓慢的变化,使飞机的飞行高度降低,飞机将沿着近似螺旋线的航迹缓慢的盘旋下降。