第二章__连续系统的时域分析习题解答
《信号与系统》考研试题解答第二章连续系统的时域分析
X2.1 (东南大学2002年考研题)一线性时不变连续时间系统,其在某激励信号作用下的自由响应为(e-3t+e-t) (t),强迫响应为(1-e-2t) (t),则下面的说法正确的是______________(A)该系统一定是二阶系统(B)该系统一定是稳定系统(C)零输入响应中一定包含(e-3t+e-t) (t)(D )零状态响应中一定包含(1-e-2t) (t)X2.2(西安电子科技大学2005年考研题)信号f1(t)和f2(t)如图X2.2所示,f=f1(t)* f2(t),则f(-1)等于__________图X2.2X2.3 (西女电子科技大学2005年考研题)下列等式不成立的是(A) f1(t t。
)* f2(t t°) 锂) * f2(t)(B)-J—f1(t)* f2(t) dtd f1(t)dt-J* — f2(t) dt 2(C) f(t)* (t) f (t)(D) f(t)* (t) f (t)答案:X2.1[D] , X2.2[C], X2.3[B]、判断与填空题T2.1 (北京航空航天大学2001年考研题)判断下列说法是否正确,正确的打错误的打“X” 。
(1 )若y(t) f(t)*h(t),则y(2t) 2f(2t)*h(2t)。
[](2)如果x(t)和y(t)均为奇函数,贝U x(t)*y(t)为偶函数。
[](3)卷积的方法只适用于线性时不变系统的分析。
[](4 )若y(t) f(t)*h(t),则y( t) f( t)*h( t)。
[](5)两个LTI系统级联,其总的输入输出关系与它们在级联中的次序没有关系。
[]第二章、单项选择题连续系统的时域分析(C) 1.5 ( D)-0.5(A)T2.2 (华中科技大学2004年考研题)判断下列叙述或公式的正误,正确的在方括号中打“/,错误的在方括号中打“X”。
(1)线性常系数微分方程表示的系统,其输出响应是由微分方程的特解和齐次解组成,或由零输入响应和零状态响应所组成。
郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才
Ri(t) v1(t) e(t)
Ri(t)
1 C
t
i(
)d
v1 (t )
e(t)
vo (t) v1(t)
消元可得微分方程:
6 / 59
圣才电子书
十万种考研考证电子书、题库视频学习平
1
台
C
d
dt
vo (t)
1 R
vo (t)
R
e(t)
2-2 图 2-2-2 所示为理想火箭推动器模型。火箭质量为 m1,荷载舱质量为 m2,两 者中间用刚度系数为 k 的弹簧相连接。火箭和荷载舱各自受到摩擦力的作用,摩擦系数分 别为 f1 和 f2。求火箭推进力 e(t)与荷载舱运动速度 v2(t)之间的微分方程表示。
M
di1 (t ) dt
Ri2 (t)
0
化简方程组可得微分方程:
(L2
M
2
)
d4 dt 4
vo
(t)
2RL
d3 dt 3
vo
(t)
2L C
R2
d2 dt 2
vo
(t)
2R C
d dt
vo
(t)
1 C2
vo
(t)
MR
d2 dt 2
e(t)
(3)由图 2-2-1(c)所示列写电路方程,得:
C
dv1 (t ) dt
b.自由响应由两部分组成,其中,一部分由起始状态决定,另一部分由激励信号决 定,二者都与系统的自身参数有关;当系统 0-状态为零,则零输入响应为零,但自由响应 可以不为零。
c.零输入响应在 0-时刻到 0+时刻不跳变,此时刻若发生跳变,可能为零状态响应分 量。
信号与系统分析第二章 连续时间系统的时域分析
第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。
信号与系统王明泉版本~第二章习题解答
第2章 线性时不变连续系统的时域分析2.1 学习要求(1)会建立描述系统激励与响应关系的微分方程;(2)深刻理解系统的完全响应可分解为:零输入响应与零状态响应,自由响应与强迫响应,瞬态响应与稳态响应;(3)深刻理解系统的零输入线性与零状态线性,并根据关系求解相关的响应; (4)会根据系统微分方程和初始条件求解上述几种响应; (5)深刻理解单位冲激响应的意义,并会求解;(6)深刻理解系统起始状态与初始状态的区别,会根据系统微分方程和输入判断0时刻的跳变情况; (7)理解卷积运算在信号与系统中的物理意义和运算规律,会计算信号的卷积。
; 2.2 本章重点(1)系统(电子、机械)数学模型(微分方程)的建立; (2)用时域经典法求系统的响应; (3)系统的单位冲激响应及其求解;(4)卷积的定义、性质及运算,特别是()t δ函数形式与其它信号的卷积; (5)利用零输入线性与零状态线性,求解系统的响应。
2.3 本章的知识结构2.4 本章的内容摘要2.4.1系统微分方程的建立电阻:)(1)(t v Rt i R R =电感:dtt di L t v L L )()(= )(d )(1)(0t i v Lt i L tL L +=⎰∞-ττ 电容:dtt dv C t i C C )()(= ⎰+=tt L C C t i i Ct v 0)(d )(1)(0ττ 2.4.2 系统微分方程的求解 齐次解和特解。
