半导体封装工艺介绍

合集下载

半导体注塑封装工艺

半导体注塑封装工艺

半导体注塑封装工艺1.引言1.1 概述半导体注塑封装工艺是一种将半导体芯片封装到塑料封装体中的技术。

半导体芯片在制造过程中需要进行封装以便保护和连接电路,而注塑封装工艺通过将半导体芯片固定在塑料封装体中,提供了一种可靠的封装方案。

半导体注塑封装工艺主要包括以下几个步骤:首先,将半导体芯片放置在导线架上,并通过焊接或者其他方式将芯片与导线架连接起来。

然后,在注塑机中加热并熔化塑料原料,将熔化的塑料注塑到导线架上,形成封装体的外壳。

最后,对注塑封装后的半导体芯片进行测试和包装,以确保其质量和可靠性。

半导体注塑封装工艺具有以下几个优点:首先,注塑封装工艺可以实现对多个芯片的批量封装,提高生产效率。

其次,注塑封装可以为芯片提供很好的机械和环境保护,提高芯片的可靠性和稳定性。

此外,注塑封装还可以为芯片提供良好的导热性能,有利于芯片的散热和使用寿命的延长。

半导体注塑封装工艺在电子产品的制造中有着广泛的应用。

例如,在消费类电子产品中,如智能手机、平板电脑等,注塑封装常用于对集成电路的封装。

此外,注塑封装也广泛应用于汽车电子、医疗电子、工业控制等领域的电子产品制造中。

总之,半导体注塑封装工艺是一种重要的封装技术,通过将半导体芯片封装到塑料封装体中,可以为芯片提供机械、环境和导热保护,并广泛应用于各种电子产品制造中。

随着科技的发展和需求的增加,注塑封装工艺在未来将会有更广阔的应用前景。

1.2 文章结构本文共分为三个部分,即引言、正文和结论。

在引言部分,首先对半导体注塑封装工艺进行了概述,介绍了其基本原理和主要应用。

然后,说明了本文的目的,即对半导体注塑封装工艺进行深入的分析和探讨。

接下来,正文部分将详细介绍半导体注塑封装工艺的基本原理。

主要包括工艺过程中所涉及的材料、设备和技术要点等内容。

通过对注塑封装工艺中各个环节的分析,揭示了其工作原理和技术特点。

正文的第二部分将主要讨论半导体注塑封装工艺的主要应用。

其中包括半导体器件封装、电子元器件封装以及其他领域的应用等。

半导体制造流程及生产工艺流程

半导体制造流程及生产工艺流程

半导体制造流程及生产工艺流程半导体是一种电子材料,具有可变电阻和电子传导性的特性,是现代电子器件的基础。

半导体的制造流程分为两个主要阶段:前端工艺(制造芯片)和后端工艺(封装)。

前端工艺负责在硅片上制造原始的电子元件,而后端工艺则将芯片封装为最终的电子器件。

下面是半导体制造流程及封装的主要工艺流程:前端工艺(制造芯片):1.晶片设计:半导体芯片的设计人员根据特定应用的需求,在计算机辅助设计(CAD)软件中进行晶片设计,包括电路结构、布局和路线规划。

2.掩膜制作:根据芯片设计,使用光刻技术将电路结构图转化为光刻掩膜。

掩膜通过特殊化学处理制作成玻璃或石英板。

3.芯片切割:将晶圆切割成单个的芯片,通常使用钻孔机或锯片切割。

4.清洗和化学机械抛光(CMP):芯片表面进行化学清洗,以去除表面杂质和污染物。

然后使用CMP技术平整芯片表面,以消除切割痕迹。

5.纳米技术:在芯片表面制造纳米结构,如纳米线或纳米点。

6.沉积:通过化学气相沉积或物理气相沉积,将不同材料层沉积在芯片表面,如金属、绝缘体或半导体层。

7.重复沉积和刻蚀:通过多次沉积和刻蚀的循环,制造多层电路元件。

8.清洗和干燥:在制造过程的各个阶段,对芯片进行清洗和干燥处理,以去除残留的化学物质。

9.磊晶:通过化学气相沉积,制造晶圆上的单晶层,通常为外延层。

10.接触制作:通过光刻和金属沉积技术,在芯片表面创建电阻或连接电路。

11.温度处理:在高温下对芯片进行退火和焙烧,以改善电子器件的性能。

12.筛选和测试:对芯片进行电学和物理测试,以确认是否符合规格。

后端工艺(封装):1.芯片粘接:将芯片粘接在支架上,通常使用导电粘合剂。

2.导线焊接:使用焊锡或焊金线将芯片上的引脚和触点连接到封装支架上的焊盘。

3.封装材料:将芯片用封装材料进行保护和隔离。

常见的封装材料有塑料、陶瓷和金属。

4.引脚连接:在封装中添加引脚,以便在电子设备中连接芯片。

5.印刷和测量:在封装上印刷标识和芯片参数,然后测量并确认封装后的器件性能。

半导体封装,半导体封装是什么意思

半导体封装,半导体封装是什么意思

半导体封装,半导体封装是什么意思半导体封装简介:半导体生产流程由晶圆制造、晶圆测试、芯片封装和封装后测试组成。

半导体封装是指将通过测试的晶圆按照产品型号及功能需求加工得到独立芯片的过程。

封装过程为:来自晶圆前道工艺的晶圆通过划片工艺后,被切割为小的晶片(Die),然后将切割好的晶片用胶水贴装到相应的基板(引线框架)架的小岛上,再利用超细的金属(金、锡、铜、铝)导线或者导电性树脂将晶片的接合焊盘(BondPad)连接到基板的相应引脚(Lead),并构成所要求的电路;然后再对独立的晶片用塑料外壳加以封装保护,塑封之后,还要进行一系列操作,如后固化(PostMoldCure)、切筋和成型(Trim&Form)、电镀(Plating)以及打印等工艺。

