canny边缘检测算法代码
canny边缘检测matlab代码
canny边缘检测matlab代码Canny边缘检测是一种常用的图像处理算法,它可以有效地检测图像中的边缘,并将其显示为白色线条。
在Matlab中,可以使用以下代码实现Canny边缘检测:1. 读取图像首先,需要读取待处理的图像。
可以使用imread函数来读取图片:```matlabimg = imread('image.jpg');```其中,image.jpg是待处理的图片文件名。
2. 灰度化Canny算法只能处理灰度图像,因此需要将彩色图像转换为灰度图像。
可以使用rgb2gray函数来实现:```matlabgray_img = rgb2gray(img);```3. 高斯滤波在进行边缘检测之前,需要对图像进行高斯滤波来消除噪声。
可以使用fspecial和imfilter函数来实现:```matlabgaussian_filter = fspecial('gaussian', [5 5], 1);blur_img = imfilter(gray_img, gaussian_filter, 'replicate');```其中,[5 5]表示高斯核的大小为5x5,1表示标准差。
4. 计算梯度幅值和方向接下来,需要计算每个像素点的梯度幅值和方向。
可以使用Sobel算子来计算梯度,并利用arctan函数计算方向角度:```matlabsobel_x = [-1 0 1; -2 0 2; -1 0 1];sobel_y = [-1 -2 -1; 0 0 0; 1 2 1];grad_x = imfilter(blur_img, sobel_x, 'replicate');grad_y = imfilter(blur_img, sobel_y, 'replicate');grad_mag = sqrt(grad_x.^2 + grad_y.^2);grad_dir = atan(grad_y ./ grad_x);```5. 非极大值抑制由于Sobel算子计算出的梯度幅值可能会有多个峰值,因此需要进行非极大值抑制来保留边缘。
matlab 边缘检测函数
matlab 边缘检测函数MATLAB是一款强大的计算机软件,用于科学计算、工程设计、图像处理等多个领域。
其中,边缘检测是图像处理中最常用的任务之一,它可以帮助我们从复杂的图像中提取出所需的信息。
MATLAB提供了多种边缘检测函数,本文将围绕这些函数进行阐述。
Step1:读取图像首先,我们需要读取一张图像,以便进行后续的处理。
MATLAB提供了imread()函数,用于读取图像。
例如,我们可以读取名为“lena.jpg”的图像,代码如下:```matlabI = imread('lena.jpg');```Step2:边缘检测在MATLAB中,可以使用多种函数进行边缘检测,其中包括Sobel、Prewitt、Canny等。
这些函数的使用方法类似,只是参数不同。
以下是几种常用的边缘检测函数:- sobel()函数:该函数基于Sobel算子进行边缘检测,返回的结果为边缘的强度值,代码如下:```matlabI_sobel = edge(I,'sobel');```- prewitt()函数:该函数基于Prewitt算子进行边缘检测,返回的结果为边缘的强度值,代码如下:```matlabI_prewitt = edge(I,'prewitt');```- canny()函数:该函数基于Canny算法进行边缘检测,返回的结果为二值图像,代码如下:```matlabI_canny = edge(I,'canny');```除了以上几种边缘检测函数以外,MATLAB还提供了其他的函数供用户选择,如Roberts、Log、zerocross等。
Step3:显示结果边缘检测的结果需要进行可视化,以便于用户判断是否得到了想要的效果。
为此,我们可以使用imshow()函数将原始图像和边缘检测结果进行显示,例如:```matlabsubplot(1,3,1);imshow(I);title('Original Image');subplot(1,3,2);imshow(I_sobel);title('Sobel Edge Detection'); subplot(1,3,3);imshow(I_canny);title('Canny Edge Detection'); ```以上代码将原始图像和Sobel、Canny两种边缘检测结果进行横向排列,以便于比较。
matlab 中canny算法
matlab 中canny算法什么是Canny算法?Canny算法是一种常用于图像边缘检测的计算机视觉算法。
它由约翰·Canny在1986年提出,目的是在保持最佳信噪比的同时准确地检测出图像中的边缘。
Canny算法的步骤是什么?Canny算法包括以下几个步骤:1. 噪声抑制:由于图像中常常存在噪声,因此第一步是对图像进行平滑处理以抑制噪声。
常用的方法是应用高斯滤波器。
2. 计算梯度:通过计算图像的梯度来确定边缘的强度和方向。
梯度计算通常使用Sobel算子,它可以有效地检测图像中的边缘。
3. 非极大值抑制:在计算梯度之后,需要对梯度幅度图像进行非极大值抑制。
这一步的目的是去除那些不是真正边缘的像素。
4. 双阈值检测:在经过非极大值抑制之后,需要对幅度图像进行阈值处理。
Canny算法使用双阈值检测来确定强边缘和弱边缘。
任何高于高阈值的像素被认为是强边缘,低于低阈值的像素被认为是弱边缘。
5. 边缘跟踪:最后一步是利用边缘跟踪算法来连接强边缘。
边缘跟踪算法基于弱边缘像素与强边缘像素的连接关系,通过追踪弱边缘像素与强边缘像素的路径来确定最终的边缘。
Canny算法的优缺点是什么?Canny算法有以下几个优点:1. 准确性:Canny算法能够准确地检测图像中的边缘,尤其在边缘区域有噪声的情况下。
2. 低错误率:相比于其他边缘检测算法,Canny算法的错误率较低,能够有效地排除非边缘像素。
3. 单一边缘:Canny算法仅提取单一像素的边缘,不会将边缘模糊化。
虽然Canny算法有许多优点,但也存在一些缺点:1. 计算量大:Canny算法需要进行多次计算,包括高斯滤波、梯度计算和非极大值抑制等,因此计算量较大。
2. 参数选择:Canny算法涉及到多个参数的选择,如高斯滤波器的大小和标准差、双阈值检测的高低阈值等。
不同的参数选择可能导致不同的结果。
3. 边缘连接:Canny算法在边缘连接过程中可能会产生断裂的边缘。
matlabcanny算子边缘检测函数代码
分享到:2012-04-24 20:42网友采纳clcclear allclose allI = imread('cameraman.tif'); % 读入图像imshow(I);title('原图')BW1 = edge(I,'canny'); % 调用canny函数figure,imshow(BW1); % 显示分割后的图像,即梯度图像title('Canny')用Lena标准检测图像,图像与代码下面注明了是哪张图像。
一、没有噪声时的检测结果 1 原始图像2 Sobel算子边缘检测3 Prewitt算子边缘检测4 Roberts算子边缘检测5 Laplace算子边缘检测6 Canny算子边缘检测二、加入高斯噪声(μ=0,σ^2=0.01)检测结果 1 原始图像2 Sobel算子边缘检测3 Prewitt算子边缘检测4 Roberts算子边缘检测5 Laplace算子边缘检测6 Canny算子边缘检测三、加入高斯噪声(μ=0,σ^2=0.02)检测结果 1 原始图像2 Sobel算子边缘检测3 Prewitt算子边缘检测4 Roberts算子边缘检测5 Laplace算子边缘检测6 Canny算子边缘检测clear all; close all;warning off all;I = imread('lena.bmp'); %%如果是其他类型图像,请先转换为灰度图%%没有噪声时的检测结果BW_sobel = edge(I,'sobel');BW_prewitt = edge(I,'prewitt');BW_roberts = edge(I,'roberts');BW_laplace = edge(I,'log');BW_canny = edge(I,'canny'); figure(1);subplot(2,3,1),imshow(I),xlabel('原始图像');subplot(2,3,2),imshow(BW_sobel),xlabel('sobel检测');subplot(2,3,3),imshow(BW_prewitt),xlabel('prewitt检测');subplot(2,3,4),imshow(BW_roberts),xlabel('roberts检测');subplot(2,3,5),imshow(BW_laplace),xlabel('laplace检测');subplot(2,3,6),imshow(BW_canny),xlabel('canny检测');%%加入高斯噪声(μ=0,σ^2=0.01)检测结果I_g1 = imnoise(I,'gaussian',0,0.01);BW_sobel = edge(I_g1,'sobel');BW_prewitt = edge(I_g1,'prewitt');BW_roberts = edge(I_g1,'roberts');BW_laplace = edge(I_g1,'log');BW_canny = edge(I_g1,'canny'); figure(2);subplot(2,3,1),imshow(I_g1),xlabel('加入高斯噪声(μ=0,σ^2=0.01)图像'); subplot(2,3,2),imshow(BW_sobel),xlabel('sobel检测');subplot(2,3,3),imshow(BW_prewitt),xlabel('prewitt检测');subplot(2,3,4),imshow(BW_roberts),xlabel('roberts检测');subplot(2,3,5),imshow(BW_laplace),xlabel('laplace检测');subplot(2,3,6),imshow(BW_canny),xlabel('canny检测');%%加入高斯噪声(μ=0,σ^2=0.02)检测结果I_g2 = imnoise(I,'gaussian',0,0.02);BW_sobel = edge(I_g2,'sobel');BW_prewitt = edge(I_g2,'prewitt');BW_roberts = edge(I_g2,'roberts');BW_laplace = edge(I_g2,'log');BW_canny = edge(I_g2,'canny'); figure(3);subplot(2,3,1),imshow(I_g2),xlabel('加入高斯噪声(μ=0,σ^2=0.02)图像'); subplot(2,3,2),imshow(BW_sobel),xlabel('sobel检测');subplot(2,3,3),imshow(BW_prewitt),xlabel('prewitt检测');subplot(2,3,4),imshow(BW_roberts),xlabel('roberts检测');subplot(2,3,5),imshow(BW_laplace),xlabel('laplace检测');subplot(2,3,6),imshow(BW_canny),xlabel('canny检测');199条建筑设计知识1. 公共建筑通常以交通、使用、辅助三种空间组成2. 美国著名建筑师沙利文提出的名言‘形式由功能而来’3. 密斯.凡.德.罗设计的巴塞罗那博览会德国馆采用的是‘自由灵活的空间组合’开创了流动空间的新概念4. 美国纽约赖特设计的古根海姆美术馆的展厅空间布置采用形式是串联式5. 电影放映院不需采光6. 点式住宅可设天井或平面凹凸布置可增加外墙面,有利于每层户数较多时的采光和通风7. 对结构形式有规定性的有大小和容量、物理环境、形状的规定性8. 功能与流线分析是现代建筑设计最常用的手段9. 垂直方向高的建筑需要考虑透视变形的矫正10. 橙色是暖色,而紫色含有蓝色的成分,所以偏冷;青色比黄色冷、红色比黄色暖、蓝色比绿色冷11. 同样大小冷色调较暖色调给人的感觉要大12. 同样距离,暖色较冷色给人以靠近感13. 为保持室内空间稳定感,房间的低处宜采用低明度色彩14. 冷色调给人以幽雅宁静的气氛15. 色相、明度、彩度是色彩的三要素;三元色为红、黄、蓝16. 尺度的概念是建筑物整体或局部给人的视角印象大小和其实际大小的关系17. 美的比例,必然正确的体现材料的力学特征18. 不同文化形成独特的比例形式19. 西方古典建筑高度与开间的比例,愈高大愈狭长,愈低矮愈宽阔20. ‘稳定’所涉及的要素是上与下之间的相对轻重关系的处理21. 人眼观赏规律H 18°~45°局部、细部2H 18°~27°整体3H <18°整体及环境22. 黄金分隔比例为1:1.61823. 通风屋面只能隔离太阳辐射不能保温,适宜于南方24. 总图布置要因地制宜,建筑物与周围环境之间关系紧凑,节约因地;适当处理个体与群体,空间与体形,绿化和小品的关系;合理解决采光、通风、朝向、交通与人流的组织25. 热水系统舒适稳定适用于居住建筑和托幼蒸汽系统加热快,适用于间歇采暖建筑如会堂、剧场26. 渐变具有韵律感27. 要使一座建筑显得富有活力,形式生动,在构图中应采用对比的手法对比的手法有轴线对比、体量对比、方向对比、虚实对比、色彩对比28. 要使柱子看起来显得细一些,可以采用暗色和冷色29. 巴西国会大厅在体型组合中采用了对比与协调的手法30. 展览建筑应使用穿套式的空间组合形式31. 室外空间的构成,主要依赖于建筑和建筑群体组合32. 在意大利威尼斯的圣马可广场的布局中,采用了强调了各种空间之间的对比33. 当坡地坡度较缓时,应采用平行等高线布置34. 建筑的有效面积=建筑面积-结构面积35. 加大开窗面积的方法来解决采光和通风问题较易办到36. 中国古代木结构大致可分为抬梁式、穿斗式和井干式三种37. 建筑构图原理的基本范畴有主从与重点、对比与呼应、均衡与稳定、节奏与韵律和比例与尺度38. 建筑构图的基本规律是多样统一39. 超过8层的建筑中,电梯就成为主要的交通工具了40. 建筑的模数分为基本模数、扩大模数和分模数41. 建筑楼梯梯段的最大坡度不宜超过38°42. 住宅起居室、卧室、厨房应直接采光,窗地比为1/7,其他为1/1243. 住宅套内楼梯梯段的最小净宽两边墙的0.9M,一边临空的0.75M住宅室内楼梯踏步宽不应小于0.22M,踏步高度不应小大0.20M44. 住宅底层严禁布置火灾危险性甲乙类物质的商店,不应布置产生噪声的娱乐场所45. 地下室、贮藏室等房间的最低净高不应低于2.0米46. 室内坡道水平投影长度超过15米时,宜设休息平台47. 外墙内保温所占面积不计入使用面积烟道、风道、管道井不计入使用面积阳台面积不计入使用面积壁柜应计入使用面积48. 旋转楼梯两级的平面角度不大于10度,且每级离内侧扶手中心0.25处的踏步宽度要大于0.22米49. 两个安全出口之间的净距不应小于5米50. 楼梯正面门扇开足时宜保持0.6米平台净宽,侧墙门口距踏步不宜小于0.4米,其门扇开足时不应减少梯段的净宽35. 加大开窗面积的方法来解决采光和通风问题较易办到36. 中国古代木结构大致可分为抬梁式、穿斗式和井干式三种37. 建筑构图原理的基本范畴有主从与重点、对比与呼应、均衡与稳定、节奏与韵律和比例与尺度38. 建筑构图的基本规律是多样统一39. 超过8层的建筑中,电梯就成为主要的交通工具了40. 建筑的模数分为基本模数、扩大模数和分模数41. 建筑楼梯梯段的最大坡度不宜超过38°42. 住宅起居室、卧室、厨房应直接采光,窗地比为1/7,其他为1/1243. 住宅套内楼梯梯段的最小净宽两边墙的0.9M,一边临空的0.75M住宅室内楼梯踏步宽不应小于0.22M,踏步高度不应小大0.20M44. 住宅底层严禁布置火灾危险性甲乙类物质的商店,不应布置产生噪声的娱乐场所45. 地下室、贮藏室等房间的最低净高不应低于2.0米46. 室内坡道水平投影长度超过15米时,宜设休息平台47. 外墙内保温所占面积不计入使用面积烟道、风道、管道井不计入使用面积阳台面积不计入使用面积壁柜应计入使用面积48. 旋转楼梯两级的平面角度不大于10度,且每级离内侧扶手中心0.25处的踏步宽度要大于0.22米49. 两个安全出口之间的净距不应小于5米50. 楼梯正面门扇开足时宜保持0.6米平台净宽,侧墙门口距踏步不宜小于0.4米,其门扇开足时不应减少梯段的净宽35. 加大开窗面积的方法来解决采光和通风问题较易办到36. 中国古代木结构大致可分为抬梁式、穿斗式和井干式三种37. 建筑构图原理的基本范畴有主从与重点、对比与呼应、均衡与稳定、节奏与韵律和比例与尺度38. 建筑构图的基本规律是多样统一39. 超过8层的建筑中,电梯就成为主要的交通工具了40. 建筑的模数分为基本模数、扩大模数和分模数41. 建筑楼梯梯段的最大坡度不宜超过38°42. 住宅起居室、卧室、厨房应直接采光,窗地比为1/7,其他为1/1243. 住宅套内楼梯梯段的最小净宽两边墙的0.9M,一边临空的0.75M住宅室内楼梯踏步宽不应小于0.22M,踏步高度不应小大0.20M44. 住宅底层严禁布置火灾危险性甲乙类物质的商店,不应布置产生噪声的娱乐场所45. 地下室、贮藏室等房间的最低净高不应低于2.0米46. 室内坡道水平投影长度超过15米时,宜设休息平台47. 外墙内保温所占面积不计入使用面积烟道、风道、管道井不计入使用面积阳台面积不计入使用面积壁柜应计入使用面积48. 旋转楼梯两级的平面角度不大于10度,且每级离内侧扶手中心0.25处的踏步宽度要大于0.22米49. 两个安全出口之间的净距不应小于5米50. 楼梯正面门扇开足时宜保持0.6米平台净宽,侧墙门口距踏步不宜小于0.4米,其门扇开足时不应减少梯段的净宽51. 入地下车库的坡道端部宜设挡水反坡和横向通长雨水篦子52. 