电力系统次同步振荡产生原因分析及对策

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统次同步振荡产生原因分析及对策

作者姓名

(单位名称,省份城市邮政编码)

摘要:在电网中串联补偿电容可以提高输电能力和稳定性,但也可能发生次同步振荡(SSO,Subsynchronous Oscillation)运行状态。发电机组以低于同步频率的振荡频率运行,严重影响机组的安全运行,对于电力系统的稳定性及其不利。本文分析了电力系统次同步振荡产生的原因和影响,在此基础上,阐述了解决次同步振荡问题的具体步骤。并探讨了有效抑制次同步振荡的保护方法,对于降低次同步振荡现象对电网安全的影响,提高电力系统的安全性和稳定性具有积极的意义。

关键词:次同步;振荡;输电;抑制;可控串补

发生机电扰动时,汽轮机驱动转矩与发电机电磁制动转矩之间失去平衡,使轴系这个弹性质量系统产生扭转振动[1-2]。引起扭振的原因包括机械扰动与电气扰动。机械扰动指不适当的进汽方式、调速系统晃动、快控汽门等。电气扰动分为两类:一类是次同步谐振(SSR,Subsynchronous Resonance)及次同步振荡(SSO,Subsynchronous Oscillation) ;另一类指各种急剧扰动如短路、自动重合闸、误并列等。

一电力系统次同步振荡产生的原因及抑制步骤

(1)次同步振荡产生原因

通过串联电容的形式进行补偿可以提高输电线路的输送能力,优化输电线路间的功率分布,并可以增加电力系统的稳定性,是交流输电系统中广泛采用的方法[3-4]。但这种方法也可能引发电力系统中的电气系统或汽轮发电机组以小于同步频率的振动频率进行能量交换,称为次同步振荡(SSO)。诱发次同步振荡的原因包括串联电容、稳定器的加装、励磁系统、直流输电等。次同步谐振会造成汽轮机或发电机的轴系长时间呈现低振幅扭振的状态,又因为发电机或汽轮机的转子具有较大的惯性,轴系具有灵敏的低阶扭转模态特性,所以发电机或汽轮机会出现低周高应力的机电共振,对发电机组的安全运行造成严重的威胁。次同步振荡在交流输电系统和直流输电系统中的形成原理不同,在交流输电系统由于又谐振回路的存在所以称为次同步谐振(SSR),主要从异步发电效应、暂态力矩放大作用和机电扭振相互作用三个角度进行描述和分析。其中,发电机扭振时最重要的一种影响,长时间的机电扭振的存在会加剧发电机组的疲劳损耗。也会产生隐性故障,一旦发展成机电材料破损,将会造成恶性事故,对电力系统的安全稳定运行带来极大的威胁。

(2)抑制步骤

对于次同步振荡的问题可以通过三个步骤加以解决。第一步是通过对系统进行分析,选择合适的运行方式。由汽轮发电机轴系扭振监测系统对发电机组的各种电气扰动下的轴系扭振进行实时路波,分析机组轴系的模态、阻尼以及扭振对轴系造成的损失。从而由阻尼值是收敛还是发散决定不同的运行方式下是否存在次同步振荡或次同步谐振。第二步是对次同步振荡进行抑制或消除。具体的办法是提高发电机组的阻尼来抑制或消除次同步振荡。例如,可以通过发电机端阻尼控制系统(GTSDC)对发电机组定子电流进行控制达到提高阻尼的效果;还可以通过次同步阻尼控制系统,根据系统的具体控制要求,向电力系统或发电机组提高次同步电流,使发电机组增加与次同步扭振相适应的次同步阻尼扭矩,达到抑制次同步振荡的作用。第三步是建立发电机组扭振保护系统(TSR),实时连续地监视汽轮发电机轴系的转速情况,并及时进行分析。当轴系的疲劳值达到极限或者当轴系被激发特征频率的扭振、振幅逐步发散可能对机组安全构成威胁时,进行保护跳闸、告警及联动。

