灰色预测理论-定义
灰色预测理论详解
单序列灰色预测模型
灰色系统理论认为:系统的行为现象尽管朦胧,数据尽管 复杂,但它必然是有序的,都存在着某种内在规律。不过 这些规律被纷繁复杂的现象所掩盖,人们很难直接从原始 数据中找到某种内在的规律. 灰色生成:建立灰色模型之前,需要对原始时间序列按照 某种要求进行预处理,得到有规律的时间序列数据—生成 列。即对原始数据的生成就是企图从杂乱无章的现象中去 发现内在规律. 常用的灰色系统生成方式有: 累加生成,累减生成,均值生 成,级比生成等,下面对这几种生成做简单介绍:
灰色预测理论
胡亚飞 彭
敬
李云飞
吕连磊 苗成林
沈 聪
目录
灰色系统理论简介以及发展 灰色预测理论 —灰色预测简介 —灰色预测类型 —灰色预测模型 —灰色预测检验 案例以及软件实现
灰色系统理论简介
灰色系统理论是由我国著名学者邓聚龙教授于1982年 创立的“以部分信息已知,部分信息未知的小样本、贫信 息”不确定系统为研究对象的一门系统科学新学科,具有 原创性的科学意义,是我国对系统科学的新贡献,目前已 受到国内外学术界的广泛重视,并在农业科学、经济管理、 环境科学、医药卫生、矿业工程、教育科学、水利水电、 图像信息、生命科学、控制科学、航空航天等众多领域中 得到了广泛的应用,解决了许多过去难以解决的实际问题。
(1)
k
累加生成的作用:通过累加生成可以看出灰量积累过程的发展态 势,使离乱的原始数据中蕴含的积分特性或规律加以显化。 2.累减生成 对数列求相邻两数值的差,是累加生成的逆运算。 记原始序列为 X(1)=(x(1)(1), x(1)…(2),…),x(1)(n)) 一次累减生成序列为 X(0)=(x(0)(1), x(0)(2),…,x(0)(n)) 其中,x(0)(k)=x(1)(k)-x(1)(k-1) 累减生成的作用 累减生成可将累加生成还原为非生成数列,在建模 方 程用来获得增量信息。
灰色预测法
min min Xˆ 0k X 0k max max Xˆ 0k X 0k
(k)
Xˆ 0k X 0k max max Xˆ 0k X 0k
式中:
Xˆ 0k X 0k 为第k个点 X 0 和 Xˆ 0 的绝对误差; min min Xˆ 0k X 0k 为两级最小差; max max Xˆ 0k X 0k为两级最大差;
二、生成列
为了弱化原始时间序列的随机性,在 建立灰色预测模型之前,需先对原始时间 序列进行数据处理,经过数据处理后的时 间序列即称为生成列。
(1)数据处理方式 灰色系统常用的数据处理方式有累加
和累减两种。
累加 累加是将原始序列通过累加得到生成列。
累加的规则: 将原始序列的第一个数据作为生成 列的第一个数据,将原始序列的第二个 数据加到原始序列的第一个数据上,其 和作为生成列的第二个数据,将原始序 列的第三个数据加到生成列的第二个数 据上,其和作为生成列的第三个数据, 按此规则进行下去,便可得到生成列。
• 灰色系统内的一部分信息是已知的,另一 部分信息是未知 的,系统内各因素间有不 确定的关系。
(2)灰色预测法 • 灰色预测法是一种对含有不确定因素的系
统进行预测的方法。
• 灰色预测是对既含有已知信息又含有不确定 信息的系统进行预则,就是对在一定范围内 变化的、与时间有关的灰色过程进行预测。
• 灰色系统理论提出了一种新的分析方法—— 关联度分析方法。灰色预测通过鉴别系统因素 之间发展趋势的相异程度,即进行关联分析, 并对原始数据进行生成处理来寻找系统变动的 规律,生成有较强规律性的数据序列,然后建 立相应的微分方程模型,从而预测事物未来发 展趋势的状况。
ρ称为分辨率,0<ρ<1,一般取ρ=0.5; 对单位不一,初值不同的序列,在计算相关系 数前应首先进行初始化,即将该序列所有数据 分别除以第一个数据。
灰色预测法
解答: 以 X 1 为参考序列求关联度。 第一步:初始化,即将该序列所有数据分别 除以第一个数据。得到:
