《高等数学》 第六版 上册(同济大学出版社) 课件 PPT
同济大学高等数学第六版上册第五章第一节定积分的概念与性质
三、存在定理
定理1
当函数 f ( x ) 在区间 a , b] 上连续时, [
[ 称 f ( x ) 在区间 a , b] 上可积.
定理2
[ 设函数 f ( x ) 在区间 a , b] 上有界,
且只有有限个间断点, 则 f ( x ) 在
区间[a , b ]上可积.
证
b
b
b
a [ f ( x ) g( x )]dx
n
b
lim [ f ( i ) g ( i )]xi
0 i 1
n
n
lim f ( i )xi lim g( i )xi
a f ( x )dx g( x )dx. a
b
0 i 1 b
注意:
被 积 表 达 式
积 分 变 量
[a , b] 积分区间
(1) 积分值仅与被积函数及积分区间有关, 而与积分变量的字母无关.
a f ( x )dx a f (t )dt a f (u)du
(2)定义中区间的分法和 i 的取法是任意的.
b
b
b
[ (3)当函数 f ( x ) 在区间 a , b] 上的定积分存在时,
难点
定义及换元法和分部法的运用
基本要求
①正确理解定积分的概念及其实际背景 ②记住定积分的性质并能正确地运用 ③掌握变上限定积分概念,微积分基本定理, 并会用N-L公式计算定积分, ④能正确熟练地运用换元法和分部积分法 计 算定积分 ⑤正确理解两类广义积分概念, 并会用定义 计算一些较简单的广义积分。
定积分的概念
前一章我们从导数的逆运算引出了不定积 分,系统地介绍了积分法,这是积分学的第一类 基本问题。本章先从实例出发,引出积分学的第 二类基本问题——定积分,它是微分(求局部量 )的逆运算(微分的无限求和——求总量),然 后着重介绍定积分的计算方法,它在科学技术领 域中有着极其广泛的应用。 重点 定积分的概念和性质,微积分基本公 式,定积分的换元法和分部积分法
高等数学同济大学第六版32省名师优质课赛课获奖课件市赛课一等奖课件
lim[af (h) bf (2h) f (0)] (a b 1) f (0) 0,
h0
f (0) 0, a b 1 0. 由罗必达法则得
0 lim af (h) bf (2h) f (0) lim af (h) 2bf (2h)
h0
h
h0
1
(a 2b) f (0), f (0) 0, a 2b 0.
g( x)
g( x)
限不存在,是否 f ( x)的极限也一定不存在? g( x)
举例说明.
思索题解答
不一定. 例 f ( x) x sin x, g( x) x
显然 lim f ( x) lim 1 cos x
x g( x) x 1
极限不存在.
但 lim f ( x) lim x sin x 1 极限存在. x g( x) x x
0) 0
lim
x0
ln sin ax (a 0, b 0), ln sin bx
(
)
定理1 设
(1) lim f ( x) lim F ( x) 0;
xa
xa
(2) 在 a 点的某去心邻域内, f ( x)及 F ( x) 都存在
且 F ( x) 0;
(3) lim f ( x) 存在(或为无穷大); xa F ( x)
解
原式
lim
x
e x x2
(
)
lim x
e x
2x
()
lim
2e x
2 x
.
lim
x
e x x
( 0, 0).
(2) 求 lim x
ln x x
(
0). 1
高等数学-同济大学第六版--高等数学课件第一章函数与极限
函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数
《高等数学》电子课件(同济第六版)01第一章第1节函数
复合函数在数学、物理、工程等领域有广 泛的应用。
反函数
反函数的定义
反函数是原函数关于y=x对称的函数。
反函数的性质
反函数具有原函数的性质,如连续性、可导性等。
反函数的求导法则
反函数的求导法则与原函数有关,可以通过交换x和y的导数来实现。
反函数的应用
反函数在数学、物理、工程等领域有广泛的应用,如解方程、优化问题等。
函数单调性的定义
如果对于函数的定义域内的任意两个数$x_1$和$x_2$,当$x_1 < x_2$时,都 有$f(x_1) leq f(x_2)$(或$f(x_1) geq f(x_2)$),则称函数在该区间内单调递 增(或单调递减)。
单调性的判定方法
通过比较函数在不同区间内的增减性,可以判断函数的单调性。此外,导数也 是判断函数单调性的重要工具,如果函数在某区间内的导数大于0,则函数在该 区间内单调递增;如果导数小于0,则函数单调递减。
04
函数的图像与性质
函数的图像
函数图像的概念
函数图像是表示函数值的点在平面上 的集合。通过函数图像,我们可以直 观地了解函数的形态和变化趋势。
函数图像的绘制方法
绘制函数图像通常需要确定函数的定 义域和值域,然后根据函数的解析式 ,在坐标系上标出对应的点,最后用 光滑的曲线将它们连接起来。
函数的单调性
答案与解析
$|x|$ 是偶函数。
$x^3$ 是奇函数。
判断下列函数是否为奇函 数或偶函数
01
03 02
答案与解析
$frac{1}{x}$ 是奇函数。
解析:奇函数的定义是对于定义域内的任意 $x$,都有 $f(-x) = -f(x)$;偶函数的定义是对 于定义域内的任意 $x$,都有 $f(-x) = f(x)$。 根据这些定义,可以判断出 $x^3$、$|x|$ 和 $frac{1}{x}$ 的奇偶性。
同济高等数学第六版上册第四章ppt
5. 求下列积分: dx ; (1) 2 2 x (1 x ) 提示:
