正态分布分布
正态分布
x
当-x<0时 ( x ) P ( X x )
P( X x) 1 P( X x)
1 ( x ) (0 x 4.99)
当x 5时, ( x ) 1;当x 5时, ( x ) 0
P ( a X b) ( b) ( a)
或
令x=μ+c, x=μ-c (c>0), 分别代入f (x), 可 得 f (μ+c)=f (μ-c) 且 f (μ+c) ≤f (μ), f (μ-c)≤f (μ)
1 f ( x) e 2
( x )2 2 2
, x
当x→ ∞时,f(x) → 0, 这说明曲线 f(x)向左右伸展时,越来越 贴近x轴。即f (x)以x轴为渐近线。
将标准正态分布概率密度的图形向左(或) 右平行移动 个单位,向上伸长(或压缩)
1
图形。
个单位,即可得一般正态分布概率密度的
( x )2 2 2
1 f ( x) e 2 ( x )
,
既然标准正态分布是关于y 轴对称的,而一 般正态分布是由标准正态分布平移 个单位 得来的,故f (x)以μ为对称轴,并在x=μ处达到 最大值: 1 f ( ) 2
2
X
~N(0,1)
根据定理1,只要将一般正态分布的分布 函数转化成标准正态分布,然后查表就可解 决一般正态分布的概率计算问题.
设X ~ N ( , 2 ),Y ~ N (0,1) 其概率密度分别为:
( x ), 0 ( y ) 分布函数分别为: ( x ), 0 ( y )
P ( X a ) P (Y a
a
三大分布--正态分布
( k=0,1, 2,, m ; m=min{M,n} )
E(X ) nM
N
D(
X
)
nM
(N N
n)(N 2(N 1)
M
)
超几何分布的应用
注1:当n≤2时,虽可套用公式 但不如直接计算简捷 当n≥3时,套用公式 一般的,可减少操作量
注2:三个细节要留心 书写格式要正规 随机变量有范围 (高仿只用莫声张) 二项分布会区分
超几何分布的书写格式
由题意得X服从超几何分布
其中 N=!,M=!,n=!
则
P( X
k)
C C k nk M NM CNn
(k=0,1, 2,, m)
m =min{M,n}
从而X的分布列为
X
0
p
C C 0 n0 M NM
CNn
1
C C 1 n1 M NM CNn
… …
m
C C m nm M NM CNn
其密度函数f(xf ()x=)
1
e
(
x
80 200
)2
,
x,则(不, 正) 确的是
【B】
2 10
A.平均成绩为80分
B.分数在120分以上和分数在60分以下的人数相同
C.分数在110分以上和分数在50分以下的人数相同
D.这次考试的成绩标准差为10
(4)设随机变量ξ~N(2,4),则D(2ξ+3)=_1_6__
一、概念:
1.正态曲线: 称函数 f (x) , (x)
1
e
(x )2 2 2
,
x (, )
的图象
2
(其中μ和δ>0为参量)为正态分布密度曲线,简称正态曲线
正态分布
2. 一般正态分布的概率计算
对于一般正态分布的概率计算,可以应用定积分的
换元法将其转化为标准正态分布的概率计算.
定理 设X~ N(, ) ,则 X ~ N(0,1).
这样,若X~ N(, ),并记其分布函数为 F(x),则
从而
F ( x)
P{X
x}
P
X
x
P
X
1 2
5
1
2
2
0.9772
P{0
X
1.6}
P
0
1 2
X 1 2
1.6 1
2
0.3 0.5
0.3 0.5 1
0.6179 0.6915 1 0.3094
P{
解:由题意知 X ~ N (10.05,0.062 ),于是
P{
X
10.05
0.12}
P
0.12 0.06
X
10.05 0.06
0.12
0.06
2 2
22 1
2 0.9772 1 0.9544
例4 设 X ~ N(, ),求 P{ X }, P{ X 2 },
越小,图形越陡峭.