1,0.9475,0.9235,0.9138 X1 1,1.063,1.1227,1.1483 X2 1,.097,1.0294,1.0294 X3 1,1.0149,0.805 X m1 i
i 1
k
•对非负数据,累加次数越多则随机性弱化越多, 累加次数足够大后,可认为时间序列已由随机序 列变为非随机序列。
•一般随机序列的多次累加序列,大多可用指数曲 线逼近。
累减 将原始序列前后两个数据相减得到累减生成列
累减是累加的逆运算,累减可将累加生成列还原 为非生成列,在建模中获得增量信息。 一次累减的公式为:
X
1
k X k X k 1
0 0
三、关联度 关联度分析是分析系统中各因素关联程度的方 法,在计算关联度之前需先计算关联系数。 (1)关联系数
设
ˆ 0 k X ˆ 0 1, X ˆ 0 2,..., X ˆ 0 n X
X1 45.8, 43.4, 42.3, 41.9
X 2 (39.1, 41.6, 43.9, 44.9)
农业
商业 试求关联度。
运输业 X 3 3.4, 3.3, 3.5, 3.5
X 4 6.7, 6.8, 5.4, 4.7
X4 参考序列分别为 X 1 , ,被比较序列为 X 2 , X 3 ,,
第二步:求序列差
2 0,0.1155,0.1992,0.2335
4 0,0.0674,0.1185,0.2148
第三步:求两极差
3 0,0.0225,0.1059,0.1146
灰色系统理论概述
灰色系统理论概述一、本文概述本文旨在对灰色系统理论进行全面的概述和探讨。
灰色系统理论,作为一种专门研究信息不完全、不明确、不确定系统的新兴学科,自其诞生以来,已经在众多领域,如经济管理、预测决策、生态环保等,展现出其独特的优势和强大的应用价值。
本文首先简要介绍了灰色系统理论的基本概念、发展历程和主要特点,然后详细阐述了灰色系统理论的核心内容,包括灰色预测、灰色决策、灰色关联分析等方面。
本文还将对灰色系统理论的应用领域和前景进行展望,以期能够为广大读者提供一个全面、深入的灰色系统理论概述,并激发更多学者和研究人员对该领域的兴趣和探索。
二、灰色系统理论的基本原理灰色系统理论是一种专门研究信息不完全、不明确的系统的理论。
它的基本原理主要包括灰色关联分析、灰色预测模型和灰色决策等。
这些原理的核心思想是利用已知信息,通过灰色理论的处理方法,挖掘系统的内在规律,从而实现对系统的有效描述和预测。
灰色关联分析是灰色系统理论中的一种重要方法。
它通过计算系统中各因素之间的关联度,揭示因素之间的内在联系和动态变化过程。
这种方法对于处理信息不完全、数据不规则的系统尤为有效,能够帮助我们更好地理解系统的结构和行为。
灰色预测模型是灰色系统理论的另一个核心原理。
它利用少量的、不完全的信息,通过建立灰色微分方程或灰色差分方程,实现对系统发展趋势的预测。
灰色预测模型具有预测精度高、计算简便等优点,广泛应用于经济、社会、工程等多个领域。
灰色决策是灰色系统理论在决策领域的应用。
它通过分析决策问题中的灰色信息,结合灰色关联分析和灰色预测模型等方法,为决策者提供科学、合理的决策依据。
灰色决策注重决策过程的系统性和整体性,有助于提高决策的科学性和准确性。
灰色系统理论的基本原理包括灰色关联分析、灰色预测模型和灰色决策等。
这些原理为我们提供了一种全新的视角和方法来理解和处理信息不完全、不明确的系统。
通过运用这些原理,我们可以更好地揭示系统的内在规律,实现对系统的有效描述和预测,为决策和实践提供有力支持。
灰色预测
用最小二乘法估计为
Uˆ
aˆ uˆ
(BT
B)1 BT
y
将a与u的估计值代入微分方程可得
xˆ(1) (k 1) [x(1) (1) uˆ ]eaˆk uˆ
aˆ
aˆ
GM(1,1)模型
求模拟值 x(1) 并累减还原出 x(0) 的模拟值。 对其做累减还原即可得到原始数列的灰色预测 模型为:
Xˆ (0) (k) Xˆ (1) (k 1) Xˆ (1) (k)
灰色生成
将原始数据列中的数据,按某种要求作数据处 理称为生成.对原始数据的生成就是企图从杂 乱无章的现象中去发现内在规律.