dx ( 2) 2 . 2 sin x cos x
(1)
1 1 (1 x 2 ) x 2 1 2 2 2 2 2 2 x 1 x x (1 x ) x (1 x )
arcsin u C
(直接配元)
f [ ( x)] ( x)dx f ( ( x))d ( x)
2 12 C C 1
因此所求曲线为 y x 1
2
O
x
目录
上页
下页
返回
结束
从不定积分定义可知: d f ( x)d x f ( x) 或 d f ( x)dx f ( x) dx (1) dx
( 2)
F ( x) dx F ( x) C k dx
第四章 不定积分
微分法: F ( x) ( ? ) 积分法: ( ? ) f ( x) 互逆运算
第一节 不定积分的概念与性质
一、 原函数与不定积分的概念 二、 基本积分表 三、不定积分的性质
第四章
目录
上页
下页
返回
结束
问题: 1. 在什么条件下, 一个函数的原函数存在 ? 2. 若原函数存在, 它如何表示 ? 定理1. 若函数 f ( x ) 在区间 I 上连续 , 则 f ( x ) 在 I 上 (下章证明) 存在原函数 . 初等函数在定义区间上连续
x x e d x e C
(12)
x a C (13) a x dx ln a
目录
上页
下页
返回
结束
dx 例2. 求 3 . x x
《高等数学》第六版上册同济大学出版社课件PPT
1 x
0
1
1
1 t4
1 t2
d
t
t 2 0 1t4
d
t
ห้องสมุดไป่ตู้
0
1
d
x x4
1 2
0 1
d
x x4
x2
0 1 x4
d
x
1
2
1 01
x2 x4
d
x
17
目录 上页 下页 返回 结束
1
2
0
1 x2
1
1 x2
二无界函数的反常积分第四节常义积分积分限有限被积函数有界推广一无穷限的反常积分反常积分广义积分反常积分第五章1一无穷限的反常积分引例
第四节 反常积分
第五章
积分限有限 常义积分 被积函数有界
推广
反常积分 (广义积分)
一、无穷限的反常积分
二、无界函数的反常积分
1
目录 上页 下页 返回 结束
一、无穷限的反常积分
F (b)
F(c )
F(c ) F(a)
可相消吗?
12
目录 上页 下页 返回 结束
例4. 计算反常积分
解: 显然瑕点为 a , 所以
原式
arcsin x a
a 0
arcsin1
π 2
例5. 讨论反常积分
的收敛性 .
解所下:以述1反1解dx常x2法积是分0否1dx1x正x2 确11:0发1dxx散21.11x2 ,0∴1 积 分 1x收敛01
x2
同济大学高等数学第六版上第一章第五节 极限运算法则
3.无穷小的运算性质:
定理2 在同一过程中,有限个无穷小的代数和 仍是无穷小. 证 设及 是当x 时的两个无穷小,
0, N 1 0, N 2 0, 使得
当 x N 1时恒有 ; 当 x N 2时恒有 ; 2 2 取 N max{ N 1 , N 2 }, 当 x N时, 恒有 , 2 2 0 ( x )
证 必要性 设 lim f ( x ) A, 令 ( x ) f ( x ) A, x x
0
则有 lim ( x ) 0,
x x0
f ( x ) A ( x ).
充分性 设 f ( x ) A ( x ),
其中 ( x )是当x x 0时的无穷小,
又设是当x x 0时的无穷小,
0, 2 0, 使得当0 x x 0 2时 恒有 . M
取 min{ 1 , 2 }, 则当 0 x x 0 时, 恒有 u u M , M
当x x Байду номын сангаас时, u 为无穷小.
lim P ( x )
若Q( x 0 ) 0, 则商的法则不能应用.
4x 1 . 例2 求 lim 2 x 1 x 2 x 3
解 lim( x 2 2 x 3) 0,
x 1
商的法则不能用
又 lim(4 x 1) 3 0,
x 1
x 2x 3 0 lim 0. x 1 4x 1 3
1 1 例如, 当x 0时, y sin x x 是一个无界变量, 但不是无穷大.
(1) 取 x 0 1 ( k 0,1,2,3,)
同济高等数学第六版上册第一章ppt精编版
k
lim x 2 k 1 1;
lim x 2 k 1
目录
上页
下页
返回
结束
内容小结
1. 数列极限的 “ – N ” 定义及应用 2. 收敛数列的性质: 唯一性 ; 有界性 ; 保号性; 任一子数列收敛于同一极限
目录
上页
下页
返回
结束
第三节 函数的极限
对 y f ( x) , 自变量变化过程的六种形式: ( 4) x ( 1 ) x x0
定义
如果对于任意给定的正数 (不论它多么
小),总存在正数 N ,使得对于 n N 时的一切 x n , 不等式 x n a 都成立,那末就称常数 a 是数列
x n 的极限,或者称数列 x n 收敛于a ,记为
lim x n a , 或 x n a ( n ).
n
n (1) n 1 n
故
n (1) n lim xn lim 1 n n n
目录 上页 下页 返回 结束
例2. 设 q 1 , 证明等比数列 1 , q , q 2 , , q n 1 , 的极限为0 . 证:
n 1
n 1
n 1
xn 0 q
,;
n ( 1) { n
n 1
}
3 , 3 3 , , 3 3 3 ,
1.数列对应着数轴上一个点列.可看作一 注 意: 动点在数轴上依次取 x1 , x 2 , , x n , .
x3
x1
x2 x4
xn
2.数列是整标函数 x n f ( n).
目录 上页 下页 返回 结束
第一章
( 2) x x 0 (3) x x0 本节内容 :
同济高等数学第六版上册第一章ppt.
第一章二、收敛数列的性质三、极限存在准则一、数列极限的定义第二节数列的极限∞第一章一、自变量趋于有限值时函数的极限第三节,)(x f y =对0)1(x x →+→0)2(x x -→0)3(x x ∞→x )4(+∞→x )5(-∞→x )6(自变量变化过程的六种形式:二、自变量趋于无穷大时函数的极限本节内容:函数的极限x 0定理2 .若在0x 的某去心邻域内0)(≥x f )0)((≤x f , 且,)(lim 0A x f x x =→则.0≥A )0(≤A 证:用反证法.则由定理1,0x 的某去心邻域,使在该邻域内,0)(<x f 与已知所以假设不真, .0≥A (同样可证0)(≤x f 的情形)思考:若定理2 中的条件改为,0)(>x f 是否必有?0>A 不能!lim 2=→x x 存在如假设A < 0, 条件矛盾,故时,当0)(≥x fyX-xX直线y= A为曲线的水平渐近线.第一章二、无穷大三、无穷小与无穷大的关系一、无穷小第四节无穷小与无穷大第一章二、极限的四则运算法则三、复合函数的极限运算法则一、无穷小运算法则第五节极限运算法则二、极限的四则运算法则,)(lim ,)(lim B x g A x f ==则有=±)]()(lim[x g x f )(lim )(lim x g x f ±证: 因,)(lim ,)(lim B x g A x f ==则有βα+=+=B x g A x f )(,)((其中βα,为无穷小)于是)()()()(βα+±+=±B A x g x f )()(βα±+±=B A 由定理1 可知βα±也是无穷小,再利用极限与无穷小BA ±=的关系定理, 知定理结论成立.定理3 .若推论:若,)(lim ,)(lim B x g A x f ==且),()(x g x f ≥则.B A ≥( P46 定理5 ))()()(x g x f x -=ϕ利用保号性定理证明.说明:定理3 可推广到有限个函数相加、减的情形.提示:令定理4. 若,)(lim ,)(lim B x g A x f ==则有=)]()(lim[x g x f )(lim )(lim x g x f 提示:利用极限与无穷小关系定理及本节定理2 证明.说明:定理4 可推广到有限个函数相乘的情形.推论1 .)(lim )](lim[x f C x f C =( C 为常数)推论2 .nnx f x f ])(lim [)](lim[=( n 为正整数)例2.设n 次多项式,)(10nn n x a x a a x P +++= 试证).()(lim 00x P x P n n x x =→证:=→)(lim 0x P n x x 0a x a x x 0lim 1→+++ nx x n xa 0lim →)(0x P n =BA =。
同济大学高等数学第六版上册总复习PPT
y f ( x 0 x ) f ( x 0 ) A x o( x )
则称函数
y f ( x ) 在点 x 0 可微 , 记 dy
x x0
A x
定理
函数f ( x )在点x 0 可微的充要条件是函数 f ( x )
在点x 0 处可导, 且 A f ( x 0 ).
定理1(最大值和最小值定理) 闭区间上的连续函数
y
一定有最大值和最小值.
f ( x 1 ) min f m f ( x 2 ) max f M
M
y f ( x)
a
o
x1
x2
b
x
m
推论(有界性定理) 在闭区间上连续的函数一定 在该区间上有界.
定理 2 (零点定理)
且 f ( a ) 与 f ( b ) 异号(即 f ( a )
f x0
,
f x 0 0
x0
(2)、罗尔中值定理
如果函数 f ( x )
(1)在闭区间[a , b]上连续,
(2)在开区间 ( a , b ) 内可导,
(3)在区间端点的函数值相等,即 f ( a ) f ( b ) ,
那末在 ( a , b ) 内至少有一点 ( a b ) ,
应用 (如果下列各极限存在) 1.若 则
~ ,
lim
lim
或
lim
lim
2 .若
lim c 0
则
lim
lim
c
或
lim
lim
c
~ c
高等数学第六版上下册(同济大学出版社)课件
不定积分的几何意义
不定积分表示的是一种曲线族 ,每一条曲线都有一个与之对
应的方程。
积分的应用场景
01
物理应用
积分在物理中有广泛的应用,例 如计算物体的质量、重心、转动 惯量等。
工程应用
02
03
经济应用
积分在工程中有广泛的应用,例 如计算曲线的长度、面积、体积 等。
积分在经济中有广泛的应用,例 如计算总成本、总收益、总利润 等。
05
多重积分与向量分析
二重积分的概念与性质
二重积分的定义
二重积分是定积分在二维平面上的推广,表示一个二元函数在某个区域上的累积值。
二重积分的性质
二重积分具有可加性、可减性、可交换性等性质,这些性质使得二重积分在解决实际问题中具有广泛的应用。
三重积分的概念与性质
三重积分的定义
三重积分是定积分在三维空间上的推广 ,表示一个三元函数在某个区域上的累 积值。
03
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的一种体现。
导数的几何意义
导数在几何上表示函数图像在某一点的切线的斜率。
导数的性质
导数具有一些基本的性质,如线性性质、乘积法则、 商的导数法则等。
微分的概念与性质
微分的定义
01
微分是函数在某一点附近的小变化量,用于近似计算函数的值
求函数的最值
导数可以用于求函数在一定区间内的最大值和最小值,这在优化问题中具有广泛的应用。
04
积分
定积分的概念与性质
01
定积分的定义
定积分是积分的一种,是函数在区间上与区间的乘积在区间的两个端点
同济第六版高数上册第六章课件553013865
18
g( y)d y f ( x )d x ①
② 对②式利用隐含数求导,
说明由②确定 的隐函数 y= (x) 是①的解. 称②为方程①的隐式通解, 或通积分.
19
可分离变量的微分方程
g( y )dy f ( x )dx 可分离变量的微分方程. 4 4 dy 例如 2 x 2 y 5 y 5 dy 2 x 2dx , dx 解法 设函数 g( y ) 和 f ( x ) 是连续的,
3
注意到实际问题中有与数学中“导数” 有关的常用词,如 “速度”、“速率”(运动学、化学反应中); “增长”(生物学、金融、经济等中); “衰变”(放射性问题中); 以及与“改变”、“变化”、“增加”、 “减少”等有关词语,都可能是微分方程的 问题。
问题的提出
例 1 一曲 线通过 点 (1,2), 且在 该 曲线 上任一 点
M ( x , y ) 处的切线的斜率为2 x ,求这曲线的方程.
解
设所求曲线为 y y( x )
dy 2x dx
y 2 xdx
其中 x 1时, y 2
即 y x2 C,
2
求得C 1,
所求曲线方程为 y x 1 .
5
例 2 列车在平直的线路上以 20 米/ 秒的速度行驶, 当制动时列车获得加速度 0.4 米/秒 2 , 问开始制动 后多少时间列车才能停住?以及列车在这段时间内 行驶了多少路程?
1 16 c=42 , k ln 3 21
1 16 ln t 3 21
t 0,
T(t)=18+42 e
, t ≥0.
1 16 ln 10 3 21 =25.870,
高等数学第六版同济大学公开课一等奖优质课大赛微课获奖课件
首页
上页
返回
下页
结束
第22页
思考题解答
f ( x)在 x0连续,
lim x x0
f (x)
f ( x0 )
且 0 f ( x) f ( x0 ) f ( x) f ( x0 )
lim x x0
f (x)
f ( x0 )
lim
x x0
f
2
(
x)
lim
x x0
f
(
x
)
lim
x x0
x3
下页
x
结束
第18页
例8 当a取何值时,
函数
f
(x)
cos a
x, x,
x 0, 在 x 0处连续. x 0,
解 f (0) a,
lim f ( x) lim cos x 1,
x0
x0
lim f ( x) lim(a x) a,
x0
x0
要使 f (0 0) f (0 0) f (0), a 1,
故函数 f ( x)在点 x 0处不连续.
首页
上页
返回
下页
结束
第7页
4.连续函数与连续区间
在区间上每一点都连续函数,叫做在该区间上连 续函数,或者说函数在该区间上连续.
如果函数在开区间 (a,b)内连续, 并且在左端点 x a处右连续, 在右端点 x b处左连续, 则称 函数 f ( x)在闭区间 [a,b]上连续.
y
y
y f (x)
y f (x)
y
y
x
x
0 x0 x0 x x 0 x0 x0 x x
首页
上页
返回
同济大学 高等数学 课件 .ppt
设数列
lim
n
xn 存在,则对于
xn
的任一子列(xnk )
有
lim
n
xn
lim
k
xn k
.
用此定理,即可说明数列 1n 的极限不存在。事
实上:
lim
n
x2n1
1,
lim
n
x2n
1,
所以,lim n
xn
不存在.
值得注意的是,对于函数,我们不能用此定理来证明
个不同的子列,使函数收敛到两个不同的值,则说明函
数在这一点无极限.
lim
n
f
(xn )
y
A
lim
xx0
f
(x).
f (x2 )
f (x4 )
A
f (xn )
f (x3 )
f (x1)
O x1 x3
xn x0
y f x
lim
n
xn
x0,
x4 x2
x
例 证明函数 f (x) sin 在x 0时极限不存在.
即: f x 在x0的某个空心邻域内有界.
局部有界的几何意义
从图中可以看出局部有界的含义:函数 f x 在 x0 处 o
的极限为 A,则存在点x0的一个空心邻域 U (x0, ), 当
点 x0 在该邻域中,对应
的函数图形在某一个带
y
A+1
y f x
形区域中,而该邻域外 A
的点所对应的函数图形, A-1
x
证令
1
1
xn 2n 1 , yn 2n ,
2
高等数学第六版上下册同济大学出版社
y ex ex
y ch x
O
x
目录 上页 下页 返回 结束
又如, y f (x) ex ex
y 奇函数 ex ex
2
y sh x
记
sh x 双曲正弦
Ox
再如,
y
sh x ch x
e e
x x
e e
x x
奇函数
y
记
th x 双曲正切
说明: 给定 f (x), x (l, l)
1 y th x
周期为
周期为
注: 周期函数不一定存在最小正周期 .
例如, 常量函数 f (x) C
狄利克雷函数
1, x 为有理数 0 , x 为无理数
高等数学第六版上下册同济大学出 版社
目录 上页 下页 返回 结束
3. 反函数与复合函数
(1) 反函数的概念及性质
若函数
为单射, 则存在一新映射
使
其中
称此映射 f 1为 f 的反函数 .
习惯上, y f (x), x D 的反函数记成
y f 1(x) , x f (D)
性质:
1) y=f (x) 单调递增 (减) , 其反函数
且也单调递增 (减) .
高等数学第六版上下册同济大学出 版社
目录 上页 下页 返回 结束
2) 函数
与其反函数
的图形关于直线
对称 .
y Q(b, a)
两个以上函数也可构成复合函数. 例如,
y u, u0
u cot v , v k π (k 0, 1, 2,) v x , x (, )
2
可定义复合函数:
k Z
约定: 为简单计, 书写复合函数时不一定写出其定义域, 默认对应的函数链顺次满足构成复合函数的条件.
《高等数学》第六版同济大学应用数学系主编高等教育出版社
《高等数学》第六版同济大学应用数学系主编高等教育出书社第一周学习任务第一章第1 节习题1-14(3)(6) (8),5(3),9(2),15(4),17函数的概念函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数初等函数具体概念和形式,函数关系的成立第2 节习题1-21(2) (5) (8)数列极限的定义数列极限的性质(独一性、有界性、保号性)第3 节习题1-32,4函数极限的概念函数的左极限、右极限与极限的存在性函数极限的根本性质〔独一性、局部有界性、局部保号性、不等式性质,函数极限与数列极限的关系等〕第4 节习题1-44,6无穷小与无穷大的定义无穷小与无穷大之间的关系第5 节习题1-51(5)(11)(13),3,5 极限的运算法那么(6 个定理以及一些推论)第6 节习题1-61(2)(6),2(1)(4),4(1)(3)函数极限存在的两个准那么〔夹逼定理、单调有界数列必有极限〕两个重要极限〔注意极限成立的条件,熟悉等价表达式〕操纵函数极限求数列极限第7 节习题1-71,2,3(1),4(3)(4)无穷小阶的概念〔同阶无穷小、等价无穷小、高阶无穷小、低阶无穷小、k 阶无穷小〕及其应用一些重要的等价无穷小以及它们的性质和确定方法第8 节习题1-83(4),4,5函数的持续性,函数的间断点的定义与分类〔第一类间断点与第二类间断点〕判断函数的持续性和间断点的类型第9 节习题1-93(4)(6)(7),4(4) (6),6持续函数的、和、差、积、商的持续性反函数与复合函数的持续性初等函数的持续性第10 节习题1-101,3有界性与最大值最小值定理零点定理与介值定理(零点定理对于证明根的存在长短常重要的一种方法)总复习题一总复习题一3(2),9(2)(4)(6),10,13总结归纳本章的根本概念、根本定理、根本公式、根本方法第二周学习任务在进行第二周学习任务前,先用一天的时间总结归纳第一周中复习的常识点,整理并创立本章中的难题、错题题库第二章第1 节习题2-12,6,7,8,13,16(2),17导数的定义、几何意义、物理意义单侧与双侧可导的关系可导与持续之间的关系函数的可导性,导函数,奇偶函数与周期函数的导数的性质按照定义求导及其适用的情形,操纵导数定义求极限会求平面曲线的切线方程和法线方程第2 节习题2-22(9),3(2),4,7(8),8(5),11(6)(9)导数的四那么运算公式〔和、差、积、商〕反函数的求导公式复合函数的求导法那么根本初等函数的导数公式分段函数的求导第3 节习题2-31(3), 3(2),4(1),8,10(2),高阶导数n 阶导数的求法〔归纳法,莱布尼兹公式〕第4 节习题2-41(1),2,3(4),4(1),5(2),10隐函数的求导方法,对数求导法由参数方程确定的函数的求导方法第5 节习题2-52,6函数微分的定义,几何意义根本初等函数的微分公式微分运算法那么,微分形式不变性一元函数微分在函数近似计算中的应用总复习题二总复习题二1,3,6(1),7,11,13,14总结归纳本章的根本概念、根本定理、根本公式、根本方法第三周学习任务在进行第三周学习任务前,先用一天的时间总结归纳第二周中复习的常识点,整理并创立本章中的难题、错题题库章学习内容习题章节操练标题问题大纲常识点第三章第1 节习题3-16,8,11(1),12,15费马定理、罗尔定理、拉格朗日定理、柯西定理及其几何意义构造辅助函数第2 节习题3-21(10)(13)(15),4 洛必达法那么及其应用第3 节习题3-35,7,10(2) (3)泰勒中值定理麦克劳林展开式第4 节习题3-43(6) ,5(4),6,9(5) ,10(3),12函数的单调区间,极值点函数的凹凸区间,拐点第5 节习题3—51(8),4(3),10,11函数极值的存在性:一个必要条件,两个充实条件最大值最小值问题函数类的最值问题和应用类的最值问题第6 节习题3-61,4操纵导数作函数图形〔一般出选择题〕:函数f (x)的间断点、f '(x)和f ''(x)的零点和不存在的点,渐近线由各个区间内f '(x)和f ''(x)的符号确定图形的升降性、凹凸性,极值点、拐点第四周学习任务在进行第四周学习任务前,先用一天的时间总结归纳第三周中复习的常识点,整理并创立本章中的难题、错题题库第三章第7 节习题3-75弧微分曲率的定义,曲率的计算公式,曲率圆、曲率半径总复习题三总复习题三1,2(2),6,7,9,10(4),11(3),12,17总结归纳本章的根本概念、根本定理、根本公式、根本方法第四章第1 节习题4-11(1),2(1)(6)(8)(13)(17)(19)(21)(25),5原函数和不定积分的概念与根本性质〔之间的关系,求不定积分与求微分或求导数的关系〕根本的积分公式原函数的存在性、几何意义和力学意义第2 节习题4-22(1)(3)(6)(9)(13)(15)(16)(17)(19)(21)(30)(32)(34)(36) (37)第一类换元积分法〔凑微分法〕第二类换元积分法第3 节习题4-32,5,6,9,14,17,18,19,22,24 分部积分法第4 节习题4-42,4,8,20,23 有理函数积分法,可化为有理函数的积分总复习题四总复习题四1,2,5,9,10,12,14,16,21,23,33,35,38 总结归纳本章的根本概念、根本定理、根本公式、根本方法第五周学习任务在进行第五周学习任务前,先用一天的时间总结归纳第四周中复习的常识点,整理并创立本章中的难题、错题题库章学习内容习题章节操练标题问题大纲常识点第五章第1 节习题5—12(1),3(2)(3),11,12(2),13(5)定积分的定义与性质(7 个性质)函数可积的两个充实条件第2 节习题5—25(2),6(5)(8)(11)(12),9(2),10,12,13积分上限函数及其导数牛顿-莱布尼兹公式第3 节习题5—31(2)(4)(6)(10)(12)(19)(21)(24)(26) ,5,6,7(11)定积分的换元法定积分的分部积分法第4 节习题5—41(4)(8)(10),2无穷限的反常积分无界函数的反常积分总复习题五总复习题五1(1) (2) (4) ,3(2),4(2),10(7) (9)(10),11,12,13,14总结归纳本章的根本概念、根本定理、根本公式、根本方法第六章第1 节————元素法第2 节习题6—21(1)(4),2(1),4,5(1),9,12,15(1)(3) ,16,19,21求平面图形的面积〔直角坐标情形、极坐标情形〕旋转体的体积及侧面积平行截面面积为的立体的体积、平面曲线的弧长第3 节习题6—35,11 用定积分求功、水压力、引力总复习题六总复习题六2,3,5 总结归纳本章的根本概念、根本定理、根本公式、根本方法第六周学习任务在进行第六周学习任务前,先拿出两天的时间对前五周学习的内容进行简单的复习.首先用一天的时间总结归纳第五周中复习的常识点,整理并创立本章中的难题、错题题库;其次用一天对前五周的常识点、难题及错题进行复习章学习内容习题章节操练标题问题备注第七章第1 节习题7—11(1)(4) ,2(2)(4),4(2),5(2)微分方程的根本概念:微分方程,微分方程的阶、解、通解、初始条件、特解第2 节习题7—21(1)(3)(4)(7),2(3),4,6可别离变量的微分方程的概念及其解法第3 节习题7—31(1)(4),2(1),3一阶齐次微分方程的形式及其解法可化为齐次的方程第4 节习题7—41(2)(3)(7)(10),2(1)(4),3,4,7(3),8(5)一阶线性微分方程的形式和解法伯努利方程的形式和解法第5 节习题7—51(1)(4)(7),2(2),3用降阶法解以下微分方程:y(n) = f ( x),y'' = f ( x,y')和y'' = f ( y, y')第6 节习题7—61(1)(3)(6),4(2),n 阶线性微分方程的形式线性微分方程的解的布局:齐次线性微分方程和非齐次线性微分方程的解的性质第7 节习题7—71(1)(4)(5),2(2)(3),特征方程特征方程的根与微分方程通解中的对应项微分方程的通解第8 节习题7—81(1)(3)(7)(9),2(2),6二阶常系数非齐次线性微分方程,此中自由项为:多项式、指数函数、正弦函数、余弦函数,以及它们的和与积第9 节习题7—96 欧拉方程的形式和通解总复习题七总复习题七1(1)(2)(3)(4), 2,3(1)(2)(7),4(4) ,7总结归纳本章的根本概念、根本定理、根本公式、根本方法第七周学习任务在进行第七周学习任务前,先用一天的时间总结归纳第六周中复习的常识点,整理并创立本章中的难题、错题题库第八章第1 节习题8—113,15向量概念和线性运算,空间直角坐标系操纵坐标作向量的线性运算向量的模、标的目的角、投影第2 节习题8—23,7,9(1)(2)(3),10向量积、数量积、混合积的概念、性质、运算律、物理意义两向量平行、垂直的充要条件第3 节习题8—32,7,10(1)(4),11(3)曲面方程的概念旋转曲面的概念,旋转轴为坐标轴的旋转曲面的方程柱面的概念及二次曲面的概念与常用二次曲面〔锥面、椭球面、双曲面、抛物面〕的方程及其图形第4 节习题8—4 3,5(1),8 空间曲线的一般方程、参数方程、空间曲线在坐标面上的投影曲线方程第5 节习题8—5 1,3,5,9平面的点法度方程、一般方程两平面的夹角,两平面垂直、平行或重合的充要条件第6 节习题8—6 1 ,3,4,5,8,14空间直线的一般方程、对称式方程、参数方程两直线的夹角,两直线垂直、平行或重合的充要条件直线与平面的夹角,直线与平面垂直、平行的充要条件平面束总复习题八总复习题八1(1)(2)(3)(4),7,10,12,13,14(1)(2),15,17,20 总结归纳本章的根本概念、根本定理、根本公式、根本方法第九章第1 节习题9—1 2,5(1)(2),6(1)(4),7(1),8 二元函数的极限、持续性、有界性与最大值最小值定理、介值定理第2 节习题9—2 1(4)(5)(6),4,6(2),8,9(2) 偏导数的概念,高阶偏导数的求解第3 节习题9—3 1(1) (4),2,3,5 全微分的定义,可微分的必要条件和充实条件第4 节习题9—4 2,4,6,8(1),10,12(1)多元复合函数求导法那么〔共3 个定理〕全导数全微分形式不变性第5 节习题9—5 1,4,6,8,10(1)一个方程的情形〔定理1,定理2〕方程组的情形〔定理3〕第八周学习任务在进行第八周学习任务前,先用一天的时间总结归纳第七周中复习的常识点,整理并创立本章中的难题、错题题库章学习内容习题章节操练标题问题大纲常识点第九章第6 节习题9—6 3,6,8空间曲线的切线与法平面,曲线在一点处的切向量曲面的切平面与法线,曲面在一点处的法向量第7 节习题9—7 2,5,8标的目的导数的概念,标的目的余弦标的目的导数与可微的关系梯度的概念与计算公式第8 节习题9—8 1,2,6,9,11多元函数极值、极值点的概念多元函数极值的必要条件、充实条件条件极值,拉格朗日乘数法第9 节习题9—9 二元函数的二阶泰勒公式总复习题九总复习题九1,2,5,6(2) ,8,9,11,15,18 总结归纳本章的根本概念、根本定理、根本公式、根本方法第十章第1 节习题10—1 2,4(1)(2)(3),5(1)(4)二重积分的定义、几何意义二重积分的性质〔6 个〕二重积分的中值定理第2 节习题10—21(1)(4),2(1)(3),4(1)(3),6(1)(2)(6),11(1)(3),12(1)(3),13(1 )(3),14(1) (3)操纵直角坐标计算二重积分操纵极坐标计算二重积分第九周学习任务在进行第九周学习任务前,先用一天的时间总结归纳第八周中复习的常识点,整理并创立本章中的难题、错题题库天数学习内容习题章节操练标题问题大纲常识点第十章第3 节习题10-31(2),4,5,6,7,9(1)(2), 10(1)(2),11(1)(2)(3)(4),12(1)(3)三重积分的定义和性质、操纵直角坐标计算三重积分、操纵柱面坐标计算三重积分、操纵球面坐标计算三重积分第4 节习题10—4 1,2,3,4(1),5,7,(1)(3) ,14 曲面的面积、质心、动弹惯量、引力总复习题十总复习题十1(1),2(1)(3),3(1),6,8(1),10,11,12 总结归纳本章的根本概念、根本定理、根本公式、根本方法第十一章第1 节习题11—1 1,3(1)(3)(5)(7) 对弧长的曲线积分的概念、性质、计算方法第2 节习题11—2 1,3(1)(3)(5)(7),4(1) (3),7(1)(2)对坐标的曲线积分的概念、性质、计算方法两类曲线积分之间的联系第3 节习题11—31(1)(2),2(1),3,4(1)(2),5(1)(3), 6(1)(3)格林公式操纵格林公式计算曲线积分平面上曲线积分与路径无关的条件二元函数的全微分求积第4 节习题11—4 4(1)(2),5(1) (2),6 (1) (3) 对面积的曲面积分的概念、性质、计算方法第5 节习题11—5 3(1)(3) (4),4(1)对坐标的曲面积分的概念、性质、计算方法两类曲面积分之间的联系第十周学习任务在进行第十周学习任务前,先用一天的时间总结归纳第九周中复习的常识点,整理并创立本章中的难题、错题题库章学习内容习题章节操练标题问题大纲常识点第十一章第6 节习题11—61(1)(3),2(1),3(1)高斯公式操纵高斯公式计算曲面积分散度的概念与计算第7 节习题11—72(1)(2),3(1)斯托克斯公式操纵斯托克斯公式计算曲线积分旋度的概念与计算总复习题十一总复习题十一1,2,3(1)(3),3(6),4(1)(3),5,7 总结归纳本章的根本概念、根本定理、根本公式、根本方法第十二章第1 节习题12—12(3)(4),3(1)(2)4(1)(2)(5)常数项级数的概念收敛级数的根本性质等比级数〔几何级数〕敛散性的判别级数收敛的必要条件第2 节习题12—21(1)(4)(5),2(1)(4),3(1)(3),4(1) (3)(5),5(2)(3)(5正项级数及其审敛法〔正项级数收敛的充要条件,比拟审敛法及其推论、比较审敛法的极限形式,比值审敛法、根值审敛法,极限审敛法〕p 级数敛散性的判别交错级数及其审敛法〔莱布尼茨定理〕绝对收敛与条件收敛第3 节习题12—31(1)(2)(3) (6),2(1) (2)函数项级数的概念幂级数及其收敛性〔阿贝尔定理及其推论,幂级数的收敛半径〕幂级数的运算〔幂级数的和函数的性质〕第4 节习题12—42(1)(2)(4) ,4,5,6泰勒级数、麦克劳林级数把函数展开成幂级数的步调e x、sin x 、cos x、ln(1+ x)、(1 x)α + 的麦克劳林展开式用间接法把函数展开成幂级数第十一周学习任务在进行第十一周学习任务前,先用一天的时间总结归纳第十周中复习的常识点,整理并创立本章中的难题、错题题库章学习内容习题章节操练标题问题大纲常识点第十二章第7 节习题12—71(1)(2),2(1)(3),6三角级数三角函数系的正交性函数展开成傅里叶级数〔收敛定理,狄利克雷充实条件〕正弦级数和余弦级数第8 节习题12—81(1),2(1) 周期为2l的周期函数的傅里叶级数总复习题十二总复习题十二1,2(1)(5),4,5(1),5(2),6(1),7(1)(4),8(1)(3),9(1),10(1),11 总结归纳本章的根本概念、根本定理、根本公式、根本方法备注以上第十二章的内容用两天的时间完成,用两天的时间将高等数学的上册做系统的复习,用两天的时间将高等数学的下册做系统的复习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
例1. 计算反常积分
解:
[ arctan x ] π π ( ) π 2 2
y O
y
1 1 x 2
x
思考: 分析: 原积分发散 !
注意: 对反常积分, 只有在收敛的条件下才能使用 “偶倍奇零” 的性质, 否则会出现错误 .
6
目录 上页 下页 返回 结束
例2. 证明第一类 p 积分 时发散 .
目录 上页 下页 返回 结束
备用题 试证
解:
0
dx x d x , 并求其值 . 4 4 0 1 x 1 x
令t1 x
2
1 1 1 14 t 2 d t
0 t
t2 dt 4 0 1 t 2 d x d x x 1 d x 4 4 0 4 0 1 x 2 0 1 x 1 x 1 1 x 2 dx 2 0 1 x4
注意: 若瑕点 c (a , b) , 则
f ( x) dx F (b) F (c ) F (c ) F (a)
可相消吗?
12
目录 上页 下页 返回 结束
例4. 计算反常积分 解: 显然瑕点为 a , 所以 x a π arcsin arcsin1 原式 a 0 2 例5. 讨论反常积分
当 p >1 时收敛 ; p≤1
证:当 p =1 时有
ln x
当 p ≠ 1 时有
a
x 1 p a
1 p
,
a 1 p , p 1
p 1 p 1
a 1 p ; 因此, 当 p >1 时, 反常积分收敛 , 其值为 p 1 当 p≤1 时, 反常积分发散 .
17
目录 上页 下页 返回 结束
1 2
1 1 x 2 1 x2 0 x2
dx
1 1 1 d (x ) 2 2 0 (x 1) 2 x
x
1 2 2
arctan
x1 x 2
0
18
目录 上页 下页 返回 结束
x
则有类似牛 – 莱公式的计算表达式 :
a
f ( x) dx F (x)
F () F (a) F (b) F () F () F ()
5
目录 上页 下页 返回 结束
f ( x) dx F (x) f ( x) dx F (x)
11
目录 上页 下页 返回 结束
则也有类似牛 – 莱公式的
计算表达式 :
若 b 为瑕点, 则
若 a 为瑕点, 则
a a
b
f ( x) dx F (b ) F (a) f ( x) dx F (b) F (a )
b
若 a , b 都为瑕点, 则
a a
b
b
f ( x) dx F (b ) F (a )
7
目录 上页 下页 返回 结束
例3. 计算反常积分
t
1 p t e dt p 0
8
目录 上页 下页 返回 结束
二、无界函数的反常积分
引例:曲线 与 x 轴, y 轴和直线 所围成的
开口曲边梯形的面积可记作
存在 , 则称此极限为 f (x) 的无穷限反常积分, 记作
这时称反常积分 就称反常积分
收敛 ; 如果上述极限不存在, 发散 .
类似地 , 若 f ( x) C ( , b] , 则定义
3
目录 上页 下页 返回 结束
若 f ( x) C ( , ) , 则定义
lim a f ( x) dx b c f ( x) dx a lim
0
1
13
目录 上页 下页 返回 结束
例6. 证明反常积分 时发散 .
当 q < 1 时收敛 ; q≥1
证: 当 q = 1 时,
当 q≠1 时
ln x a
1 q
a
b
q 1 q 1
( x a) 1 q
(b a)1q b 1 q , a ,
第四节 反常积分
常义积分
推广
第五章
积分限有限 被积函数有界
反常积分 (广义积分)
一、无穷限的反常积分
二、无界函数的反常积分
1
目录 上页 下页 返回 结束
一、无穷限的反常积分
引例. 曲线 和直线 及 x 轴所围成的开口曲
边梯形的面积 可记作
y
1 y 2 x A
x 其含义可理解为 A lim
A
(b a)1q ; 所以当 q < 1 时, 该广义积分收敛 , 其值为 1 q 当 q ≥ 1 时, 该广义积分发散 .
14
目录 上页 下页 返回 结束
例7. 解: 积分.
求 的无穷间断点, 故 I 为反常
0
f ( x) I dx 2 11 f ( x )
f ( x) dx 2 2 1 f ( x)
数 f (x) 在 [a , b] 上的反常积分, 记作
这时称反常积分 就称反常积分
收敛 ; 如果上述极限不存在, 发散 .
类似地 , 若 f ( x) C [a , b) , 而在 b 的左邻域内无界,
则定义
10
目录 上页 下页 返回 结束
而在点 c 的 邻域内无界 , 则定义
a f ( x) dx c f ( x) dx
dx 2
b
1
b 1
b
dx 1 lim 2 b x 1 x
O 1
b
x
1 1 lim 1 b b
2
目录 上页 下页 返回 结束
定义1. 设 f ( x) C [a , ) , 取 b a , 若
( c 为任意取定的常数 ) 只要有一个极限不存在 , 就称 发散 .
c b
无穷限的反常积分也称为第一类反常积分.
说明: 上述定义中若出现 , 并非不定型 ,
它表明该反常积分发散 .
4
目录 上页 下页 返回 结束
引入记号
F () lim F ( x) ;
x
F () lim F ( x)
lim
1 0
c 1 a
c
b
f ( x) dx lim
2 0
b
c 2
f ( x ) dx
无界函数的积分又称作第二类反常积分, 无界点常称 为瑕点(奇点) .
说明: 若被积函数在积分区间上仅存在有限个第一类 间断点, 则本质上是常义积分, 而不是反常积分. 例如,
3
f ( x) d f ( x) 1 f 2 ( x) d x 1 f 2 ( x) arctan f ( x) C
π ] 2
π 32 ] arctan 2 π 2 27 15
目录 上页 下页 返回 结束
内容小结
1. 反常积分
积分区间无限
被积函数无界
16
0 dx 下述解法是否正确: 1 dx
的收敛性 .
1 1 解: 2 2 1 x x 1 x 0 1 0x 1 dx 2 1 1 1 2 , ∴积分收敛 1 x x 1 所以反常积分 发散 .
y
1 y x
其含义可理解为
A lim
0
1
dx 1 lim 2 x x 0
A
O
lim 2(1 ) 2
0
x
9
目录 上页 下页 返回 结束
定义2. 设 f ( x) C (a , b] , 而在点 a 的右邻域内无界,
若极限 存在 , 则称此极限为函