室内台阶宜150*300;室外台阶宽宜350左右,高宽比不宜大于1:2.553. 住宅公用楼梯踏步宽不应小于0.26M,踏步高度不应大于0.175M54. 梯段宽度不应小于1.1M(6层及以下一边设栏杆的可为1.0M),净空高度2.2M55. 休息平台宽度应大于梯段宽度,且不应小于1.2M,净空高度2.0M56. 梯扶手高度0.9M,水平段栏杆长度大于0.5M时应为1.05M57. 楼梯垂直杆件净空不应大于0.11M,梯井净空宽大于0.11M时应采取防护措施58. 门洞共用外门宽1.2M,户门卧室起居室0.9M,厨房0.8M,卫生间及阳台门0.7M,所有门洞高为2.0M59. 住宅层高不宜高于2.8M60. 卧室起居室净高≥2.4M,其局部净高≥2.1M(且其不应大于使用面积的1/3)61. 利用坡顶作起居室卧室的,一半面积净高不应低于2.1M利用坡顶空间时,净高低于1.2M处不计使用面积;1.2--2.1M计一半使用面积;高于2.1M全计使用面积62. 放家具墙面长3M,无直接采光的厅面积不应大于10M263. 厨房面积Ⅰ、Ⅱ≥4M2;Ⅲ、Ⅳ≥5M264. 厨房净宽单面设备不应小于1.5M;双面布置设备间净距不应小于0.9M65. 对于大套住宅,其使用面积必须满足45平方米66. 住宅套型共分四类使用面积分别为34、45、56、68M267. 单人卧室≥6M2;双人卧室≥10M2;兼起居室卧室≥12M2;68. 卫生间面积三件3M2;二件2--2.5M2;一件1.1M269. 厨房、卫生间净高2.2M70. 住宅楼梯窗台距楼地面净高度低于0.9米时,不论窗开启与否,均应有防护措施71. 阳台栏杆净高1.05M;中高层为1.1M(但要<1.2);杆件净距0.1172. 无外窗的卫生间应设置防回流构造的排气通风道、预留排气机械的位置、门下设进风百叶窗或与地面间留出一定缝隙73. 每套应设阳台或平台、应设置晾衣设施、顶层应设雨罩;阳台、雨罩均应作有组织排水;阳台宜做防水;雨罩应做防水74. 寒冷、夏热冬冷和夏热冬暖地区的住宅,西面应采取遮阳措施75. 严寒地区的住宅出入口,各种朝向均应设防寒门斗或保温门76. 住宅建筑中不宜设置的附属公共用房有锅炉房、变压器室、易燃易爆化学物品商店但有厨房的饮食店可设77. 住宅设计应考虑防触电、防盗、防坠落78. 跃层指套内空间跨跃两楼层及以上的住宅79. 在坡地上建住宅,当建筑物与等高线垂直时,采用跌落方式较为经济80. 住宅建筑工程评估指标体系表中有一级和二级指标81. 7层及以上(16米)住宅必须设电梯82. 宿舍最高居住层的楼地面距入口层地面的高度大于20米时,应设电梯83. 医院病房楼,设有空调的多层旅馆,超过5层的公建室内疏散楼梯,均应设置封闭楼梯间(包括首层扩大封闭楼梯间)设歌舞厅放映厅且超过3层的地上建筑,应设封闭楼梯间。
(完整版)Canny边缘检测算法总结
一.Canny边缘检测算法原理JohnCanny于1986年提出Canny算子,属于是先平滑后求导数的方法。
其处理过程大体上分为下面四部分。
1. 对原始图像进行灰度化Canny算法通常处理的图像为灰度图,因此如果获取的是彩色图像,那首先就得进行灰度化。
对一幅彩色图进行灰度化,就是根据图像各个通道的采样值进行加权平均。
以RGB格式的彩图为例,通常灰度化采用的方法主要有:方法1:Gray=(R+G+B)/3;方法2:Gray=0.299R+0.587G+0.114B;(这种参数考虑到了人眼的生理特点)至于其他格式的彩色图像,可以根据相应的转换关系转为RGB然后再进行灰度化;在编程时要注意图像格式中RGB的顺序通常为BGR。
2. 对图像进行高斯滤波图像高斯滤波的实现可以用两个一维高斯核分别两次加权实现,也可以通过一个二维高斯核一次卷积实现。
1)高斯核实现上式为离散化的一维高斯函数,确定参数就可以得到一维核向量。
上式为离散化的二维高斯函数,确定参数就可以得到二维核向量。
在求得高斯核后,要对整个核进行归一化处理。
2)图像高斯滤波对图像进行高斯滤波,其实就是根据待滤波的像素点及其邻域点的灰度值按照一定的参数规则进行加权平均。
这样可以有效滤去理想图像中叠加的高频噪声。
通常滤波和边缘检测是矛盾的概念,抑制了噪声会使得图像边缘模糊,这会增加边缘定位的不确定性;而如果要提高边缘检测的灵敏度,同时对噪声也提高了灵敏度。
实际工程经验表明,高斯函数确定的核可以在抗噪声干扰和边缘检测精确定位之间提供较好的折衷方案。
3. 用一阶偏导的有限差分来计算梯度的幅值和方向关于图像灰度值得梯度可使用一阶有限差分来进行近似,这样就可以得图像在x和y 方向上偏导数的两个矩阵。
常用的梯度算子有如下几种:1)Roberts算子上式为其x和y方向偏导数计算模板,可用数学公式表达其每个点的梯度幅值为:2)Sobel算子上式三个矩阵分别为该算子的x向卷积模板、y向卷积模板以及待处理点的邻域点标记矩阵,据此可用数学公式表达其每个点的梯度幅值为:3)Prewitt算子和Sobel算子原理一样,在此仅给出其卷积模板。
matlabcanny边缘检测代码接霍夫变换-概述说明以及解释
matlabcanny边缘检测代码接霍夫变换-概述说明以及解释1.引言1.1 概述边缘检测是图像处理中的一个重要任务,它广泛应用于计算机视觉、图像分析和模式识别等领域。
边缘检测的目标是找到图像中不同区域之间的边界,并将其表示为像素强度的变化。
Canny边缘检测算法是一种经典且常用的边缘检测方法。
它通过一系列的图像处理步骤来提取图像中的边缘信息。
Canny算法的特点是能够检测出细且准确的边缘,并且对于图像中的噪声具有较好的抵抗能力。
Matlab是一种功能强大的数学软件,广泛应用于科学计算、数据可视化和图像处理等领域。
Matlab提供了丰富的图像处理函数和工具箱,其中包括了Canny边缘检测的实现代码。
本文的主要目的是介绍Matlab中Canny边缘检测的代码实现,并结合Hough变换算法进行边缘检测的应用。
通过使用Matlab中的相关函数和工具,我们可以有效地实现Canny边缘检测,并结合Hough变换来进一步处理和分析图像中的边缘特征。
本文将首先回顾Canny边缘检测算法的原理和步骤,然后介绍Matlab中的Canny边缘检测代码的使用方法。
接着,我们将介绍Hough 变换算法的原理和应用,并展示如何将Canny边缘检测与Hough变换相结合来实现更精确的边缘检测。
最后,我们将对Canny边缘检测和Hough变换的优缺点进行讨论,总结这两种方法在边缘检测中的应用。
同时,我们也将展望未来的研究方向,探讨如何进一步改进和优化边缘检测算法,以满足不断发展的图像处理需求。
通过阅读本文,读者将能够理解Canny边缘检测算法和Hough变换算法的原理,掌握Matlab中相关代码的使用方法,并了解边缘检测在实际应用中的优势和局限性。
希望本文能为读者在图像处理领域的学习和研究提供一定的帮助和启示。
文章结构是指文章的整体框架和组织形式。
一个良好的文章结构可以使读者更好地理解和领会文章的内容,同时也有助于文章的逻辑性和条理性。
matlab中canny边缘检测算法的实现
matlab中canny边缘检测算法的实现【Matlab中Canny边缘检测算法的实现】引言:边缘检测是计算机视觉和图像处理领域中的一项重要任务,主要用于提取图像中物体的轮廓或边界。
在边缘检测算法中,Canny算法是一种非常经典和常用的方法,由John F. Canny于1986年提出。
该算法被广泛应用于计算机视觉领域,实现了较好的边缘检测效果和低误报率。
本文将详细介绍在Matlab中实现Canny边缘检测算法的步骤和原理。
1. 算法原理:Canny边缘检测算法主要包含以下几个步骤:(1)使用高斯滤波平滑图像,减少噪声的影响。
(2)计算图像的梯度幅值和方向,确定图像中的强边缘。
(3)应用非极大值抑制算法,细化边缘。
(4)通过双阈值处理,进一步筛选边缘像素。
(5)连接边缘像素,得到最终的边缘结果。
2. 算法实现步骤:在Matlab中,我们可以利用内置函数和库函数来实现Canny边缘检测算法。
下面将一步一步介绍具体的实现过程。
2.1 加载图像:首先,我们需要加载一张待处理的图像。
可以使用imread函数加载图像,例如:img = imread('image.jpg');2.2 灰度化处理:Canny算法通常在灰度图像上进行,因此我们需要将彩色图像转换为灰度图像。
可以使用rgb2gray函数实现:grayImg = rgb2gray(img);2.3 高斯滤波:为了减少噪声的影响,我们需要对图像进行平滑处理。
可以使用fspecial函数创建高斯滤波器,然后使用imfilter函数对灰度图像进行滤波。
示例代码如下:filterSize = 5; % 设置滤波器尺寸sigma = 1; % 设置高斯分布的标准差gaussianFilter = fspecial('gaussian', [filterSize filterSize], sigma); smoothImg = imfilter(grayImg, gaussianFilter, 'symmetric');2.4 计算梯度幅值和方向:接下来,我们需要计算图像中每个像素的梯度幅值和方向。