o
1 x
0.5 1 1.5
x
特别地,当 0, 1时,称 X 服从标准正态分布,
记为 X ~ N(0,1),其概率密度函数为
(x)
1
x2
《正态分布》说课稿
《正态分布》说课稿正态分布是统计学中非常重要的一个概念,它描述了大量随机变量的分布规律,被广泛应用于各个领域的数据分析和预测中。
本文将介绍正态分布的基本概念、性质、应用以及如何利用正态分布进行统计推断。
一、正态分布的基本概念1.1 正态分布的定义:正态分布又称高斯分布,是一种连续概率分布,其概率密度函数呈钟形曲线,左右对称,中间最高。
1.2 正态分布的特点:正态分布具有唯一的均值和标准差,均值决定了曲线的中心位置,标准差决定了曲线的宽度。
1.3 正态分布的标准化:通过标准化可以将正态分布转化为标准正态分布,即均值为0,标准差为1的正态分布。
二、正态分布的性质2.1 正态分布的均值和中位数相等:正态分布的均值和中位数相等,即曲线对称中心位置处的值。
2.2 正态分布的68-95-99.7法则:约68%的数据落在均值附近的一个标准差范围内,约95%的数据落在两个标准差范围内,约99.7%的数据落在三个标准差范围内。
2.3 正态分布的线性组合仍然是正态分布:对于正态分布的线性组合,如两个正态分布的和或差,仍然是正态分布。
三、正态分布的应用3.1 在自然科学中的应用:正态分布常用于测量误差、实验数据分析等领域,如物理学、化学等。
3.2 在社会科学中的应用:正态分布被广泛应用于人口统计、心理学研究、经济学分析等领域。
3.3 在工程技术中的应用:正态分布在质量控制、可靠性分析、风险评估等方面有重要应用。
四、利用正态分布进行统计推断4.1 正态分布的参数估计:通过样本数据估计总体的均值和标准差,得到对总体的估计。
4.2 正态分布的假设检验:利用正态分布进行假设检验,判断总体参数是否符合某种假设。
4.3 正态分布的置信区间估计:通过正态分布的性质,构建总体参数的置信区间,对总体参数进行估计。
五、结语正态分布作为统计学中重要的概念,具有丰富的性质和广泛的应用。
通过深入理解正态分布的基本概念和性质,我们可以更好地应用正态分布进行数据分析和推断,为各个领域的研究和实践提供有力支持。
正态分布
三. 特征
1. 是单峰曲线,x=μ 2. 以均数μ为中心左右对称 3. 有2个参数,μ:位置参数, σ:变异度参数 σ越大,数据越分散,曲线越平坦。 特别地 N(0,1)称为标准正态分布 (z分布、u分布)
四.正态曲线下面积的分布规律
通过对密度函数积分我们可以知道正态曲线下, 横轴上所夹的面积为1,标准正态分布下1.96~1.96部分的面积为0.95 (可以通过积分 求得)。也就是说|u|>1.96的面积为0.05,对 任意的x,-x~x区间面积为多少呢?统计学家 已将此编制成了正态分布界值表,不过表中 的面积是指p(u<x), 也记作φ(x)。
3. 正态分布是许多统计方法的理论 基础,如后面要讲的t检验、方差分析、 相关回归等,t分布、二项分布、 Poisson分布的极限分布也是正态分布。
4.估计频数分布
例 出生体重低于2500克为低体重儿。若 由某项研究得某地婴儿出生体重均数为 3200克,标准差为350克,估计该地当 年低体重儿所占的比例。2. 源自计医学正常值范围x u s
例 120名健康成年男性农民舒张压的均数 为10.1kPa,标准差为0.93kPa,求舒张 压的95%双侧正常值范围。 ±1.96s =10.1±1.96×0.93 即 8.28~11.92 kPa 95%参考范围(reference range)或正常 范围(normal range)仅仅告知95%健 康者的测定值在此范围之内,并非告知 凡在此范围之内皆健康,也非告知凡在 此范围之外皆不健康,所以不可将之作 为诊断标准。
以上讨论的是标准正态分布,对一般的正 态分布,某指标x~N(μ,σ2),则 u=(x-μ)/σ~N(0,1) 即-1.96<u<1.96的面积为0.95 μ-1.96σ<x<μ+1.96σ的面积为0.95
正态分布完整ppt课件
使用如Shapiro-Wilk检验、Kolmogorov-Smirnov检验等方法,对 误差项进行正态性检验,以验证其是否符合正态分布。
方差分析中F分布应用
01 02
F分布的定义
F分布是一种连续型概率分布,常用于方差分析中的假设检验。在方差 分析中,通过比较不同组间的方差与组内方差,判断各因素对结果的影 响是否显著。
筛选方法
包括单变量分析和多变量分析等,结合临床 意义和统计学显著性进行生物标志物的筛选 。
社会科学调查数据分析
社会科学调查数据特点
大量、复杂、多维度的数据,往往需要进行统计分析和数据挖掘。
正态分布在社会科学调查数据分析中的应用