常用的灰色生成方式有: 累加生成,累减生 成,均值生成,级比生成等
灰色生成
累加生成
累加前的数列称原始数列,累加后的数列称为生成数 列.累加生成是使灰色过程由灰变白的一种方法,它在 灰色系统理论中占有极其重要地位,通过累加生成可 以看出灰量积累过程的发展态势,使离乱的原始数据 中蕴含的积分特性或规律加以显化.累加生成是对原 始数据列中各时刻的数据依次累加,从而生成新的序 列的一种手段.
常用到的灰色预测模型
• GM(1,1)模型——是1阶方程,包含有1个变量 的灰色模型
• GM(1,N)模型——是1 阶方程,包含有N 个 变量的灰色模型。
• GM(0,1)模型——是0 阶方程,包含有N 个变 量的灰色模型。表达式上相当于统计回归
• GM(2,1)模型——是2阶方程,包含有1 个变 量的灰色模型。
模型精度检验
+ 相对误差大小检验法(最常用) + 后验差检验法 + 关联度检验法
模型精度检验
相对误差大小检验法
相对误差大小检验法,它是一种直观的逐点进 行比较的算术检验方法,它是把预测数据与实 际数据相比较,观测其相对误差是否满足实际 要求。 设按该模型以求出Xˆ (1) ,并将 Xˆ (1) 做一次累 减转化为Xˆ (0) ,即
灰色预测模型理论及其应用
灰色预测模型理论及其应用Document number【980KGB-6898YT-769T8CB-246UT-18GG08】灰色预测模型理论及其应用灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测.灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。
一、灰色系统及灰色预测的概念灰色系统灰色系统产生于控制理论的研究中。
若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。
若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。
灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。
区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。
特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。
灰色预测灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。
生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。
灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类:(1) 灰色时间序列预测。
用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。
(2) 畸变预测(灾变预测)。
灰色系统理论及其应用
灰色系统理论及其应用随着社会的不断发展,信息技术的快速发展,以及人们对社会治理方式的不断追求,灰色系统理论出现在我们的视野中。
灰色系统理论是一种用来处理不确定性事物的方法,也是一种用来建立数学模型的理论,它在信息处理、决策和控制等领域被广泛应用,为社会的发展和进步做出了巨大贡献。
一、灰色系统理论的基本概念灰色系统理论源于中国科学家陈纳德教授在上世纪80年代提出的概念,灰色系统理论是分析那些知识不充分,信息不完全,不确定性很大的系统时所采用的一种数学方法和理论。
灰色系统理论主要包括灰色系统模型、灰色控制、灰度关联分析等。
其中,灰色系统模型是灰色系统理论的核心,是灰色系统研究的基础。
灰色系统理论的基本概念包括:1、灰色:所谓灰色指的是在信息不完全、不确定的情况下,既有明确的肯定性信息,又有模糊的否定性信息。
2、灰色系统:指的是一个系统中存在着一定的灰色信息,不确定性较大,而且难以准确描述。
3、灰色预测:灰色预测是指在将来某一时刻,根据已知历史发展情况,采用灰色系统理论对未来状态进行预测。
4、灰量化:指将不确定性问题量化、标准化的过程。
二、灰色系统理论的应用灰色系统理论在信息处理、决策和控制等领域得到了广泛的应用。
具体来说,它主要包括以下几个方面:1、灰色预测:灰色预测是灰色系统应用的主要领域之一。
它根据已知的数据,通过灰色预测模型对未来进行预测,从而帮助人们制定合理的决策。
2、灰度关联分析:灰度关联分析是对一个或多个变量之间的相关性进行分析的方法。
它可以对时间序列、空间序列等各种序列进行关联分析,从而帮助我们了解变量之间的关系。
3、灰色控制:灰色控制是利用灰色系统理论对控制过程进行建模、分析和控制的方法。
它可以解决控制系统中常见的灰色关键变量辨识、灰色建模、灰色预测和灰色控制等问题。