matlab边缘检测代码
MATLAB边缘检测代码边缘检测是图像处理中常用的技术,用于识别图像中物体的轮廓。
在MATLAB中,我们可以使用不同的方法进行边缘检测,例如Sobel算子、Canny算子等。
本文将介绍MATLAB中常用的边缘检测方法,并给出相应的代码示例。
1. Sobel算子Sobel算子是一种基于梯度的边缘检测算法,通过计算图像灰度值的一阶导数来识别边缘。
在MATLAB中,我们可以使用edge函数来实现Sobel算子。
img = imread('image.jpg'); % 读取图像gray_img = rgb2gray(img); % 将彩色图像转换为灰度图像edge_img = edge(gray_img, 'sobel'); % 使用Sobel算子进行边缘检测imshow(edge_img); % 显示结果上述代码首先读取一张彩色图像,并将其转换为灰度图像。
然后使用edge函数对灰度图像进行Sobel边缘检测,并将结果显示出来。
2. Canny算子Canny算子是一种基于多阶段处理的边缘检测算法,它能够有效地抑制噪声并提取出清晰、准确的边缘。
在MATLAB中,我们同样可以使用edge函数来实现Canny算子。
img = imread('image.jpg'); % 读取图像gray_img = rgb2gray(img); % 将彩色图像转换为灰度图像edge_img = edge(gray_img, 'canny'); % 使用Canny算子进行边缘检测imshow(edge_img); % 显示结果上述代码与Sobel算子的示例代码类似,只是将edge函数的第二个参数设置为'canny'来使用Canny算子进行边缘检测。
3. Laplacian算子Laplacian算子是一种基于二阶导数的边缘检测算法,它能够检测出图像中的灰度变化区域。
matlabcanny边缘检测代码接霍夫变换
matlabcanny边缘检测代码接霍夫变换全文共四篇示例,供读者参考第一篇示例:Matlab是一个强大的数学软件工具,其图像处理工具箱可以帮助我们进行各种图像处理操作,比如边缘检测和霍夫变换。
本文将分享如何使用Matlab进行Canny边缘检测,并结合霍夫变换进行线检测。
Canny边缘检测是一种经典的边缘检测算法,它的优点是能够检测到边缘的细节,并且对噪声具有一定的鲁棒性。
在Matlab中,我们可以通过一行简单的代码来实现Canny边缘检测:```edgeImage = edge(rgb2gray(image), 'canny');```以上代码中,我们首先将原始图像转换为灰度图像,然后调用Matlab的'edge'函数,并指定边缘检测算法为Canny,最后我们将得到的边缘图像存储在edgeImage中。
接下来,我们可以将边缘图像显示出来,以便进行进一步的处理和分析。
```imshow(edgeImage);通过上述代码,我们可以看到Canny边缘检测算法的效果,边缘比较清晰,同时也保留了边缘的细节信息。
接下来,我们将介绍如何使用霍夫变换来进行线检测。
霍夫变换是一种经典的图像处理算法,其主要应用是检测直线和圆等几何形状。
在Matlab中,我们可以通过一行代码来实现霍夫变换的线检测:```[H,theta,rho] = hough(edgeImage);peaks = houghpeaks(H, 10);lines = houghlines(edgeImage, theta, rho, peaks);imshow(image);hold on;for k = 1 : length(lines)xy = [lines(k).point1; lines(k).point2];plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');endhold off;以上代码中,我们首先调用Matlab的'hough'函数来计算霍夫变换的极坐标空间。
canny边缘检测公式
Canny边缘检测是一种常用的图像处理算法,用于检测图像中的边缘。
以下是Canny边缘检测的基本公式和步骤:
高斯滤波:
首先对输入图像应用高斯滤波器,以减少噪声的影响。
高斯滤波器的公式如下:
G(x, y) = (1 / (2 * π* σ^2)) * exp(-(x^2 + y^2) / (2 * σ^2))
计算梯度幅值和方向:
在经过高斯滤波后的图像上,使用Sobel算子计算每个像素的梯度幅值和方向。
梯度幅值的计算公式如下:
G = sqrt(Gx^2 + Gy^2)
其中,Gx和Gy分别是在x和y方向上的梯度。
非极大值抑制:
对梯度幅值图像进行非极大值抑制,保留局部梯度幅值的峰值点,抑制非峰值点。
这样可以细化边缘。
双阈值处理:
将非极大值抑制后的图像进行阈值处理,将梯度幅值划分为强边缘、弱边缘和非边缘三个阈值区间。
根据强边缘和弱边缘之间的连通性关系,确定最终的边缘。
Canny边缘检测算法的具体参数设置和阈值选择可以根据具体应用进行调整。
这些公式和步骤提供了Canny边缘检测的基本原理和流程,但实际应用中可能还会有其他优化和改进的技术。
基于sobel、canny的边缘检测实现参考模板
基于sobel 、canny 的边缘检测实现一.实验原理Sobel 的原理:索贝尔算子(Sobel operator )是图像处理中的算子之一,主要用作边缘检测。
在技术上,它是一离散性差分算子,用来运算图像亮度函数的梯度之近似值。
在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量.该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。
如果以A 代表原始图像,Gx 及Gy 分别代表经横向及纵向边缘检测的图像,其公式如下:101202*101x G A -+⎛⎫ ⎪=-+ ⎪ ⎪-+⎝⎭121000*121y G A +++⎛⎫ ⎪= ⎪ ⎪---⎝⎭图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。
在以上例子中,如果以上的角度Θ等于零,即代表图像该处拥有纵向边缘,左方较右方暗。
在边沿检测中,常用的一种模板是Sobel 算子。
Sobel 算子有两个,一个是检测水平边沿的 ;另一个是检测垂直平边沿的 。
与 和 相比,Sobel 算子对于象素的位置的影响做了加权,因此效果更好。
Sobel 算子另一种形式是各向同性Sobel(Isotropic Sobel)算子,也有两个,一个是检测水平边沿的 ,另一个是检测垂直平边沿的 。
各向同性Sobel 算子和普通Sobel 算子相比,它的位置加权系数更为准确,在检测不同方向的边沿时梯度的幅度一致。
由于建筑物图像的特殊性,我们可以发现,处理该类型图像轮廓时,并不需要对梯度方向进行运算,所以程序并没有给出各向同性Sobel 算子的处理方法。
由于Sobel 算子是滤波算子的形式,用于提取边缘,可以利用快速卷积函数, 简单有效,因此应用广泛。
美中不足的是,Sobel 算子并没有将图像的主体与背景严格地区分开来,换言之就是Sobel 算子没有基于图像灰度进行处理,由于Sobel 算子没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。
halcon目标检测算法公式
halcon目标检测算法公式Halcon目标检测算法公式如下:1. 均值滤波:```Mean_Filter(Image, Filtered_Image, Size)```其中,`Image`是输入图像,`Filtered_Image`是滤波后的图像,`Size`是滤波器的大小(例如,`[3, 3]`)。
2. 高斯滤波:```scssGaussian_Filter(Image, Filtered_Image, Size, Sigma)```其中,`Image`是输入图像,`Filtered_Image`是滤波后的图像,`Size`是滤波器的大小(例如,`[3, 3]`),`Sigma`是高斯滤波器的标准差。
3. 边缘检测:```arduinoEdges(Image, Edges_Image, 'canny')```其中,`Image`是输入图像,`Edges_Image`是边缘检测后的图像,'canny'表示使用Canny边缘检测算法。
4. 霍夫变换:```scssHough_Transform(Edges_Image, Lines, Rho_Resolution,Theta_Resolution) ```其中,`Edges_Image`是边缘检测后的图像,`Lines`是检测到的直线,`Rho_Resolution`是霍夫空间的分辨率(例如,`0.01`),`Theta_Resolution`是角度的分辨率(例如,`0.174533`)。