通过对调查数据进行正态性检验,选择合适的数据处理和分析方法,如参数检验、回归分析等。
有对称性和单峰性。
性质
对称性:正态分布曲线关于均值对称 。
单峰性:正态分布曲线只有一个峰值 ,位于均值处。
均值、中位数和众数相等。
概率密度函数在均值两侧呈指数下降 。
正态曲线特点
01
02
03
04
形状
钟形曲线,中间高,两边低。
对称性
关于均值对称,即左右两侧形 状相同。
峰值
位于均值处,且峰值高度由标 准差决定。
05
正态分布在金融学领域应用
风险评估及资产组合优化
风险评估
正态分布用于描述金融资产的收益和风险分布,通过计算均值和标准差来评估投资组合 的风险水平。
资产组合优化
基于正态分布假设,利用马科维茨投资组合理论等方法,构建最优资产组合以降低风险 并提高收益。
VaR(Value at Risk)计算
正态分布用于计算投资组合在一定置信水平下的最大可能损失(VaR),以衡量潜在风 险。
_正态分布及其性质概述
_正态分布及其性质概述正态分布,也称为高斯分布或钟形曲线,是统计学中最重要的概率分布之一、它在自然界和社会经济领域中的应用十分广泛。
正态分布具有许多重要的性质,包括对称性、峰度和尖度等。
本文将对正态分布及其性质进行概述。
正态分布是一种连续概率分布,其密度函数在整个实数轴上都有定义。
正态分布的密度函数由两个参数决定,即均值μ和标准差σ。
均值μ决定了分布的中心位置,标准差σ决定了分布的离散程度。
正态分布的密度函数可以用公式表示为:N(N,μ,σ)=1/√(2Nσ²)×N^−((N−μ)²/(2σ²))正态分布的最显著特点是其对称性。
正态分布以均值为对称中心,左右两侧的面积相等。
也就是说,分布曲线在均值处是最高的,随着离均值的距离增加,分布曲线逐渐下降。
除了对称性外,正态分布还具有另外两个重要性质:峰度和尖度。
峰度描述了分布的峰值的陡峭程度,即分布曲线的形状。
正态分布的峰度为3,即峰度等于3时为正态分布。
如果峰度大于3,分布曲线会比正态分布更陡峭;如果峰度小于3,分布曲线会比正态分布更平坦。
尖度是描述分布曲线顶部尖度的性质。
正态分布的尖度为0,表示分布曲线的顶部相对平滑。
如果尖度大于0,表示分布曲线的顶部更窄和尖锐;如果尖度小于0,表示分布曲线的顶部更宽和平坦。
正态分布在自然界和社会经济领域中应用十分广泛。
许多自然现象,如人的身高、体重、智力等,以及经济和金融领域,如股票价格的波动、利润率的分布等,都可以用正态分布进行建模和分析。
正态分布还是很多统计推断和假设检验方法的基础,如回归分析、方差分析等。
正态分布具有很多重要的性质,使得它在统计学和概率论中被广泛研究和应用。
除了前面提到的对称性、峰度和尖度外,正态分布还具有以下性质:1.正态分布的随机变量的平均值和标准差是唯一可以使得分布最大化的值。
2.正态分布的随机变量具有独立性,即每个随机变量的取值不会受其他随机变量的影响。
正态分布简单解释
正态分布简单解释
1 什么是正态分布?
正态分布,又称高斯分布,是概率统计学中的一种基本分布。
正态分布具有单峰性、对称性、钟形曲线的特点,是自然界中很多现象的统计分布。
2 正态分布的特点
正态分布的曲线正中间有一个顶峰,左右两侧对称,呈钟形。
这个顶峰代表了数据的平均值,也就是算术平均数。
而曲线两侧高度逐渐降低,代表了数据的集中程度。
曲线左右两侧的面积相等,也就是说左侧的面积等于右侧的面积,因此在平均值左右对称的情况下,有50%的数据落在平均值左边,有50%的数据落在平均值右边。
3 正态分布的应用
由于正态分布在自然界中很多现象中都具有普遍性和代表性,因此被广泛地应用于各种领域中。
例如,医疗诊断中使用正态分布来确定正常范围,制造业使用正态分布来控制产品质量,金融领域使用正态分布来进行风险分析等等。
此外,正态分布在统计学中也起着重要的作用,可以通过正态分布来推论总体参数,计算出置信区间和假设检验等。
4 正态分布的重要性
相信很多人都听过“大数定律”,那么正态分布对于这个定律的解释有很大的帮助。
基于中心极限定理,我们可以证明当样本容量达到一定程度时,样本均值的分布趋近于正态分布。
因此,正态分布在统计学中是非常重要的基础分布,也是许多分析方法的基础。
同时,在机器学习、人工智能等领域中,正态分布也是非常常用的一种概率分布,例如在回归分析中经常使用高斯分布来描述随机误差。
5 总结
正态分布在统计学中是非常基础和重要的概率分布,它的应用涵盖了各个领域。
理解和掌握正态分布的基本概念和特点,对于提高我们对大数据的分析能力和对实际问题的解决能力都具有重要意义。
正态分布详解
上一讲我们已经看到,当n很大,p接 近0或1时,二项分布近似泊松分布; 如果 n很大,而p不接近于0或1,那么可以证明, 二项分布近似于正态分布.