4、灰色决策:灰色决策是灰色系统理论应用的又一个重要领域。
它可以帮助人们在不完全信息的情况下,进行有效的决策。
三、灰色系统理论的优势相比于传统方法,灰色系统理论具有以下几个优势:1、适用性广:灰色系统理论可以处理那些不完全信息、不确定性较大的问题,广泛应用于物理、生物、环境、社会、经济等多个领域。
关于“灰色预测模型”讲解
集成学习可以通过组合多个基模型的预测结果来提高整体 预测性能。可以将灰色预测模型作为基模型之一,与其他 预测方法一起构建集成学习模型。
与模糊逻辑融合
模糊逻辑能够处理不确定性和模糊性问题,可以与灰色预 测模型相结合,提高模型在处理不确定信息时的预测性能 。
THANKS
感谢观看
灰色差分方程
灰色预测模型的核心是建立灰色差分方程,通过对原始数据序列进行累加或累减 生成,构造出具有指数规律的数据序列,进而建立相应的微分方程进行求解。
适用范围及优势
适用范围
小样本建模
适应性强
预测精度高
灰色预测模型适用于数据量较 少、信息不完全、具有不确定 性和动态性的系统。它可以在 数据序列较短、波动较大、趋 势不明显的情况下,进行有效 的预测和分析。
04
灰色预测模型检验与评 估
残差检验法
01
02
03
残差计算
通过比较实际值与预测值 之间的差异,计算残差序 列。
残差分析
对残差序列进行统计分析 ,包括计算均值、方差等 指标,以评估模型的预测 精度。
残差图
绘制实际值与预测值的散 点图,以及残差序列的折 线图,直观展示模型的拟 合效果。
后验差检验法
金融市场分析
灰色预测模型可以用于分析金融市场的波动性和 趋势,帮助投资者做出更明智的投资决策。
3
物价水平预测
利用灰色预测模型可以对物价水平进行短期和长 期预测,为政府制定物价调控政策提供依据。
社会领域应用案例
人口数量预测
通过收集历史人口数据,利用灰色预测模型可以对未来人 口数量进行预测,为政府制定人口政策提供参考。
关于“灰色预测模型 ”讲解
灰色预测法PPT
i
0i X 0i
100%
i 1,2,..., n
(2)关联度检验
根据前面所述关联度的计算方法算出 Xˆ 0i
与原始序列 X 0i 的关联系数,然后计算出关联
度,根据经验,当ρ=0.5时,关联度大于0.6便
10 灰色预测法
10.1 灰色预测理论 10.2 GM(1,1)模型 10.3 GM(1,1)残差模型及GM (n, h)模型
10.1 灰 色 预 测 理 论
一、灰色预测的概念 灰色预测法是一种对含有不确定因素的系
统进行预测的方法。
(1)灰色系统、白色系统和黑色系统
• 白色系统是指一个系统的内部特征是完全 已知的,即系统的信息是完全充分的。
(1)数据处理方式 灰色系统常用的数据处理方式有累
加和累减两种。
累加 累加是将原始序列通过累加得到生成列。
累加的规则:
将原始序列的第一个数据作为生成列 的第一个数据,将原始序列的第二个数据 加到原始序列的第一个数据上,其和作为 生成列的第二个数据,将原始序列的第三 个数据加到生成列的第二个数据上,其和 作为生成列的第三个数据,按此规则进行 下去,便可得1
a
e ak
a
k 0,1,2..., n
二、模型检验
灰色预测检验一般有残差检验、关联度检验和后 验差检验。
(1)残差检验 按预测模型计算 Xˆ 1i, 并将 Xˆ 1i 累减生成 Xˆ 0i, 然后计算原始序列 X 0i 与 Xˆ 0i的绝对误差序列及相 对误差序列。
记原始时间序列为:
X 0 X 01, X 02, X 03,...X 0n
灰色预测法
灰色预测法1.介绍灰色预测就是灰色系统所做的预测,灰色系统理论是我国著名学者邓聚龙教授创立的一种兼具软硬科学特性的新理论。
灰色系统的具体含义就是:部分信息已知,部分信息未知的某一系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素有很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
2.适用问题灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。
比如说人口预测、气象预报、初霜预测、灾变预测(如地震时间的预测)、数列预测(如对消费物价指数的预测)。
灰色预测模型所需要的数据量比较少,预测比较准确,精确度比较高。
样本分布不需要有规律性,计算简便,检验方便。
灰色GM(1,1) 模型是指运用曲线拟合和灰色系统理论进行预测的方法,对历史数据有很强的依赖性,没有考虑各个因素之间的联系,所以误差偏大,只适合做中长期的预测,不适合长期预测。