齐次解为满足齐次方程t n t t h e c e c e c t y 32121)(λλλ+⋅⋅⋅++=当特征根有重根时,如1λ有k 重根,则响应于1λ的重根部分将有k 项,形如t k t k t k t k h e c te c e t c e t c t y 111112211)(λλλλ++⋅⋅⋅++=--- 当特征根有一对单复根,即bi a +=2,1λ,则微分方程的齐次解bt e c bt e c t y at at h sin cos )(21+= 当特征根有一对m 重复根,即共有m 重ib a ±=2,1λ的复根,则微分方程的齐次解bt e t c bt te c bt c t y at m m at h cos cos cos )(121-+⋅⋅⋅++= bt e t d bt te d bt e d at m m at at sin sin sin 121-+⋅⋅⋅+++ 特解的函数形式与激励函数的形式有关。
《信号与系统》第二章作业题答案
第二章 连续时间系统的时域分析1.与()t δ相等的表达式为:A .1()4t δ B .2(2)t δ C .(2)t δ D .1(2)2t δ解:由()t δ函数的性质1()()t t δαδα=可得,选B2.()j tet dt ωδ∞--∞'=⎰。
解:运用性质0()()()(0)t f t t dt f t f δ∞=-∞'''=-≡-⎰,得到()()j tet dt j j ωδωω∞--∞'=--=⎰。
3.两个线性时不变系统的级联,其总的输入-输出关系与它们在级联中的次序没有关系。
(正确)解:以冲击响应为例。
因为级联时,系统总的冲击响应等于各子系统冲击响应的卷积,而卷积与顺序没有关系,所以冲击响应与子系统顺序没有关系。
4.若()()()y t x t h t =*,则()()()y t x t h t -=-*-。
(错误)解:由()()()y t x h t d τττ∞-∞=-⎰,得()()()y t x h t d τττ∞-∞-=--⎰。
而()()()()()x t h t x h t d y t τττ∞-∞-*-=--+≠-⎰5.已知(21)f t -+波形如图所示,试画出()f t 的波形。
解:根据1反2展36.用图解法求图中信号的卷积()()()t f t f t f 21*=。
(03北邮A,8分)解:当10t -<时,即1t <时,由图1所示,12()()*()0f t f t f t ==图1当1020t t ->⎧⎨-<⎩时,即12t <<时,由图2所示,11201()()*()sin()[cos()1]t f t f t f t d t πττππ-===+⎰图2当1220t t -<⎧⎨->⎩时,即23t <<时,由图3所示,11222()()*()sin()cos()t t f t f t f t d t πττππ--===⎰图3当1222t t ->⎧⎨-<⎩时,即34t <<时,由图4所示,21221()()*()sin()[cos()1]t f t f t f t d t πττππ-===-⎰图4当4t >时,如图5所示,12()()*()0f t f t f t ==图57.如图所示系统由几个子系统组成,各子系统的冲激响应为)()(1t u t h =,)1()(2-=t t h δ,)()(3t t h δ-=,试求此系统的冲激响应)(t h ;若以()()t u e t e t -=作为激励信号,用时域卷积法求系统的零状态响应。
考研专业课郑君里版《信号与系统》第二章补充习题——附带答案详解
第二章 连续时间系统的时域分析1.已知连续时间信号1()e ()t f t u t -=和2()e ()t f t u t =-,求卷积积分12()()()f t f t f t =*,并画出()f t 的波形图。
解:1212()()()()()f t f t f t f t f d τττ∞-∞=*=-⎰反褶1()f τ得1()f τ-,右移t 得11[()]()f t f t ττ--=-,作出2()f τ图形及不同t 取值的1()f t τ-图形,由此可得:当0t ≤时,21()e e ee e 2ttt tt f t d d τττττ---∞-∞===⎰⎰当0t ≥时,0021()e e e e e 2t t t f t d d τττττ----∞-∞===⎰⎰综上,||111()e ()e ()e 222t t t f t u t u t --=-+=()f t 是个双边指数函数。
讨论:当1()f t 、2()f t 为普通函数(不含有()t δ、()t δ'等)时,卷积结果()f t 是一个连续函数,且()f t 非零取值区间的左边界为1()f t 、2()f t 左边界之和,右边界为1()f t 、2()f t 右边界之和,也就是说,()f t 的时宽为1()f t 、2()f t 时宽之和。
τttt2.计算题图2(a )所示函数)(1t f 和)(2t f 的卷积积分)()()(21t f t f t f *=,并画出)(t f 的图形。