下面我们不加证明地介绍有关二项分 布近似于正态分布的一个定理,称为棣莫 佛-拉普拉斯定理. 它是第五章要介绍的 中心极限定理的一个最重要的特殊情况.
六、二项分布的正态近似
定理(棣莫佛-拉普拉斯定理)
设随机变量 Y n 服从参数n, p(0<p<1)的
二项分布,则对任意x,有
limP{ Ynnp x} x
1
t2
e 2 dt
n np(1p)
2
定理表明,当n很大,0<p<1是一个定值 时(或者说,np(1-p)也不太小时),二项变
量 Y n 的分布近似正态分布 N(np,np(1-p)).
正态分布是应用最 广泛的一种连续型分布.
德莫佛最早发现了二项概 率的一个近似公式,这一公式 被认为是正态分布的首次露面.
正态分布在十九世纪前叶由 高斯加以推广,所以通常称为高 斯分布.
德莫佛
不知你们是否注意到街头的一种赌博 活动? 用一个钉板作赌具。
请看 街头
平时,我们很少有人会去关心小球 下落位置的规律性,人们可能不相信 它是有规律的。一旦试验次数增多并 且注意观察的话,你就会发现,最后 得出的竟是一条优美的曲线。
记作 X~N(,2)
f (x)所确定的曲线叫作正态曲线.
正态分布有些什么性质呢?
由于连续型随机变量唯一地由它 的密度函数所描述,我们来看看正态 分布的密度函数有什么特点。
请看演示 正态分布
二、正态分布 N(,2) 的图形特点
正态分布的密度曲线是一条关于 对
正态分布
(1)曲线在x轴的上方,与x轴不相交.
(2)曲线是单峰的,它关于直线x=μ对称.
(3)曲线在x=μ处达到峰值(最高点)
σ
1 2π
(4)曲线与x轴之间的面积为1
方差相等、均数不等的正态分布图示
σ=0.5
μ=0 μ= -1
μ= 1Βιβλιοθήκη 若 固定,随值的变化而
沿x轴平
移, 故
称为位置
参数;
3 1 2
均数相等、方差不等的正态分布图示
b
P(a X b) a , (x)dx
2.正态分布的定义:
如果对于任何实数 a<b,随机变量X满足:
b
P(a X b) a , (x)dx
则称为X 的正态分布. 正态分布由参数μ、σ唯一确定. 正态分布记作N( μ,σ2).其图象称为正态曲线.
如果随机变量X服从正态分布, 则记作 X~ N( μ,σ2)
(6)当μ一定时,曲线的形状由σ确定 . σ越大,曲线越“矮胖”,表示总体的分布越分散; σ越小,曲线越“瘦高”,表示总体的分布越集中.
例3、把一个正态曲线a沿着横轴方向向右移动2个单 位,得到新的一条曲线b。下列说法中不正确的是
( C)
A.曲线b仍然是正态曲线;
B.曲线a和曲线b的最高点的纵坐标相等;
• 对称区域面积相等。
S(-x1, -x2)
S(x1,x2)=S(-x2,-x1)
-x1 -x2
x2 x1
4、特殊区间的概率:
若X~N (, 2 ),则对于任何实数a>0,概率
a
P( a x ≤ a) , ( x)dx a
为如图中的阴影部分的面积,对于固定的 和 而言,该面 积 的随概着率越 大的,减即少X而集变中大在。这周说围明概率越越小大, 落。在区间 ( a, a]
统计学中的正态分布
统计学中的正态分布正态分布,又被称为高斯分布或钟形曲线,是统计学中应用广泛的一种概率分布。
它在自然界的许多现象中都能被观察到,对于理解数据分布和进行推断具有重要意义。
本文将介绍正态分布的定义、性质以及在统计学中的应用。
一、正态分布的定义与性质正态分布的数学定义如下:若随机变量X服从正态分布,记为X~N(μ, σ^2),其中μ为均值,σ^2为方差,并且X的取值范围为负无穷到正无穷。
正态分布曲线呈钟形,中心对称,其形状由μ和σ^2决定。
正态分布的性质有以下几点:1. 对称性:正态分布曲线以均值μ为对称轴,左右两侧的面积相等。
2. 峰度:正态分布曲线在均值μ处有一个峰值,峰度取决于方差σ^2的大小。
当σ^2较小时,峰度较高;当σ^2较大时,峰度较低。
3. 标准正态分布:当μ=0,σ^2=1时,称为标准正态分布。
标准正态分布的概率密度函数可以表示为φ(x),在统计推断中经常使用。
二、正态分布的应用正态分布在统计学中应用广泛,主要包括以下几个方面:1. 参数估计:在许多实际问题中,我们需要对总体的均值和方差进行估计。
基于正态分布的性质,可以使用最大似然估计或贝叶斯估计等方法进行参数估计。
2. 假设检验:假设检验是统计推断的一种重要方法,正态分布在假设检验中扮演着关键角色。
通过计算样本均值与总体均值的差异,以及样本方差与总体方差的比较,可以进行关于总体参数的假设检验。
3. 区间估计:在估计总体参数时,除了点估计外,还可以进行区间估计。
在正态分布下,可以使用置信区间估计总体均值或总体方差,并对估计结果进行解释和判断。
4. 统计建模:正态分布是许多统计模型的基础假设。
如线性回归模型、方差分析模型等,这些模型都基于正态分布假设,并利用正态分布的性质进行参数估计与推断。