3.数学方法核心步骤3.1数据的检验与处理首先,为了确保建模方法的可行性,需要对抑制数据作必要的检验处理,设参考数据为(0)(0)(0)(0)((1),(2),...,())x x x x n =,计算数列的级比(0)(0)(1)().2,3,...,()x k k k n x k λ-== 如果所有的级比()k λ 都在可容覆盖2212(,)n n e e -++ 内,则数列(0)x 可以作为模型GM(1,1)的数据进行灰色预测,否则,需要对(0)x 做必要地变换处理,使其落入可容覆盖内,即取适当的c ,做平移变换 (0)(0)()(),1,2,...,y k x k c k n =+=则是数列(0)(0)(0)(0)()((1),(2),...,())y k y y y n =的级比(0)(0)(1)(),2,3,...,()y y k k X k n y k λ-=∈= 3.2 建立模型按照下面的办法建立模型GM (1,1)(1) 由上面的叙述知道参考数据列为(0)(0)(0)(0)((1),(2),...,())x x x x n =,对其做一次累加(AGO )生成数列(1)x(1)(1)(1)(1)(1)(1)(0)(1)(0)((1),(2),...,())((1),(1)(2),...,(1)())x x x x n x x x x n x n ==+-+其中(1)(0)1()()(1,2,...,)k i x k x i k n ===∑ 。
灰色理论的名词解释
灰色理论的名词解释灰色理论是一种基于少量可用数据的预测和决策模型推理分析方法。
它由中国科学家陈纳言在20世纪80年代初提出,并在实际应用中得到广泛使用。
灰色理论可以应用于不完全、不精确以及缺乏相关性的数据,通过建立灰色模型实现对未知事物或系统行为的预测。
1. 灰色系统灰色理论的核心思想是"灰色系统",它指的是具有未知、模糊、不完整或难以测量的特征的系统。
相对于传统的黑白系统,灰色系统是介于黑与白之间的灰色区域,即信息不完备的状态。
2. 灰色关联度灰色关联度是灰色理论中的关键指标,用于度量两个灰色序列之间的相关性。
通过计算灰色关联度可以判断两个序列是否存在相关性,并进一步分析序列之间的关联程度。
灰色关联度的计算包括数据的正规化和关联度的计算两个步骤。
3. 灰色模型灰色模型是灰色理论的基础工具,用于建立未知事物或系统行为的预测模型。
灰色模型包括GM(1,1)模型和GM(2,1)模型等不同类型,通过对已知数据序列进行处理,得到系统的特性参数,然后利用这些参数进行预测或决策。
4. 灰色预测灰色预测是灰色理论的应用之一,它通过对已有的数据序列进行分析和处理,预测未来序列的趋势和规律。
与传统的统计分析方法相比,灰色预测更适用于数据量少、关系复杂以及存在不确定性的问题。
5. 灰色决策灰色决策是灰色理论的另一重要应用领域,它主要用于多目标决策问题中。
通过灰色决策方法,我们可以在多个因素或目标之间进行权衡和选择,找到最优解或较好的决策方案。
6. 灰色系统工程灰色系统工程是灰色理论领域的一个重要研究方向,它将灰色理论与系统工程相结合,旨在寻找更好的工程解决方案。
通过运用灰色系统工程方法,我们可以解决那些特征不完备、难以测量或缺乏实际数据的问题。
总结:灰色理论作为一种基于少量可用数据的推理分析方法,提供了一种有效的工具用于预测和决策。
通过灰色模型的建立和灰色关联度的计算,我们可以对未知事物或系统行为进行预测和分析。
灰色系统理论及其应用
灰色系统理论及其应用一、灰色系统理论概述灰色系统理论,是一种研究不确定性问题的方法。
它起源于20世纪80年代,由中国学者邓聚龙教授提出。
灰色系统理论认为,现实世界中的许多问题并非非黑即白,而是介于黑白之间的灰色地带。
这种理论为我们处理复杂、模糊、不确定性问题提供了一种新的视角。
灰色系统理论的核心思想是通过对部分已知信息的挖掘和加工,实现对整个系统行为的合理预测和控制。
它将系统分为白色系统、黑色系统和灰色系统。
白色系统是指信息完全已知的系统,黑色系统是指信息完全未知的系统,而灰色系统则是介于两者之间的系统,部分信息已知,部分信息未知。
二、灰色系统理论的基本原理1. 灰灰是灰色系统理论的基础,它通过对原始数据进行处理,具有规律性的序列。
常见的灰方法有累加(AGO)、累减(IGO)和均值等。
2. 灰关联分析灰关联分析是灰色系统理论的重要方法,用于分析系统中各因素之间的关联程度。
通过对系统各因素发展变化的相似度进行比较,揭示系统内部因素之间的联系。
3. 灰预测灰预测是灰色系统理论在实际应用中的重要手段,它通过对部分已知信息的挖掘,建立灰色模型,对系统未来发展趋势进行预测。
三、灰色系统理论的应用领域1. 经济管理灰色系统理论在经济学和管理学领域具有广泛的应用,如企业竞争力分析、市场预测、投资决策等。
通过灰关联分析,可以找出影响企业发展的关键因素,为企业制定发展战略提供依据。
2. 工程技术在工程技术领域,灰色系统理论可用于设备故障预测、质量控制、能源消耗分析等。