封装完成后进行成品测试,通常经过入检(Incoming)、测试(Test)和包装(Packing)等工序,最后入库出货。

典型的封装工艺流程为:划片装片键合塑封去飞边电镀打印切筋和成型外观检查成品测试包装出货。

1半导体器件封装概述电子产品是由半导体器件(集成电路和分立器件)、印刷线路板、导线、整机框架、外壳及显示等部分组成,其中集成电路是用来处理和控制信号,分立器件通常是信号放大,印刷线路板和导线是用来连接信号,整机框架外壳是起支撑和保护作用,显示部分是作为与人沟通的接口。

所以说半导体器件是电子产品的主要和重要组成部分,在电子工业有“工业之米的美称。

我国在上世纪60年代自行研制和生产了第一台计算机,其占用面积大约为100m2以上,现在的便携式计算机只有书包大小,而将来的计算机可能只与钢笔一样大小或更小。

计算机体积的这种迅速缩小而其功能越来越强大就是半导体科技发展的一个很好的佐证,其功劳主要归结于:(1)半导体芯片集成度的大幅度提高和晶圆制造(Waferfabrication)中光刻精度的提高,使得芯片的功能日益强大而尺寸反而更小;(2)半导体封装技术的提高从而大大地提高了印刷线路板上集成电路的密集度,使得电子产品的体积大幅度地降低。

半导体封装简介

半导体封装简介

EOL– Molding(注塑)
L/F L/F
Cavity
Molding Tool(模具)
➢EMC(塑封料)为黑色块状,低温存储,使用前需先回温。其特 性为:在高温下先处于熔融状态,然后会逐渐硬化,最终成型。
➢Molding参数:
Molding Temp:175~185°C;Clamp Pressure:3000~4000N; Transfer Pressure:1000~1500Psi;Transfer Time:5~15s; Cure Time:60~120s;
半导体封装简介
一、半导体封装介绍 二、封装主要原材料 三、封装工艺流程—IC芯片 四、封装工艺流程—功率模块
一、半导体封装介绍
1.1 半导体工艺流程
目前半导体材料已经发展到第三代,第一代以硅(Si)为代表材料;第二代以砷化镓(GaAs)为代表材料; 第三代以碳化硅(SiC)和氮化镓(GaN)为主流材料。目前Si仍然是半导体行业使用最多的材料。
二、封装原材料简介 2.1 wafer(晶圆)
【Wafer】晶圆
2.2 【Lead Frame】引线框架
➢提供电路连接和Die的固定作用; ➢主要材料为铜,会在上面进行镀银、NiPdAu等材料; ➢L/F的制程有Etch和Stamp两种; ➢易氧化,存放于氮气柜中,湿度小 于40%RH; ➢除了BGA和CSP外,其他Package都会采用Lead Frame,BGA采用的是Substrate;
➢磨片时,需要在正面(Active Area)贴胶带保护电路区域, 同时 研磨背面。研磨之后,去除胶带,测量厚度;
FOL– Wafer Saw晶圆切割
Wafer Mount 晶圆安装
Wafer Saw 晶圆切割

