单筋矩形截面受弯构件正截面承载力计算

合集下载

受弯构件正截面承载力计算—单筋矩形截面受弯构件

受弯构件正截面承载力计算—单筋矩形截面受弯构件
根据公式
a1 f c bx f y As
直接求得所需的钢筋面积。
并应满足As ≥ minbh;
若≥出现As<minbh时,则应按minbh配筋。
计算步骤4
选择钢筋直径并进行截面布置,得
到实际配筋面积As、as和h0。
截面设计
控制截面
在等截面受弯构件中,指弯矩组合设
计值最大的截面;在变截面受弯构件中,
构件种类


纵向受力钢
筋层数
1层
2层
1层
混凝土强度等级
≤ 25
45mm
70mm
25mm
≥ 30
40mm
65mm
20mm
计算步骤2
根据公式
x
M a1 f c bx( h0 )
2
解一元二次方程求得截面受压区高度x,并满足
x b h0
否则应加大截面,或提高fc ,或改用双筋梁。
计算步骤3
单筋矩形截面受弯构件截面复核
(建筑规范)
截面复核:是指已知截面尺寸、混凝土和钢筋
强度级别以及钢筋在截面上的布置,要求计算截面
的承载力Mu或复核控制截面承受某个弯矩计算值M是
否安全。
截面尺寸
已知条件
材料强度级别
钢筋在截面上的布置
钢筋布置
复核内容
配筋率
截面的承载力Mu
复核步骤1
检查钢筋布置是否符合
M u f cd bh02 b 1 0.5 b
当由上式求得的Mu<M时,可采取提高混凝土
级别、修改截面尺寸,或改为双筋截面等措施;
复核步骤五
当x≤ξbh0时,由公式
x

M u f cd bxM u f sd As h0

单筋矩形截面受弯构件正截面承载力计算

单筋矩形截面受弯构件正截面承载力计算
为简化计算,假定在bf′范围内压应力均匀分布,bf′称 为翼缘计算宽度。
60
第三章 受弯构件正截面承载力计算
翼缘计算宽度bf′取下表所列各项中的最小值。
翼缘计算宽度bf′
项 次
考虑情况
1
按计算跨度l0考虑
2
按梁(纵肋)净距sn考虑
3
按翼缘高度
hf'考虑
hf'/h0≥0.1
0.1>
hf'/h0≥0.05
x xb bh0

防止超筋脆性破坏:
b

As bh0

max

b
1 fc
fy
防止少筋脆性破坏: min AS AS,min minbh
单筋矩形截面所能承受的最大弯矩(极限弯矩):
Mu,max 1 fcbh02b (1 0.5b )
3.3 受弯构件正截面承载力计算
第三章 受弯构件正截面承载力计算
一、基本公式及适用条件 1.基本公式
按下图所示的计算应力图形,根据力和力矩平衡条 件,可得单筋矩形截面受弯构件正截面承载力计算基本 公式为
第三章 受弯构件正截面承载力计算
1 fcbx fy As
M Mu 1 fcbxh0 x 2
M M u f y As h0 x 2
1 fcb
②若x≤ξbho,且x≥2as′,则将x值代入第二个基本 公式 求Mu;
56
第三章 受弯构件正截面承载力计算
③若x>ξ bho,说明属超筋梁,此时应取x=ξ bho代 入第二个基本公式求Mu;
④若x<2as′,则
Mu AS f y h0 as'
⑤若Mu≥M则截面安全,否则截面不安全。

单筋矩形截面受弯构件正截面承载力计算

单筋矩形截面受弯构件正截面承载力计算

单筋矩形截面受弯构件正截面承载力计算单筋矩形截面受弯构件是指具有一个纵向钢筋(单筋)和一个矩形截面的构件。

在受弯时,矩形截面受到压力,而钢筋受到拉力,通过计算正截面承载力可以确定该构件的安全性能。

下面将介绍单筋矩形截面受弯构件正截面承载力的计算方法。

首先,计算正截面的受压区高度h和内力矩M。

假设构件受弯时的截面高度为h,宽度为b,截面厚度为d。

根据等截面原则,构件的正截面宽度和截面高度相等,即b=h。

构件的弯矩M由下式计算得出:M=Rd·Z,其中Rd为设计弯矩,Z为正截面抵抗矩。

然后,计算正截面抵抗矩Z。

在单筋矩形截面中,正截面抵抗矩由钢筋和混凝土组成。

钢筋的抵抗矩可由以下公式计算得出:Zs=As·fy·(h-d/2),其中As为钢筋截面面积,fy为钢筋的抗拉强度。

混凝土的抵抗矩可由以下公式计算得出:Zc=0.85·fck·(b·h-(As+Asc)·(h/2-d/2)),其中fck为混凝土的抗压强度,Asc为纵向钢筋表面积。