5. 直线拟合:```scssFit_Line(Point_Set, Line, 'threshold', Distance)```其中,`Point_Set`是点的集合,`Line`是拟合后的直线,'threshold'表示使用阈值进行直线拟合,Distance是点到直线的距离阈值(例如,`0.05`)。
matlab边界提取
matlab边界提取在MATLAB中,可以使用多种方法来提取图像的边界。
以下是三种常见的方法:1. Sobel算子:Sobel算子是一种常用的边缘检测算法,它可以通过计算图像灰度值的一阶导数来确定图像边缘的位置。
在MATLAB中,可以使用`edge`函数和`'Sobel'`参数来进行Sobel边缘检测。
示例代码如下:```matlabI = imread('image.jpg'); % 读取图像Igray = rgb2gray(I); % 转换为灰度图像Iedge = edge(Igray, 'Sobel'); % 进行Sobel边缘检测imshow(Iedge); % 显示结果```2. Canny算子:Canny算子是一种非常流行的边缘检测算法,它可以通过计算图像灰度值的二阶导数来确定图像边缘的位置,并且与Sobel算子相比,它能够更好地处理噪声和细节。
在MATLAB中,可以使用`edge`函数和`'Canny'`参数来进行Canny边缘检测。
示例代码如下:```matlabI = imread('image.jpg'); % 读取图像Igray = rgb2gray(I); % 转换为灰度图像Iedge = edge(Igray, 'Canny'); % 进行Canny边缘检测imshow(Iedge); % 显示结果```3. Laplacian算子:Laplacian算子是一种基于二阶导数的边缘检测算法,它可以通过计算图像灰度值的二阶导数来确定图像中的边缘。
在MATLAB中,可以使用`fspecial`函数生成Laplacian算子的核,然后使用`imfilter`函数对图像进行卷积操作。
示例代码如下:```matlabI = imread('image.jpg'); % 读取图像Igray = rgb2gray(I); % 转换为灰度图像Laplacian = fspecial('laplacian'); % 生成Laplacian算子的核Iedge = imfilter(Igray, Laplacian); % 进行Laplacian边缘检测imshow(Iedge); % 显示结果```这些方法都有其适用范围和局限性,请根据实际情况选择最适合的方法。
Canny边缘检测算法的流程
Canny边缘检测算法的流程介绍边缘检测的⼀般标准包括:1) 以低的错误率检测边缘,也即意味着需要尽可能准确的捕获图像中尽可能多的边缘。
2) 检测到的边缘应精确定位在真实边缘的中⼼。
3) 图像中给定的边缘应只被标记⼀次,并且在可能的情况下,图像的噪声不应产⽣假的边缘。
在⽬前常⽤的边缘检测⽅法中,Canny边缘检测算法是具有严格定义的,可以提供良好可靠检测的⽅法之⼀。
由于它具有满⾜边缘检测的三个标准和实现过程简单的优势,成为边缘检测最流⾏的算法之⼀。
Canny边缘检测算法的处理流程Canny边缘检测算法可以分为以下5个步骤:1) 使⽤⾼斯滤波器,以平滑图像,滤除噪声。
2) 计算图像中每个像素点的梯度强度和⽅向。
3) 应⽤⾮极⼤值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。
4) 应⽤双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。
5) 通过抑制孤⽴的弱边缘最终完成边缘检测。
下⾯详细介绍每⼀步的实现思路。
1 ⾼斯平滑滤波为了尽可能减少噪声对边缘检测结果的影响,所以必须滤除噪声以防⽌由噪声引起的错误检测。
为了平滑图像,使⽤⾼斯滤波器与图像进⾏卷积,该步骤将平滑图像,以减少边缘检测器上明显的噪声影响。
⼤⼩为(2k+1)x(2k+1)的⾼斯滤波器核的⽣成⽅程式由下式给出:下⾯是⼀个sigma = 1.4,尺⼨为3x3的⾼斯卷积核的例⼦(需要注意归⼀化):若图像中⼀个3x3的窗⼝为A,要滤波的像素点为e,则经过⾼斯滤波之后,像素点e的亮度值为:其中*为卷积符号,sum表⽰矩阵中所有元素相加求和。
重要的是需要理解,⾼斯卷积核⼤⼩的选择将影响Canny检测器的性能。
尺⼨越⼤,检测器对噪声的敏感度越低,但是边缘检测的定位误差也将略有增加。
⼀般5x5是⼀个⽐较不错的trade off。
2 计算梯度强度和⽅向图像中的边缘可以指向各个⽅向,因此Canny算法使⽤四个算⼦来检测图像中的⽔平、垂直和对⾓边缘。
opencv边缘检测算法c语言
边缘检测是计算机视觉和图像处理中的常见任务之一,用于检测图像中物体的边界或轮廓。
OpenCV(Open Source Computer Vision Library)提供了多种边缘检测算法,其中包括基于C 语言的实现。
在这里,我将介绍几种常见的OpenCV边缘检测算法的C语言实现。
### 1. Sobel算子边缘检测:Sobel算子是一种常见的边缘检测算子,它使用卷积操作对图像进行处理。
以下是使用OpenCV进行Sobel算子边缘检测的C语言示例:```c#include <opencv2/opencv.hpp>#include <opencv2/highgui/highgui_c.h>int main() {// 读取图像IplImage* image = cvLoadImage("your_image.jpg", CV_LOAD_IMAGE_GRAYSCALE);// 定义输出图像IplImage* edges = cvCreateImage(cvGetSize(image), IPL_DEPTH_8U, 1);// 使用Sobel算子进行边缘检测cvSobel(image, edges, 1, 0, 3); // 1表示对x方向求导数,0表示对y方向求导数,3表示Sobel核大小// 显示原始图像和边缘检测结果cvNamedWindow("Original Image", CV_WINDOW_AUTOSIZE);cvNamedWindow("Sobel Edges", CV_WINDOW_AUTOSIZE);cvShowImage("Original Image", image);cvShowImage("Sobel Edges", edges);cvWaitKey(0);// 释放内存cvReleaseImage(&image);cvReleaseImage(&edges);cvDestroyAllWindows();return 0;}```### 2. Canny边缘检测:Canny边缘检测是一种多阶段的边缘检测算法,包括高斯滤波、梯度计算、非极大值抑制和双阈值边缘跟踪。
matlab练习程序(Canny边缘检测)
matlab练习程序(Canny边缘检测) 我可没直接调⽤系统函数,要是那样就太⽔了。
其实我的matlab代码很容易就能翻译成c/c++的。
canny边缘检测⼀共四个部分: 1.对原图像⾼斯平滑 2.对⾼斯平滑后的图像进⾏sobel边缘检测。
这⾥需要求横的和竖的还有联合的,所以⼀共三个需要sobel边缘检测图像。
3.对联合的sobel检测图像进⾏⾮极⼤抑制 4.连接边缘点并进⾏滞后阈值处理。
下⾯是代码:main.mclear all;close all;clc;img=imread('lena.jpg');imshow(img);[m n]=size(img);img=double(img);%%canny边缘检测的前两步相对不复杂,所以我就直接调⽤系统函数了%%⾼斯滤波w=fspecial('gaussian',[5 5]);img=imfilter(img,w,'replicate');figure;imshow(uint8(img))%%sobel边缘检测w=fspecial('sobel');img_w=imfilter(img,w,'replicate'); %求横边缘w=w';img_h=imfilter(img,w,'replicate'); %求竖边缘img=sqrt(img_w.^2+img_h.^2); %注意这⾥不是简单的求平均,⽽是平⽅和在开⽅。