半导体芯片封装工艺流程

半导体芯片封装工艺流程

半导体芯片封装工艺流程介绍半导体芯片封装工艺是将芯片与外部环境进行隔离和保护的过程。

封装工艺的优劣直接影响着芯片的性能、可靠性和应用场景。

本文将详细介绍半导体芯片封装工艺的流程和重要步骤。

流程概述半导体芯片封装工艺主要包括芯片准备、封装材料选型、封装工艺流程设计、封装设备选择、封装工艺参数调优和封装后测试等环节。

下面将分别详细介绍每个环节的内容。

芯片准备芯片准备是封装工艺的第一步,主要包括芯片的测试、分选和切割。

在这一步骤中,需要对芯片进行质量检测和功能测试,将合格的芯片分选出来,然后使用切割工具将芯片切割成单个的芯片片段。

封装材料选型封装材料的选型对封装工艺的成功与否有着重要的影响。

封装材料的主要考虑因素包括导热性能、绝缘性、封装温度要求、耐候性、成本等。

常见的封装材料有环氧树脂、塑料封装、陶瓷封装等。

在选型过程中,需要根据具体应用场景的需求进行合理选择。

封装工艺流程设计封装工艺流程设计是封装工艺的核心,它直接决定了封装质量和性能。

封装工艺流程一般包括基底制备、粘接、线束焊接、封装胶固化、界面处理等多个步骤。

设计良好的封装工艺流程应该能够满足芯片的封装要求,并具备高效、稳定和可重复的特点。

封装设备选择封装设备的选择是封装工艺流程设计的重要一环。

合适的封装设备能够提供稳定的温度控制、良好的气体环境控制和高精度的动作控制等特点。

常见的封装设备有球栅阵列焊接设备、贴片机、封装脱脂设备等。

在选择设备时,需要考虑设备的性能、可靠性、维护成本和生产效率等因素。

封装工艺参数调优封装工艺参数调优是为了获得最佳的封装效果和性能。

在封装工艺参数调优过程中,需要考虑温度、时间、压力等参数的合理设置,以及不同材料和工艺步骤之间的协调。

通过不断调整工艺参数,优化封装工艺流程,达到最佳封装效果。

封装后测试封装后测试是为了验证封装质量和性能。

封装后测试通常包括电性能测试、可靠性测试和环境适应性测试等。

通过对封装芯片的各项指标进行测试和评估,可以有效地判定封装质量是否符合要求,并为后续的质量控制和改进提供重要数据支持。

半导体封装技术后固化工艺流程介绍

半导体封装技术后固化工艺流程介绍

一、介绍半导体封装技术半导体封装技术是将芯片和其它元件封装在一起,以保护芯片不受外界影响,并便于安装和使用的技术。

其主要步骤包括前固化、粘合、后固化、切割等。

二、半导体封装技术后固化工艺的重要性后固化工艺是半导体封装技术中不可或缺的一部分,它直接影响到封装件的质量和性能。

掌握后固化工艺流程至关重要。

三、半导体封装技术后固化工艺流程介绍1. 探针测试在封装过程中,需要对芯片进行探针测试,以确保其正常工作。

探针测试是一种非常关键的测试工艺,可发现芯片的问题,保证最终封装件的质量。

2. 后固化材料选择选择合适的后固化材料对封装件的性能至关重要。

适合的后固化材料能够增强封装件的耐热性、防潮性和绝缘性能,提高其可靠性。

3. 后固化温度和时间控制后固化的温度和时间对封装件的性能影响很大。

合理的固化温度和时间能够确保封装件在使用过程中不会出现老化、断裂等问题。

4. 后固化工艺监控通过对后固化工艺进行监控和调整,可以确保封装件的质量稳定。

监控指标包括固化温度、时间、环境湿度等。

及时发现问题并进行调整,是保证封装件质量的重要手段。

5. 器件存放和包装封装件固化后,需要进行适当的存放和包装,以防止其受潮和污染。

良好的存放和包装措施可以有效延长封装件的使用寿命。

四、结语后固化工艺流程对半导体封装技术起着至关重要的作用,只有严格控制后固化工艺流程,才能保证封装件的质量和性能。

希望本文对您了解半导体封装技术后固化工艺流程有所帮助。

后固化工艺是半导体封装技术的重要环节,它不仅影响到封装件的质量和性能,还直接关系到整个封装过程的稳定性和可靠性。

在半导体封装行业中,后固化工艺流程是一个至关重要的部分。

接下来,我们将更详细地讨论后固化工艺流程的相关内容。

1. 后固化温度和时间的控制后固化的温度和时间是确保封装件质量稳定的关键参数。

在后固化的过程中,需要对温度和时间进行严格的控制和监测。

通常情况下,固化的温度和时间会根据所使用的后固化材料和封装件的具体要求而有所不同。

半导体光电器件封装工艺_解释说明以及概述

半导体光电器件封装工艺_解释说明以及概述

半导体光电器件封装工艺解释说明以及概述1. 引言1.1 概述半导体光电器件封装工艺是将半导体光电器件通过封装技术进行保护和连接,从而实现其正常工作和应用的过程。

在现代科技领域中,半导体光电器件广泛应用于通信、信息技术、医疗设备等各个领域,其封装工艺的质量和稳定性对整个系统性能的影响至关重要。

1.2 文章结构本文将分为五个主要部分进行论述。

引言部分旨在概述半导体光电器件封装工艺,介绍文章的结构以及明确文章的目的。

第二部分将解释什么是半导体光电器件封装工艺,并探讨其重要性及作用以及封装工艺的发展历程。

第三部分将详细说明半导体光电器件封装工艺的主要步骤和流程,并给出各个步骤的具体操作与技术要点,还包括常见的封装工艺问题及相应解决方法。

第四部分将对半导体光电器件封装市场现状和趋势进行概述,并比较与评价国内外相关技术,同时展望未来的发展方向和挑战。

最后一部分是结论部分,总结文章主要观点和论证结果,给出对半导体光电器件封装工艺发展的建议,并提供读者启示和展望。

1.3 目的本文旨在全面介绍半导体光电器件封装工艺,解释其定义与重要性,并说明该工艺的步骤、操作技巧以及常见问题解决方法。

同时,通过概述市场现状和趋势以及对比国内外技术,探讨未来发展方向和面临的挑战。

通过本文的阐述,读者将对半导体光电器件封装工艺有更深入全面的了解,并能够为其在实际应用中提供指导和展望。

2. 半导体光电器件封装工艺解释:2.1 什么是半导体光电器件封装工艺:半导体光电器件封装工艺是将制造好的半导体光电器件在保护壳体中进行封装和组装的过程。

通过封装,可以保护器件不受外界环境的干扰,并提供连接外部电路所需的引脚接口,以便实现器件与其他元器件之间的联接。

2.2 封装工艺的重要性及作用:封装工艺在半导体光电器件制造过程中起着重要的作用。

首先,封装能够提供对光学元素、半导体芯片等关键部分的保护,降低因环境变化引起的温度、气候、振动等因素带来的不利影响。

半导体封装工艺介绍

半导体封装工艺介绍

Lead Frame 引线框架
Die Pad 芯片焊盘 Gold Wire
金线
Epoxy 银浆
Mold Compound 环氧树脂
Sino-i Technology Ltd.
ITSM / ITIL
Raw Material in Assembly(封装原材料)
【Wafer】晶圆
……
Copyright © Sino-i Technology Limited All rights reserved
Sino-i Technology Ltd.
ITSM / ITIL
FOL– Front of Line前段工艺
Wafer
2nd Optical 第二道光检
Die Attach 芯片粘接
Back
Grinding 磨片
Wafer Wash 晶圆清洗
Epoxy Cure 银浆固化
EOL
Wafer Mount 晶圆安装
【Gold Wire】焊接金线
➢实现芯片和外部引线框架的电性和物 理连接;
➢金线采用的是99.99%的高纯度金; ➢同时,出于成本考虑,目前有采用铜
线和铝线工艺的。优点是成本降低, 同时工艺难度加大,良率降低; ➢线径决定可传导的电流;0.8mil, 1.0mil,1.3mils,1.5mils和2.0mils ;
Copyright © Sino-i Technology Limited All rights reserved
陶瓷封 装
金属封 装
Sino-i Technology Ltd.
ITSM / ITIL
IC Package (IC的封装形式)
• 按与PCB板的连接方式划分为:

半导体封装工艺介绍

半导体封装工艺介绍

半导体封装工艺介绍半导体封装工艺是指将半导体芯片封装在外部保护材料中的过程。

封装是半导体制造中非常重要的一步,它能够为芯片提供保护、连接和散热,同时也决定了芯片的最终形态和性能。

在半导体封装工艺中,常见的封装形式包括晶圆级封装、芯片级封装和模块级封装。

晶圆级封装是指将整个晶圆进行封装,形成封装体积较大的组五芯片。

这种封装方式适用于需要处理大量器件,或者需要集成多个芯片的应用。

晶圆级封装工艺主要包括晶圆薄化、切割、球焊、倒装焊等步骤。

芯片级封装是指将单个芯片进行封装,形成封装体积较小的芯片组件。

这种封装方式适用于需要高度集成的应用,如移动设备、计算机等。

芯片级封装工艺主要包括铜薄膜封装、焊点球分离、球贴粘结等步骤。

模块级封装是指将多个芯片进行封装,形成具有特定功能的模块。

这种封装方式适用于需要实现特定功能的应用,如通信设备、汽车电子等。

模块级封装工艺主要包括芯片布局、芯片连接、封装材料应用等步骤。

在半导体封装工艺中,常见的封装材料包括基板、封装胶、焊料等。

基板是芯片的支撑材料,它能够提供机械支撑和交流电连接。

封装胶是用于保护芯片和连接线的材料,它能够提供机械强度和防潮性能。

焊料是用于芯片和基板之间的连接,它能够提供良好的导电性和机械强度。

在半导体封装工艺中,常见的连接技术包括焊接和粘接。

焊接是指通过加热将焊料熔化后使其流动,从而实现芯片和基板之间的连接。

焊接技术具有连接可靠、成本低、性能稳定等优点。

粘接是指使用粘胶剂将芯片和基板粘合在一起。

粘接技术具有连接灵活、成本低、可逆性等优点。

总之,半导体封装工艺是将半导体芯片封装在外部保护材料中的过程,它对于半导体设备的性能和可靠性有着重要影响。

不断发展的封装工艺将推动半导体技术的进一步发展,为各个领域的应用提供更加高效、可靠的解决方案。

半导体封装工艺介绍ppt

半导体封装工艺介绍ppt
详细描述
静电放电
半导体封装工艺发展趋势和挑战
05
将多个芯片集成到一个封装内,提高封装内的功能密度。
集成化封装
利用硅通孔(TSV)等先进技术实现芯片间的三维互连,提高封装性能。
2.5D封装技术
将多个芯片通过上下堆叠方式实现三维集成,提高封装体积利用率和信号传输速度。
3D封装技术
技术创新与发展趋势
详细描述
金属封装是将半导体芯片放置在金属基板的中心位置,然后通过引线将芯片与基板连接起来,最后对整个封装体进行密封。由于其高可靠性、高导热性等特点,金属封装被广泛应用于功率器件、高温环境等领域。
金属封装
总结词
低成本、易于集成
详细描述
塑料封装是将半导体芯片放置在塑料基板的中心位置,然后通过引线将芯片与基板连接起来,最后对整个封装体进行密封。由于其低成本、易于集成等特点,塑料封装被广泛应用于民用电子产品等领域。
半导体封装工艺中常见问题及解决方案
04
VS
机械损伤是半导体封装工艺中常见的问题之一,由于封装过程中使用到的材料和结构的脆弱性,机械损伤往往会导致封装失效。
详细描述
机械损伤包括划伤、裂纹、弯曲、断裂等情况,这些损伤会影响半导体的性能和可靠性,甚至会导致产品失效。针对这些问题,可以采取一系列预防措施,如使用保护膜保护芯片、优化封装结构、控制操作力度和避免不必要的搬动等。
腐蚀和氧化
静电放电是半导体封装工艺中常见的问题之一,由于静电的存在,会导致半导体器件的损伤或破坏。
总结词
静电放电是指由于静电积累而产生的放电现象,它会对半导体器件造成严重的危害,如电路短路、器件损坏等。为了解决这个问题,可以在工艺过程中采取一系列防静电措施,如接地、使用防静电设备和材料、进行静电测试等。同时,还可以在设计和制造阶段采取措施,如增加半导体器件的静电耐受性、优化电路设计等。

半导体封装工艺简介

半导体封装工艺简介

半导体封装⼯艺简介封装产品的基本结构:⾸先来看⼀下封装产品的基本结构1. 晶⽚托盘:将芯⽚黏贴到托盘上,使之固定牢靠,之后才能进⾏打线;2. 框架内引脚:与芯⽚bond pad⽤⾦线相连接的部分,位于⾦属框架的内部;3. 框架外引脚:⽤来与PCB版焊接的部分,在⾦属框架外⾯;4. ⾦线:它是封装⼯艺的关键部分,连接了芯⽚bond pad和框架内引脚,使之形成电⽓连接;5. 树脂:即外⾯塑料状物质,有⿊⾊和透明两种,将芯⽚⽤树脂材料包裹,按⼀定的模型定型后即形成了最终的封装外观,然后再讲⾦属框架原来互相连接的部分去掉,将溢出的胶去掉即可。

传统IC的封装流程:先通过划⽚⼑,将芯⽚按设定好的划⽚槽划开,然后将单个芯⽚黏贴在⾦属框架的晶⽚托盘上,然后进⾏打线,之后⽤树脂材料浇筑成模,然后将多余的⾦属框架连接部分去掉,将外引脚弯曲成需要的形状。

我们再来看⼀下封装⼯艺的截⾯图,这⼏个部分也就是上⾯提到的部分⽤截⾯图绘制出来了。

我们从头来讲,先是芯⽚切割⼯艺:要完成切割,就需要将硅⽚黏贴在蓝膜上,并置于铁环之上,⽤以固定,之后再⽤芯⽚切割机切割。

芯⽚切割机⽤的划⽚⼑。

我们来认识⼀下芯⽚切割机⽤的划⽚⼑划⽚⼯艺的基本过程如下:贴膜,烘烤,划⽚,清洗我们来认识⼀下划⽚机型号:下图给出了⼏种划⽚机的特点,其中按照主轴的单双分类,双轴划⽚机产能⼤的多,但要调试后速度,避免造成因为划⽚速度过快导致的应⼒。

划⽚前后对⽐⼏种常见的划⽚异常现象:晶粒黏贴:划⽚完进⼊晶粒黏贴晶粒黏贴⽤到了顶出装置和夹取装置。

焊线然后我们就开始进⼊到最关键的焊接部分,⾸先来看⼀下焊线陶瓷劈⼑,陶瓷劈⼑的结构见下图最左边,呈中空的管状,将⾦线铜中间穿过,然后⾦线在打⽕杆的作⽤下,⾼温烧球,这个烧出来的球,焊接时要⽤到陶瓷劈⼑第⼀焊点,另⼀个焊点是当焊线到达⾦属框架内引脚时,在劈⼑下降凹内引脚时形成的焊接,并通过劈在陶瓷劈⼑的压⼒和超声作⽤下在bond pad上形成第⼀焊点第⼆焊点。

半导体封装工艺介绍 LN

半导体封装工艺介绍 LN
• 按封装外型可分为: SOT 、QFN 、SOIC、TSSOP、QFP、BGA、CSP等;
封装形式和工艺逐步高级和复杂
• 决定封装形式的两个关键因素: ➢ 封装效率。芯片面积/封装面积,尽量接近1:1; ➢ 引脚数。引脚数越多,越高级,但是工艺难度也相应增加;
其中,CSP由于采用了Flip Chip技术和裸片封装,达到了 芯片面积/封装面积=1:1,为目前最高级的技术;
2020/6/12
IC Package (IC的封装形式)
• 按封装材料划分为:
塑料封装
陶瓷封装
金属封装主要用于军工或航天技术,无 商业化产品;
陶瓷封装优于金属封装,也用于军事产 品,占少量商业化市场;
塑料封装用于消费电子,因为其成本低 ,工艺简单,可靠性高而占有绝大部分 的市场份额;
2020/6/12
➢指芯片(Die)和不同类型的框架(L/F)和塑封料(EMC) 形成的不同外形的封装体。
➢IC Package种类很多,可以按以下标准分类:
• 按封装材料划分为: 金属封装、陶瓷封装、塑料封装
• 按照和PCB板连接方式分为: PTH封装和SMT封装
• 按照封装外型可分为: SOT、SOIC、TSSOP、QFN、QFP、BGA、CSP等;
BGA采用的是Substrate;
2020/6/12
Raw Material in Assembly(封 装原材料)
【Gold Wire】焊接金线
➢实现芯片和外部引线框架的电性和物 理连接;
➢金线采用的是99.99%的高纯度金; ➢同时,出于成本考虑,目前有采用铜
线和铝线工艺的。优点是成本降低, 同时工艺难度加大,良率降低; ➢线径决定可传导的电流;0.8mil, 1.0mil,1.3mils,1.5mils和2.0mils;

半导体封装工艺介绍

半导体封装工艺介绍

IC Package Structure(IC结构 图)
Lead Frame 引线框架 Die Pad 芯片焊盘 Gold Wire 金线 Epoxy 银浆
TOP VIEW
Mold Compound 环氧树脂
SIDE VIEW
Raw Material in Assembly(封装 原材料)
【Wafer】晶圆
一种表面贴装的封装形式一般引脚小于等于5个qfnquadflatnoleadpackage四方无引脚扁平封装qfpquadflatpackage四方引脚扁式封装soicsmalloutlineic小外形ic封装tssopthinsmallshrinkoutlinepackage薄小外形封装bgaballgridarraypackage球栅阵列式封装cspchipscalepackage芯片尺寸级封装icpackagestructureictopviewsideviewleadframe引线框架goldwirediepad芯片焊盘epoxymoldcompound环氧树脂rawmaterialrawmaterialleadframe引线框架提供电路连接和die的固定作用
Wedge:第二焊点。指金线在Cap的作用下,在Lead Frame上形成的 焊接点,一般为月牙形(或者鱼尾形);
W/B四要素:压力(Force)、超声(USG Power)、时间(Time)、 温度(Temperature);
FOL– Wire Bonding 引线焊接
内穿金线,并且在EFO的 作用下,高温烧球; 金线在Cap施加的一定 压力和超声的作用下, 形成Bond Ball; 陶瓷的Capillary 金线在Cap施加的一 定压力作用下,形成 Wedge;
……

半导体封装工艺介绍

半导体封装工艺介绍

半导体封装工艺介绍半导体封装工艺是在半导体芯片制造过程中的最后一个重要环节,它是将成品芯片连接到封装材料(如封装盖、引线、基板等)上的过程。

封装工艺的主要目的是为了保护芯片免受外部环境的影响,并提供连接外部电路所需的物理支持。

以下是半导体封装工艺的介绍。

1.封装材料选择封装材料的选择非常重要,它必须具备良好的热传导能力、高的可靠性和稳定性,以及良好的防尘、防湿、防腐蚀等性能。

常见的封装材料有陶瓷、塑料和金属等。

选择适当的封装材料可以提高芯片的性能和可靠性。

2.芯片倒装封装芯片倒装封装是指将芯片倒置,将芯片连接到封装基板上。

倒装封装可以减小芯片尺寸,提高集成度,减小信号传输距离,增加工作速度。

倒装封装需要进行焊接、接线、封装盖等工艺步骤。

3.球栅阵列封装(BGA)球栅阵列封装是一种常见的封装方式,它可以提供更多的引脚数量,并且引脚布局紧密,有利于功耗分布和信号传输。

BGA封装采用焊球连接芯片和封装基板,可以提高焊接可靠性和热传导能力。

4.多芯片封装(MCP)多芯片封装是将多个芯片集成在同一个封装盖内,节省空间、提高性能的封装技术。

MCP封装可以集成多个芯片,如存储芯片、逻辑芯片、功率芯片等,从而实现更高的集成度和性能。

5.系统级封装(SiP)系统级封装是将多个不同功能的芯片集成在同一个封装盖内,形成一个完整的系统。

系统级封装可以实现更高的集成度、更小的尺寸和更高的性能。

SiP封装通常包含各种芯片、射频模块、天线、滤波器等。

6.低温共热封装(LTCC)低温共热封装是一种在低温条件下封装的技术,可以提高封装成本和性能。

LTCC封装可以通过控制温度和时间来实现芯片和封装材料之间的结合,有利于提高封装精度和工艺稳定性。

7.高温共热封装(HTCC)高温共热封装是一种在高温条件下封装的技术,适用于对高温环境具有高要求的应用。

HTCC封装可以提供更大的功率传导和散热能力,增加芯片的可靠性和稳定性。

总之,半导体封装工艺是将芯片连接到封装材料上的过程,它直接影响到芯片的性能、可靠性和稳定性。

半导体封装后固化工艺流程介绍

半导体封装后固化工艺流程介绍

尊敬的读者:以下是有关半导体封装后固化工艺流程的介绍:一、工艺流程概述1. 半导体封装后固化工艺,是指将封装好的半导体芯片在制程结束后,通过一系列步骤使其达到固化状态,以保证产品的稳定性和可靠性。

2. 固化工艺流程主要包括固化剂的选择、固化工艺参数的确定、固化设备的配置和工艺的优化等环节。

二、固化剂的选择1. 固化剂是固化工艺流程中的关键因素之一,其选择直接影响到产品的性能和质量。

2. 固化剂应具有良好的流动性、可溶性和高温稳定性,以确保在固化过程中能够充分覆盖芯片表面并形成均匀的固化层。

3. 固化剂还应具有较高的硬度和耐腐蚀性,以保障产品在使用过程中不易受到外界环境的损害。

三、固化工艺参数的确定1. 固化工艺参数包括固化温度、时间、压力等关键参数,其确定需要进行大量的实验和分析工作。

2. 固化温度应根据固化剂的特性和半导体芯片的材料选取合适的范围,并通过实验确定最佳数值。

3. 固化时间需结合固化剂的固化速度和芯片的尺寸进行合理设置,以确保固化层能够充分固化而不产生裂纹。

4. 固化压力影响固化过程中固化剂的流动和薄膜的形成,需根据具体工艺条件合理调整。

四、固化设备的配置1. 固化设备是固化工艺流程中的重要工具,其配置应考虑到生产的规模和产品的特性。

2. 固化设备需具备良好的温度控制能力和压力控制能力,同时还应具备自动化程度高、稳定性好的特点。

3. 固化设备还需具备较好的兼容性,能够适应不同封装结构和封装材料的需求。

五、工艺的优化1. 在固化工艺的实际应用中,不断优化工艺是提高产品质量和生产效率的关键。

2. 通过不断的实验研究和数据分析,找出固化工艺中的瓶颈和问题,采取相应的改进措施,以确保固化工艺流程的稳定和可靠。

3. 还需要不断地引入新的技术和材料,以提高固化工艺的效率和降低生产成本。

总结:以上是半导体封装后固化工艺流程的介绍,固化工艺对于半导体产品的质量和可靠性具有至关重要的作用,需要在实际生产中严格控制各个环节,不断进行优化和改进,以确保产品能够达到预期的性能和寿命要求。

dfn封装工艺流程

dfn封装工艺流程

dfn封装工艺流程
dfn封装工艺流程是一种常用的半导体芯片封装方式,本文将介绍其工艺流程。

1. 芯片前处理:将芯片放置在基板上,进行清洗和腐蚀处理,以便封装时能更好地与基板粘合。

2. 内部焊接:在芯片上涂上金属粘接剂,并将其与连接线焊接在一起。

3. 外部焊接:将连接线引出芯片,焊接在封装基座上。

4. 填充树脂:将硅胶或环氧树脂注入封装基座中,使芯片和连接线固定在基座上,并保护芯片免受外部环境的影响。

5. 粗磨和薄磨:对封装好的芯片进行粗磨和薄磨处理,以便获得所需的封装厚度和平整度。

6. 贴片:将标识和封装信息贴到封装芯片上,以便生产和使用过程中进行标识和识别。

7. 终检和包装:对封装好的芯片进行终检和测试,将符合要求的芯片进行包装和封装,以便存储和运输。

以上便是dfn封装工艺流程的主要步骤,其具体实施过程可能因厂家和产品型号而有所不同。

- 1 -。

半导体封装设备与工艺

半导体封装设备与工艺
半导体封装设备与工艺
工艺类型
设备
基本工艺步骤
晶圆级封装(WLCSP)
掩模对准曝光机、步进式光刻机、电镀设备、刻蚀设备等
1. 制作绝缘层;2. 曝光、显影以绘制图案;3. 溅射涂覆金属层;4. 电镀形成金属层;5. 去除光刻胶和多余金属层;6. 在晶圆上形成导线和锡球(扇入型)或重新排列芯片焊盘并引接,通常需要钻孔、电镀等步骤。
引线框架封装
引线框架制造设备、模塑设备等
1. 制作引线框架;2. 将芯片固定到引线框架上;3. 用环氧树脂模塑料等塑料材料覆盖芯片;4. 进行固化等后续处理。
基板封装
基板制造设备、自动贴片设备、回流焊设备等
1. 制作基板;2. 自动贴片将芯片、元件等固定到基板上;3. 通过回流焊等方式进行电气连接;4. 进行后续测试和封装处理。
重新分配层(RDL)封装
重分配层加工设备(如光刻机、电镀机等)
使用晶圆级工艺重新排列芯片上的焊盘位置,并与外部采取电气连接方式。
倒片(Flip Chip)封装
倒片键合设备、电镀设备等
在晶圆上形成焊接凸点,然后通过倒片键合将芯片连接到基板或其他媒介上。
硅通孔(TSV)封装
TSV加工设备(如钻孔机、电镀机等)

半导体封装工艺

半导体封装工艺

半导体封装工艺
半导体封装工艺是将芯片封装成可使用的电子元件的过程,是半导体制造中不可或缺的一环。

在半导体封装工艺中,主要包括芯片切割、封装材料应用、焊接和测试等步骤。

芯片切割是半导体封装工艺的第一步。

它是将一个大片的芯片切割成小块,以便后续的封装处理。

芯片切割采用切割机器,通过高速旋转的切割刀,将大片的芯片切割成若干个小块。

切割后的芯片形状和大小不同,取决于不同的应用需求。

封装材料应用是半导体封装工艺的第二步。

在封装过程中,需要使用多种材料,如塑料、金属、陶瓷等,将芯片和外部环境隔离。

封装材料的选择取决于应用需求和生产成本。

常用的封装材料包括塑料封装、铅插封装和球栅阵列封装等。

焊接是半导体封装工艺的第三步。

焊接是将芯片和外部引脚连接在一起的过程。

焊接方法可以分为焊盘焊接和球栅阵列焊接。

其中,焊盘焊接是将芯片上的引脚焊接在封装基板上的焊盘上,而球栅阵列焊接则是将芯片上的焊球焊接在基板上的焊盘上。

测试是半导体封装工艺的最后一步。

测试是为了确保封装后的芯片可以正常工作。

测试过程包括功能测试、可靠性测试和尺寸测试等。

功能测试是为了检测芯片是否可以按照设计要求正常工作,可靠性测试是为了检测芯片的寿命和可靠性,尺寸测试是为了检测芯片的
尺寸是否符合设计要求。

总体来说,半导体封装工艺是一个复杂的过程,需要严谨的操作和高精度的设备。

随着半导体技术的不断发展,封装工艺也在不断创新和改进,以满足更加复杂的应用需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Bond Ball:第一焊点。指金线在Cap的作用下,在Pad上形成的焊接点 ,一般为一个球形;
Wedge:第二焊点。指金线在Cap的作用下,在Lead Frame上形成的焊 接点,一般为月牙形(或者鱼尾形);
W/B四要素:压力(Force)、超声(USG Power)、时间(Time)、 温度(Temperature);
➢线径决定可传导的电流;0.8mil, 1.0mil,1.3mils,1.5mils和2.0mils;
Raw Material in Assembly(封装 原材料)
【Mold Compound】塑封料/环氧树脂
➢主要成分为:环氧树脂及各种添加剂(固化剂,改性剂,脱 模剂,染色剂,阻燃剂等);
➢主要功能为:在熔融状态下将Die和Lead Frame包裹起来, 提供物理和电气保护,防止外一焊点
Cap牵引金 线上升
Cap运动轨迹形成 良好的Wire Loop
Cap下降到Lead Cap侧向划开,将金 Cap上提,完成一次 Frame形成焊接 线切断,形成鱼尾 动作
FOL– Wire Bonding 引线焊接
Wire Bond的质量控制:
Wire Pull、Stitch Pull(金线颈部和尾部拉力)
……
Raw Material in Assembly(封装 原材料)
【Lead Frame】引线框架
➢提供电路连接和Die的固定作用; ➢主要材料为铜,会在上面进行镀银、
NiPdAu等材料; ➢L/F的制程有Etch和Stamp两种; ➢易氧化,存放于氮气柜中,湿度小 于40%RH; ➢除了BGA和CSP外,其他Package都会采用Lead Frame,
脱离蓝膜; 2、Collect/Pick up head从上方吸起芯片,完成从Wafer
到L/F的运输过程; 3、Collect以一定的力将芯片Bond在点有银浆的L/F
的Pad上,具体位置可控; 4、Bond Head Resolution:
X-0.2um;Y-0.5um;Z-1.25um; 5、Bond Head Speed:1.3m/s;
FOL/前段
EOL/中段 Plating/电镀
EOL/后段 Final Test/测试
FOL– Front of Line前段工艺
Wafer
2nd Optical 第二道光检
Die Attach 芯片粘接
Back Grinding
磨片
Wafer Wash 晶圆清洗
Epoxy Cure 银浆固化
EOL

Introduction of IC Assembly Process IC封装工艺简介
IC Process Flow
Customer 客户
IC Design IC设计
SMT IC组装
Wafer Fab 晶圆制造
Wafer Probe 晶圆测试
Assembly& Test IC 封装测试
IC Package (IC的封装形式)
Ball Shear(金球推力)
Wire Loop(金线弧高)
Ball Thickness(金球厚度)
Crater Test(弹坑测试) Intermetallic(金属间化合物测试)
Thickness Size
FOL– 3rd Optical Inspection三 光检查
检查Die Attach和Wire Bond之后有无各种废品
Epoxy Storage: 零下50度存放;
Epoxy Aging: 使用之前回温,除 去气泡;
Epoxy Writing: 点银浆于L/F的Pad 上,Pattern可选;
FOL– Die Attach 芯片粘接
芯片拾取过程: 1、Ejector Pin从wafer下方的Mylar顶起芯片,使之便于
FOL– Wire Bonding 引线焊接
※利用高纯度的金线(Au) 、铜线(Cu)或铝线(Al)把 Pad 和 Lead通过焊接的方法连接起来。Pad是芯片上电路的外接 点,Lead是 Lead Frame上的 连接点。 W/B是封装工艺中最为关键的一部工艺。
FOL– Wire Bonding 引线焊接
FOL– Wire Bonding 引线焊接
陶瓷的Capillary
内穿金线,并且在EFO的 作用下,高温烧球;
金线在Cap施加的一定 压力和超声的作用下, 形成Bond Ball;
金线在Cap施加的一 定压力作用下,形成 Wedge;
FOL– Wire Bonding 引线焊接
EFO打火杆在磁 Cap下降到芯片的Pad
Package--封装体:
➢指芯片(Die)和不同类型的框架(L/F)和塑封料(EMC) 形成的不同外形的封装体。
➢IC Package种类很多,可以按以下标准分类:
• 按封装材料划分为: 金属封装、陶瓷封装、塑料封装
• 按照和PCB板连接方式分为: PTH封装和SMT封装
• 按照封装外型可分为: SOT、SOIC、TSSOP、QFN、QFP、BGA、CSP等;
EOL– Post Mold Cure(模后固 化)
FOL– 2nd Optical Inspection二光 检查
主要是针对Wafer Saw之后在显微镜下进行Wafer的外观检查,是否有 出现废品。
Chipping Die 崩边
FOL– Die Attach 芯片粘接
Write Epoxy 点银浆
Die Attach 芯片粘接
Epoxy Cure 银浆固化
➢磨片时,需要在正面(Active Area)贴胶带保护电路区域 同时研磨背面。研磨之后,去除胶带,测量厚度;
FOL– Wafer Saw晶圆切割
Wafer Mount 晶圆安装
Wafer Saw 晶圆切割
Wafer Wash 清洗
➢将晶圆粘贴在蓝膜(Mylar)上,使得即使被切割开后,不会散落;
IC Package (IC的封装形式)
• 按封装材料划分为:
塑料封装
陶瓷封装
金属封装主要用于军工或航天技术,无 商业化产品;
陶瓷封装优于金属封装,也用于军事产 品,占少量商业化市场;
塑料封装用于消费电子,因为其成本低 ,工艺简单,可靠性高而占有绝大部分 的市场份额;
金属封装
IC Package (IC的封装形式)
EOL– Molding(注塑)
Before Molding
After Molding
※为了防止外部环境的冲击,利用EMC 把Wire Bonding完成后的产品封装起 来的过程,并需要加热硬化。
EOL– Molding(注塑)
L/F L/F
Cavity
Molding Tool(模具)
➢EMC(塑封料)为黑色块状,低温存储,使用前需先回温。其特 性为:在高温下先处于熔融状态,然后会逐渐硬化,最终成型。
• QFN—Quad Flat No-lead Package 四方无引脚扁平封装 • SOIC—Small Outline IC 小外形IC封装 • TSSOP—Thin Small Shrink Outline Package 薄小外形封装 • QFP—Quad Flat Package 四方引脚扁平式封装 • BGA—Ball Grid Array Package 球栅阵列式封装 • CSP—Chip Scale Package 芯片尺寸级封装
BGA采用的是Substrate;
Raw Material in Assembly(封装 原材料)
【Gold Wire】焊接金线
➢实现芯片和外部引线框架的电性和物 理连接;
➢金线采用的是99.99%的高纯度金;
➢同时,出于成本考虑,目前有采用铜 线和铝线工艺的。优点是成本降低, 同时工艺难度加大,良率降低;
-L/F置于模具中,每 个Die位于Cavity中 ,模具合模。
-块状EMC放入模具 孔中
-高温下,EMC开始 熔化,顺着轨道流 向Cavity中
-从底部开始,逐渐 覆盖芯片
-完全覆盖包裹完毕 ,成型固化
EOL– Laser Mark(激光打字)
Before
After
在产品(Package)的正面或者背面 激光刻字。内容有:产品名称,生产 日期,生产批次等;
封装形式和工艺逐步高级和复杂
• 决定封装形式的两个关键因素:
➢ 封装效率。芯片面积/封装面积,尽量接近1:1; ➢ 引脚数。引脚数越多,越高级,但是工艺难度也相应增加;
其中,CSP由于采用了Flip Chip技术和裸片封装,达到了 芯片面积/封装面积=1:1,为目前最高级的技术;
IC Package (IC的封装形式)
IC Package Structure(IC结构 图)
Lead Frame 引线框架
Die Pad 芯片焊盘
Gold Wire 金线
TOP VIEW
Epoxy 银浆
Mold Compound 环氧树脂
SIDE VIEW
Raw Material in Assembly(封装 原材料)
【Wafer】晶圆
➢通过Saw Blade将整片Wafer切割成一个个独立的Dice,方便后面的 Die Attach等工序;
➢Wafer Wash主要清洗Saw时候产生的各种粉尘,清洁Wafer;
FOL– Wafer Saw晶圆切割
Wafer Saw Machine
Saw Blade(切割刀片):
Life Time:900~1500M; Spindlier Speed:30~50K rpm: Feed Speed:30~50/s;
➢Molding参数:
Molding Temp:175~185°C;Clamp Pressure:3000~4000N; Transfer Pressure:1000~1500Psi;Transfer Time:5~15s; Cure Time:60~120s;
相关文档
最新文档