例如,通过对设备运行数据的分析,建立灰色预测模型,提前发现潜在故障,确保设备安全运行。
3. 社会科学4. 生态环境在生态环境领域,灰色系统理论可以用于水资源评价、环境污染预测、生态平衡分析等。
通过对生态环境数据的挖掘,有助于我们更好地了解和把握生态环境的发展态势。
四、灰色系统理论的优势与局限性优势:1. 对小样本数据的适用性:灰色系统理论不需要大量数据即可进行建模和分析,这对于样本量有限的情况尤其有价值。
灰色预测理论与应用
n
k
k 1
0
称为
X
0
k
与 Xˆ k 的关联度
灰色模型 GM
1、GM(1,1)模型的建立
( n )) 有n个观察值,通 设时间序列 过累加生成新序列 x (1 ) ( x (1 ) (1), x (1 ) ( 2 ), , x (1 ) ( n )) 则GM(1,1)模型相应的微分方程为: x (1), x ( 2 ), , x
令x
(0)
为 原 始 序 列 ,x
(1 )
(0)
[x
(1 )
(0)
(1), x
(1 )
(0)
( 2 ), , x
(1 )
(0)
( n )],
记生成数为x x
(1 )
,x
(1 )
[x
(1), x
( 2 ), , x
( n )], 如 果
与x
(0)
之间满足如下关系 :
x
(1 )
(k )
k
x
(0)
( i ); k 1, 2 , , n
( 2 1)
i1
则 称 为 一 次 累 加 生 成 , 记 为 1 A G O ( A ccu m u la tin g G en era tio n O p era to r )
r次 累 加 生 成 有 下 述 关 系 :
x
(r )
(0)
[x [x
(r)
( k 1)] ( k 1)] (2 5)
(2)
(r )
(1 )
(r )
(1 )
(r)
灰色预测
1、灰色系统定义灰色系统是黑箱概念的一种推广,我们把既含有已知信息有含有未知信息的系统称为灰色系统。
作为两个极端,我们将信息完全未确定的系统称为黑色系统;将信息完全确定的系统称为白色系统。
区别白色系统与黑色系统的重要标志是系统各因素之间是否具有确定的关系。
2、灰色系统特点2.1用灰色数学处理不确定量,使之量化在数学发展史上,较早用研于究运动规律的是确定性的微分方程,一旦有了描写事物的微分方程和初值,就能够确知该事物任何时刻的运动状态。
随后发展了概率论与数理统计,用随机变量与随机过程来研究事物的状态和运动。
模糊数学则研究没有清晰界限的事物,它通过隶属函数来使模糊概念量化。
灰色系统则认为不确定量是灰色量,用灰色数学来处理不确定量,同样能将不确定量予以量化。
2.2充分利用已知信息寻求系统的运动规律。
研究灰色系统的关键好是如何使灰色系统白化、模型化、优化。
灰色系统理论提出了灰色系统建模的具体数学方法,它能运用时间序列数据来确定微分方程的参量,灰色预测视时间序列为随时间变化的灰色过程,通过累加生成和相减生成,逐步使灰色量白化,从而建立相应于微分方程的模型并作出预测。
2.3灰色系统理论能处理贫信息系统。
灰色预测模型只要求较短的观测资料即可预测,这是和时间序列分析、多元分析等概率统计模型要求较长资料很不一样的。
因此,对于某些只有少量观测数据的项目来说,灰色预测是一个有用的工具。
一般预测模型是因素的模型,而各因素之间总存在着某种直接或间接的联系,若按因素的变化来预测系统的行为,则由于因素中有含有因素,多种因素的多种变化会使预测问题变得相当复杂甚至不可能。
因此,灰色理论主张用单因素模型()1,1GM 作预测,并把基于()1,1GM 模型的预测称为灰色预测,常用的灰色预测有五种: 1、数列预测,即用观察到的反应预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征向量,或达到某一特征量的时间。
2、灾变与异常值预测,即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定的区域内。
《灰色预测法》2004.7.21
灰色预测法第一节灰色系统一、灰色预测的概念灰色预测是就灰色系统所作的预测。
所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体含义是:如果某一系统的全部信息已知为白色系统,全部信息末知为黑箱系统,部分信息已知、部分信息未知,那么这一系统就是灰色系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测,可以用灰色预测方法。
灰色系统理论认为对既含有已知信息又含有本知或非确定信息的系统进行预测,就是对在一定范围内变化的,与时间有关的灰色过程的预测。
尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律。
灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