解法一:图解法1212()()()()()f t f t f t f t f d τττ∞-∞=*=-⎰其中1()f t τ-的波形见题图2(b),由此可得: 当10t +≤,即1t ≤-时,()0f t = 当011t ≤+≤,即10t -≤≤时,120()2(1)t f t d t ττ+==+⎰当11t +≥但10t -≤,即01t ≤≤时,1()21f t d ττ==⎰当011t ≤-≤,即12t ≤≤时,121()21(1)t f t d t ττ-==--⎰当11t -≥,即2t ≥时,()0f t =综上,220,1,2(1),10()1,011(1),12t t t t f t t t t ≤-≥⎧⎪+-≤≤⎪=⎨≤≤⎪⎪--≤≤⎩ ()f t 波形见题图2(c)。
信号与系统第二章连续系统的时域分析
解:齐次解同上。由于f(t)=e–2t,其指数与特征根之 一相重。故其特解可设为yp(t) = (P1t + P0)e–2t 代入微分方程可得P1e-2t = e–2t 所以P1= 1 但P0不能求得。全解为
) (t)
2.若描述系统的微分方程为:
y(n)(t)+a n-1 y(n-1)(t)+…+a1y(1)(t)+a0y(t)= bmf(m)(t)+bm-1f (m-1)(t)+… +b1f(1)(t)+b0f(t)
可根据LTI系统的线性性质和微积分特性
求出阶跃响应。
三、冲激响应和阶跃响应的关系
(t) d (t)
其经典解: y(t)(完全解) = yh(t)(齐次解) + yp(t)(特解) 齐次解是齐次微分方程: y(n) (t) +an-1y(n-1) (t) +…+ a1y(1)(t)+a0y(t)=0的解。 齐次解yh(t)的函数形式由上述微分方程的特 征根确定。特解的函数形式与激励有关。
例(p40)描述某系统的微分方程为: y”(t) + 5y’(t) + 6y(t) = f(t),求:
dt
t
(t) (x)dx
h(t) dg(t) dt
t
g(t) h(x)dx
例2.2-3 如图所示的LTI系统,求其阶跃响应
x’(t)
f(t)
x’’(t)
+
-
-
3
2
1
x(t)
-
y(t)
2+
信号与系统 第二章习题 王老师经典解法(青岛大学)小白发布
2-16 已知 f1 (t ) =
画出下列各卷积的波形。 (1) s1 (t ) = f1 (t ) ∗ f 2 (t ) ; (2) s2 (t ) = f1 (t ) ∗ f 2 (t ) ∗ f 2 (t ) ; (3) s3 (t ) = f1 (t ) ∗ f 3 (t ) 。
2-17 求题图 2-17 所示电路在 e(t ) = (1 + 2e
第二章
连续时间系统的时域分析
2-1 电路如题图 2-1 所示,列写求 vo (t ) 的微分 方程。
L1 1H R1 2Ω + e(t) i 1 (t )
R2 1Ω + L2 2H 题图 2-1
C
1F
i 2 (t )
vo(t)
2-2 电路如题图 2-2 所示, 列写求 i2 (t ) 的微分方 程。
题图 2-18
−2 t
− 1)U (t ) , 试利用卷积的性质求题
1 0 -1
e2(t)=tU(t) 1 t 0
e3(t)
t 0 1
2-19 一线性时不变的连续时间系统,其初始状态一定,当输入 e1 (t ) = δ (t ) 时,其全响应
r1 (t ) = −3e − tU (t ) ; 当 输 入 e2 (t ) = U (t ) 时 , 其 全 响 应 r2 (t ) = (1 − 5e − t )U (t ) 。 求 当 输 入 e(t ) = tU (t ) 时的全响应。
2-14 计算卷积 f (t ) = f 1 (t ) ∗ f 2 (t ) ,其中 f1 (t ) = sgn(t − 1) , f 2 (t ) = e 2-15 求下列卷积 (1) f1 (t ) = e
_第二章连续系统的时域分析习题解答
— P2-1 —第二章 连续系统的时域分析习题解答2-1 图题2-1所示各电路中,激励为f (t ),响应为i 0(t )和u 0(t )。
试列写各响应关于激励微分算子方程。
解:.1)p ( ; )1(1)p ( , 111 , 1111)( )b (;105.7)625(3 102 ;)(375)()6253(4)()()61002.041( )a (0202200204006000f i p f p u p f p p p u i f p p p ppft u pf i p pu i t f t u p t f t u p =+++=++⇒++=+=+++=++=⨯=+⇒⨯==+⇒=++-- 2-2 求图题2-1各电路中响应i 0(t )和u 0(t )对激励f (t )的传输算子H (p )。
解:.1)()()( ; 11)()()( )b (;6253105.7)()()( ; 6253375)()()( )a (220 20 40 0 +++==+++==+⨯==+==-p p p p t f t i p H p p p t f t u p H p p t f t i p H p t f t u p H f i f u f i fu2-3 给定如下传输算子H (p ),试写出它们对应的微分方程。