二次同步振荡监测与抑制措施

(1)轴系参数的监测与分析

对汽轮发电机的轴系参数进行实时监测是十分必要的。汽轮发电机轴系参数监测系统如图1所示。其中,在线阻尼监测及分析预警系统可以实时监测汽轮发电机轴系次同步振荡的相关数据信息。并通过专家系统对发电机组扭振模态频率和阻尼变化情况进行分析和自动识别。如果扭振模态频率或阻尼值超过阈值就发出警告信息,监控人员可以根据提示信息进行相应处理。阻尼在线监测及实时预警模块,通过对发电机轴系次同步谐振信号的实时监测,自动辨识机组扭振模态频率和阻尼情况,当频率与阻尼超过限值时,进行告警,是阻尼和频率测量的重要分析工具。汽轮发电机组轴系扭振监测装置监测装置(TMU),可以对各种机械或电气扰动下的轴系扭振进行测量,能够掌握发电机组的状态及损失情况;还能够测量发电机的转速、频率、电压电流等参数为计算和专家系统分析提高依据;而专家系统可以根据以上模块测量的轴系参数计算分析机组的运行状态和疲劳程度,根据预设的报警阈值在出现异常扭振时进行扭振低限或高限告警,便于对次同步振荡的抑制提供基础信息和消除依据。

图1 汽轮发电机轴系参数监测系统

(2)发电机端阻尼控制系统(GTSDC)抑制

发电机端阻尼控制系统(GTSDC)的作用是按照电路系统的需求,根据此同步振荡的具体情况,进行次同步电流补偿。这样可以对次同步振荡引起的发电机轴系扭振力矩进行抑制。该补偿电流是由电力电子变流器产生幅值和相位都可以调整的电流源。该补偿电流的补偿大小通过阻尼控制器采集的发电机轴系扭振的动态反馈信号进行计算获得。发电机端阻尼控制系统可以大大减小发电机组扭振保护系统的切机频率,抑制次同步振荡造成的不利影响。

(3)发电机组扭振保护系统(TSR)抑制

图2 发电机组扭振保护系统原理图

发电机组扭振保护系统(TSR)如图2所示。当次同步振荡对发电机组的运行安全造成巨大影响时,该系统可以进行起动,通过事故告警或保护跳闸及采取切除机组的形式抑制次同步振荡。主要监测的参数是发电机的轴系转速、轴系的寿命疲劳定值、次同步振荡的幅度。将相关事故机组切除后,电力系统中的负阻尼状况消失。再通过原动机的配合可以使转矩在短时间内减小,从而可以避免次同步振荡和轴系扭振影响扩大。对于剩余的在线机组,切除机组将改变系统结构和等效串补度,一定程度上能增强在线机组的模态阻尼,有利于抑制次同步振荡。

三结束语

对于电力系统次同步振荡的抑制,要考虑到不同的系统结构、运行方式、发电机组情况、负载情况、补偿的运行方式等具体的情况,结合现场的实验进行有效治理,对可控串补的控制参数针对电网和发电厂两个方面进行监控和优化。在电网和发电厂中,通过采取固定串补、可控串补,电厂侧采取SEDC、TSR等多种组合方案并用,共同达到抑制电网次同步谐振(SSR)和次同步振荡(SSO)的目的,保障交流或直流输电系统的安全稳定可靠运行。

参考文献:

[1] 张帆,徐政.采用SVC抑制发电机次同步谐振的理论与实践[J]. 高电压技

术,2007,33(4):26-31.

[2] 武云生,韩俊彪.应用静止无功补偿器抑制发电机次同步振荡的研究[J]. 电力设

备,2008,9(2):49-52.

[3] 文劲宇,孙海顺,等.电力系统的次同步振荡问题[J].电力系统保护与控制,2008,36(12):1-4.

[4] 刘取.电力系统稳定性及发电机励磁控制[M]. 北京:中国电力出版社,2007.

相关文档
最新文档