5. 数据分析与预测:正态分布在数据分析与预测中也有广泛应用。
例如,通过分析数据的分布情况,我们可以判断数据是否符合正态分布,进而选择合适的统计方法和模型进行分析与预测。
什么是正态分布
什么是正态分布正态分布(Normal Distribution),又称高斯分布(Gaussian Distribution),是概率论和统计学中最重要的概率分布之一。
它在自然界和社会科学中广泛应用,被认为是一种非常常见的分布模式。
正态分布的特点是呈钟形曲线,对称分布于均值周围。
其概率密度函数可以用以下公式表示:f(x) = (1 / (σ * √(2π))) * e^(-((x-μ)^2) / (2σ^2))其中,f(x)表示随机变量X的概率密度函数,x表示随机变量的取值,μ表示均值,σ表示标准差,π表示圆周率,e表示自然对数的底。
正态分布的均值和标准差决定了曲线的位置和形状。
均值决定了曲线的中心位置,标准差决定了曲线的宽度。
当均值为0,标准差为1时,曲线称为标准正态分布。
正态分布具有许多重要的性质和应用。
以下是正态分布的几个重要特点:1. 对称性:正态分布是对称的,均值处于曲线的中心位置,两侧的概率密度相等。
2. 峰度:正态分布的峰度较高,曲线较陡峭,尾部较平缓。
3. 独立性:正态分布的随机变量之间是相互独立的。
4. 中心极限定理:当样本容量足够大时,样本均值的分布接近正态分布。
正态分布在实际应用中具有广泛的应用。
以下是几个常见的应用场景:1. 自然科学:正态分布常用于描述测量误差、实验数据、物理量的分布等。
2. 社会科学:正态分布常用于描述人口统计数据、心理测量数据、考试成绩等。
3. 金融领域:正态分布常用于描述股票价格、利率、风险收益等。
4. 质量控制:正态分布常用于描述产品尺寸、重量、强度等的分布。
5. 生物学:正态分布常用于描述身高、体重、血压等生物特征的分布。
正态分布的应用不仅限于上述领域,还广泛应用于工程、经济学、环境科学等各个领域。
总之,正态分布是一种重要的概率分布,具有对称性、峰度高、独立性等特点。
它在自然界和社会科学中广泛应用,用于描述各种随机变量的分布。
了解正态分布的特点和应用,对于理解和分析实际问题具有重要意义。
正态分布
正态分布正态分布(normal distribution)又名高斯分佈(Gaussian distribution),是一個在數學、物理及工程等領域都非常重要的概率分佈,在統計學的許多方面有著重大的影響力。
若隨機變量X服從一個數學期望為μ、標準方差為σ2的高斯分佈,記為:則其概率密度函數為常態分佈的期望值μ決定了其位置,其標準差σ決定了分佈的幅度。
因其曲線呈鐘形,因此人們又經常稱之為鐘形曲線。
我們通常所說的標準常態分佈是μ = 0,σ = 1的常態分佈(見右圖中綠色曲線)。
目录[隐藏]1 概要o 1.1 歷史2 正态分布的定義o 2.1 概率密度函數o 2.2 累積分佈函數o 2.3 生成函數▪ 2.3.1 動差生成函數▪ 2.3.2 特徵函數3 性質o 3.1 標準化正態隨機變量o 3.2 矩(英文:moment)o 3.3 生成正態隨機變量o 3.4 中心極限定理o 3.5 無限可分性o 3.6 穩定性o 3.7 標準偏差4 正態測試5 相關分佈6 參量估計o 6.1 參數的極大似然估計▪ 6.1.1 概念一般化o 6.2 參數的矩估計7 常見實例o7.1 光子計數o7.2 計量誤差o7.3 生物標本的物理特性o7.4 金融變量o7.5 壽命o7.6 測試和智力分佈[编辑]概要正態分布是自然科學與行為科學中的定量現象的一個方便模型。
各種各樣的心理學測試分數和物理現象比如光子計數都被發現近似地服從常態分佈。
儘管這些現象的根本原因經常是未知的,理論上可以證明如果把許多小作用加起來看做一個變量,那麼這個變量服從正态分布(在R.N.Bracewell的Fourier transform and its application中可以找到一種簡單的證明)。
正态分布出現在許多區域統計:例如, 採樣分佈均值是近似地正態的,既使被採樣的樣本總體並不服從正态分布。
另外,常態分布信息熵在所有的已知均值及方差的分佈中最大,這使得它作為一種均值以及方差已知的分佈的自然選擇。
正态分布概念
x
正态分布曲线下面积的含义
1.表示变量值(x)在【a-b】区间变量值 所占全部(总体)变量值的比例或概率 (p)。
2变量值在整个曲线下的面积为100%,或 出现的概率为1。
[例1] 设X~N(1,22),试求: (1)P(-1<X≤3);(2)P(X≥5). [思路点拨] 首先确定μ=1,σ=2,然后根据三个特 殊区间上的概率值求解. [精解详析] 因为X~N(1,22), 所以μ=1,σ=2. (1)P(-1<X≤3)=P(1-2<X≤1+2)=P(μ-σ<X≤μ+σ) =0.683.