.)2)(1()3()( )4( ; 323)( )3(; 33)( )2( ; 3)( )1( +++=++=++=+=p p p p p H p p p H p p p H p p p H解:; 3d d 3d d )2( ; d d 3d d)1( f tf y t y t f y t y +=+=+ . d d 3d d 2d d 3d d )4( ; 3d d 3d d 2 )3( 2222t f tf y t y t y f t f y t y +=+++=+ 2-4 已知连续系统的输入输出算子方程及0– 初始条件为:.4)(0y ,0)(0y )y(0 ),()2(13)( )3(; 0)(0y ,1)(0y ,0)y(0 ),()84()12()( )2(;1)(0y ,2)y(0 ),()3)(1(42)( )1(---2---2--=''='=++==''='=+++-=='=+++=t f p p p t y t f p p p p t y t f p p p t yf (u 0(t ) (b) u 0(t ) (a)图题2-1— 2 —试求系统的零输入响应y x (t )(t /0)。
郑君里《信号与系统》(第3版)(上册)(课后习题 连续时间系统的时域分析)【圣才出品】
圣才电子书
十万种考研考证电子书、题库视频学习平 台
解:对汽车底盘进行受力分析。
图 2-4
图 2-5
设汽车底盘运动速度为 v(t) ,方向向上; Fk 为弹簧对汽车底盘的拉力,方向向下; Ff 为减震器阻尼力,方向向下。
汽车底盘的加速度:
a(t)
dv(t) dt
d dt
[ dy(t)] dt
d
2 y(t) dt 2
①
因弹簧的位移量为 x(t) y(t) ,所以拉力: Fk (t) k[ y(t) x(t)]
②
减震器对汽车底盘的作用力: Ff
(t)
f
d [ y(t) x(t)] dt
③
由牛顿第二定律知: Fk (t) Ff (t) ma(t)
将式①②③代入上式,可得微分方程
2-6 给定系统微分方程
若激励信号和起始状态为: 试求它的完全响应,并指出其零输入响应、零状态响应,自由响应、强迫响应各分量。
解:方程的特征方程为
特征根为
(1)设零输入响应
①
6 / 36
圣才电子书
由已知条件可得
十万种考研考证电子书、题库视频学习平 台
rzi (0 ) rzi (0 ) r(0 ) 1
台
(2)
d dt
r
t
2r
t
3
d dt
et
,r
0
0,et
ut
。
试判断在起始点是否发生跳变,据此对(1)(2)分别写出其 r0 值。
解:当微分方程右端包含 (t) 及其各阶导数时,系统从 0 状态到 0 状态发生跳变。
(1)将 e(t) u(t) 代入原方程得:
[信号与系统作业解答]第二章
特征方程为 2 3 2 0 ,特征根为 1
1和 2
2。
所以rzi(t) C1e t C2e 2t, t 0
将 rzi(0 ) r (0 ) 2 和rzi(0 ) r(0 ) 1代入可求得
g(t) 1 e 12t cos 3 t 2
1 e 12t sin 3 t u(t)
3
2
由于系统的冲激响应h(t) h(t) e 12t cos 3 t
2
d g(t) ,所以系统的冲激响应为 dt
1 e 12t sin 3 t u(t)
3
2
3)系统的冲激响应满足方程
d dt
h(t)
2h(t)
(t) 3 (t)
电容两端电压不会发生跳变,vc(0 ) vc(0 ) 10V ,所以i(0 ) 0 ;
因此,电阻两端无电压,电感两端电压变成 10V,所以i (0 ) 10 。
(2)换路后系统的微分方程为
i (t) i (t) i(t) e (t) e(t) 20u(t)
t 0 时间内描述系统的微分方程为
i (t) i (t) i(t) 20 (t)
e(t) (1) 0 (2)
整理得:
2vo(t) 5vo(t) 5vo(t) 3vo(t) 2e (t)
2-4 已知系统相应的齐次方程及其对应的 0+状态条件,求系统的零输入响应。
1)
d2 dt 2
r(t)
2
d dt
r(t
)
2r(t)
0 ,给定r(0 )
1 ,r (0 )
2
第二章连续系统的时域分析
解得系数为 代入得
A1 2 A2 4
rzi (t) 2e2t 4et ,t 0
(3)零状态响应rzs(t) 满足 r”(t) + 3r’(t) + 2r(t) = 2δ(t) + 6u(t) 利用系数匹配法解得:
r'zs (0) r'zs (0) 2 2 rzs (0) rzs (0) 0 0
利用初始值解得: A1 1 A2 0
全响应为:
r(t)
e2t
3
t0
(2)零输入响应rzi(t), 激励为0 , rzi (0+)= rzi (0-)= rzi (0-)=2 rzi’(0+)= rzi’(0-)= rzi’(0-)=0
根据特征根求得通解为:
rzi (t) A1e2t A2et
四.系统响应划分
自由响应+强迫响应 (Natural+forced)