灰色预测一般有四种类型。
1.数列预测。
对某现象随时间的顺延而发生的变化所作的预测定义为数列预测。
例如对消费物价指数的预测,需要确定两个变量,一个是消费物价指数的水平,另一个是这一水平所发生的时间。
2.灾变预测。
对发生灾害或异常突变事件可能发生的时间预测称为灾变预测。
例如对地震时间的预测。
3.系统预测。
对系统中众多变量间相互协调关系的发展变化所进行的预测称为系统预测。
例如市场中代用商品、相互关联商品销售量互相制约的预测。
4.拓扑预测。
将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测未来该定值所发生的时点。
二、系统功能模拟与灰色分析(一)系统模拟所谓系统模拟是指通过系统模型间接地模拟真实系统的过程。
系统模型建立起来后,在人为控制的条件下,通过改变特定参数,观察和研究模型的情况,以预测系统在真实环境下的特征、规律、作用、效率等。
这是组建系统的必经过程,也是研究系统的重要手段。
根据系统模型和系统真实情况相似关系的特点,一通常把模拟分为物理模拟与数学模拟两大类。
物理模拟是以系统模型和真实系统之间物理相似或几何相似为基础的一种模拟方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是灰色预测法?
灰色预测是就灰色系统所做的预测。
所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰色系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。
尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。
其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
简言之,灰色预测模型是通过少量的、不完全的信息,建立灰色微分预测模型,对事物发展规律作出模糊性的长期描述(模糊预测领域中理论、方法较为完善的预测学分支)。
灰色系统的概念是由邓聚龙教授于1982年提出的,它描述部分信急己知,部分未知介于黑白系统之间的系统。
GM(1,1)模型是灰色理论中较常用的预测方法,它以定性分析为先导,定量与定性结合,对离散序列建立微分方程以及白化方程,一般要经历思想开发、因素分析、量化、动态化、优化五个步骤。
灰色系统通过对原始数据的整理来寻求其变化规律,这是一种就数据寻找数据的现实规律的途径,称为灰色序列的生成。
生成数
通过对原始数据的整理寻找数的规律,分为三类:
a、累加生成:通过数列间各时刻数据的依个累加得到新的数据与数列。
累
加前数列为原始数列,累加后为生成数列。
b 、累减生成:前后两个数据之差,累加生成的逆运算。
累减生成可将累加生成还原成非生成数列。
c 、映射生成:累加、累减以外的生成方式。
如原始数列(1 2 1.5 3)没有明显的规律,但是如果做一次累加生成,生成(13 4.5 7.5),则新数列具有明显的增长规律性。
一、三种不确定方法的区别
二、理论原理
1、设微分方程:
dx ax b dt +=,其中dx dt 为x 的导数,x 为dx
dt
的背景值,,a b 为参数。
因此,一个一阶微分方程由导数、背景值和参数三部分构成。
其微分方程解为:(1)(0)ˆ(1)(((1))ak b b x
k x e a a
-+=-+。
还原后得:(0)(0)ˆ(1)()((1))ak b
x
k a x e a
-+=-- 2、(1)级比与光滑比:设序列X=(x(1),x(2),...,x(n)),称
()
()(1)
x k k x k σ=
-;2,...,k n
=
为序列X=(x(1),x(2),...,x(n))的级比。
称:1
1
()
()()
k i x k k x i ρ-==
∑;2,...,k n =
为序列X=(x(1),x(2),...,x(n))的光滑比。
(2)若序列X=(x(1),x(2),...,x(n))满足 ○1
(1)
1()
k k ρρ+<;2,...,1k n =-; ○2()[0,]k ρε∈;3,...,k n =; ○30.5ε<。
则称序列X=(x(1),x(2),...,x(n))为准光滑序列。
3、一般的非负准光滑序列经过累加生成后,都会减少随机性,呈现出近似的指数增长规律,原始序列越光滑,生成后指数规律也越明显。
设序列X=(x(1),x(2),...,x(n)),若
○1,()(0,1]k k σ∀∈,则称序列具有负的灰指数规律。
○2,()(1,]k k b σ∀∈,则称序列具有正的灰指数规律。
○
3,()(,],k k a b b a σδ∀∈-=,则称序列具有绝对灰度为δ灰指数规律。
○
40.5δ<时,称具有准指数规律。
三、建模步骤
例:序列(0)(0)(0)(0)((1),(2),...,(5))X x x x ==(2.874 3.278 3.337 3.39 3.679)。
第1步:对序列作累加得:(1)(1)(1)(1)((1),(2),...,(5))X x x x ==(2.874 6.152 9.489
12.879 16.558)
第2步:对序列(0)(0)(0)(0)((1),(2),...,(5))X x x x =进行准光滑性检验。
(0)1
(0)
1
()
()()
k i x k k x
i ρ-==
∑得:k>3时,准光滑条件满足。
第3步:检验(1)(1)(1)(1)((1),(2),...,(5))X x x x =是否具有准指数规律,有:
(1)(1)
(1)
()
()(1)
x k k x k σ=-得(1)(3) 1.54σ=,(1)(4) 1.36σ=,(1)(5) 1.29σ=。
k>3时,(1)()[1,1.5]k σ∈,0.5δ<,准指数规律满足,故可以对(1)X 建立GM (1,1)模型。
第4步:对(1)X 作紧邻值生成。
令(1)(1)(1)()0.5()0.5(1)z k x k x k =+-得:
(1)z =(4.513 7.82 11.184 14.718) 于是
(1)(1)
(1)
(1)
(2)1(3)1(4)1(5)1z z B z z ⎡⎤-⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦=
4.51317.82111.184114.7181-⎡⎤⎢
⎥-⎢⎥⎢⎥
-⎢
⎥-⎣⎦,(0)(0)(0)(0) 3.278(2) 3.337(3) 3.390(4) 3.679(5)x x Y x x ⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥
⎣
⎦⎣⎦ 第5步:对参数列ˆ[,]T a
a b =进行最小二乘估计。
得: 1
0.03720ˆ() 3.06536T
T
a a B B B Y
b --⎡⎤⎡⎤
===⎢⎥⎢⎥⎣⎦⎣⎦
第6步:确定模型(1)
(1)0.0372 3.06536dx x dt
-=。
其时间响应式 (1)(0)ˆ(1)(((1))ak b b
x
k x e a a
-+=-+=0.07285.27615182.402151k e -。
第7步:求(1)X 的模拟值:(1)X =(2.874 6.106 9.4605 12.9422 16.5558) 第8步:还原出(0)X 得:(0)X =(2.8740 3.2320 3.3545 3.4817 3.6136)。
另外还有由(1)(0)ˆ(1)(((1))ak b b
x
k x e a a -+=-+衍生出的一个指数模型和一个差分模型。
以残差为随机序列进行灰色建模。
残差模型的公式:若
(0)(0)ˆ(1)()((1))ak b
x
k a x e a
-+=--,则相应的残差修正时间响应式 0(0)
(0)()(0)(0)00
()((1)),ˆ(1)()((1))(()),ak a k k ak b a x e k k a x
k b b a x e a k e k k a a εεεεε----⎧--<⎪⎪
+=⎨⎪--±-≥⎪⎩
四、改进模型
灰色理论适用于贫信息条件下的分析和预测。
优点是:要求负荷数据少、不考虑分布规律、不考虑变化趋势、运算方便、短期预测精度高、易于检验。
缺点是:当数据离散程度越大,即数据灰度越大,预测精度越差。
为了解决这一问题,人们对灰色预测做了很多改进。
如提出对历史数据的平滑处理、模型参数修正、等维新息数据处理和对预测值的修正等,也有将现在的人工智能算法如将遗传算法、人工神经网络模型引入灰色模型对其加以改进的。
下面介绍对历史数据的平滑处理方法和等维新息。
(1)为减少原始数据在统计过程中的随机误差和人为误差,可对原始序列进行变换,增加离散数据光滑度,一般作三点滑动平均:
(0)(0)(1)[3*(1)(2)]/4Z x x =+
(0)(0)(0)()[(1)2*()(1)]/4Z k x k x k x k =-+++;其中2,...,1k n =- (0)(0)()[(1)3*()]/4
Z n x n x n =-+
(2)常用的GM (1,1)模型有新息模型和等维新息模型。
信息模型是每增加一个最新的信息,便将新信息加入原始数列中,按补充了新息后的邻域建模(全数列建模)而得到的模型。
等维新息模型是采取增加新信息与去掉旧信息同时进行的方式建模,亦称为新陈代谢模型,其机理与一般建模理论中的遗忘因子适应建模思路接近。
注意建模维数的选取。
(注:范文素材和资料部分来自网络,供参考。
请预览后才下载,期待你的好评与关注。
)。