正截面的抵抗矩由钢筋的抵抗矩和混凝土的抵抗矩之和得出:Z=Zs+Zc。

接下来,计算正截面的承载力。

正截面受弯构件的承载力由以下条件中的最不利情况决定:1.混凝土达到极限压应力或者钢筋达到屈服应力;2. 混凝土达到达到破坏应变时,即混凝土压应力达到0.45fck或者钢筋达到屈服应变。

计算混凝土达到极限压应力的情况下的承载力,可以得到下式:Nc=0.85·fcd0·A+(Rd-Zs)/Rd·fctd0·A,其中fcd0为混凝土的设计强度,fctd0为混凝土的设计抗拉强度,A为截面面积。

计算钢筋达到屈服应力的情况下的承载力,可以得到下式:Ns=(Zs/0.9zτs)·fsd,其中z为混凝土的截面中和高度,τs为混凝土的应力分布系数,fsd为钢筋的设计抗拉强度。

综合两种情况,正截面受弯构件的正截面承载力Fc为较小值:Fc=min{Nc,Ns}。

4(2)受弯构件的正截面受弯承载力-计算原理-单筋矩形截面(精)

4(2)受弯构件的正截面受弯承载力-计算原理-单筋矩形截面(精)

4. 3 正截面受弯承载力计算原理一、基本假定试验梁破坏特征→正截面承载力的四个基本假定: 1. 截面应变保持平面平截面假定:指梁在荷载作用下,正截面变形规律符合“平均应变平截面假定” 。

实验表明:砼和钢筋纵向应变呈直线变化钢筋混凝土梁的应变2. 不考虑混凝土的抗拉强度1) 砼的抗拉强度很小;2)其合力作用点离中和轴较近,抗弯力矩的力臂很小→忽略受拉区砼的抗拉作用4. 钢筋的应力-应变关系方程σs=Es⋅εs≤fy纵向钢筋的极限拉应变取为0.012. 等效矩形应力图公式复杂,可取等效矩形应力图形来代替受压区砼应力图形两个图形满足的等效条件:1)受压区砼压应力合力C 的大小相等2)两图形中受压区合力C的作用点不变fcxcx=β1xcα1fcC=α1fcbxzT=fyAszT=fyAs等效矩形应力图4.4 单筋矩形截面受弯构件正截面受弯承载力计算 (1) 基本计算公式及适用条件 1. 基本计算公式计算简图情形2:已知截面设计弯矩M、砼强度等级及钢筋级别,求构件截面尺寸bh和受拉钢筋截面面积As设计步骤:①b , h , As 和x均为未知数,解得有多组。

计算时需要增加条件,通常假定配筋率ρ和梁宽b配筋率的经济取值: 板的约为0.3%~0.8%;单筋矩形梁的约为0.6%~1.5%。

梁宽按构造要求确定矩形截面:宽度b 一般取为l00、120、150、(180)、200、(220)、250和300mm,300mm以上的级差为50mm;括号中的数值仪用于木模例1 现浇钢筋砼平板,安全等级为二级,处于一类环境,承受均布荷载设计值为6.50kN/m2(含板自重),砼:C25,钢筋:HRB335级。

试配置该平板的受拉钢筋。

解:截面设计问题(1)确定设计参数查附表2-7,HRB335钢筋fy=300 N/mm2附表2-2 ,C25混凝土fc= 11.9N/mm2ft= 1.27 N/mm2表4-5α1=1.0表4-6 ξb=0.550表αsb=0.399(4)选配钢筋及绘配筋图查附表4-1各种钢筋间距,每米板宽中的钢筋截面面积板的构造要求:常用直径是6、8、l0mm,其中现浇板的板钢筋直径不宜小于8mm.钢筋的间距:一般为70~200m。