暂态响应+稳态响应 (Transient+Steady-state)
零输入响应+零状态响应 (Zero-input+Zero-state)
①自由响应:也称固有响应,由系统本身特性决定,与外加激励 形式无关。对应于齐次解。 强迫响应:形式取决于外加激励。对应于特解。
解得 A1 + B0 = 2 A2= –1
最后得微分方程的全解为
r(t) 2e2t e3t te2t
上式第一项的系数A1+B0= 2,不能区分A1和B0,因而也不能 区分自由响应和强迫响应。
二、关于 0- 和 0+ 初始值 1、0- 状态和 0+ 状态 0- 状态称为零输入时的初始状态。即初始值是由系统的储 能产生的; 0+ 状态称为加入输入后的初始状态。即初始值不仅有系统 的储能,还受激励的影响。 从 0- 状态到 0+ 状态的跃变 当系统已经用微分方程表示时,系统的初始值从0- 状态到 0+ 状态有没有跳变决定于微分方程右端自由项是否包含(t)及 其各阶导数。
郑君里信号与系统习题解答第二章
第二章 连续时间系统的时域分析经典法:双零法卷积积分法:求零状态响应求解系统响应→定初始条件满足换路定则起始点有跳变:求跳变量零输入响应:用经典法求解零状态响应:卷积积分法求解()()()()⎩⎨⎧==-+-+0000L L c c i i u u例题•例题1:连续时间系统求解(经典法,双零法) •例题2:求冲激响应(n >m ) •例题3:求冲激响应(n <m ) •例题4:求系统的零状态响应 •例题5:卷积 •例题6:系统互联例2-1分析在求解系统的完全响应时,要用到有关的三个量是: :起始状态,它决定零输入响应;()()()()()()()()()强迫响应。
状态响应,自由响应,并指出零输入响应,零,求系统的全响应,已知 系统的微分方程为描述某t u t e r r t e t t e t r t t r t t r =='=+=++--,00,206d d 22d d 3d d LTI 22()-0)(k r ⎩⎨⎧状态变量描述法输出描述法—输入建立系统的数学模型:跳变量,它决定零状态响应; :初始条件,它决定完全响应;这三个量之间的关系是 分别利用 求零状态响应和完全响应,需先确定微分方程的特解。
解:方法一:利用 先来求完全响应,再求零输入响应,零状态响应等于完全响应减去零输入响应。
方法二:用方法一求零输入响应后,利用跳变量 来求零状态响应,零状态响应加上零输入响应等于完全响应。
本题也可以用卷积积分求系统的零状态响应。
方法一1. 完全响应 该完全响应是方程 (1)方程(1)的特征方程为 特征根为 方程(1)的齐次解为因为方程(1)在t >0时,可写为 (2)显然,方程(1)的特解可设为常数D ,把D 代入方程(2)求得 所以方程(1)的解为下面由冲激函数匹配法定初始条件 由冲激函数匹配法定初始条件 据方程(1)可设代入方程(1),得匹配方程两端的 ,及其各阶导数项,得 所以,所以系统的完全响应为()+0)(k zsr ()+0)(k r ()()()+-+=-000)()()(k zs k k r r r ()()++00)()(k k zs r r ,()()代入原方程有将t u t e =()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()++'0,0r r ()()++''0,0zs zs r r ()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()的解且满足00,20='=--r r 0232=++αα2121-=-=αα,()t t e A e A t r 221--+=()()()()t u t r t t r tt r 62d d 3d d 22=++3=D ()3221++=--tt e A e A t r ()()()t u b t a t t r ∆+=δ22d d ()()t u a t t r ∆=d d ()无跳变t r ()()()()()()t u t t r t u a t u b t a 6223+=+∆+∆+δδ2=a ()t δ()()22000=+=+'='-+a r r ()()200==-+r r ()()代入把20,20=='++r r ()3221++=--t t e A e A t r 1,021-==A A 得()0 32≥+-=-t e t r t ()t r zi 再求零输入响应2.