2.正态曲线的性质
(1)非负性:曲线 f? ,? ( x) 在轴的上方,与x轴
不相交(即x轴是曲线的渐近线).
(2)定值性:曲线f?,? (x) 与x轴围成的面积为1.
(3)对称性:正态曲线关于直线 x=μ对称, 曲线成“钟形”. (4)单调性:在直线 x=μ的左边, 曲线是上升的 ; 在直线 x=μ的右边, 曲线是下降的 .
f(X)
0.14 0.12
0.1 0.08 0.06 0.04 0.02
0 12.00 14.50 17.00 19.50 22.00 24.50 27.00 29.50 32.00
图2-4 频数分布与正态分布曲线示意图
一、正态分布的概念和特征
1.正态分布曲线的数学函数表达式:
X服从的概率密度函数f(x)
2.如图所示,是一个正态分布密度曲 线.试根据图像写出其正态分布的 概率密度函数的解析式,并求出总 体随机变量的期望和方差.
解析:从正态曲线的图像可知, 该正态曲线关于直线 x=20
对称,最大值为 2 1π,所以 μ=20,
1 2π
·σ=2
1
正态分布
或 x Z s
23
例题:
例9-11 利用表9-1的资料计算95%参考值范围。
表9-1的资料近似服从正态分布,可以利用正
态分 布法计算95%参考值范围。
X 350.24,S 32.97
双侧95%的参考值范围:
X 1.96 S 350.24 1.96 32.97 ( 285.62 ~ 414.86) 20-29岁正常成年男子的尿酸浓度的95%参考值
25
(二) 质量控制: 随机误差 系统误差
26
判断异常的8种情况
有一个点距中心线的距离超过3个标准差(控制限以外) 在中心线的一侧连续有9个点 连续6个点稳定地增加或减少 连续14个点交替上下 连续3个点中有两个点距中心线距离超过2个标准差(警戒限 以外) 连续5个点中有4个点距中心线距离超过1个标准差 中心线一侧或两侧连续15个点距中心线距离都超出1个标准差 以内 中心线一侧或两侧连续8个点距中心线距离都超出1个标准差 范围。
的疾病和有关因素的同质人群。
一般认为至少应在 120 例以上。例数过少,
确定的参考值范围往往不够准确。
19
B.对选定的正常人进行准确的测量;
C.决定取单侧范围还是双侧范围值; 根据研究目的和专业知识确定单双侧 例:白细胞计数过低过高均异常,故双侧; 肺活量过低为异常,故单侧; 血铅、发汞含量过高为异常,故单侧。
知道面积求U值。 查附表1 得:0.10 对应的U值为-1.28
0.10
0.80
0.10
则: 80%的男孩身高集中: (116.9cm,129.2cm)
X 1.28 s
17
三、正态分布的应用 (一) 确定医学参考值范围(reference range) :
统计分布的正态分布
统计分布的正态分布正态分布(Normal Distribution)是统计学中最重要的概率分布之一。
它的特点是以均值为中心对称,呈钟形曲线。
正态分布在自然界和社会科学中广泛应用,它可以帮助我们理解和解释一系列现象。
本文将介绍正态分布的特点、应用、统计推断以及一些实例。
正态分布的特点正态分布的曲线呈钟形,左右对称,其形状由均值和标准差决定。
均值决定曲线的中心位置,标准差决定曲线的宽度。
一般而言,正态分布的均值为0,标准差为1,这样的分布称为标准正态分布。
正态分布的概率密度函数为:f(x) = (1/(σ√2π)) * e^(-(x-μ)^2 / (2σ^2))其中,f(x)表示某个特定值x的概率密度,μ表示均值,σ表示标准差,e表示自然对数的底数。
正态分布的曲线图通常被称为钟形曲线或高斯曲线。
正态分布的应用正态分布在现实生活中广泛应用,特别是在统计学和自然科学领域。
下面列举一些常见的应用场景:1. 身体特征:身高、体重等身体特征往往呈现正态分布。
大多数人的身高集中在平均身高附近,极端身高的人较少。
2. 考试成绩:在大规模考试中,考试分数往往呈现正态分布。
绝大多数学生的成绩集中在平均分附近,优秀和较差的学生属于少数。