单筋矩形正截面受弯承载力计算公式

单筋矩形正截面受弯承载力计算公式

单筋矩形正截面受弯承载力计算公式根据图1和截面内力平衡条件,并满足承载能力极限状态计算表达式的要求,可得出如下基本计算公式:图1 单筋矩形截面梁板正截面受弯承载力计算简图∑x=0 f c bx=f y A s(1)∑M=0 KM≤f c bx(h0−)(2)式中M——弯矩设计值(N·mm);f c——混凝土轴心抗压强度设计值(N/mm2),按附表1–2取用;b——矩形截面宽度(mm);x——混凝土受压区计算高度(mm);h0——截面有效高度(mm);f y——受拉钢筋的强度设计值(N/mm2),按附表1–5取用;A s——受拉钢筋的截面面积(mm2);K——承载力安全系数, 按表1–7取用。

利用基本公式进行截面计算时,必须求解方程组,比较麻烦。

为简化计算,将式(1)、(2)改写如下:将ξ=x/h0代入公式(1)、(2),并引入截面抵抗矩系数αs,令αs =ξ(1–ξ)(3)则基本公式改写为:f c bξh0=f y A s(4)KM≤αs f c bh02(5)由式(4)可得:ρ= ξf c/f y基本公式是根据适筋破坏的情况推导出来的。

因此,它的适用条件为:(1)ρ≤ρmax或x ≤ξb h0或ξ≤ξb,以防止发生超筋破坏,ρmax=ξb f c/f y;基本公式是依据适筋构件破坏时的应力图形情况推导的,当受拉钢筋屈服的同时,受压区混凝土也达到极限压应变εcu,梁发生的临界破坏状态,就是适筋梁与超筋梁的界限。

但为了结构的安全,更有效地防止发生超筋破坏,,应用基本公式和由它派生出来的公式计算时,必须符合此条件。

(2)ρ≥ρmin,以防止发生少筋破坏钢筋混凝土梁板构件破坏时承担的弯矩等于同截面素混凝土梁板构件所能承担的弯矩时的受力状态,为适筋破坏与少筋破坏的分界。

这时梁板的配筋率应是适筋梁板的最小配筋率。

《规范》不仅考虑了这种“等承载力”原则,而且还考虑了混凝土的性质和工程经验等。

因此,基本公式应符合此条件。

单筋矩形梁正截面受弯承载力计算实例

单筋矩形梁正截面受弯承载力计算实例

单筋矩形截面梁正截面受弯承载力计算实例单筋矩形截面梁、板构件正截面受弯承载力计算步骤见图1。

选配钢筋加大截面尺寸或是M 、b 、h 、f c 、f y 、a s 、K ,A s 、ρmin 、αsmasαs =KM / f c b h 02A s =f c b ξh 0/f ybs 85.0211ξαξ≤--=h 0=h -a s否A s = ρmin bh 0绘配筋图是是A s 已知?αs ≤αsmax提高砼强度等级ρ=A s /(bh 0)≥ρmin是ξ=f y A s / (f c b h 0)ξ≤0.85ξbαs = ξ(1−0.5ξ)M u = αs f c b h 02KM ≤M u是是安全αs = αsmax否否不安全否否否ρ=A s /(bh 0)> ρmin是重新设计图1 单筋矩形截面正截面受弯承载力计算流程图【案例1】某水电站厂房(2级建筑物)的钢筋混凝土简支梁,如图2所示。

一类环境,净跨l n =5.76m ,计算跨度l 0=6.0m ,承受均布永久荷载(包括梁自重)g k =12kN/m ,均布可变荷载q k =m ,采用混凝土强度等级为C20,HRB335级钢筋,试确定该梁的截面尺寸和纵向受拉钢筋面积A s 。

解:查表得:f c = mm 2,f y = 300N/ mm 2,K =。

(1)确定截面尺寸 由构造要求取:h =(1/8~1/12)l 0 =(1/8~1/12)×6000=750~500,取h =500mm b =(1/2~1/3)h =(1/2~1/3)×500=250~167,取b =250mm (2)内力计算M =(+ )l 02/8=(×12+×)×62 /8 = ·m (3)配筋计算取a s =40mm ,则h 0=h –a s =500–40=460mm==2c s bh f KMα248.04602506.91076.10420.126=⨯⨯⨯⨯ 290.0248.0211211s =⨯--=--=αξ<ξb =×=A s =f c bξh 0/f y =×250××460/300=1067mm 2 ρ= 1067/(250×460)=﹪>ρmin =﹪(4)选配钢筋,绘制配筋图选受拉纵筋为322(A s =1140 mm 2),需要最小梁宽b min =2c +3d +2e =2×30+ 3×22+2×25=176(mm )<250mm ,符合构造要求。

单筋矩形截面受弯构件承载力计算与截面设计

单筋矩形截面受弯构件承载力计算与截面设计

受弯构件正截面承载力计算与截面设计系列总结之单筋矩形截面相关计算1 承载力计算:截面尺寸(b 、h 、h 0)、配筋(A s )和材料强度(f c ,f t 、f y )等条件已知情况下,求M u ,其计算步骤如下:1.1 计算配筋率:s A bh ρ=或s 0A bh ρ= 1.2若min ρρ<,则2u crA 0.292(1 2.5)t M M f bh α==+,其中s A E 2A bh αα= ;s E cE E α= 1.3若min max ρρρ<≤,按适筋梁进行计算,由1c y s f bx f A α=求x ,再将x 代入u 1c 0y s 0()()22x x M f bx h f A h α=−=−,其中1c max b y f f αρξ=;t min max y (0.2%,45%)f f ρ= 1.4若max ρρ>,按超筋梁进行计算,先将s y b 0.80.8f ξσξ−=−代入1c s s f bx A ασ=求x 或ξ,再将x 或ξ及s y b 0.80.8f ξσξ−=−代入u 1c 0s s 0()()22x x M f bx h A h ασ=−=− 说明:上述式中0h 按如下取值:单排配筋时, 02d h h c =−−;双排配筋时,()0max 25,22d h h c d =−−+,其中,c 为混凝土的保护层厚度,d 为钢筋的 直径,c 为混凝土保护层厚度。

2 截面设计:截面尺寸(b 、h 、h 0)、材料强度(f c ,f t 、f y )和M 等条件已知情况下,求配筋A s ,为保证所设计的截面在给定弯矩作用下不发生破坏,应要求截面的弯矩承载力不低于其所受弯矩,即:M u ≥ M ,其计算步骤如下:2.1 按22u,max 1c 0b b s,max 1c 0(10.5)M f bh f bh αξξαα=−=,其中s,max b b (10.5)αξξ=−求u,max M ,若u,max M M >则需加大截面重新计算;若u,max M M ≤则进行下一步2.2 由u 1c 0y s 0()()22x x M f bx h f A h α=−=−和1c y s f bx f A α=求s A2.3 计算配筋率:s A bhρ= 2.4 若min ρρ≥,计算结束2.5 若min ρρ<,取s min A bh ρ=说明:设计时钢筋直径未知,故上述式中0h 按如下取值:对钢筋混凝土梁,单排配筋时, 035h h =−(mm );双排配筋时,060h h =−(mm ),对钢筋混凝土板,020h h =−(mm )。

3.2 正截面承载力计算

3.2 正截面承载力计算

3.2 正截面承载力计算钢筋混凝土受弯构件通常承受弯矩和剪力共同作用,其破坏有两种可能:一种是由弯矩引起的,破坏截面与构件的纵轴线垂直,称为沿正截面破坏;另一种是由弯矩和剪力共同作用引起的,破坏截面是倾斜的,称为沿斜截面破坏。

所以,设计受弯构件时,需进行正截面承载力和斜截面承载力计算。

一、单筋矩形截面1.单筋截面受弯构件沿正截面的破坏特征钢筋混凝土受弯构件正截面的破坏形式与钢筋和混凝土的强度以及纵向受拉钢筋配筋率ρ有关。

ρ用纵向受拉钢筋的截面面积与正截面的有效面积的比值来表示,即ρ=As/(bh0),其中A s为受拉钢筋截面面积;b为梁的截面宽度;h0为梁的截面有效高度。

根据梁纵向钢筋配筋率的不同,钢筋混凝土梁可分为适筋梁、超筋梁和少筋梁三种类型,不同类型梁的具有不同破坏特征。

①适筋梁配置适量纵向受力钢筋的梁称为适筋梁。

适筋梁从开始加载到完全破坏,其应力变化经历了三个阶段,如图3.2.1。

第I阶段(弹性工作阶段):荷载很小时,混凝土的压应力及拉应力都很小,应力和应变几乎成直线关系,如图3.2.1a。

当弯矩增大时,受拉区混凝土表现出明显的塑性特征,应力和应变不再呈直线关系,应力分布呈曲线。

当受拉边缘纤维的应变达到混凝土的极限拉应变εtu时,截面处于将裂未裂的极限状态,即第Ⅰ阶段末,用Ⅰa表示,此时截面所能承担的弯矩称抗裂弯矩M cr,如图3.2.1b。

Ⅰa阶段的应力状态是抗裂验算的依据。

第Ⅱ阶段(带裂缝工作阶段):当弯矩继续增加时,受拉区混凝土的拉应变超过其极限拉应变εtu,受拉区出现裂缝,截面即进入第Ⅱ阶段。

裂缝出现后,在裂缝截面处,受拉区混凝土大部分退出工作,拉力几乎全部由受拉钢筋承担。

随着弯矩的不断增加,裂缝逐渐向上扩展,中和轴逐渐上移,受压区混凝土呈现出一定的塑性特征,应力图形呈曲线形,如图3.2.1c。

第Ⅱ阶段的应力状态是裂缝宽度和变形验算的依据。

当弯矩继续增加,钢筋应力达到屈服强度f y,这时截面所能承担的弯矩称为屈服弯矩M y。

3单筋矩形截面受弯构件正截面承载力计算

3单筋矩形截面受弯构件正截面承载力计算

3单筋矩形截面受弯构件正截面承载力计算单筋矩形截面受弯构件是一种常见的结构构件,广泛应用于建筑、桥梁、机械等领域。

它的正截面承载力是指在构件所受到的弯矩作用下,正截面能够承受的最大力矩值。

单筋矩形截面受弯构件的正截面承载力计算一般按照以下步骤进行:1.假设构件正截面处于弹性阶段,根据材料的弹性力学理论,正截面的受弯应力与弯曲弯矩之间的关系为σ=M/W,其中σ为正截面的受弯应力,M为弯矩,W为截面抗弯矩。

2.计算截面抗弯矩W。

对于单筋矩形截面,一般可将其简化为矩形截面,截面抗弯矩W为b*h^2/6,其中b为矩形截面的宽度,h为矩形截面的高度。

3.根据构件的几何尺寸和受力情况,计算弯矩M。

弯矩的计算可以采用静力学方法或者有限元分析方法。

静力学方法一般是通过平衡方程来计算弯矩,有限元分析方法则利用计算机模拟构件的力学行为,得到准确的弯矩数值。

4.将步骤1和步骤2得到的结果代入公式σ=M/W,计算出正截面的受弯应力。

5.根据材料的强度理论或者试验结果,确定构件正截面的抗弯强度。

抗弯强度一般是指正截面可以承受的最大受弯应力。

6.比较步骤4计算出的受弯应力与步骤5确定的抗弯强度,如果受弯应力小于抗弯强度,则正截面具有足够的承载力;如果受弯应力大于抗弯强度,则正截面不能承受所施加的弯矩。

7.如果正截面的承载力不足,可以通过增加构件的尺寸或者采用其他形状的截面来增加其抗弯强度。

需要注意的是,以上的计算步骤是在构件正截面处于弹性阶段的假设下进行的。

如果构件正截面处于塑性阶段或者受到其他复杂的荷载作用,需要进行强度计算,采用不同的计算方法和理论,并考虑构件的完全塑性铰的形成等因素。

总而言之,单筋矩形截面受弯构件正截面承载力的计算是一项重要的结构设计工作,需要根据构件的几何尺寸、材料的性能以及受力情况等因素进行详细的计算分析,确保构件的安全可靠。

03.4 单筋矩形截面受弯构件正截面承载力计算

03.4 单筋矩形截面受弯构件正截面承载力计算

没有唯一解
设计人员应根据受力性能、材料供应、施工条件、 设计人员应根据受力性能、材料供应、施工条件、使用 要求等因素综合分析,确定较为经济合理的设计。 要求等因素综合分析,确定较为经济合理的设计。
3 3.4 单筋矩形截面承载力计算
第三章 钢筋混凝土受弯构件正截面承载力计算
◆材料选用:
● 适筋梁的 u主要取决于 yAs, 适筋梁的M 主要取决于f
◆适用条件 防止超筋脆性破坏
x ≤ ξ b h0 或 ξ ≤ ξ b α1 fc As ρ= ≤ ρ max = ξ b bh0 fy ≤ M u ,max = α s ,max α1 f c bh02 或 α s ≤ α s ,max M
防止少筋脆性破坏
As ≥ ρ min bh0
2 3.4 单筋矩形截面承载力计算
◆截面尺寸确定
● 截面应具有一定刚度,满足正常使用阶段的验算能 截面应具有一定刚度,
满足挠度变形的要求。 满足挠度变形的要求。

根据工程经验,一般常按高跨比 来估计截面高度 根据工程经验,一般常按高跨比h/L来估计截面高度 ~ 1/16)L,b=(1/2~1/3)h 估计 ,
● 简支梁可取 简支梁可取h=(1/10 ● 简支板可取 简支板可取h ●
因此RC受弯构件的 不宜较高。 因此 受弯构件的 fc 不宜较高。 受弯构件 现浇梁板:常用 现浇梁板:常用C15~C25级混凝土 级混凝土 预制梁板:常用C20~C30级混凝土 预制梁板:常用 级混凝土
● 另一方面,RC受弯构件是带裂缝工作的, 另一方面, 受弯构件是带裂缝工作的, 受弯构件是带裂缝工作的
2 2 问题? 问题? M = α1 f cbh0 ⋅ ξ (1 − 0.5ξ ) = α s ⋅ α1 f cbh0

第三章 第四节 单筋矩形截面受弯构件正截面承载力计算

第三章 第四节  单筋矩形截面受弯构件正截面承载力计算

Mu
xc
C
Z
x 0 T C
xt
h0
Tc T s
M 0
M u TZ CZ
设AS—钢筋的面积;fy—钢筋的屈服强度,T= ASfy 。 Z和C与压区高度及压区应力分布有关。
第四节
单筋矩形截面受弯构件正截面承载力计算
b x h
一、计算基本公式及适用条件
基本公式 h0 受弯构件正截面承载能力计算,应满足作用 在结构上的荷载在结构截面中产生的弯矩设计 值M不超过按材料的强度设计值计算得到的受 as 弯构件承载能力设计值Mu, 即:M ≤ Mu
h0——截面有效高度, h0=h-as h——截面高度 as ——受拉钢筋合力点至混凝土受拉边缘的距离,初步计算时,对 于C25~C45等级的混凝土,可按35mm(单排受拉筋)、60mm(双排受拉 筋)、20mm(平板)取值。
第四节 单筋矩形截面受弯构件正截面承载力计算 一、计算基本公式及适用条件
◆ 例题3-1
解:查表得: fc=9.6N/mm2 ,; fy=300N/mm2 ; ξb=0.55;截面有效 高度 h。=500-40=460mm ;纵向受拉钢筋按一排放置,则梁的有效 高度h0=500—40=460mm。 1.计算受压区高度x
f y As 300 804 x 125.6mm b h0 0.55 460 253mm 1 f cb 1.0 9.6 200
第四节 单筋矩形截面受弯构件正截面承载力计算 一、计算基本公式及适用条件
第四节 单筋矩形截面受弯构件正截面承载力计算 一、计算基本公式及适用条件
单筋矩形截面 仅在受拉区布置纵向受力钢筋的矩形截面 双筋矩形截面 同时在受拉区和受压区布置纵向受力钢筋的矩形截面

单筋矩形截面受弯构件正截面承载能力计算精选全文

单筋矩形截面受弯构件正截面承载能力计算精选全文

h
' f
h0
h
' f
2
的计算区别 5)在现浇混凝土楼盖体系中如何确定翼缘
的宽度
实际结构设计时,首先应根据楼(屋) 盖的布置,确定翼缘的宽度。
T型截面的设计
T型截面与矩形截面的差异: 形状上:T型截面有宽大的翼缘; 受力上:T型截面的受压区高度小; 受压区高度:在翼缘内,在翼缘外; 两种不同的受压区高度如何处理; 配筋形式:单筋、双筋等 配筋率如何计算
两种T型截面梁
受压区在翼缘内 受压区在翼缘外 受压区在翼缘内同矩形梁(已经解决,b'f ) 受压区在翼缘外,把它分解成T型梁计算
关键问题: 如何判别 如何分解
判别问题
判别问题的实质,是求受压区高度是否
超过了
h
' f
设计题判别:用弯矩平衡
校核题判别:用内力平衡
f y As
1
f
c
b
' f
h
' f
Mu
1
f
c
b
' f
h
' f
h0
h
' f
2
第一类型的计算公式
同矩形截面
第二类型的计算公式
1 fc
b
' f
b
h
' f
1 fcbx
f y As
M
1 fc
b
' f
b
h
' f
h0
h
' f
2
1
f
c
bx
h0
x 2
适用条件同矩形截面
M1
1 fc

3.2正截面承载力计算

3.2正截面承载力计算

3.2-正截面承载力计算3.2 正截面承载力计算钢筋混凝土受弯构件通常承受弯矩和剪力共同作用,其破坏有两种可能:一种是由弯矩引起的,破坏截面与构件的纵轴线垂直,称为沿正截面破坏;另一种是由弯矩和剪力共同作用引起的,破坏截面是倾斜的,称为沿斜截面破坏。

所以,设计受弯构件时,需进行正截面承载力和斜截面承载力计算。

一、单筋矩形截面1.单筋截面受弯构件沿正截面的破坏特征钢筋混凝土受弯构件正截面的破坏形式与钢筋和混凝土的强度以及纵向受拉钢筋配筋率ρ有关。

ρ用纵向受拉钢筋的截面面积与正截面的有效面积的比值来表示,即ρ=As/(bh0),其中A s为受拉钢筋截面面积;b为梁的截面宽度;h0为梁的截面有效高度。

根据梁纵向钢筋配筋率的不同,钢筋混凝土梁可分为适筋梁、超筋梁和少筋梁三种类型,不同类型梁的具有不同破坏特征。

①适筋梁配置适量纵向受力钢筋的梁称为适筋梁。

适筋梁从开始加载到完全破坏,其应力变化经历了三个阶段,如图3.2.1。

第I阶段(弹性工作阶段):荷载很小时,混凝土的压应力及拉应力都很小,应力和应变几乎成直线关系,如图3.2.1a。

当弯矩增大时,受拉区混凝土表现出明显的塑性特征,应力和应变不再呈直线关系,应力分布呈曲线。

当受拉边缘纤维的应变达到混凝土的极限拉应变εtu时,截面处于将裂未裂的极限状态,即第Ⅰ阶段末,用Ⅰa表示,此时截面所能承担的弯矩称抗裂弯矩M cr,如图3.2.1b。

Ⅰa阶段的应力状态是抗裂验算的依据。

第Ⅱ阶段(带裂缝工作阶段):当弯矩继续增加时,受拉区混凝土的拉应变超过其极限拉应变εtu,受拉区出现裂缝,截面即进入第Ⅱ阶段。

裂缝出现后,在裂缝截面处,受拉区混凝土大部分退出工作,拉力几乎全部由受拉钢筋承担。

随着弯矩的不断增加,裂缝逐渐向上扩展,中和轴逐渐上移,受压区混凝土呈现出一定的塑性特征,应力图形呈曲线形,如图3.2.1c。

第Ⅱ阶段的应力状态是裂缝宽度和变形验算的依据。

当弯矩继续增加,钢筋应力达到屈服强度f y,这时截面所能承担的弯矩称为屈服弯矩M y。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M
a1 fcbx h0


x 2

f y As h0

x 2
x≥bh0时, Mu=? Mu,max as,max a1 fcbh02
这种情况在施工质量出现问题,混凝土没有达到设计强度 时会产生。
As<minbh0,?
8
3.4 单筋矩形截面承载力计算
截面承载力计算的计算系数和计算方法
进一步分析。
5 3.4 单筋矩形截面承载力计算
第三章 钢筋混凝土受弯构件正截面承载力计算
经济配筋率
• 板:(0.4~0.8)%; • 矩形截面梁:(0.6~1.5)%; • T形截面梁:(0.9~1. 8)%。
M

f y As (h0

x) 2


f ybh02(1 0.5 )
h0
1
1 0.5
板:常用HPB235~HRB335级钢筋。
4 3.4 单筋矩形截面承载力计算
第三章 钢筋混凝土受弯构件正截面承载力计算
◆截面尺寸确定 ● 截面应具有一定刚度,满足正常使用阶段的验算能
满足挠度变形的要求。 ● 根据工程经验,一般常按高跨比h/L来估计截面高度 ● 简支梁可取h=(1/10 ~ 1/16)L,b=(1/2~1/3)h 估计 ● 简支板可取h = (1/30 ~ 1/35)L ● 但截面尺寸的选择范围仍较大,为此需从经济角度
第三章 钢筋混凝土受弯构件正截面承载力计算
§3.4 单筋矩形截面承载力计算 3.4.1 承载力计算公式 ◆基本公式 Basic Formulae
a1fc
a1 fcbx f y As
M
x=b1xc
C=a1fcbx
M
a1 fcbx h0


x 2


f y As h0

x 2
◆材料选用:
● 适筋梁的Mu主要取决于fyAs, 因此RC受弯构件的 fc 不宜较高。 现浇梁板:常用C15~C25级混凝土 预制梁板:常用C20~C30级混凝土
● 另一方面,RC受弯构件是带裂缝工作的, 由于裂缝宽度和挠度变形的限制,高强钢筋的强度也不能得 到充分利用。
梁:常用HRB335~HRB400级钢筋

Ts= fy As
a1 fcbh0 f y As
M a1 fcbh02 1 0.5 asa1 fcbh02 f y Ash01 0.5 s f y Ash0
1 3.4 单筋矩形截面承载力计算
第三章 钢筋混凝土受弯构件正截面承载力计算
◆适用条件 防止超筋脆性破坏
【3-2】已知梁的截面尺寸b×h =250mm×500mm, 混凝土强度等级为C30,配有三根直径为22mm 的 HRB400钢筋,环境:北方淡水港大气区。若承受弯 矩设计值M =200kN·m ,试验算此梁正截面承载力 是否安全(安全等级为二级)。
Байду номын сангаас10
令 M = Mu
M
a1
f c bx(h0

x) 2
M a1 fcbh02 (1 0.5 )
as

M
a1 f cbh02
as (1 0.5) 取
(1 0.5 ) M a1 f cbh02
x

s

z h0

h0 h0
2
1 0.5
1 1 2a s
a s 截面抵抗矩系数 s 力臂系数
1
s
1 2a s
2
9
习 题:
【3-1】已知梁截面弯距设计值 M =120kN·m , 混凝
土强度等级为C30,钢筋采用 HRB335,梁的截面
尺寸为b×h =250mm×550mm,环境:北方海水港浪 溅区(P184-附录四)。试求:所需纵向钢筋截面面 积As。
x bh0 或 b


As bh0

max


b
a1fc
fy
M M u,max a s,max a1fcbh02
或 as as,max
防止少筋脆性破坏
As minbh0
2 3.4 单筋矩形截面承载力计算
第三章 钢筋混凝土受弯构件正截面承载力计算
3.4.2 计算方法 ★截面设计
已知:弯矩设计值M 求:截面尺寸b,h(h0)、截面配筋As,以及材料强度fy、fc
未知数:受压区高度x、 b,h(h0)、As、fy、fc
基本公式:两个
没有唯一解
设计人员应根据受力性能、材料供应、施工条件、使用 要求等因素综合分析,确定较为经济合理的设计。
3 3.4 单筋矩形截面承载力计算
第三章 钢筋混凝土受弯构件正截面承载力计算
M
fyb
(1.05 ~ 1.1)
M
fyb
6 3.4 单筋矩形截面承载力计算
第三章 钢筋混凝土受弯构件正截面承载力计算
选定材料强度 fy、fc,截面尺寸b、h(h0)后,未知数就 只有x,As,基本公式可解
问题? M a1 fcbh02 (1 0.5 ) as a1 fcbh02
? as
M
afcbh02
as,max
增加截面尺寸或 fc
As bh0
m
in
? 应取 As minbh
7 3.4 单筋矩形截面承载力计算
第三章 钢筋混凝土受弯构件正截面承载力计算
★截面复核
已知:截面尺寸b,h(h0)、截面配筋As,以及材料强度fy、fc 验算:截面承受的弯矩设计值M是否满足M≤Mu 未知数:受压区高度x和受弯承载力Mu 基本公式:a1 fcbx f y As
相关文档
最新文档