求零输入响应 (3)(3)式的特征根为 方程(3)的齐次解即系统的零输入响应为所以,系统的零输入响应为 下面求零状态响应零状态响应=完全响应—零输入响应,即 因为特解为3,所以强迫响应是3,自由响应是方法二(5)以上分析可用下面的数学过程描述 代入(5)式 根据在t =0时刻,微分方程两端的 及其各阶导数应该平衡相等,得 于是t >0时,方程为 齐次解为 ,特解为3,于是有所以,系统的零状态响应为方法一求出系统的零输入响应为()是方程响应因为激励为零,零输入t r zi ()()()02d 3d d 22=++t r dt t r t t r ()()()()()()的解.,且满足 0000 2000='='='===--+--+r r r r r r zi zi zi zi 2121-=-=αα,()t t zi e B e B t r 221--+=()()式解得,代入,由)4(0020='=++zi zi r r 2,421-==B B ()0 242≥-=--t e e t r t t zi ()0 342≥++-=--t e e t r t t zs t t e e 24--+-()是方程零状态响应t r zs ()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()的解且满足000='=--zs zs r r ()项由于上式等号右边有t δ()应含有冲激函数,,故t r zs "()将发生跳变,即从而t r zs '()()-+'≠'00zs zs r r ()处是连续的.在而0=t t r zs ()()()()()t u a t r t t u b t a t r tzs zs∆=+∆+=+d d ,d d 22δ()()()()()()t u t t r t u a t u b t a 6223+=+∆+∆+δδ()t δ2=a ()()()()002000===+'='-+-+zs zs zs zs r r a r r ()()()()t u t r t t r t t r 62d d 3d d 22=++ 221t t e D e D --+()3221++=--t t zi e D e D t r ()()得由初始条件0,200=='++zs zs r r 1,421=-=D D ()0) ( 342≥++-=--t e e t r t t zs ()0 242≥-=--t e e t r t t zi完全响应=零状态响应+零输入响应,即例2-2冲激响应是系统对单位冲激信号激励时的零状态响应。
第二章连续时间系统的时域分析
第二章连续时间系统的时域分析1、选择题1.若系统的起始状态为0,在x (t)的激励下,所得的响应为 D 。
A 强迫响应 B 稳态响应 C 暂态响应 D 零状态响应2.若系统的起始状态为0,在e(t)的激励下,所得的响应为 D 。
A 强迫响应 B 稳态响应 C 暂态响应 D 零状态响应3.线性系统响应满足以下规律 a 。
A)、若起始状态为零,则零输入响应为零。
B)、若起始状态为零,则零状态响应为零。
C)、若系统的零状态响应为零,则强迫响应也为零。
D)、若系统的起始状态为零,则系统的自由响应为零; 4.线性时不变系统输出中的自由响应的形式由 A 决定。
A 系统函数极点的位置B 激励信号的形式C 系统起始状态D 以上均不对。
5. 已知系统的传输算子为)23(2)(2+++=p p p p p H ,求系统的自然频率为 b a)、 -1 , -2 b)、 0 , -1 , -2 c)、 0, -1 d)、 -26.已知某线性时不变系统的单位阶跃响应为)()(2t U e t t -=δ,激励为)()(3t U e t f t-=时零状态响应为 d 。
a) )()32t U e e t t ---( b))()32(32t U e e t t --- c) )()23t U e e t t ---( d))()2323t U e e tt ---( 7.线性时不变系统输出中的自由响应的形式由 B 决定。
A 激励信号B 齐次微分方程的特征根C 系统起始状态D 以上均不对 8.线性时不变稳定系统的自由响应是 C 。
A 零状态响应B 零输入响应C 瞬态响应D 稳态响应 9.对线性时不变系统的响应,下列说法错误的是 B 。
A 零状态响应是线性的B 全响应是线性的C 零输入响应是线性的D 自由响应等于零输入响应10.线性时不变系统的响应,下列说法错误的是 C 。
A 零状态响应是线性时不变的B 零输入响应是线性时不变的C 全响应是线性时不变的D 强迫响应是线性时不变的 11. 传输算子)2)(1(1)(+++=p p p p H ,对应的微分方程为 b 。
信号与系统第二章习题答案
(− 3C1 + 3C2 )δ (t ) + (C1 + C2 )δ ' (t ) − (− 2C1 + C 2 )δ (t ) = δ (t )
h (t ) = C1e −2t + C2 e t ε (t )
对上式求一阶、二阶导数,得
(
)
h ' (t ) = − 2C1e −2t + C 2e t ε (t ) + C1e −2t + C2 e t δ (t )
(
)
(
t
)
h '' (t ) = 4C1e −2 t + C2 e t ε (t ) + − 2C1e −2t + C 2e t δ (t ) + − 2C1e − 2t
d 2e (t ) d 2i1 (t ) di1 (t ) di 2 (t ) = 4 + 6 + 2 dt 2 dt 2 dt dt
将⑴式、⑸式代入⑽式中,得到:
⑾
对⑾式求导,得到:
⑿
再将⑴式代入⑿式中,得到 i1 (t ) 的微分方程为:
64
d 2e (t ) d 2i1 (t ) di1 (t ) = 4 + 6 + 4i1 (t ) dt 2 dt 2 dt
⑼
再将⑴式代入⑼式中,得到 i 2 (t ) 的微分方程为:
2
d 2i 2 (t ) di 2 (t ) de(t ) + 3 + 2i 2 (t ) = 2 dt dt dt
⑽
对⑹式求一阶导,得到:
di (t ) di (t ) du (t ) de(t ) = 4 1 +2 2 + c dt dt dt dt di (t ) de(t ) = 4 1 + 6i1 (t ) + 2i2 (t ) dt dt
连续时间系统的时域分析 第2章 例题
−t
−3t
1
2
1
2
1
2
将h(t ), h′(t ), h′′(t )代入原方程
( A1 + A2 )δ ′(t) + (3A1 + A2 )δ (t) + 0⋅ u(t) = δ ′(t) + 2δ (t)
1 1 A + A2 = 1 A = 2 1 ⇒ 根据系数平衡, 根据系数平衡,得 3A1 + A2 = 2 A2 = 1 2 1 −t −3t h(t ) = e + e u(t ) 2
求0+定系数
代入h(t),得 得 代入
1 1 h(0+ ) = A + A2 = 1 A = 2 1 ⇒ ' 1 h (0+ ) = −A − 3A2 = −2 1 A2 = 2 1 −t −3t ∴ h(t ) = e + e u(t ) 2
(
)
用奇异函数项相平衡法求待定系数
将e(t)→δ(t), → ,
r(t)→h(t) →
d2 h(t ) d h(t ) dδ (t ) +4 + 3h(t ) = + 2δ (t ) 2 dt dt dt
求特征根
α 2 + 4α + 3 = 0 ⇒α1 = −1,α2 = −3
带u(t)
h(t ) = ( A e−t + A2e−3t )u(t ) 1
n = 2, m = 1, n > m h(t )中不包含冲激项
冲激响应 求待定系数
求0+法,奇异函数项相平衡法
管致中《信号与线性系统》(第5版)(课后习题 连续时间系统的时域分析)
8 / 43
圣才电子书
十万种考研考证电子书、题库视频学习平 台
2.6 已知电路如图 2-5 所示,电路未加激励的初始条件为:
(1) i10 2A,i'1 0 1A s ;(2) i10 1A,i'2 0 2A 。 求上述两种情况下电流 i1t及 i2t的零输入响应。
由②式可得:
③
由①式可得:
④
将式③代入式④可得:
用微分算子表示为: 即 (2)同理,将式①代入式③可得:
整理得: 用微分算子表示为:
1 / 43
圣才电子书
即
十万种考研考证电子书、题库视频学习平
台
。
2.2 H(p)。
写出图 2-2 中输入 e t 和输出 i1 t 之间关系的线性微分方程,并求转移算子
圣才电子书
十万种考研考证电子书、题库视频学习平
台
第 2 章 连续时间系统的时域分析
2.1 写出图 2-1 中输入 it 和输出 u1t 及 u2 t 之间关系的线性微分方程,并求转移
算子。
图 2-1 答:(1)利用节点法来分析电路,可得
对于节点 1:
①
对于节点 2:
②
(1)
d3 dt 3
r(t)
2
d2 dt 2
r(t)
d dt
r(t)
3
d dt
e(t)
e(t) ,
r0
r0
0,r0
1;
(2)
d3 dt 3
r(t)
3
d2 dt 2
r(t)
2
d dt
r(t)
《信号与系统》考研试题解答第二章连续系统的时域分析
第二章 连续系统的时域分析一、单项选择题X2.1(东南大学2002年考研题)一线性时不变连续时间系统,其在某激励信号作用下的自由响应为(e -3t +e -t )ε(t ),强迫响应为(1-e -2t )ε(t ),则下面的说法正确的是 。
(A )该系统一定是二阶系统 (B )该系统一定是稳定系统(C )零输入响应中一定包含(e -3t +e -t )ε(t ) (D )零状态响应中一定包含(1-e -2t )ε(t )X2.2(西安电子科技大学2005年考研题)信号f 1(t )和 f 2(t ) 如图X2.2所示,f =f 1(t )* f 2(t ),则 f (-1)等于 。
(A )1 (B )-1 (C )1.5 (D )-0.5图X2.2X2.3(西安电子科技大学2005年考研题)下列等式不成立的是 。
[])()(*)()()()(*)()()(*)()(*)()()(*)()(*)()(2121210201t f t t f D t f t t f C t f dt d t f dt d t f t f dt d B t f t f t t f t t f A ='='⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡==+-δδ答案:X2.1[D],X2.2[C],X2.3[B]二、判断与填空题T2.1(北京航空航天大学2001年考研题)判断下列说法是否正确,正确的打“√”,错误的打“×”。
(1)若)(*)()(t h t f t y =,则)2(*)2(2)2(t h t f t y =。
[ ] (2)如果x (t )和y (t )均为奇函数,则x (t )*y (t )为偶函数。
[ ] (3)卷积的方法只适用于线性时不变系统的分析。
[ ] (4)若)(*)()(t h t f t y =,则)(*)()(t h t f t y --=-。