我曾经好长⼀段时间都搞错了figure;imshow(uint8(img))%%下⾯是⾮极⼤抑制new_edge=zeros(m,n);for i=2:m-1for j=2:n-1Mx=img_w(i,j);My=img_h(i,j);if My~=0o=atan(Mx/My); %边缘的法线弧度elseif My==0 && Mx>0o=pi/2;elseo=-pi/2;end%Mx处⽤My和img进⾏插值adds=get_coords(o); %边缘像素法线⼀侧求得的两点坐标,插值需要M1=My*img(i+adds(2),j+adds(1))+(Mx-My)*img(i+adds(4),j+adds(3)); %插值后得到的像素,⽤此像素和当前像素⽐较adds=get_coords(o+pi); %边缘法线另⼀侧求得的两点坐标,插值需要M2=My*img(i+adds(2),j+adds(1))+(Mx-My)*img(i+adds(4),j+adds(3)); %另⼀侧插值得到的像素,同样和当前像素⽐较isbigger=(Mx*img(i,j)>M1)*(Mx*img(i,j)>=M2)+(Mx*img(i,j)<M1)*(Mx*img(i,j)<=M2); %如果当前点⽐两边点都⼤置1if isbiggernew_edge(i,j)=img(i,j);endendendfigure;imshow(uint8(new_edge))%%下⾯是滞后阈值处理up=120; %上阈值low=100; %下阈值set(0,'RecursionLimit',10000); %设置最⼤递归深度for i=1:mfor j=1:nif new_edge(i,j)>up &&new_edge(i,j)~=255 %判断上阈值new_edge(i,j)=255;new_edge=connect(new_edge,i,j,low);endendendfigure;imshow(new_edge==255)get_coords.mfunction re=get_coords(angle) %angle是边缘法线⾓度,返回法线前后两点 sigma=0.000000001;x1=ceil(cos(angle+pi/8)*sqrt(2)-0.5-sigma);y1=ceil(-sin(angle-pi/8)*sqrt(2)-0.5-sigma);x2=ceil(cos(angle-pi/8)*sqrt(2)-0.5-sigma);y2=ceil(-sin(angle-pi/8)*sqrt(2)-0.5-sigma);re=[x1 y1 x2 y2];endconnect.mfunction nedge=connect(nedge,y,x,low) %种⼦定位后的连通分析neighbour=[-1 -1;-1 0;-1 1;0 -1;0 1;1 -1;1 0;1 1]; %⼋连通搜寻[m n]=size(nedge);for k=1:8yy=y+neighbour(k,1);xx=x+neighbour(k,2);if yy>=1 &&yy<=m &&xx>=1 && xx<=nif nedge(yy,xx)>=low && nedge(yy,xx)~=255 %判断下阈值nedge(yy,xx)=255;nedge=connect(nedge,yy,xx,low);endendendend每步运⾏效果:原图⾼斯模糊后sobel边缘检测后⾮极⼤抑制后上阈值120,下阈值100检测结果。
opencv水尺识别代码
在OpenCV中,水尺识别可以通过多种方法实现,包括边缘检测、阈值处理、形态学操作等。
以下是一个简单的例子,使用了Canny边缘检测和阈值处理进行水尺识别。
请注意,这个代码只是一个基本的示例,可能需要根据实际应用场景进行修改和优化。
python复制代码import cv2import numpy as np# 加载图像image = cv2.imread('water_level.jpg')# 转换为灰度图像gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# Canny边缘检测edges = cv2.Canny(gray, 50, 150, apertureSize=3)# 阈值处理_, thresh = cv2.threshold(edges, 30, 255, cv2.THRESH_BINARY)# 形态学操作消除噪声kernel = np.ones((3,3), np.uint8)opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations = 2)# 找到轮廓contours, _ = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 在原图上画出轮廓cv2.drawContours(image, contours, -1, (0,255,0), 3)# 显示图像cv2.imshow('Water Level', image)cv2.waitKey(0)cv2.destroyAllWindows()这段代码首先加载一张图像,然后将其转换为灰度图像。
接着,使用Canny边缘检测来找出图像中的边缘,然后使用阈值处理将这些边缘二值化。
形态学操作被用来消除噪声,然后找到并画出这些边缘的轮廓。
LeadTools中文图像处理开发教程:检测和增强边缘、线条 (一)
LeadTools中文图像处理开发教程:检测和增强边缘、线条 (一)LeadTools是一个强大的图像处理开发工具,它提供了丰富的图像处理功能,包括图像的检测和增强。
在这篇文章中,我们将介绍如何使用LeadTools进行边缘和线条的检测和增强。
一、边缘检测边缘是图像中不同区域的分界线,是一些重要的视觉特征。
LeadTools 提供了几种不同的边缘检测算法,其中包括Sobel、Prewitt、Roberts 和Canny等。
1.使用Sobel算法Sobel算法是一种常用的边缘检测算法,它通过计算每个像素点周围的灰度值来确定边缘。
使用LeadTools进行Sobel算法的边缘检测的代码如下:WRL_IMAGE_PROCESSING_FUNCTIONS::EdgeDetectSobel(oSrcBitmap, oDstBitmap, nThreshold, bMergeResult);在代码中,oSrcBitmap是原始图像,oDstBitmap是输出图像,nThreshold是二值化的阈值,bMergeResult表示是否合并结果。
2.使用Canny算法Canny算法是一种更加精确的边缘检测算法,它可以检测出更加清晰的边缘。
使用LeadTools进行Canny算法的边缘检测的代码如下:WRL_IMAGE_PROCESSING_FUNCTIONS::EdgeDetectCanny(oSrcBitmap, oDstBitmap, nLowThreshold, nHighThreshold);在代码中,oSrcBitmap是原始图像,oDstBitmap是输出图像,nLowThreshold和nHighThreshold是Canny算法中的两个阈值。
二、线条增强线条是图像中的一些重要特征,它们可以用于图像分割、定位和识别等任务。
LeadTools提供了多种方法来增强线条,其中包括旋转、缩放、平移、二值化和直方图均衡等。
Python实现Canny及Hough算法代码实例解析
Python实现Canny及Hough算法代码实例解析任务说明:编写⼀个钱币定位系统,其不仅能够检测出输⼊图像中各个钱币的边缘,同时,还能给出各个钱币的圆⼼坐标与半径。
效果代码实现Canny边缘检测:# Author: Ji Qiu (BUPT)# filename: my_canny.pyimport cv2import numpy as npclass Canny:def __init__(self, Guassian_kernal_size, img, HT_high_threshold, HT_low_threshold):''':param Guassian_kernal_size: ⾼斯滤波器尺⼨:param img: 输⼊的图⽚,在算法过程中改变:param HT_high_threshold: 滞后阈值法中的⾼阈值:param HT_low_threshold: 滞后阈值法中的低阈值'''self.Guassian_kernal_size = Guassian_kernal_sizeself.img = imgself.y, self.x = img.shape[0:2]self.angle = np.zeros([self.y, self.x])self.img_origin = Noneself.x_kernal = np.array([[-1, 1]])self.y_kernal = np.array([[-1], [1]])self.HT_high_threshold = HT_high_thresholdself.HT_low_threshold = HT_low_thresholddef Get_gradient_img(self):'''计算梯度图和梯度⽅向矩阵。
:return: ⽣成的梯度图'''print ('Get_gradient_img')new_img_x = np.zeros([self.y, self.x], dtype=np.float)new_img_y = np.zeros([self.y, self.x], dtype=np.float)for i in range(0, self.x):for j in range(0, self.y):if j == 0:new_img_y[j][i] = 1else:new_img_y[j][i] = np.sum(np.array([[self.img[j - 1][i]], [self.img[j][i]]]) * self.y_kernal)if i == 0:new_img_x[j][i] = 1else:new_img_x[j][i] = np.sum(np.array([self.img[j][i - 1], self.img[j][i]]) * self.x_kernal)gradient_img, self.angle = cv2.cartToPolar(new_img_x, new_img_y)#返回幅值和相位self.angle = np.tan(self.angle)self.img = gradient_img.astype(np.uint8)return self.imgdef Non_maximum_suppression (self):'''对⽣成的梯度图进⾏⾮极⼤化抑制,将tan值的⼤⼩与正负结合,确定离散中梯度的⽅向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
canny算子代码void CreatGauss(double sigma, double **pdKernel, int *pnWidowSize);void GaussianSmooth(SIZE sz, LPBYTE pGray, LPBYTE pResult, double sigma);void Grad(SIZE sz, LPBYTE pGray, int *pGradX, int *pGradY, int *pMag);void NonmaxSuppress(int *pMag, int *pGradX, int *pGradY, SIZE sz, LPBYTE pNSRst);void EstimateThreshold(int *pMag, SIZE sz, int *pThrHigh, int *pThrLow, LPBYTE pGray,double dRatHigh, double dRatLow);void Hysteresis(int *pMag, SIZE sz, double dRatLow, double dRatHigh, LPBYTE pResult);void TraceEdge(int y, int x, int nThrLow, LPBYTE pResult, int *pMag, SIZE sz);void Canny(LPBYTE pGray, SIZE sz, double sigma, double dRatLow, double dRatHigh, LPBYTE pResult);#include "afx.h"#include "math.h"#include "canny.h"// 一维高斯分布函数,用于平滑函数中生成的高斯滤波系数void CreatGauss(double sigma, double **pdKernel, int *pnWidowSize){LONG i;//数组中心点int nCenter;//数组中一点到中心点距离double dDis;//中间变量double dValue;double dSum;dSum = 0;// [-3*sigma,3*sigma] 以内数据,会覆盖绝大部分滤波系数*pnWidowSize = 1+ 2*ceil(3*sigma);nCenter = (*pnWidowSize)/2;*pdKernel = new double[*pnWidowSize];//生成高斯数据for(i=0;i<(*pnWidowSize);i++){dDis = double(i - nCenter);dValue = exp(-(1/2)*dDis*dDis/(sigma*sigma))/(sqrt(2*3.1415926)*sigma); (*pdKernel)[i] = dValue;dSum+=dValue;}//归一化for(i=0;i<(*pnWidowSize);i++){(*pdKernel)[i]/=dSum;}}//用高斯滤波器平滑原图像void GaussianSmooth(SIZE sz, LPBYTE pGray, LPBYTE pResult, double sigma){LONG x, y;LONG i;//高斯滤波器长度int nWindowSize;//窗口长度int nLen;//一维高斯滤波器double *pdKernel;//高斯系数与图像数据的点乘double dDotMul;//滤波系数总和double dWeightSum;double *pdTemp;pdTemp = new double[sz.cx*sz.cy];//产生一维高斯数据CreatGauss(sigma, &pdKernel, &nWindowSize);nLen = nWindowSize/2;//x方向滤波for(y=0;y<sz.cy;y++){for(x=0;x<sz.cx;x++){dDotMul = 0;dWeightSum = 0;for(i=(-nLen);i<=nLen;i++){//判断是否在图像内部if((i+x)>=0 && (i+x)<sz.cx){dDotMul+=(double)pGray[y*sz.cx+(i+x)] * pdKernel[nLen+i];dWeightSum += pdKernel[nLen+i];}}pdTemp[y*sz.cx+x] = dDotMul/dWeightSum;}}//y方向滤波for(x=0; x<sz.cx;x++){for(y=0; y<sz.cy; y++){dDotMul = 0;dWeightSum = 0;for(i=(-nLen);i<=nLen;i++){if((i+y)>=0 && (i+y)< sz.cy){dDotMul += (double)pdTemp[(y+i)*sz.cx+x]*pdKernel[nLen+i];dWeightSum += pdKernel[nLen+i];}}pResult[y*sz.cx+x] = (unsigned char)dDotMul/dWeightSum;}}delete []pdKernel;pdKernel = NULL;delete []pdTemp;pdTemp = NULL;}// 方向导数,求梯度void Grad(SIZE sz, LPBYTE pGray,int *pGradX, int *pGradY, int *pMag) {LONG y,x;//x方向的方向导数for(y=1;y<sz.cy-1;y++){for(x=1;x<sz.cx-1;x++){pGradX[y*sz.cx +x] = (int)( pGray[y*sz.cx+x+1]-pGray[y*sz.cx+ x-1] ); }}//y方向方向导数for(x=1;x<sz.cx-1;x++){for(y=1;y<sz.cy-1;y++){pGradY[y*sz.cx +x] = (int)(pGray[(y+1)*sz.cx +x] - pGray[(y-1)*sz.cx +x]); }}//求梯度//中间变量double dSqt1;double dSqt2;for(y=0; y<sz.cy; y++){for(x=0; x<sz.cx; x++){//二阶范数求梯度dSqt1 = pGradX[y*sz.cx + x]*pGradX[y*sz.cx + x];dSqt2 = pGradY[y*sz.cx + x]*pGradY[y*sz.cx + x];pMag[y*sz.cx+x] = (int)(sqrt(dSqt1+dSqt2)+0.5);}}}//非最大抑制void NonmaxSuppress(int *pMag, int *pGradX, int *pGradY, SIZE sz, LPBYTE pNSRst){LONG y,x;int nPos;//梯度分量int gx;int gy;//中间变量int g1,g2,g3,g4;double weight;double dTmp,dTmp1,dTmp2;//设置图像边缘为不可能的分界点for(x=0;x<sz.cx;x++){pNSRst[x] = 0;pNSRst[(sz.cy-1)*sz.cx+x] = 0;}for(y=0;y<sz.cy;y++){pNSRst[y*sz.cx] = 0;pNSRst[y*sz.cx + sz.cx-1] = 0;}for(y=1;y<sz.cy-1;y++){for(x=1;x<sz.cx-1;x++){//当前点nPos = y*sz.cx + x;//如果当前像素梯度幅度为0,则不是边界点if(pMag[nPos] == 0){pNSRst[nPos] = 0;}else{//当前点的梯度幅度dTmp = pMag[nPos];//x,y方向导数gx = pGradX[nPos];gy = pGradY[nPos];//如果方向导数y分量比x分量大,说明导数方向趋向于y分量if(abs(gy) > abs(gx)){//计算插值比例weight = fabs(gx)/fabs(gy);g2 = pMag[nPos-sz.cx];g4 = pMag[nPos+sz.cx];//如果x,y两个方向导数的符号相同//C 为当前像素,与g1-g4 的位置关系为://g1 g2// C// g4 g3if(gx*gy>0){g1 = pMag[nPos-sz.cx-1];g3 = pMag[nPos+sz.cx+1];}//如果x,y两个方向的方向导数方向相反//C是当前像素,与g1-g4的关系为:// g2 g1// C// g3 g4else{g1 = pMag[nPos-sz.cx+1];g3 = pMag[nPos+sz.cx-1];}}//如果方向导数x分量比y分量大,说明导数的方向趋向于x分量else{//插值比例weight = fabs(gy)/fabs(gx);g2 = pMag[nPos+1];g4 = pMag[nPos-1];//如果x,y两个方向的方向导数符号相同//当前像素C与g1-g4的关系为// g3// g4 C g2// g1if(gx * gy > 0){g1 = pMag[nPos+sz.cx+1];g3 = pMag[nPos-sz.cx-1];}//如果x,y两个方向导数的方向相反// C与g1-g4的关系为// g1// g4 C g2// g3else{g1 = pMag[nPos-sz.cx+1];g3 = pMag[nPos+sz.cx-1];}}//利用g1-g4 对梯度进行插值{dTmp1 = weight*g1 + (1-weight)*g2;dTmp2 = weight*g3 + (1-weight)*g4;//当前像素的梯度是局部的最大值//该点可能是边界点if(dTmp>=dTmp1 && dTmp>=dTmp2){pNSRst[nPos] = 128;}else{//不可能是边界点pNSRst[nPos] = 0;}}}}}}// 统计pMag的直方图,判定阈值void EstimateThreshold(int *pMag, SIZE sz, int *pThrHigh, int *pThrLow, LPBYTE pGray,double dRatHigh, double dRatLow){LONG y,x,k;//该数组的大小和梯度值的范围有关,如果采用本程序的算法//那么梯度的范围不会超过pow(2,10)int nHist[256];//可能边界数int nEdgeNum;//最大梯度数int nMaxMag;int nHighCount;nMaxMag = 0;//初始化for(k=0;k<256;k++){nHist[k] = 0;}//统计直方图,利用直方图计算阈值for(y=0;y<sz.cy;y++){for(x=0;x<sz.cx;x++){if(pGray[y*sz.cx+x]==128){nHist[pMag[y*sz.cx+x]]++;}}}nEdgeNum = nHist[0];nMaxMag = 0;//统计经过“非最大值抑制”后有多少像素for(k=1;k<256;k++){if(nHist[k] != 0){nMaxMag = k;}//梯度为0的点是不可能为边界点的//经过non-maximum suppression后有多少像素nEdgeNum += nHist[k];}//梯度比高阈值*pThrHigh 小的像素点总书目nHighCount = (int)(dRatHigh * nEdgeNum + 0.5);k=1;nEdgeNum = nHist[1];//计算高阈值while((k<(nMaxMag-1)) && (nEdgeNum < nHighCount)){k++;nEdgeNum += nHist[k];}*pThrHigh = k;//低阈值*pThrLow = (int)((*pThrHigh) * dRatLow + 0.5);}//利用函数寻找边界起点void Hysteresis(int *pMag, SIZE sz, double dRatLow, double dRatHigh, LPBYTE pResult){LONG y,x;int nThrHigh,nThrLow;int nPos;//估计TraceEdge 函数需要的低阈值,以及Hysteresis函数使用的高阈值EstimateThreshold(pMag,sz,&nThrHigh,&nThrLow,pResult,dRatHigh,dRatLow);//寻找大于dThrHigh的点,这些点用来当作边界点,//然后用TraceEdge函数跟踪该点对应的边界for(y=0;y<sz.cy;y++){for(x=0;x<sz.cx;x++){nPos = y*sz.cx + x;//如果该像素是可能的边界点,并且梯度大于高阈值,//该像素作为一个边界的起点if((pResult[nPos]==128) && (pMag[nPos] >= nThrHigh)){//设置该点为边界点pResult[nPos] = 255;TraceEdge(y,x,nThrLow,pResult,pMag,sz);}}}//其他点已经不可能为边界点for(y=0;y<sz.cy;y++){for(x=0;x<sz.cx;x++){nPos = y*sz.cx + x;if(pResult[nPos] != 255){pResult[nPos] = 0;}}}}//根据Hysteresis 执行的结果,从一个像素点开始搜索,搜索以该像素点为边界起点的一条边界的//一条边界的所有边界点,函数采用了递归算法// 从(x,y)坐标出发,进行边界点的跟踪,跟踪只考虑pResult中没有处理并且可能是边界// 点的像素(=128),像素值为0表明该点不可能是边界点,像素值为255表明该点已经是边界点void TraceEdge(int y, int x, int nThrLow, LPBYTE pResult, int *pMag, SIZE sz) {//对8邻域像素进行查询int xNum[8] = {1,1,0,-1,-1,-1,0,1};int yNum[8] = {0,1,1,1,0,-1,-1,-1};LONG yy,xx,k;for(k=0;k<8;k++){yy = y+yNum[k];xx = x+xNum[k];if(pResult[yy*sz.cx+xx]==128 && pMag[yy*sz.cx+xx]>=nThrLow ) {//该点设为边界点pResult[yy*sz.cx+xx] = 255;//以该点为中心再进行跟踪TraceEdge(yy,xx,nThrLow,pResult,pMag,sz);}}}// Canny算子void Canny(LPBYTE pGray, SIZE sz, double sigma, double dRatLow, double dRatHigh, LPBYTE pResult){//经过高斯滤波后的图像LPBYTE pGaussSmooth;pGaussSmooth = new unsigned char[sz.cx*sz.cy];//x方向导数的指针int *pGradX;pGradX = new int[sz.cx*sz.cy];//y方向int *pGradY;pGradY = new int[sz.cx*sz.cy];//梯度的幅度int *pGradMag;pGradMag = new int[sz.cx*sz.cy];//对原图高斯滤波GaussianSmooth(sz,pGray,pGaussSmooth,sigma);//计算方向导数和梯度的幅度Grad(sz,pGaussSmooth,pGradX,pGradY,pGradMag);//应用非最大抑制NonmaxSuppress(pGradMag,pGradX,pGradY,sz,pResult);//应用Hysteresis,找到所有边界Hysteresis(pGradMag,sz,dRatLow,dRatHigh,pResult);delete[] pGradX;pGradX = NULL;delete[] pGradY;pGradY = NULL;delete[] pGradMag;pGradMag = NULL;delete[] pGaussSmooth;pGaussSmooth = NULL;}/*void CChildWnd::OnCanny(){if (! m_fOpenFile){return;}m_fDone = TRUE;RGBToGray(szImg, aRGB, aGray, BPP);Canny(aGray,szImg,0.1,0.9,0.76,aBinImg);ShowGrayImage("l",szImg,aBinImg);}//*/。