3. 生产质量控制:正态分布可以指导生产质量控制。
通过收集产品的测量数据,可以分析产品的特征是否符合正态分布,进而评估生产过程的稳定性和准确性。
4. 自然现象:许多自然现象也可以用正态分布来描述,例如天气预测中的温度分布、地震中的震级分布等。
正态分布的统计推断正态分布在统计推断中扮演着重要角色。
根据中心极限定理,当我们从总体中抽取多个样本时,样本均值的分布将会逐渐接近正态分布。
这个特性使得正态分布成为统计推断中一些重要方法的基础。
1. 参数估计:对于一个未知总体的均值或标准差,我们可以通过采集样本数据来估计总体参数。
通过计算样本均值和样本标准差,可以利用正态分布的性质得到总体参数的估计值。
正态分布的五个特征
正态分布的五个特征
正态分布,又称为高斯分布,是统计学中最常见的一种分布形式。
它具有以下
五个特征。
1. 对称性:正态分布以其对称性而著名。
它的概率密度曲线在其均值处达到峰值,并以均值为中心对称分布。
左右两侧的曲线形状完全相同。
2. 均值:正态分布的均值代表了整个分布的平均水平。
在正态分布中,均值等
于中位数等于众数,也就是说,分布的中心趋向于均值。
3. 标准差:正态分布的标准差表示了数据的变异程度。
标准差越小,正态分布
图像越狭窄,变异性越低;标准差越大,分布图像越宽,变异性越高。
4. 峰度:正态分布的峰度描述了概率密度曲线的陡峭程度。
峰度值为3表示正
态分布的峰度与标准正态分布相同。
峰度大于3表示分布曲线比正态分布更陡峭,而峰度小于3则表示分布曲线较为平缓。
5. 偏度:正态分布的偏度反映了分布数据相对于均值的偏斜程度。
当数据的偏
度为0时,分布为正态分布。
正偏斜(偏度值大于0)表示数据分布有向右的长尾,而负偏斜(偏度值小于0)表示数据分布有向左的长尾。
这些特征使得正态分布成为许多统计学推断和模型的基础。
在实际应用中,研
究人员可以利用正态分布的特性来解释和分析各种现象,从而更好地理解数据的分布规律。
了解正态分布的五个特征有助于我们更好地理解统计学中的相关概念和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正态分布的特征
正态分布曲线以均数为中心,左右对称。 Hale Waihona Puke 正态分布曲线下的面积分布有一定的规
律 正态分布曲线在横轴上方均数处最高。 正态分布曲线有两个参数:均数µ 为位
置参数,标准差ơ 为形状参数。
(二)正态分布曲线下的面积分布规律
数理统计证明:正态分布曲线下与横轴之间的整体 面积为1或100%。以µ为总体均数,ơ为总体标准差,则 正态分布曲线下面积的分布规律经积分法计算有如下 规律(图2)
标准误是样本均数的标准差,即描述样本均数 的抽样误差。凡同性质的资料,标准误大说明 抽样误x 差大,用样本均数估计总体均数的可靠 性小;而标准误小,说明抽样误差小,用样本 均数估计总体均数的可靠性大。
标准误与标准差的区别
µ
x3
x1 s x2
xs
µ
x1
s x3 x
x2
x sx
(二)样本均数的正态分布(中心极限定理)
由抽样而引起的样本均数与总体均数之间的差 别及样本均数与样本均数之间的差别称为抽样 误差。
从正态分布的同一总体中随机抽取例数相等的 若干个样本,分别计算它们的均数,这些样本 均数的标准差称为标准误。
标准误与标准差的区别
标准差描述个体变量值间的变异程度。凡同性 质的资料,标准差大表示个体变量值变异大, 样本均数对个体的代表性差。标准差小表示个 体变量值变异小,样本均数对个体的代表性好。
布就是标准正态分布。
u= x -μ/σ x
(四)t值 t分布
对于任何一个横轴变量为 x均数为µ ,标 准误为 x的正态分布,都可以通过变换,使之 成为µ=0, x =1的标准正态分布。变换的方法 是将变量值 x变换为u,u=x- µ / x ,u值的分
布就是标准正态分布。实际工作中 x 常用 sx
u x
x
t x
sx
(五)t 分布特征
t 值自由度( )
t 分布特征 t界值 t值与自由度的关系 t界值与概率的关系 单侧、双侧t界值
t 值自由度( )
从一个总体中抽取200个样本,每一个 样本含量n=6则200个样本可计算出200个 样本均数 x 每一个样本均数可计算出一个t
一、正态分布
(一)正态分布的概念
正态分布又称高斯分布,是一种很重要的连 续型分布,应用甚广。在医学卫生领域中有许 多变量的频数分布资料可绘制成直方图而且频 数分布是中间(靠近均数处)频数多,两边频 数少,且左右对称。
可以设想,如果将观察人数逐渐增多,组 段不断分细,图中直条将逐渐变窄,其顶端的 中点的连线将逐渐接近于一条光滑的曲线,这 条曲线略呈钟型,两头低,中间高,左右对称, 近似于数学上的正态分布曲线(图1)
(三)正态分布曲线的两个参数
均数µ决定曲线在横轴上 的位置是正态分布曲线 的位置参数(图3.1)。
标准差ơ决定曲线的形状 是正态分布曲线的形状 参数(变异度参数) (图3.2)。
(四)标准正态分布
对于任何一个均数为µ ,标准差为ơ 的正态分布,都可以通过变换,使之成 为µ=0, ơ=1的标准正态分布。变换的 方法是将变量值x变换为u,u=x- µ / ơ , u值的分布就是标准正态分布。
u=-1.96,u=1.96 范围内的面积占正态曲线下总面积的 95.00%,即有95.00%的变量值分布在此范围内;
u=-2.58,u=2.58范围内的面积占正态曲线下总面积99.00%, 即有99.00%的变量值分布在此范围内。
二、t 分布
(一)均数的抽样误差 标准误
在总体中随机抽取一部分个体作为样本,进行 调查研究以推论总体的方法,称为抽样研究方 法。
µ+ 1ơ范围内的面积占正态曲线下总面积的68.27%,即 有68.27%的变量值分布在此范围内;
µ+ 1.96ơ范围内的面积占正态曲线下总面积的95.00%, 即有95.00%的变量值分布在此范围内;
µ+ 2.58ơ范围内的面积占正态曲线下总面积99.00%,即 有99.00%的变量值分布在此范围内
估计,t值就是样本均数 x 与总体均数µ的差数
除以 sx 所得之商 t x / sx
实际工作中 x 用 sx 估计,这时对
正态变量 x 采用的不是u变换,而是t
变换。如果从一个正态总体中,抽取样 本含量为n的许多样本,分别计算其样本 均数和标准误,然后再求出每一个t值, 这样可有许多t值,其频数分布是一种连 续型分布,这就是统计学上的t分布。
u=x-μ/σ
(五)标准正态分布曲线下的面积分布规律
标准正态分布曲线以u值为横轴变量,位置参数µ=0,形 状参数ơ=1,标准正态分布曲线与横轴之间的整体面积 为1或100%。标准正态分布曲线下面积的分布规律有如 下规律(图5)
u=-1,u=1范围内的面积占正态曲线下总面积的68.27%, 即有68.27%的变量值分布在此范围内;
从一个呈正态分布的总体中随机抽取样 本含量相等的许多样本,分别计算出它们 的样本均数。这些样本均数的频数分布仍 是以总体均数为中心的正态分布。
µ
x1
x3 x
x2
(三)样本均数的标准正态分布
对于任何一个横轴变量为 x 均数为µ ,标 准误为 x 的正态分布,都可以通过变换,使之 成为µ=0、 x =1的标准正态分布。变换的方法 是将变量值x 变换为u,u= x- µ / x ,u值的分
正态分布 t分布
计量资料的统计推断是以正态分布、 标 准正态分布 、t分布为理论基础。
正态分布、标准正态分布、 t分布的相互 关系是参数估计和假设检验的理论基础。
本课件主要学习正态分布、标准正态分布、 t分布的概念、分布特征、相互关系。
正态分布 t分布
一、正态分布 (一)正态分布的概念 (二)正态分布曲线下的面积分布规律 (三)正态分布曲线的两个参数 (四)标准正态分布 (五)标准正态分布曲线下的面积分布规律 二、 t分布 (一)均数的抽样误差 (二)样本均数的正态分布(中心极限定理) (三)样本均数的标准正态分布 (四)t值、t分布 (五)t分布特征