[ ](5)两个LTI 系统级联,其总的输入输出关系与它们在级联中的次序没有关系。
《信号与系统》考研试题解答第二章连续系统的时域分析.doc
第二章 连续系统的时域分析一、单项选择题X2.1(东南大学2002年考研题)一线性时不变连续时间系统,其在某激励信号作用下的自由响应为(e -3t +e -t )ε(t ),强迫响应为(1-e -2t )ε(t ),则下面的说法正确的是 。
(A )该系统一定是二阶系统 (B )该系统一定是稳定系统(C )零输入响应中一定包含(e -3t +e -t )ε(t ) (D )零状态响应中一定包含(1-e -2t )ε(t )X2.2(西安电子科技大学2005年考研题)信号f 1(t )和 f 2(t ) 如图X2.2所示,f =f 1(t )* f 2(t ),则 f (-1)等于 。
(A )1 (B )-1 (C )1.5 (D )-0.5图X2.2X2.3(西安电子科技大学2005年考研题)下列等式不成立的是 。
[])()(*)()()()(*)()()(*)()(*)()()(*)()(*)()(2121210201t f t t f D t f t t f C t f dt d t f dt d t f t f dt d B t f t f t t f t t f A ='='⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡==+-δδ答案:X2.1[D],X2.2[C],X2.3[B]二、判断与填空题T2.1(北京航空航天大学2001年考研题)判断下列说法是否正确,正确的打“√”,错误的打“×”。
(1)若)(*)()(t h t f t y =,则)2(*)2(2)2(t h t f t y =。
[ ] (2)如果x (t )和y (t )均为奇函数,则x (t )*y (t )为偶函数。
[ ] (3)卷积的方法只适用于线性时不变系统的分析。
[ ] (4)若)(*)()(t h t f t y =,则)(*)()(t h t f t y --=-。
[ ](5)两个LTI 系统级联,其总的输入输出关系与它们在级联中的次序没有关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ii )求零输入响应ux(t):
2-20已知某系统的微分方程为 ,当激励
= 时,系统的全响应 ;试求零输入
响应yx(t)与零状态响应yf(t)、自由响应与强迫响应、暂态响应与稳态响应。
解:
解:
2-7已知三个连续系统的传输算子H(p)分别为:
试求各系统的单位冲激响应h(t)。
解:
2-8求图题2-8所示各电路中关于u(t)的冲激响应h(t)。
解:(a)
2-9求图题2-9所示各电路关于u(t)的冲激响应h(t)与阶跃响应g(t)。
解:
2-10如图题2-10所示系统,已知两个子系统的冲激响应分别为h1(t)(t1),h2(t)(t),试求整个系统的冲激响应h(t)。
解:
2-16图题2-16表示一个LTI系统的输入-输出关系。试求出该系统的冲激响应。
解:
2-17已知某系统的微分方程为 ,0-初始条件 ,试求:
(1)系统的零输入响应yx(t);
(2)激励f(t)(t)时,系统的零状态响应yf(t)和全响应y(t);
(3)激励f(t)e3t(t)时,系统的零状态响应yf(t)和全响应y(t)。
解:(1)算子方程为:
2-18图题2-18所示的系统,求当激励f(t)et(t)时,系统的零状态响应。
解:(a)令f(t) =(t),则y(t) =h(t),
(b)令f(t) =(t),则y(t) =h(t),
2-19图题2-19所示电路,t< 0时S在位置a且电路已达稳态;t=0时将S从a板到b,求t> 0时的零输入响应ux(t)、零状态响应uf(t)和全响应u(t)。
解:求和号后的冲激响应为 ,于是整个系统的冲激响应为:
2-11各信号波形如题图2-11所示,试计算下列卷积,并画出其波形。
解:
2-12求下列各组信号的卷积积分。
解:
2-13求图示各组波形的卷积积分y(t)=f1(t)*f2(t)。
解:
2-14已知 ,求f(t)。
解:微分: ;
再微分: .
2-15某LTI系统的激励f(t)和冲激响应h形。
试求系统的零输入响应yx(t)(t0)。
解:
2-5已知图题2-5各电路零输入响应分别为:
求u(0-)、i(0-)。
解:
2-6图题2-6所示各电路:
(a)已知i(0-) = 0,u(0-) = 5V,求ux(t);
(b)已知u(0-) = 4V,i(0-) = 0,求ix(t);
(c)已知i(0-) = 0,u(0-) = 3V,求ux(t) .
第二章
2-1图题2-1所示各电路中,激励为f(t),响应为i0(t)和u0(t)。试列写各响应关于激励微分算子方程。
解:
2-2求图题2-1各电路中响应i0(t)和u0(t)对激励f(t)的传输算子H(p)。
解:
2-3给定如下传输算子H(p),试写出它们对应的微分方程。
解:
2-4已知连续系统的输入输出算子方程及0–初始条件为: