六年级图形问题综合(奥数)含答案
六年级下册奥数试题-几何专题 全国通用(含答案) (1)
小学奥数几何专题1、(★★)如图,已知四边形ABCD 中,AB=13,BC=3,CD=4,DA=12,并且BD 与AD 垂直,则四边形的面积等于多少?[思 路]:显然四边形ABCD 的面积将由三角形ABD 与三角形BCD 的面积求和得到.三角形ABD 是直角三角形,底AD 已知,高BD 是未知的,但可以通过勾股定理求出,进而可以判定三角形BCD 的形状,然后求其面积.这样看来,BD 的长度是求解本题的关键.解:由于BD 垂直于AD ,所以三角形ABD 是直角三角形.而AB=13,DA=12,由勾股定理,BD 2=AB 2-AD 2=132—122=25=52,所以BD=5.三角形BCD 中BD=5,BC=3,CD=4,又32十42=52,故三角形BCD 是以BD 为斜边的直角三角形,BC 与CD 垂直.那么:ABCD S 四边形=ABD S ∆+BCD S∆=12×5÷2+4×3÷2=36.. 即四边形ABCD 的面积是36. 2、(★★)如图四边形土地的总面积是48平方米,三条线把它分成了4个小三角形,其中2个小三角形的面积分别是7平方米和9平方米.那么最大的一个三角形的面积是________平方米;[分析]:剩下两个三角形的面积和是 48-7-9=32 ,是右侧两个三角形面积和的2 倍,故左侧三角形面积是右侧对应三角形面积的2倍,最大三角形面积是 9×2=18。
3.(★★)将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3。
已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为多少?[思 路]:小升初中常把分数,百分数,比例问题处理成份数问题,这个思想一定要养成。
解:粗线面积:黄面积=2:3绿色面积是折叠后的重叠部分,减少的部分就是因为重叠才变少的,这样可以设总共3份,后来粗线变2份,减少的绿色部分为1份,所以阴影部分为2-1=1份,7 94、(★★)求下图中阴影部分的面积:【解】如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。
六年级奥数题图形题
六年级奥数题图形题1.填空(1)以A1~A7六年级奥数题图形题共组成( )条线段(2)下图中小于180°的角各有多少个?(3)下图中各有多少个长方形?(4)下面图形中有多少个三角形?(5)下列图中分别有多少个正方形?2.在下面点子图上,以这些点为顶点的正方形可画几个?3.把下图各分成四个大小相等,形状相同的图形。
4.用下面的6个图形拼成一个5×6的长方形。
(用粗线条在5×6的格子图上框出拼的方法)5.用四条直线分别画出交点数是1·3·5个的图形。
(下图是交点数为4个的图形)。
4条直线最多能有几个交点?6.如果把下图沿格子线分成形状相同·大小相等的两部分,那么共有几种分法?7.把一张正方形的纸剪成8个正方形。
(在下面正方形图上画出剪的方法)8.画一个三角形,使它的面积与下面的五边形面积相等。
9.下面图形中各有多少个梯形?10.下面图形中各有多少个三角形?11.下图中正四棱锥的底面和正方体的面是同样大小的正方形,将这两个面对齐粘合后,这多面体有多少个面?多少条棱?多少个顶点?12.一个正方形把平面分成两部分(如下图中的A ·B 两部分),那么两个正方形最多能把平面分成几部分?答案A 卷 1.(1)6×7÷2=21(条) (2)4×5÷2=10(个) (3)5×6÷2=15(个) (4)5×6÷2=15 15×4=60(个)(5)左图;42+32+22+12=30(个)右图;6×4+5×3+4×2+3×1=50(个) 2.6个 3.4,5,6,运用中心对称的原理,可以得到九种分法 7,可分成下图所示的8个正方形8,运用等底等高的两个三角形面积相等的知识,把图形变换如下。
9,36个,90个 10,27个,180个11,9个面,16条棱,9个顶点 12,分成10部分应用题1·电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?2·甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
六年级奥数题及答案-最多能把平面分成多少部分
六年级奥数题及答案-最多能把平面分成多少部分
平面上5个圆最多能把平面分成多少部分?
解答:1个圆能把平面分成2部分,2个圆与原来的圆产生2个交点,这两个交点把新圆分割出2段曲线,能得到2块新部分,共得到4部分.第3个圆与原来的圆最多产生4个交点,这4个交点把新圆分割出4段曲线,能得到4块新部分,共得到8部分.第4个圆与原来的圆最多产生6个交点,这6个交点把新圆分割出6段曲线,能得到6块新部分,共得到14部分。
第5个圆与原来的圆最多产生8个交点,这8个交点把新圆分割出8段曲线,能得到8块新部分,共得到22部分。
小学六年级奥数系列讲座几何综合(含答案解析)
几何综合(一)几何图形的设计与构造.涉及比例与整数分解,需要添加辅助线、寻找规律或利用对称性解的较为复杂的直线形和圆的周长与面积计算问题.1.今有9盆花要在平地上摆成9行,其中每盆花都有3行通过,而且每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示,我们给出四种不同的排法.2.已知如图12-1,一个六边形的6个内角都是120°,其连续四边的长依次是1、9、9、5厘米.求这个六边形的周长.【分析与解】如下图所示,将六边形的六条边分别延长,相交至三点,并将其标上字母,因为∠BAF=120°,而么∠IAF=180°-∠BAF=60°.又∠EFA=120°,而∠IFA=180°-∠EFA:60°,则△IAF为等边三角形.同理△BCG、△EHD、△IGH均为等边三角形.在△IAF中,有IA=IF=AF=9(厘米),在△BGC中,有BG=GC=BC=1(厘米),有IA+AB+BG=IG=9+9+1=19,即为大正三角形的边长,所以有IG=IH=GH=19(厘米).则EH=IH-IF-FE=19-9-5=5(厘米),在△EDH中,DH=EH=5(厘米),所以CD=GH-GC-DH=19-1-5=13(厘米).于是,原图中六边形的周长为1+9+9+5+5+13=42(厘米).3.图12-2中共有16条线段,每两条相邻的线段都是互相垂直的.为了计算出这个图形的周长,最少要量出多少条线段的长度?【分析与解】如下图所示,我们想像某只昆虫绕图形爬行一周,回到原出发点,那么往右的路程等于往左的路程,往上的路程等于往下的路程.于是只用量出往右的路程,往下的路程,再将它们的和乘以2即为所求的周长.所以,最少的量出下列6段即可.4.将图12-3中的三角形纸片沿虚线折叠得到图12-4,其中的粗实线图形面积与原三角形面积之比为2:3.已知图12-4中3个画阴影的三角形面积之和为1,那么重叠部分的面积为多少?【分析与解】设重叠部分的面积为x,则原三角形面积为1+2x,粗实线的面棚为1+x.因此(1+2x):(1+x)=3:2,解得x=1,即重叠部分面积为1.5.如图12-5,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形的面积是多少平方厘米?【分析与解】 如下图所示,在正六边形ABCDEF 中,与面积相等,12个组成小正六角星形,那么由6个及12个组成的正六边形的面积为16÷12×(12+6)=24(平方厘米).而通过下图,我们知道,正六边形ABCDEF 可以分成6个小正三角形,并且它们面积相等,且与六个角的面积相等,所以大正六角星形的积为24÷6×12=48(平方厘米).6.如图12-6所示,在三角形ABC 中,DC=3BD ,DE=EA .若三角形ABC 的面积是1.则阴影部分的面积是多少?【分析与解】 △ABC 、△ADC 同高,所以底的比等于面积比,那么有33.44ADC ABC ABC DC S S S BC ∆∆∆=⨯=⨯=而E 为AD 中点,所以13.28DEC ADC S S ∆∆== 连接FD ,△DFE 、△FAE 面积相等,设,FEA S x ∆=则.FDE S ∆的面积也为x ,11.44ABD ABC S S ∆∆==12,4BDF ABD FEA FDE S S S S x ∆∆∆∆=--=-而3.8FDC FDE DEC S S S x ∆∆∆=+=+ 13:(2);()1:348BDF FDC S S x x ∆∆=-+=,解得356x =.所以,阴影部分面积为333.8567DEC FEA S S ∆∆+=+=7.如图12-7,P 是三角形ABC 内一点,DE 平行于AB ,FG 平行于BC ,HI 平行于CA ,四边形AIPD 的面积是12,四边形PGCH 的面积是15,四边形BEPF 的面积是20.那么三角形ABC 的面积是多少?【分析与解】 有平行四边形AIPD 与平行四边形PGCH 的面积比为IP 与PH 的比,即为12:15=4:5.同理有FP:PG=20:15=4:3, DP:PE=12:20=3:5.如图12-7(a),连接PC 、HD ,有△PHC 的面积为152△DPH 与△PHC 同底PH ,同高,所以面积相等,即152DPH S ∆=,而△DPH 与△EP H 的高相等,所以底的比即为面积的比,有::3:5DPH EPH S S DP PE ∆∆==,所以551525.3322EPH DPH S S ∆∆=⨯=⨯⨯如图12-7(b)所示,连接FH 、BP ,4108;5IFP EPH FBP IP IP S S S PH PH ∆∆∆===⨯=如图12-7(c)所示,连接FD 、AP ,396.42DPG DFP APD PG PG S S S FP FP ∆∆∆===⨯=有925122015872.22ABC AIPD BEPFCGPHIFP DGP EHP S SSSS S S ∆∆∆∆=+++++=+++++=8.如图12-8,长方形的面积是小于100的整数,它的内部有三个边长是整数的正方形,①号正方形的边长是长方形长的512,②号正方形的边长是长方形宽的18.那么,图中阴影部分的面积是多少?【分析与解】 有①号正方形的边长为长方形长的512,则图中未标号的正方形的边长为长方形长的712. 而②号正方形的边长为宽的18,所以未标号的正方形的边长为长方形宽的78. 所以在长方形中有:712长=78宽,则长:宽=12:8,不妨设长的为12k ,宽为8k ,则①号正方形的边长为5k ,又是整数,所以k 为整数,有长方形的面积为962k ,不大于100.所以k 只能为1,即长方形的长为12,宽为8.于是,图中①号正方形的边长为5,②号正方形的边长为1,则未标号的正方形的边长为7,所以剩余的阴影部分的面积为: 22212851721.⨯---=9.如图12-9,三个一样大小的正方形放在一个长方形的盒内,A和B是两个正方形重叠部分,C,D,E是空出的部分,这些部分都是长方形,它们的面积比是A:B:C:D:E=1:2:3:4:5.那么这个长方形的长与宽之比是多少?【分析与解】以下用E横表示E部分横向的长度,E坚竖表示E部分竖向的长度,其他下标意义类似.有E横:D横=5:4,A横:B横=l:2.而E横+A横=D横+B横,所以有E横:D横:A横:B横=5:4:1:2.而A横+B横+C横=E横+A横对应为5+1=6,那么C横对应为3.而A面积:B面积:C面积=1:2:3,所以A坚=B坚=C坚.有A坚+C坚竖对应为6,所以A坚=C坚对应为3.那么长方形的竖边为6+C坚对应为9,长方形横边为E横+6+D横对应为5+6+4=15.所以长方形的长与宽的比为15:9=5:3.10.如图12-10,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是lO.那么,正方形盒子的底面积是多少?【分析与解】如下图所示,我们将黄色的正方形纸片向左推向纸盒的过缘,有露在外面的部分,黄色减少的面积等于绿色增加的面积,也就是说黄色、绿色部分露在外面部分的面积和不变.并且有变化后,黄色露出面积+红色部分面积,绿色露出面积+红色部分面积,都是小正方形纸片边长乘以大正方形盒子边长的积.所以,黄色露出面积+红色部分面积=绿色露出面积+红色部分面积,于是.黄色露出面积=绿色露出面积,而它们的和为14+10=24,即黄色露出面积=绿色露出面积=12.有黄:空白=红:绿,12:空白=20:12,解得空白=7.2,所以整个正方形纸盒的底面积为12+7.2+20+12=51.2.11.如图12-11,在长260厘米,宽150厘米的台球桌上,有6个球袋A,B,C,D,E,F,其中AB=EF=130厘米.现在从4处沿45°方向打出一球,碰到桌边后又沿45°方向弹出,当再碰到桌边时,仍沿45°方向弹出,如此继续下去.假如球可以一直运动,直至落入某个球袋中为止,那么它将落人哪个袋中?【分析与解】将每个点的位置用一组数来表示,前一个数是这个点到FA的距离,后一个数是点到FD的距离,于是A的位置为(0,150),球经过的路线为:(0,150)→(150,0) →(260,110) →(220,150) →(70,0) →(0,70) →(80,150) →(230,0) →(260,30) →(140,150) →(0,10) →(10,0) →(160,150) →(260,50) →(210,0) →(60,150) →(0,90) →(90,0) →(240,150) →(260,130) →(130,0).因此,该球最后落入E袋.12.长方形ABCD是一个弹子盘,四角有洞.弹子从A出发,路线与边成45度角,撞到边界即反弹,并一直按此规律运动,直到落人一个洞内为止.如图12-12.当AB=4,AD=3时,弹子最后落入B洞.问:若AB=1995,AD=1994时,弹子最后落入哪个洞?在落入洞之前,撞击BC边多少次?【分析与解】撞击AD边的点,每次由A向D移动2;撞击BC边的点,每次由C向B移动2.因为第一次撞击BC边的点距C点1,第一次撞击AB边的点距A点为2,1994÷2=997.所以最后落人D洞,在此之前撞击BC边997次.13.10个一样大的圆摆成如图12-13所示的形状.过图中所示两个圆心A,B作直线,那么直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是多少?【分析与解】直线AB的右上方的有2个完整的圆,2个半圆,1个1个而1个1个正好组成一个完整的圆,即共有4个完整的圆.那么直线AB的左下方有10-4=6个完整的圆,每个圆的面积相等,所以直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是4:6=2:3.14.在图12-14中,一个圆的圆心是0,半径r=9厘米,∠1=∠2=15°.那么阴影部分的面积是多少平方厘米?( 取3.14)【分析与解】有AO=OB,所以△A OB 为等腰三角形,AO=OC,所以△A OC为等腰三角形.∠ABO=∠1=15°,∠AOB=180°-∠1-∠ABO=150°. ∠ACO=∠2=15°,∠AOC=180°-∠2-∠ACO=150°. 所以 ∠BOC=360°-∠AOB-∠AOC=60°,所以扇形BOC 的面积为260942.39360π⨯⨯≈(平方厘米).15.图12-15是由正方形和半圆形组成的图形.其中P 点为半圆周的中点,Q 点为正方形一边的中点.已知正方形的边长为10,那么阴影部分的面积是多少?(π取3.14)【分析与解】 过P 做AD 平行线,交AB 于O 点,P 为半圆周的中点,所以0为AB 中点.有2ABCD DPC 101S 1010100S 12.522ππ=⨯==⨯⨯=半圆,(). AOP OPQB 101101S 510+37.5S 105550.2222∆⎡⎤⎛⎫=⨯⨯==++⨯⨯= ⎪⎢⎥⎝⎭⎣⎦梯形(), 阴影部分面积为ABCD AOP DPC OPQB S S S S 10012.537.55012.512.551.75.ππ∆+-=+--=+≈半圆梯形-几何综合(二)内容概述勾股定理,多边形的内角和,两直线平行的判别准则,由平行线形成的相似三角形中对应线段和面积所满足的比例关系.与上述知识相关的几何计算问题.各种具有相当难度的几何综合题.典型问题2.如图30-2,已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD 的边长为10厘米,那么图中阴影三角形BFD 的面积为多少平方厘米?【分析与解】 方法一:因为CEFG 的边长题中未给出,显然阴影部分的面积与其有关.设正方形CEFG 的边长为x ,有:=1010=100,ABCD S ⨯正方形2=x ,S 正方形CEFG 21110x-x =DG GF=(10-x)x=,222DGF S ∆⨯又1=1010=50,2ABD S ∆⨯⨯2110x+x =(10+x)x=.22BEF S ∆ 阴影部分的面积为:DGF ABD BEF ABCD CEFG S S S S S ∆∆∆++--正方形正方形2221010100505022x x x x x -+=++--=(平方厘米).方法二:连接FC ,有FC 平行与DB ,则四边形BCFD 为梯形.有△DFB 、△DBC 共底DB ,等高,所以这两个三角形的面积相等,显然,△DBC 的面积11010502⨯⨯=(平方厘米).阴影部分△DFB的面积为50平方厘米.4.如图30-4,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I等于多少度?【分析与解】为了方便所述,如下图所示,标上数字,有∠I=1800-(∠1+∠2),而∠1=1800-∠3,∠2=1800-∠4,有∠I=∠3+∠4-1800同理,∠H=∠4+∠5-1800,∠G=∠5+∠6-1800,∠F=∠6+∠7-1800,∠E=∠7+∠8-1800, ∠D=∠8+∠9-1800,∠C=∠9+∠10-1800,∠B=∠10+∠11-1800,∠A=∠11+∠3-1800则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×(∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11)-9×1800而∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11正是9边形的内角和为(9-2)×1800=12600.所以∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×12600-9×1800=90006.长边和短边的比例是2:1的长方形称为基本长方形.考虑用短边互不相同的基本长方形拼图,要求任意两个基本长方形之间既没有重叠,也没有空隙.现在要用短边互不相同且最小短边长为1的5个基本长方形拼接成一个更大的长方形.例如,短边长分别是1,2,5,6,12的基本长方形能拼接成大长方形,具体案如图30-6所示.请给出这5个基本长方形所有可能的选择方式.设a1=1<a2<a3<a4<a5分别为5条短边的长度,则我们将这种选择方式记为(a1,a2,a3,a4,a5),这里无需考虑5个基本长方形的拼图方案是否惟一.【分析与解】我们以几个不同的基本长方形作为分类依据,并按边长递增的方式一一列出.第一类情况:以为特征的有7组:第二类情况:以为特征的有6组:第三类情况有如下三组:共有16组解,它们是:(1,2,2.5,5,7.25),(1,2,2.5,5,14.5).(1,2,2.25,2.5,3.625),(1,2,2.25,2.5,7.25).(1,2,5,5.5,6),(1,2,5,6,11),(1,2,2.5,4.5,7),(1,2,2.5,4.5,14),(1,2,5,12,14.5),(1,2,5,12,29),(1,2,2.25,2.5,4.5),(1,2,5,6,12). 1020251,,2,,,999⎛⎫ ⎪⎝⎭(1,2,2.4,4.8,5), 131025147813101,,,,,1,,,,636333313⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.8.如图30-8,ABCD 是平行四边形,面积为72平方厘米,E ,F 分别为边AB,BC 的中点.则图形中阴影部分的面积为多少平方厘米?【分析与解】 如下图所示,连接EC ,并在某些点处标上字母,因为AE 平行于DC ,所以四边形AECD 为梯形,有AE:DC=1:2,所以:1:4AEG DCG S S ∆∆=, AGD ECG AEG DCG S S S S ∆∆∆∆⨯=⨯,且有AGD ECG S S ∆∆=,所以:1:2AEG ADG S S ∆∆=,而这两个三角形高相同,面积比为底的比,即EG :GD=1:2,同理FH :HD=1:2.有AED AEG AGD S S S ∆∆∆=+,而111822AED ABCD S S ∆=⨯⨯=(平方厘米) 有EG:GD=:AEG AGB S S ∆∆,所以1612AEG AED S S ∆∆=⨯=+(平方厘米) 21212AGD AED S S ∆∆=⨯=+(平方厘米) 同理可得6HFC S ∆=(平方厘米), 12DCH S ∆=(平方厘米),44624DCG AEG S S ∆∆==⨯=(平方厘米)又GHD DCG DCH S S S ∆∆∆=-=24-12=12(平方厘米)所以原题平行四边形中空白部分的面积为6+6+12=24(平方厘米),所以剩下的阴影部分面积为72-24=48(平方厘米).10.图30-10是一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米?【分析与解】 如下图所示,为了方便所叙,将某些点标上字母,并连接BG .设△AEG 的面积为x ,显然△EBG 、△BFG 、△FCG 的面积均为x ,则△ABF 的面积为3x ,120101002ABF S ∆=⨯⨯=即1003x =,那么正方形内空白部分的面积为40043x =. 所以原题中阴影部分面积为400800202033⨯-= (平方厘米).12.如图30-12,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径长都是1.求阴影部分的面积.【分析与解】 如下图所示,左图中的3个阴影部分面积相等,右图中的3个阴影部分的面积也相等.我们把左下图中的每一部分阴影称为A ,右下图中的每一部分阴影称为B .大半圆的面积为13332A B ++小圆的面积219322ππ=⨯⨯=而小圆的面积为π,则9133223A B πππ⎛⎫+=-÷= ⎪⎝⎭, 原题图中的阴影部分面积为小半圆面积与阴影A 、B 的面积和,即为5236πππ+=14.如图30-14,将长方形ABCD 绕顶点C 顺时针旋转90度,若AB=4,BC=3,AC=5,求AD 边扫过部分的面积.(π取3.14)【分析与解】 如下图所示,如下图所示,端点A 扫过的轨迹为AA A ''',端点D 扫过轨迹为DD D ''',而AD 之间的点,扫过的轨迹在以A 、D 轨迹,AD ,A D ''所形成的封闭图形内,且这个封闭图形的每一点都有线段AD 上某点扫过,所以AD 边扫过的图形为阴影部分.显然有阴影部分面积为A D C ACA ACD S S S S ''''∆∆+--直角扇形直角扇形CD D ,而直角三角形A D C ''、ACD 面积相等.所以=A D C ACA ACD ACA S S S S S S ''''''∆∆+---直角扇形直角扇形CD D 扇形扇形CD D222290909=(54)7.065()36036044AC CD ππππ-=-==平方厘米即AD 边扫过部分的面积为7.065平方厘米.。
六年级奥数题及答案
六年级奥数题及答案:图形(高等难度)1、如图,长方形ABCD中,E为的AD中点,AF与BE、B D分别交于G、H,OE垂直AD于E,交AF于O,已知A H=5cm,HF=3cm,求AG.2阴影面积:(高等难度)如右图,在以AB为直径的半圆上取一点C,分别以AC 和BC为直径在△ABC外作半圆AEC和BFC.当C点在什么位置时,图中两个弯月型(阴影部分)AEC和BFC的面积和最大。
3、巧克力豆:(高等难度)甲、乙、丙三人各有巧克力豆若干粒,要求互相赠送.先由甲给乙、丙,甲给乙、丙的豆数依次等于乙、丙原来各人所有豆数.依同办法,再由乙给甲、丙,所给豆数依次等于甲、丙各人现有的豆数.最后由丙给甲、乙,所给的豆数依次等于甲、乙各人现有的豆数.互赠后每人恰好各有豆32粒,问原来三人各有豆多少粒?4、得奖人数:(高等难度)六年级举行一次数学竞赛,共有若干名同学得奖,其中得一等奖的同学比余下的得奖人数的五分之一少三名,得二等奖的占领奖人数的三分之一,得三等奖的人数比二等奖的人数同学多21名,问得奖人数是多少?粮食问题:(高等难度)5、甲仓有粮80吨,乙仓有粮120吨,如果把乙仓的一部分粮调入甲仓,使乙仓存粮是甲仓的60%,需要从乙仓调入甲仓多少吨粮食?6、分苹果:(高等难度)有一堆苹果平均分给幼儿园大、小班小朋友,每人可得6个,如果只分给大班每人可得10个,问只分给小班时,每人可得几个?、7、巧算:(中等难度)计算:8、四位数:(中等难度)某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.9跑步狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
问:狗再跑多远,马可以追上它?、10排队有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()、11路程A,B,C三地的距离(单位:千米)如左下图所示。
六年级奥数数学几何综合训练一
年六年级奥数数学几何综合训练一————————————————————————————————作者:————————————————————————————————日期:2017年六年级外冲班数学几何综合训练一一、兴趣篇1.图中八条边的长度正好分别是1、2、3、4、5、6、7、8厘米.已知a=2厘米,b=4厘米,c=5厘米,求图形的面积.2.如图所示,∠1+∠2+∠3+∠4+∠5+∠6等于度.3.平行四边形ABCD周长为75厘米,以BC为底时高是14厘米(如图);以CD 为底时高是16厘米.求:平行四边形ABCD的面积.4.如图,一个边长为1米的正方形被分成4个小长方形,它们的面积分别是平方米、平方米、平方米和平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?5.如图,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是lO.那么,正方形盒子的底面积是多少?6.如图,在三角形ABC中,IF和BC平行,GD和AB平行,HE和AC平行.已知AG:GF:FC=4:3:2,那么AH:HI:IB和BD:DE:EC分别是多少?7.如图,已知三角形ABC的面积为60平方厘米,D、E分别是AB、AC边的中点,求三角形OBC的面积.8.在如图的正方形中,A、B、C分别是ED、EG、GF的中点.请问:三角形CDO 的面积是三角形ABO面积的几倍?9.如图,ABCD是平行四边形,面积为72平方厘米,E,F分别为AB,BC的中点,则图中阴影部分的面积为平方厘米.10.如图,在三角形ABC中,CE=2AE,F是AD的中点,三角形ABC的面积是1,那么阴影部分的面积是多少?二、拓展篇11.如图,A、B是两个大小完全一样的长方形,已知这两个长方形的长比宽长8厘米,图中的字母表示相应部分的长度.问:A、B中阴影部分的周长哪个长?长多少?12.如图,ABCDE是正五边形,CDF是正三角形,∠BFE等于多少度?13.一个各条边分别为5厘米、12厘米、13厘米的直角三角形,将它的短直角边对折到斜边上去与斜边相重合,如图所示.问:图中的阴影部分(即折叠的部分)的面积是多少平方厘米?14.图中大长方形被分成四个小长方形,面积分别为12、24、36、48.请问:图中阴影部分的面积是多少?15.三个面积都是12的正方形放在一个长方形的盒子里面,如图,盒中空白部分的面积已经标出,求图中大长方形的面积.16.如图,三角形ABC的面积为1,D、E分别为AB、AC的中点,F、G是BC边上的三等分点.求三角形DEF和三角形DOE的面积.17.如图,梯形ABCD的上底AD长10厘米,下底BC长15厘米.如果EF与上、下底平行,那么EF的长度为多少?18.如图,正六边形的面积为6,那么阴影部分的面积是多少?19.两盏4米高的路灯相距10米,有一个身高1.5米的同学行走在这两盏路灯之间,那么他的两个影子总长度是多少米?20.如图,D是长方形ABCD一条对角线的中点,图中已经标出两个三角形的面积为3和4,那么阴影直角三角形的面积是多少?21.如图,在三角形ABC中,AE=ED,D点是BC的四等分点,阴影部分的面积占三角形ABC面积的几分之几?22.如图,在三角形ABC中,三角形AEO的面积是1,三角形ABO的面积是2,三角形BOD的面积是3,则四边形DCEO的面积是多少?三、超越篇23.如图,长方形的面积是60平方厘米,其内3条长度相等且两两夹角为120°的线段将长方形分成了两个梯形和一个三角形.请问:一个梯形的面积是多少平方厘米?24.如图,P是三角形ABC内一点,DE平行于AB,FG平行于BC,HI平行于CA,四边形AIPD的面积是12,四边形PGCH的面积是15,四边形BEPF的面积是20.请问:三角形ABC的面积是多少?25.如图所示,正方形ABCD的面积为1.E、F分别是BC和DC的中点,DE与BF交于M点,DE与AF交于N点,那么阴影三角形MFN的面积为多少?26.如图,三角形ABC的面积为1,D、E、F分别是三条边上的三等分点,求阴影三角形的面积.27.如图,小悦测出家里瓷砖的长为24厘米,宽为10厘米,而且还测出了边上的中间线段均为4厘米,那么中间菱形的面积是多少平方厘米?28.如图,ED垂直于等腰梯形ABCD的上底AD,并交BC于G,AE平行于BD,∠DCB=45°,且三角形ABD和三角形EDC的面积分别为75、45,那么三角形AED 的面积是多少?29.在长方形ABCD中,E、F、G、H分别是边AB、BC、CD、DA上的点,将长方形的四个角分别沿着HE、EF、FG、GH对折后,A点与B点重合,C点与D点重合.已知EH=3,EF=4,求线段AD与AB的长度比.30.如图,在长方形ABCD中,AE:ED=AF:AB=BG:GC.已知△EFC的面积为20,△FGD的面积为16,那么长方形ABCD的面积是多少?2017年六年级外冲班数学几何综合训练一参考答案与试题解析一、兴趣篇1.图中八条边的长度正好分别是1、2、3、4、5、6、7、8厘米.已知a=2厘米,b=4厘米,c=5厘米,求图形的面积.【解答】解:如图所示,图形的面积为:7×2+5×(7﹣4)+6×1=14+15+6=35(平方厘米)答:图形的面积是35平方厘米.2.如图所示,∠1+∠2+∠3+∠4+∠5+∠6等于360度.【解答】解:∠3=∠7,所以∠2+∠3=180°﹣∠A;同理,∠6=∠8,所以∠1+∠6=180°﹣∠C;∠4+∠5=180°﹣∠B;则∠1+∠2+∠3+∠4+∠5+∠6,=180°×3﹣(∠A+∠B+∠C),=540°﹣180°,=360°,答:∠1+∠2+∠3+∠4+∠5+∠6=360°.故答案为:360.3.平行四边形ABCD周长为75厘米,以BC为底时高是14厘米(如图);以CD 为底时高是16厘米.求:平行四边形ABCD的面积.【解答】解:由平行四边形面积公式知14×BC=16×CD,即14BC=16CD,则BC:CD=16:14=8:7,BC=CD,又2×(BC+CD)=75,则BC+CD=37.5(厘米),CD+CD=37.5(厘米),CD=17.5(厘米),因此,平行四边形ABCD的面积为:16×17.5=280(平方厘米);答:平行四边形ABCD的面积为280平方厘米.4.如图,一个边长为1米的正方形被分成4个小长方形,它们的面积分别是平方米、平方米、平方米和平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?【解答】解:如图所示:+++=1(平方米);大正方形的边长就是1米;(FE×AE):(FE×EB)=:,即:AE:EB=3:4;AE就是大正方形边长的;1×=(米);(CH×HG):(HG×HD)=:;BE:EC=2:1;CH是大正方形边长的;1×=(米);FG=﹣=(米);×=(平方米);答:阴影部分的面积是平方米.5.如图,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是lO.那么,正方形盒子的底面积是多少?【解答】解:把黄块向左移动就会发现,黄色减少的面积等于绿色增加的面积,从而得出黄+绿=24,黄和绿各是24÷2=12,即两个长方形的面积都是12,设红块边长是b,与红色并排的绿边是a,则根据正方形的面积公式,得大正方形面积b2=20,两个长方形的面积ab=12,小正方形的面积a2=(ab)2÷b2=12×12÷20=144÷20,=7.2;底面积:20+12×2+7.2=51.2;答:正方形盒子的底面积是51.2.6.如图,在三角形ABC中,IF和BC平行,GD和AB平行,HE和AC平行.已知AG:GF:FC=4:3:2,那么AH:HI:IB和BD:DE:EC分别是多少?【解答】解:AG:GF:FC=4:3:2,则(AG+GF):FC=(4+3):2,即AF:FC=7:2;因为IF和BC平行,所以△AIF∽△ABC,则AI:IB=AF:FC=7:2;因为GD和AB平行,所以△FGO∽△FAI,则FO:OI=FG:GA=3:4;因为HE和AC平行,所以△IHO∽△IAF,则HI:AH=OI:FO=4:3;所以AH:HI:IB=3:4:2同理可证:BD:DE:EC=4:2:3答:AH:HI:IB=3:4:2;BD:DE:EC=4:2:3.7.如图,已知三角形ABC的面积为60平方厘米,D、E分别是AB、AC边的中点,求三角形OBC的面积.【解答】解:由题意可知AE=CE ,AD=BD ,根据等底同高的三角形的面积相等得:S △ADC=S △BDC=60÷2=30平方厘米,S △AEB=S △CBE=30(平方厘米), 所以S △ADC=S △AEB=30(平方厘米),则S △BOD=S △COE再根据等底同高的三角形的面积相等得:S △AOE=S △COE ,S △AOD=S △BOD ,所以S △AOE=S △COE=S △AOD=S △BOD ,S △ADC=S △AOE +S △COE +S △AOD=30(平方厘米),所以S △COE=30÷3=10(平方厘米),所以S △BOC 是:30﹣10=20(平方厘米),答:S △BOC 是20平方厘米.8.在如图的正方形中,A 、B 、C 分别是ED 、EG 、GF 的中点.请问:三角形CDO 的面积是三角形ABO 面积的几倍?【解答】解:因为四边形是正方形且A 、B 、C 分别是ED 、EG 、GF 的中点. 所以:AD=DE=CE=BE=DE ,线段AO=BE所以:S △BED =S △CAD ,S △AOD =S △BED =S △CAD ,S △ABD =S △CAD所以:S △AOB =S △BAD ﹣S △AOD=S△CAD﹣S△CAD=S△CADS△COD=S△CAD﹣S△AOD=S△CAD﹣S△CAD=S△CADS△CDO÷S△ABO=S△CAD÷S△CAD=3答:三角形CDO的面积是三角形ABO面积的3倍.9.如图,ABCD是平行四边形,面积为72平方厘米,E,F分别为AB,BC的中点,则图中阴影部分的面积为48平方厘米.【解答】解:DE、DF分别于AC交于点M、N,M、N是AC的三等分点因为平行四边形的面积=72平方厘米,=72÷2=36(平方厘米),则S△ADCS△ADM=S△DMN=S△DNC=S△ADC=×36=12(平方厘米),S△AEM=S△NFC=S△ADM=×12=6(平方厘米),所以阴影部分的面积=72﹣12﹣6﹣6=60﹣12,=48(平方厘米);答:阴影部分的面积是48平方厘米.故答案为:48.10.如图,在三角形ABC 中,CE=2AE ,F 是AD 的中点,三角形ABC 的面积是1,那么阴影部分的面积是多少?【解答】解:连接CF ,因为CE=2AE ,根据燕尾定理,所以==,同理,=,设S △AEF =1份,那么S △CEF =2份,因为F 是AD 的中点,S △CFD =S △ACF =S △AEF +S △CEF =1+2=3份, 同理,, 又因为==, 所以,所以S △BDF =S △ABF =3份,这样S △ABC =1+2+3+3+3=12份,阴影部分的份数是:2+3=5份,5÷12=,即1×=.二、拓展篇11.如图,A、B是两个大小完全一样的长方形,已知这两个长方形的长比宽长8厘米,图中的字母表示相应部分的长度.问:A、B中阴影部分的周长哪个长?长多少?【解答】解:图形A中阴影部分的周长是:2(a+a﹣b)+2(b+2b)=4a+4b,图形B中阴影部分的周长是:2(a+2b+a+b)=4a+6b,4a+6b﹣(4a+4b)=2b,又因为大长方形的长比宽长8厘米,即a+2b﹣(a+b)=8,可得b=8厘米,所以2b=2×8=16(厘米),答:图形B中的阴影部分的周长较长,比图形A中的阴影部分的周长长16厘米.12.如图,ABCDE是正五边形,CDF是正三角形,∠BFE等于多少度?【解答】解:∠BCF=∠EDF=108°﹣60°=48°,因为BC=CF,DF=DE,所以∠BFC=∠EFD=(180°﹣48°)÷2=66°,因此∠BFE=360°﹣66°×2﹣60°=168°.答:∠BFE等于168度.13.一个各条边分别为5厘米、12厘米、13厘米的直角三角形,将它的短直角边对折到斜边上去与斜边相重合,如图所示.问:图中的阴影部分(即折叠的部分)的面积是多少平方厘米?【解答】解:见下图:×13×DC=×(12﹣DC)×5,13×DC=60﹣DC×5,DC=(厘米);△ADC=△AEC=××5=(平方厘米).答:图中的阴影部分(即折叠的部分)的面积是平方厘米.14.图中大长方形被分成四个小长方形,面积分别为12、24、36、48.请问:图中阴影部分的面积是多少?【解答】解:如图,阴影部分面积为:是EF×AJ,设大长方形的长为a,宽为b,则EF=a﹣a=a,因此,阴影部分面积为×a×b,=×(a×b)=×(12+24+36+48)=×120=答:图中阴影部分的面积.故答案为:.15.三个面积都是12的正方形放在一个长方形的盒子里面,如图,盒中空白部分的面积已经标出,求图中大长方形的面积.【解答】解:由分析可知,小长方形3的面积=(大长方形的底边﹣2倍的正方形边长)×(大长方形宽﹣正方形边长)=3,小长方形4+小长方形5的面积=(大长方形底边﹣正方形边长)×(大长方形宽﹣正方形边长)=9,(大长方形底边﹣正方形边长)÷(大长方形的底边﹣2倍的正方形边长)=3,大长方形底边﹣正方形边长=3倍大长方形的底边﹣6倍的正方形边长,2倍大长方形的底边=5倍的正方形边长,大长方形的底边=2.5倍的正方形边长,则大长方形的宽=1.5倍正方形边长,大长方形面积=大长方形的底边×大长方形的宽=2.5倍正方形边长×1.5倍正方形边长=2.5×1.5倍的正方形面积=2.5×1.5×12=45.答:大长方形的面积是45.16.如图,三角形ABC的面积为1,D、E分别为AB、AC的中点,F、G是BC边上的三等分点.求三角形DEF和三角形DOE的面积.【解答】解:①过点A作线段BC的垂线,垂足为Q,过点D作线段BC的垂线,垂足为M,所以线段DM=AQ那么三角形ABC的面积是:BC×AQ÷2=1所以:BC×AQ=2因为D、E分别为AB、AC的中点,所以线段DE=BC,所以三角形DEF的面积:DE×DM÷2=×BC××AQ÷2=×2÷2=②又因为DE=,FG=,所以=,所以三角形DOE面积为:三角形DEF面积×3÷(3+2)=×3÷5=.答:三角形DEF的面积是,三角形DOE的面积.17.如图,梯形ABCD的上底AD长10厘米,下底BC长15厘米.如果EF与上、下底平行,那么EF的长度为多少?【解答】解:∵AD∥BC,EF∥BC,∴===,又==,==∴OE=BC=×15=6(厘米),OF=AD=×10=6(厘米)∴EF=OE+OF=6+6=12(厘米)答:EF的长度为12厘米.18.如图,正六边形的面积为6,那么阴影部分的面积是多少?【解答】解:如图,连结AC、BF、CE、DF,根据六正边形的特征及蝴蝶定理,阴影部分面积:×6=×6=答:阴影部分的面积是.故答案为:.19.两盏4米高的路灯相距10米,有一个身高1.5米的同学行走在这两盏路灯之间,那么他的两个影子总长度是多少米?【解答】解:如图所示:CD、EF为路灯高度,AB为该人高度,BM、BN为该人前后的两个影子.由题意得:b=4米,a=1.5米,DF=10米,∵AB∥CD,∴==,∴==即MB=DB同理BN=FB∴MB+BN=(DB+FB)=0.6×10=6(米)答:他的两个影子总长度是6米.20.如图,D是长方形ABCD一条对角线的中点,图中已经标出两个三角形的面积为3和4,那么阴影直角三角形的面积是多少?【解答】解:如图:设BC=x,阴影部分三角形的高为h,DC=y因为四边形ABCD是长方形,点O是对角线的中点,所以S△ABC =2×4=8,S△BCD=8所以:S△BWC=8﹣3=5即为:xh÷2=5xh=10所以S长方形ABCD=xy=4×4=16 xh:xy=10:16即为:h:y=5:8所以:==所以:=S△BQW=×5=答:阴影直角三角形的面积是.21.如图,在三角形ABC中,AE=ED,D点是BC的四等分点,阴影部分的面积占三角形ABC面积的几分之几?【解答】解:连接CE,设S△CDE=1,因为AE=ED,S△ACE=1,D点是BC的四等分点,根据燕尾模型可得:S△BDE =S△ABE=3,则,所以,S△AEF=,.22.如图,在三角形ABC中,三角形AEO的面积是1,三角形ABO的面积是2,三角形BOD的面积是3,则四边形DCEO的面积是多少?【解答】解:如图:过点O作线段OF∥BC交AC于点F,因为三角形AEO的面积是1,三角形ABO的面积是2,三角形BOD的面积是3,所以==,==所以:S△EOF :S△EBC=,S△AOF:S△ADC=设S△EOF =x,S四边形EODF=y所以x:(3+y+x)=1:9①(1+x):(1+x+y)=4:25②由①②解得:x=3,y=21所以四边形DCEO的面积是:3+21=24答:四边形DCEO的面积是24.三、超越篇23.如图,长方形的面积是60平方厘米,其内3条长度相等且两两夹角为120°的线段将长方形分成了两个梯形和一个三角形.请问:一个梯形的面积是多少平方厘米?【解答】解:过F点作FG⊥BC于G.因为∠BFC=120°,BF=CF=EF,所以∠FBG=30°,所以EF=BF=2FG,所以FG=EG,所以△BFC=长方形的面积×=10(平方厘米)(60﹣10)÷2=50÷2=25(平方厘米).答:一个梯形的面积是25平方厘米.24.如图,P是三角形ABC内一点,DE平行于AB,FG平行于BC,HI平行于CA,四边形AIPD的面积是12,四边形PGCH的面积是15,四边形BEPF的面积是20.请问:三角形ABC的面积是多少?【解答】解:DE平行于AB,FG平行于BC,HI平行于CA,四边形AIPD的面积是12,四边形PGCH的面积是15,四边形BEPF的面积是20.又因为四边形AIPD和四边形BEPF的高相等,所以DP:PE=12:20=3:5;则DG:GC=3:5,又因为三角形PDG与平行四边形PHCG高相等,所以三角形PDG的面积与四边形PHCG的面积的一半的比是3:5,所以三角形PDG的面积是:(15÷2)×3÷5=4.5,同理:三角形PEH的面积与平行四边形PFBE的面积的一半的比是:5:4,所以三角形PEH的面积是:(20÷2)×5÷4=12.5,同理三角形PIF的面积与四边形PEBF的面积的一半的比是4:5,所以三角形PIF的面积是:(20÷2)×4÷5=8,12+20+15+4.5+12.5+8=72.答:三角形ABC的面积是72.25.如图所示,正方形ABCD 的面积为1.E 、F 分别是BC 和DC 的中点,DE 与BF 交于M 点,DE 与AF 交于N 点,那么阴影三角形MFN 的面积为多少?【解答】解:连接CM 、EF 和AE ,因为E 、F 是中点,所以S △BEM =S △CEM =S △CMF =1÷4÷3=,因为F 是CD 的中点,所以S △DEF =1÷4÷2=,AN :FN=S △ADE :S △DEF =(1÷2):=1:4所以S △DFN =1÷4÷(1+4)=, 所以S △MFN =S △DEC ﹣S △CME ﹣S △CMF ﹣S △DFN =﹣﹣﹣ =.答:阴影三角形MFN 的面积为.26.如图,三角形ABC 的面积为1,D 、E 、F 分别是三条边上的三等分点,求阴影三角形的面积.【解答】解:1××× =××=×=.答:阴影三角形的面积是.27.如图,小悦测出家里瓷砖的长为24厘米,宽为10厘米,而且还测出了边上的中间线段均为4厘米,那么中间菱形的面积是多少平方厘米?【解答】解:左右两边三角形的高为:(10+4)×2÷7=4(厘米)上下两个三角形的高为:(3+4)×2÷14=1(厘米)四个小三角形的面积和为:(4×4÷2+4×1÷2)=20(平方厘米)大直角三角形的面积为:7×14÷2=49(平方厘米)空白部分面积为:49×4﹣20=176(平方厘米)中间大菱形面积为:24×10﹣176=64(平方厘米)答:中间菱形的面积为64平方厘米.28.如图,ED垂直于等腰梯形ABCD的上底AD,并交BC于G,AE平行于BD,∠DCB=45°,且三角形ABD和三角形EDC的面积分别为75、45,那么三角形AED 的面积是多少?【解答】解:过A 作AH ⊥BC ,垂足为H ,AH 交BD 于F ,则AH ∥EG .因为四边形ABCD 是等腰梯形,AD ∥BC ,∠DCB=45°,所以∠ABC=45°,AH=DG=GC=BH ,又因为AE ∥BD ,所以四边形AFDE 是平行四边形,DE=AF ,S △AED =S △AFD ,因为S △DEC =DE•GC=45,S △ABD =S △AFD +S △AFB =75,其中S △AFD =S △AED ,S △AFB =AF•BH=DE•GC=S △DEC =45,这样S △AED =S △ABD ﹣S △AFB =75﹣45=30.答:三角形AED 的面积是30.29.在长方形ABCD 中,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 上的点,将长方形的四个角分别沿着HE 、EF 、FG 、GH 对折后,A 点与B 点重合,C 点与D 点重合.已知EH=3,EF=4,求线段AD 与AB 的长度比.【解答】解:由对称性得:∠AEH=∠A'EH ,∠BEF=∠B'EF ,∠AEH +∠A'EH +∠BEF +∠B'EF=180°,∠A'EH +∠B'EF=90°,∠HEF=90°.根据勾股定理得:HF=5,HF ×EA'=HE ×EF=3×4=12,EA'=2.4.由对称性得:AE=A'E BE=B'E A'E=B'E 所以AE=BE AE=BE=2.4,AB=4.8.由对称性得:AH=A'H BF=B'F DH=D'H CF=C'F A'H +B'F +D'H +C'F=2HF=10AH +BF +DH +CF=10AD +BC=10AD=5AD:AB=5:4.8=25:24答:线段AD与AB的长度比为25:24.30.如图,在长方形ABCD中,AE:ED=AF:AB=BG:GC.已知△EFC的面积为20,△FGD的面积为16,那么长方形ABCD的面积是多少?【解答】解:设矩形ABCD的对边AB=CD=a,AD=BC=b,再设题中的比例常数AE:ED=AF:AB=BG:GC=k,把这个表达式变换成k和矩形ABCD边长a、b的表达式,则有:AE=BG=kb:(k+1)ED=GC=AF=ka,FB=(1﹣k)aS(矩形ABCD)=ab=S(Rt△AFE)+S(△FEC)+S(Rt△EDC)+S(Rt△FBC)=×AF×AE+20+×ED×CD+×FB×BC=×ka×kb:(k+1)+20+×b:(k+1)×a+×(1﹣k)a×b=×ab+20解ab,得:ab=(1)同理S(矩形ABCD)=ab=S(Rt△FBG)+S(△FGD)+S(Rt△GDC)+S(Rt△AFD)=FB×BG+16+GC×CD+AF×AD=(1﹣k)a×+16++b×a+ka×b=×ab+16解ab,得:ab=32(k+1)(2)根据(1)(2),解得k=,代入(1)或(2),得到S(矩形ABCD)=ab=52cm。
六年级下册奥数试题-几何专题 全国通用(含答案)
小学奥数几何专题1、(★★)如图,已知四边形ABCD 中,AB=13,BC=3,CD=4,DA=12,并且BD 与AD 垂直,则四边形的面积等于多少?[思 路]:显然四边形ABCD 的面积将由三角形ABD 与三角形BCD 的面积求和得到.三角形ABD 是直角三角形,底AD 已知,高BD 是未知的,但可以通过勾股定理求出,进而可以判定三角形BCD 的形状,然后求其面积.这样看来,BD 的长度是求解本题的关键.解:由于BD 垂直于AD ,所以三角形ABD 是直角三角形.而AB=13,DA=12,由勾股定理,BD 2=AB 2-AD 2=132—122=25=52,所以BD=5.三角形BCD 中BD=5,BC=3,CD=4,又32十42=52,故三角形BCD 是以BD 为斜边的直角三角形,BC 与CD 垂直.那么:ABCD S 四边形=ABD S ∆+BCD S∆=12×5÷2+4×3÷2=36.. 即四边形ABCD 的面积是36. 2、(★★)如图四边形土地的总面积是48平方米,三条线把它分成了4个小三角形,其中2个小三角形的面积分别是7平方米和9平方米.那么最大的一个三角形的面积是________平方米;[分析]:剩下两个三角形的面积和是 48-7-9=32 ,是右侧两个三角形面积和的2 倍,故左侧三角形面积是右侧对应三角形面积的2倍,最大三角形面积是 9×2=18。
3.(★★)将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3。
已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为多少?[思 路]:小升初中常把分数,百分数,比例问题处理成份数问题,这个思想一定要养成。
解:粗线面积:黄面积=2:3绿色面积是折叠后的重叠部分,减少的部分就是因为重叠才变少的,这样可以设总共3份,后来粗线变2份,减少的绿色部分为1份,所以阴影部分为2-1=1份,7 94、(★★)求下图中阴影部分的面积:【解】如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。
小学六年级数学奥数含答案及解题思路
小学六年级数学奥数含答案及解题思路数学奥数一直被认为是考验学生数学综合能力的一种高水平考试。
对于小学六年级的学生来说,参加数学奥数的挑战可以帮助他们加深对数学的理解和应用能力。
本文将介绍一些小学六年级数学奥数的题目,并给出相应的答案和解题思路。
题目一:计算问题已知:9.6 + 5.3 = 14.9, 74.2 - 32.1 = 42.1求解:74.2 + 9.6 - 32.1 + 5.3 = ?答案:56.9解题思路:首先,利用小学阶段已学过的数学运算法则,按照先加后减的原则,先计算74.2 + 9.6 = 83.8,再减去32.1,得到答案56.9。
题目二:图形问题给定一个矩形ABCD,AB = 6cm,BC = 8cm。
在边AB上取一点E,使得AE = 2cm。
连接DE交BC于点F,连接AF,并且延长交矩形BC 延长线于点G。
求解角AFG的大小。
答案:90°解题思路:在矩形BCDG中,对角线交叉点上的角度一般为90°。
因此,角AFG的大小为90°。
题目三:逻辑问题根据下面的数字序列,找出规律,填入问号处。
2, 4, 8, 16, ? , 64答案:32解题思路:观察数字序列可以发现每个数都是前一个数的2倍。
因此,缺失的数字应该是16的2倍,即32。
题目四:计算器问题将计算器上的数字1234随机按下,得到一个四位整数。
求解这个四位整数最大可以是多少?答案:4321解题思路:由于计算器上的数字不能重复使用,所以最大的数应该是将数位上的数字从大到小排列,即4321。
题目五:几何题已知三角形ABC,其中∠B = 60°,BC = 5cm。
在边BC上取一点D,使得BD = 3cm。
连接AD并延长至交BC的延长线上的点E。
求解AE的长度。
答案:8cm解题思路:根据三角形相似定理,可以得出AB/BC = AE/EC。
已知AB = BC = 5cm,代入得5/5 = AE/(3+2)。
六年级图形问题综合(奥数)含答案
平面图形计算(一)经典图形:1. 任意三角形ABC 中,CD=31AC ,EC=43BC ,则三角形CDE 的面积占总面积的31⨯43=41(为什么?)2. 任意平行四边形中任意一点,分别连接四个顶点,构成的四个三角形中,上下两个三角形面积之和等于左右两个三角形面积之和。
(为什么?)3. 任意梯形,连接对角线,构成四个三角形。
(1)腰上的两个三角形面积相等;(2)上下两个三角形面积之积等于左右两个三角形面积之积。
(为什么?)4. 正方形的面积等于边长的平方,或者等于对角线的平方÷2.等腰直角三角形面积等于直角边的平方÷2,或者等于斜边的平方÷4.(为什么?)例题: 例1. 如右图,三角形ABC 的面积是10,BE=2AB ,CD=3BC ,求三角形BDE 的面积。
例2. 如图,已知三角形ABC 的面积是1,延长AB 至D ,使BD=AB ,延长BC 至E ,使CE=2BC ,延长CA 至F ,使AF=3AC ,求三角形DEF 的面积。
例3. 如图,三角形ABC 的面积是180平方厘米,D 是BC 的中点,AE=ED ,EF=2BF ,求AEF 的面积。
例4. 如图,ABCD 是个长方形,DEFG 是个平行四边形,E 点在BC 边上,FG 过A 点,已知,三角形AKF 与三角形ADG 面积之和等于5平方厘米,DC=CE=3厘米。
求三角形BEK 的面积。
FK BEC DGA例5. 如图,三角形ABC 的AB 和AC 两条边分别被分成5等分。
三角形ABC 面积是500,求图中阴影部分的面积?例6. 如图,设正方形ABCD 的面积为120,E 、F 分别为边AB 、AD 的中点,FC=3GC ,则阴影部分的面积是多少?ABC DFEG例7. 在如图所示的三角形AGH 中,三角形ABC ,BCD ,CDE ,DEF,EFG ,FGH 的面积分别是1,2,3,4,5,6平方厘米,那么三角形EFH 的面积是多少平方厘米?ABCD EFG H例8. 如图,在平行四边形ABCD 中,AC 为对角线,EF 平行于AC ,如果三角形AED 的面积为12平方厘米,,求三角形DCF 的面积。
六年级下册奥数专题练习-立体图形的计算(含答案) 全国通用
立体图形的计算【表面积的计算】例1 一个正方体木块,棱长1米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大小不等的长方体60块(如图5.69)。
那么,这60块长方体的表面积的和是平方米。
(1988年北京小学数学奥林匹克邀请赛试题)讲析:不管每次锯的长方体大小如何,横着锯2次一共增加了4个正方形面;前后竖直方向锯3次共增加了6个正方形面;左右竖直方向锯4次共增加了8个正方形面。
原来大正方体有6个正方形面,所以一共有24个正方形面。
所以,60块长方体的表面积之和是(1×1)×24=24(平方米)。
例2 图5.70是由19个边长都是2厘米的正方体重叠而成的。
求这个立体图形的外表面积。
(北京市第一届“迎春杯”小学数学竞赛试题)讲析:如果按每一层有多少个正方体,然后再数出每层共有多少个外表面正方形,则很麻烦。
于是,我们可采用按不同的方向来观察的方法去计算。
俯视,看到9个小正方形面;正视,看到10个小正方形面;侧视,看到8个小正方形面。
所以,这个立体图形的表面积是(2×2)×[(9+10+8)×2]=216(平方厘米)。
【体积的计算】例1 一个正方体的纸盒中恰好能放入一个体积为628立方厘米的圆柱体,如图5.71,纸盒的容积有多大?(π取3.14)(全国第四届“华杯赛”复赛试题)讲析:因圆柱体的高、底面直径以及正方体的棱长都相等。
故可设正方即:正方体纸盒的容积是800立方厘米。
例2 在一个棱长4厘米的正方体的上面、右面、前面这三个面的中心分别挖一个边长1厘米的正方形小孔(如图5. 72所示),并通过对面,求打孔后剩下部分的体积。
(北京市第二届“迎春杯”小学数学竞赛试题)。
讲析:打完孔之后,在大正方体正中央就有一个1×1×1的空心小正方体。
三个孔的体积是(1×1×4)×3-(1×1×1)×2=10(立方厘米)。
六年级奥数题及答案(高等难度)
六年级奥数题及答案:图形(高等难度)1 图形:(高等难度)如图,长方形ABCD中,E为的AD中点,AF与BE、BD 分别交于G、H,OE垂直AD于E,交AF于O,已知AH=5cm,HF=3cm,求AG.图形答案:2图形面积:(高等难度)直角三角形ABC的两直角边AC=8cm,BC=6cm,以AC、B C为边向形外分别作正方形ACDE与BCFG,再以AB为边向上作正方形ABMN,其中N点落在DE上,BM交CF于点T.问:图中阴影部分(与梯形BTFG)的总面积等于多少?图形面积答案:3 应用题:(高等难度)我国某城市煤气收费规定:每月用量在8立方米或8立方米以下都一律收6.9元,用量超过8立方米的除交6.9元外,超过部分每立方米按一定费用交费,某饭店1月份煤气费是82.26元,8月份煤气费是40.02元,又知道8月份煤气用量相当于1月份的,那么超过8立方米后,每立方米煤气应收多少元?应用题答案:4 乒乓球训练(逻辑):(高等难度)甲、乙、丙三人用擂台赛形式进行乒乓球训练,每局2人进行比赛,另1人当裁判.每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时,发现甲共打了15局,乙共打了21局,而丙共当裁判5局.那么整个训练中的第3局当裁判的是_______.乒乓球训练(逻辑)答案:本题是一道逻辑推理要求较高的试题.首先应该确定比赛是在甲乙、乙丙、甲丙之间进行的.那么可以根据题目中三人打的总局数求出甲乙、乙丙、甲丙之间的比赛进行的局数.⑴丙当了5局裁判,则甲乙进行了5局;⑵甲一共打了15局,则甲丙之间进行了15-5=10局;⑶乙一共打了21局,则乙丙之间进行了21-5=16局;所以一共打的比赛是5+10+6=31局.此时根据已知条件无法求得第三局的裁判.但是,由于每局都有胜负,所以任意连续两局之间不可能是同样的对手搭配,就是说不可能出现上一局是甲乙,接下来的一局还是甲乙的情况,必然被别的对阵隔开.而总共31局比赛中,乙丙就进行了16局,剩下的甲乙、甲丙共进行了15局,所以类似于植树问题,一定是开始和结尾的两局都是乙丙,中间被甲乙、甲丙隔开.所以可以知道第奇数局(第1、3、5、……局)的比赛是在乙丙之间进行的.那么,第三局的裁判应该是甲.5唐老鸭和米老师赛跑:(高等难度)唐老鸭与米老鼠进行一万米赛跑,米老鼠的速度是每分钟125米,唐老鸭的速度是每分钟100米。
高斯小学奥数六年级下册含答案第04讲_曲线形问题综合提高
第四讲 曲线形问题综合提高本讲知识点汇总:一、 基本曲线形计算1. 圆:2ππC r d =⨯⨯=⨯;222ππ44πd C S r =⨯==. 2. 扇形:2π360nl r =⨯⨯⨯; 2π3602n l r S r ⨯=⨯⨯=. 3. 圆柱体:V S h =⨯底.4. 圆锥体:13V S h =⨯⨯底.二、 曲线形计算技巧:1. 割补法2. 平移、旋转3. 重叠(容斥)例1. (1)如图1,有一个长是10、宽是6的长方形,那么两个阴影部分的面积之差为多少?(π取3.14)(2)如图2,三角形ABC 是直角三角形,AB 长40厘米,以AB 为直径做半圆,阴影部分①比阴影部分②的面积小28平方厘米.求AC 的长度.(π取3.14)「分析」(1)阴影是不规则图形,无法直接求出面积,需要进行割补整体法求解;(2)阴影分别加上空白部分均会变成规则图形直接求出面积.练习1、如图,扇形AOB 的圆心角是90度,半径是2,C 是弧AB 的中点.求两个阴影部分的面积差.(π取3.14)例2. (1)如下左图,两个相同的直角扇形放在一起,重叠部分恰好是一个长方形,且长和宽分别为15和5.那么阴影部分的面积是多少?(π取3.14)(2)如下右图,以直角三角形ABC 的三条边为直径做半圆,已知6AB =,8AC =,那么,图中阴影部分的面积是多少?(π取3.14)「分析」(1)正方形的对角线刚好是扇形的半径;(2)这道题目可能会用到勾股定理.BC图1图2练习2、(1)如下左图,三角形ABC 是等腰直角三角形,以AC 为直径画半圆,以BC 为半径画扇形.已知10ACBC ==,那么阴影部分的面积是多少?(π取3.14)(2)如下右图,由一个长方形与两个直角扇形构成,其中阴影部分的面积是多少?(π取3.14)例3. 如图,一只小狗被拴在建筑物的一角,四周都是空地.建筑物是一个边长为10米的正方形,绳长是20米,那么小狗的活动范围能有多少平方米?(建筑外墙不可逾越,小狗身长忽略不计,π取3)「分析」首先画出小狗活动范围的图形,然后根据每块扇形的半径求出面积.练习3、如图,一只小狗被拴在建筑物的一角,四周都是空地.建筑物是一个边长为2米的等边三角形,绳长是3米,那么小狗的活动范围是多少?(建筑外墙不可逾越,小狗身长忽略不计,π取3)狗A 狗例4.一个半径为1的圆绕着边长为4的正方形滚动一周又回到原来的位置,扫过的面积是多少?(π取3.14)「分析」注意拐角处扇形的半径.练习4、一个半径为1的圆绕着边长为4的正六边形滚动一周又回到原来的位置,扫过的面积是多少?(π取3.14)例5.面上有7个大小相同的圆,位置如图所示.如果每个圆的面积都是10,那么阴影部分的面积是多少?(π取3.14)「分析」这道题目较难,需要进行巧妙的割补求解.例6.(1)如下左图,将对角线长度为6的正方形,按照如图所示的方式旋转一周,那么得到的旋转体的体积是多少?(π取3.14)(2)如下右图,将上底是2,下底是4,高是4的梯形,按照图中所示的方式旋转一周,那么得到的旋转体的体积是多少?(π取3.14)「分析」求出必要数据,结合公式即可得出答案.作业1. 如下图所示,如果正方形的边长为2,那么阴影部分的面积为多少?(π取3.14)2. 在下图中大圆的面积为30,三个小圆完全相同,那么图中阴影部分的面积为多少?3. 如图,阴影部分的面积是多少?(π取3.14)4. 一个半径为1的圆绕着边长为4的等边三角形滚动一周又回到原来的位置时,扫过的面积是多少?(π取近似值3.14)5. 如图,一只小狗被拴在建筑物的一角,四周都是空地.建筑物是一个边长为4米的等边三角形,绳长是6米,那么小狗的活动范围是多少?(建筑外墙不可逾越,小狗身长忽略不计,π取3)4狗第四讲 曲线形问题综合提高例7. 答案:(1)18.5;(2)32.8.解答:(1)大块“阴影+空白”刚好构成直角扇形,小块“阴影+空白”刚好构成长方形,所以直角扇形与长方形的面积差即是两块阴影面积的差21106018.54π⨯⨯-=. (2)“阴影①+空白”刚好构成半圆,“阴影②+空白”刚好等于直角三角形,半圆面积为21206282π⨯⨯=,所以,直角三角形面积为62828656+=,另一条直角边32.8AC =.例8. 答案:242.5;24.解答:(1)两个直角扇形面积之和减去长方形面积即为阴影面积: ()221515752242.52π⨯⨯+-⨯=.例9. 答案:1050.解答:狗的活动范围如图,分为A 、B 、C 三部分, 求面积得:22312010350105042πππ⨯⨯+⨯⨯==平方米.例10. 答案:44.56.解答:四个半径为2的直角扇形+四个相同的长方形 即为该圆扫过的面积,212424444.564π⨯⨯⨯+⨯⨯=.例11. 答案:20.解答:阴影包括中间的一个圆和周围六个花瓣状的小小图形.这个图形可以割补成一个顶角60°的扇形,因此六个这样的图形面积和正好等于一个圆;阴影部分的面积等于两个圆的面积,为20.例12. 答案:56.52;879275. 解答:(1)可以把得到的立体图形看做两个锥体,体积为2133256.523π⨯⨯⨯⨯=;可以把得到的立体图形看做两个锥体体积之差,体积为: 2211879248243375ππ⨯⨯⨯-⨯⨯⨯=. 练习:练习1、答案:0.简答:两个阴影分别加上下部的空白部分可得到扇形和半圆,而扇形和半圆面积相等,所以,面积之差是0.练习2、答案:28.5;12.765.简答:(1)半圆+圆心角是45度的扇形面积之和减去直角三角形面积:22111510101028.5282ππ⨯⨯+⨯⨯-⨯⨯=;(2)阴影面积为两个直角扇形面积之和减去长方形面积,2211521012.76544ππ⨯⨯+⨯⨯-=.练习3、答案:24.5.简答:解法同例3,首先画出小狗活动的范围图,然后把活动范围分成几个扇形来求解,2230024031=24.5360360ππ⨯⨯+⨯⨯.练习4、答案:60.56.简答:圆所扫过的面积可以分成6个长方形和6个扇形,面积之和为24262=60.56π⨯⨯+⨯.作业1.答案:0.86.简答:正方形的面积是4,圆的面积是3.14,所以,阴影的面积是0.86.2.答案:20.简答:大圆的半径是小圆的三倍,所以,大圆的面积是小圆面积的9倍,那么,阴影面积是整个面积的三分之二,即阴影面积为20.3.答案:4.56.简答:阴影面积为两个半圆的面积之和减去直角形的面积,两个半圆的面积之和为12.56,直角三角形的面积是8,所以,阴影面积为4.56.4.答案:36.56.简答:扫过的面积为三个相同的长方形,加三个相同的圆心角为120度的扇形,长方形总面积2×4×3=24,扇形总面积为12.56,所以,扫过的整个面积是36.56.5.答案:98.简答:活动范围由三个扇形构成,最大的扇形面积为半径是6的圆的四分之三,即90,两个小扇形的面积之和为18,总面积为98.。
六年级下册奥数试题——平移、旋转、割补(含答案)人教版
【例 11】 (武汉明心奥数挑战赛)如图所示,ABC 中,ABC 90 , AB 3 , BC 5 ,以 AC 为一边 向 ABC 外作正方形 ACDE ,中心为 O ,求 OBC 的面积.
E
E
D O
D O
A
A
3
3
B
5
C
B
5
C
F
【解析】如图,将 OAB 沿着 O 点顺时针旋转 90 ,到达 OCF 的位置. 由于 ABC 90 , AOC 90 ,所以 OAB OCB 180 .而 OCF OAB , 所以 OCF OCB 180 ,那么 B 、 C 、 F 三点在一条直线上. 由于 OB OF , BOF AOC 90 ,所以 BOF 是等腰直角三角形,且斜边 BF 为 5 3 8 ,所
那么 EAF EAB BAF EAB DAE 90 ,而 AEB 也是 90 ,所以四边形 AFBE 是直角梯 形,且 AF AE 3 ,
所以梯形 AFBE 的面积为:
3 5 3 1 12 ( cm2 ).
2
又因为 ABE 是直角三角形,根据勾股定理, AB2 AE2 BE2 32 52 34 ,所以
平移、旋转、割补
例题精讲
图形变换,是指不改变图形的大小、形状,只通过位置关系的改变(旋转、平移、折叠等),构成新的图形.
【例 1】 如下图,六边形 ABCDEF 中,AB ED ,AF CD ,BC EF ,且有 AB 平行于 ED ,AF 平行于 CD , BC 平行于 EF ,对角线 FD 垂直于 BD ,已知 FD 24厘米,BD 18 厘米,请问六边形 ABCDEF 的 面积是多少平方厘米?
.
F
E
E
A
D
六年级图形问题综合(奥数)含答案解析-精选.pdf
3. 任意梯形,连接对角线,构成四个三角形。 (1)腰上的两个三角形面积相等; ( 2)上下两个三角形 面积之积等于左右两个三角形面积之积。 (为什么?)
4. 正方形的面积等于边长的平方,或者等于对角线的平方 2,或者等于斜边的平方 4.(为什么?)
2.等腰直角三角形面积等于直角边的平方
例题: 例 1. 如 右图,三角形 ABC 的面积是 10,BE=2AB , CD=3BC ,求三角形 BDE 的面积。
6. 下图正方形 ABCD 边长是 10 厘米 , 长方形 EFGH 的长为 8 厘米 , 宽为 5 厘米 . 阴影部分甲与阴影部分乙
的面积差是 ______平方厘米 .
7. 如图所示 , 一个矩形被分成 A 、 B 、C 、 D 四个矩形 . 现知 A 的面积是 2cm2, B 的面积是 4cm2, C 的面积
H
F
D
B
ACE
G
例 8. 如 图,在平行四边形 ABCD中,AC为对角线, EF平行于 AC,如果三角形 AED的面积为 12 平方厘米,,
求三角形 DCF的面积。
专业 知识分享
D
C
完美 WORD 格式
F
A
E
B
练习:
1. 已知正方形 ABCD 的边长是 5cm,又 EF=FG , FD=DG ,求三角形 ECG 的面积。
B
A
8 平方厘米,三角形 COD
O
C
D
专业 知识分享
完美 WORD 格式
图形与面积 ( 一 ) 一、填空题
1. 如下图 , 把三角形 ABC 的一条边 AB 延长 1 倍到 D , 把它的另一边 AC 延长 2 倍到 E , 得到一个较大 的三角形 ADE , 三角形 ADE 的面积是三角形 ABC 面积的 ______倍 .
(完整版)六年级奥数图形问题精选
圆和组合图形(1)一、填空题1.算出圆内正方形的面积为 .2.右图是一个直角等腰三角形,直角边长2厘米,图中阴影部分面积是 平方厘米.120,以扇形的半径为边长画一个正方形,这个正方形的面积是120平方厘米.这个扇形面积是 .4.如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是 厘米.(保留两位小数)5.三角形ABC 是直角三角形,阴影部分①的面积比阴影部分②的面积小28长 厘米.6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是 度.8.图中扇形的半径OA =OB =6厘米.45=∠AOB , AC 垂直OB 于C ,那么图中阴影部分的面积是 平方厘米.)14.3(=π9.右图中正方形周长是20厘米.图形的总面积是 平方厘米.10.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.45二、解答题11. ABC 是等腰直角三角形. D 是半圆周的中点, BC 是半圆的直径,已知: AB =BC =10,那么阴影部分的面积是多少?(圆周率14.3=π)12.如图,半圆S 1的面积是14.13平方厘米,圆S 2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?13.如图,已知圆心是O ,半径r =9厘米,1521=∠=∠,那么阴影部分的面积是多少平方厘米?)14.3(≈π14.右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?———————————————答 案——————————————————————1. 18平方厘米.由图示可知,正方形两条对角线的长都是6厘米,正方形由两个面积相等的三角形构成.三角形底为6厘米,高为3厘米,故正方形面积为1822136=⨯⨯⨯(平方厘米).2. 1.14平方厘米.由图示可知,图中阴影部分面积为两个圆心角为45的扇形面积减去直角三角形的面积.即14.12122236045214.32=⨯⨯-⨯⨯⨯(平方厘米).3. 125.6平方厘米.由已知条件可知圆的半径的平方为120平方厘米.故扇形面积为6.12536012012014.3=⨯⨯(平方厘米).4. 3.09厘米.边结BE 、CE ,则BE=CE=BC=1(厘米),故三角形BCE 为等边三角形.于是60=∠=∠BCE EBC .BE=CE=045.136060214.3=⨯⨯(厘米).于是阴影部分周长为09.312045.1=+⨯(厘米).5. 32.8厘米.从图中可以看出阴影部分①加上空白部分的面积是半圆的面积,阴影部分②加上空白部分的面积是三角形ABC 的面积.又已知①的面积比②的面积小28平方厘米,故半圆面积比三角形ABC 的面积小28平方厘米.半圆面积为6282124014.32=⨯⎪⎭⎫ ⎝⎛⨯(平方厘米),三角形ABC 的面积为628+28=656(平方厘米).BC 的长为8.32402656=÷⨯(厘米).6. 13937平方厘米.将等腰直角三角形补成一个正方形,设正方形边长为x 厘米,则圆的半径为2x 厘米.图中阴影部分面积是正方形与圆的面积之差的81,于是有282114.322⨯=⎪⎭⎫⎝⎛⨯-x x ,解得1332002=x .故等腰直角三角形的面积为1393721133200=⨯(平方厘米). ⌒⌒7. 72.扇形面积是圆面积的511574.31=÷,故扇形圆心角为360的51即72.8. 5.13.三角形ACO 是一个等腰直角三角形,将AO 看作底边,AO 边上的高为3262=÷=÷AO (厘米),故三角形ACO 的面积为93621=⨯⨯(平方厘米).而扇形面积为13.1436045614.32=⨯⨯(平方厘米),从而阴影部分面积为14.13-9=5.13(平方厘米).9. 142.75.由正方形周长是20厘米,可得正方形边长也就是圆的半径为5420=÷(厘米).图形总面积为两个43圆面积加上正方形的面积,即75.1425243514.322=+⨯⨯⨯(平方厘米).10. 90平方厘米.图中阴影部分的面积是从两个以直角三角形直角边为直径的半圆及一个直角三角的面积和中减去一个以直角三角形斜边为直径的半圆的面积即()902114.3)220(2115122114.3)216(2114.3212222=⨯⨯÷-⨯⨯+⨯⨯÷+⨯⨯÷(平方厘米).11. 如图作出辅助线,则阴影部分的面积为三角形AED 的面积减去正方形BEDO 三角形AED 的面积是21)210()21010(⨯÷⨯÷+;积是2)210(÷,圆面积的41是2)210(14.341÷⨯⨯,故阴影部分面积为:22)210(14.341)210(21)210()21010(÷⨯⨯+÷-⨯÷⨯÷+125.32625.19255.37=+-=(平方厘米).12. 由已知半圆S 1的面积是14.13平方厘米得半径的平方为914.3213.14=÷⨯(平方厘米),故半径为3厘米,直径为6厘米. 又因圆S 2的面积为19.625平方厘米,所以S 2半径的平方为25.614.3625.19=÷(平方厘米),于是它的半径为2.5厘米,直径为5厘米. 阴影部分面积为55)56(=⨯-(平方厘米).13. 因OA=OB ,故三角形OAB 为等腰三角形,即 150215180,151=⨯-=∠=∠=∠AOB OBA , 同理150=∠AOC ,于是602150360=⨯-=∠BOC . 扇形面积为:39.42914.3360602=⨯⨯(平方厘米).14. 正方形可以分割成两个底为2,高为1的三角形,其面积为221221=⨯⨯⨯(平方厘米).正方形内空白部分面积为4个41圆即一个圆的面积与正方形面积之差,即2212-=-⨯ππ(平方厘米),所有空白部分面积为)2(2-π平方厘米. 故阴影部分面积为四个圆面积之和与两个空白面积之和的差,即为 8)2(22412=-⨯-⨯⨯ππ(平方厘米).十二、圆和组合图形(2)一、填空题1.如图,阴影部分的面积是 .2.大圆的半径比小圆的半径长6厘米,且大圆半径是小圆半径的4倍.大圆的面积比小圆的面积大 平方厘米.3.在一个半径是4.5厘米的圆中挖去两个直径都是2厘米的圆.剩下的图形的面积是 平方厘米.(π取3.14,结果精确到1平方厘米)4.右图中三角形是等腰直角三角形,阴影部分的面积是 (平方厘米).5.如图所求,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米.)14.3(=π6.如图,151=∠的圆的周长为62.8厘米,平行四边形的面积为100平方厘米.阴影部分的面积是 .2 1 27.有八个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形(如图).图中黑点是这些圆的圆心.如果圆周率1416.3=π,那么花瓣图形的面积是 平方厘米.8.已知:ABC D 是正方形, ED =DA =AF =2厘米,阴影部分的面积是 .9.图中,扇形BAC 的面积是半圆ADB 的面积的311倍,那么,CAB ∠是 度.10.右图中的正方形的边长是2厘米,以圆弧为分界线的甲、乙两部分的面积差(大减小)是 平方厘米.(π取3.14)二、解1.如图:阴影部分的面积是多少?四分之一大圆的半径为r .(计算时圆周率取722)12.已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.13.有三个面积都是S 的圆放在桌上,桌面被圆覆盖的面积是2S +2,并且重合的两块是等面积的,直线a 过两个圆心A 、B , 如果直线a 下方被圆覆盖的面积是9,求圆面积S 的值.14.如图所示,1的位置沿线段AB 、BC 、CD 滚到2的位置,如果AB 、BC 、C D 的长都是20厘米,那么圆板的正面滚过的面积是多少平方厘米?———————————————答 案——————————————————————1. 6.两个扇形面积相等,故阴影部分面积等于一个长为3,宽为2的长方形面积,为6个平方单位.2. 188.4.小圆的半径为2)14(6=-÷(厘米),大圆的半径为842=⨯(厘米).大圆的面积比小圆的面积大4.18814.3)28(22=⨯-(平方厘米).3. 57.305.57214.3)22(14.35.422=⨯⨯÷-⨯(平方厘米)≈57(平方厘米).4. 10.26.从圆中可以看出,阴影部分的面积是两个半圆的面积与三角形面积之差,即26.10621)26(14.322=⨯-÷⨯(平方厘米).5. 20.5.设圆的半径为r ,则圆面积即长方形面积为2r π,故长方形的长为r DC π=.阴影部分周长r r r r r r AD BA BC DC ππππ245241)(⨯=⨯+-++=+++=5.204.1645=⨯=(厘米).6. 6548(平方厘米).如图,连结OA 、AC ,过A 点作CD 的垂线交CD 于E .三角形ACD 的面积为502100=÷(平方厘米).又圆半径为10)214.3(28.6=⨯÷(厘米),因为151=∠又OA=OD ,故30215=⨯=∠AOC ,扇形AOC 的面积为61261014.3360302=⨯⨯(平方厘米).三角形AOC 的面积为25250=÷(平方厘米).方形面积为611256126=-(平方厘米),从而阴影部分的面积为654861150=-(平方厘米).7. 19.1416.⌒花瓣图形的结构是正方形的面积,加上四个43圆面积后,再割去四个半圆的面积.圆的半径为1厘米,正方形边长为4厘米.故花瓣图形的面积是1416.1916421144314222=+=⨯⨯⨯-⨯⨯⨯+πππ(平方厘米).8. 2.43平方厘米.如图,将①移到②得:阴影部分面积等于梯形CEFB 的 面积减去三角形CED 、三角形CDA 、扇形AFG 的面积,即43.236045214.32122122212)322(22=⨯⨯-⨯-⨯⨯-⨯⨯⨯+(平方厘米).9. 60.设扇形ABC 圆心角的度数是x ,半圆的半径OA=r ,有2221311)2(360r r x⨯⨯⨯=⨯⨯ππ,解得x=60.10. 0.14.扇形面积为14.341214.32=⨯⨯(平方厘米),甲部分面积为43.0214.32122=÷-⨯(平方厘米),乙部分面积为57.04122214.3=⨯⨯-÷(平方厘米),甲乙两部分面积差为14.043.057.0=-(平方厘米11. 如图,小正方形的边长为2r,则①的面积为:72227224122r rr r =⨯-⎪⎭⎫ ⎝⎛⨯⨯, ②的面积为222417272221r r r =-⎪⎭⎫ ⎝⎛⨯⨯,2227224172241r r r =⨯⨯-⨯⨯.即阴影部分面积为272r .12. 将阴影部分旋转后,可以看出所求阴影部分面积为大正方形面积的一半减去小正形的一半,即阴影部分面积等于10242622=÷-÷(平方厘米).13. 设一个阴影部分的面积为x ,则有:2223+=-S x S ,于是22+=x S (1)又9232=-x S ,于是有23184+-=Sx ,解得S=6.D14. 圆板的正面滚过的部分如右图阴影部分所求,它的面积为: )420(4614)220(22122-+⨯⨯+⨯-+⨯⨯ππ 07.228323204221)24(414)220(4222≈+=⨯⨯+⨯-⨯-⨯-+⨯πππ(平方厘米).面积计算(三)专题简析:对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。
六年级图形问题综合(奥数)含答案
平面图形计算(一)经典图形:1. 任意三角形ABC 中,CD=31AC ,EC=43BC ,则三角形CDE 的面积占总面积的31⨯43=41(为什么?)2. 任意平行四边形中任意一点,分别连接四个顶点,构成的四个三角形中,上下两个三角形面积之和等于左右两个三角形面积之和。
(为什么?)3. 任意梯形,连接对角线,构成四个三角形。
(1)腰上的两个三角形面积相等;(2)上下两个三角形面积之积等于左右两个三角形面积之积。
(为什么?)4. 正方形的面积等于边长的平方,或者等于对角线的平方÷2.等腰直角三角形面积等于直角边的平方÷2,或者等于斜边的平方÷4.(为什么?)例题: 例1. 如右图,三角形ABC 的面积是10,BE=2AB ,CD=3BC ,求三角形BDE 的面积。
例2. 如图,已知三角形ABC 的面积是1,延长AB 至D ,使BD=AB ,延长BC 至E ,使CE=2BC ,延长CA 至F ,使AF=3AC ,求三角形DEF 的面积。
例3. 如图,三角形ABC 的面积是180平方厘米,D 是BC 的中点,AE=ED ,EF=2BF ,求AEF 的面积。
例4. 如图,ABCD 是个长方形,DEFG 是个平行四边形,E 点在BC 边上,FG 过A 点,已知,三角形AKF 与三角形ADG 面积之和等于5平方厘米,DC=CE=3厘米。
求三角形BEK 的面积。
D例5. 如图,三角形ABC 的AB 和AC 两条边分别被分成5等分。
三角形ABC 面积是500,求图中阴影部分的面积?例6. 如图,设正方形ABCD 的面积为120,E 、F 分别为边AB 、AD 的中点,FC=3GC ,则阴影部分的面积是多少?ABC DFEG例7. 在如图所示的三角形AGH 中,三角形ABC ,BCD ,CDE ,DEF,EFG ,FGH 的面积分别是1,2,3,4,5,6平方厘米,那么三角形EFH 的面积是多少平方厘米?ABCD EFG H例8. 如图,在平行四边形ABCD 中,AC 为对角线,EF 平行于AC ,如果三角形AED 的面积为12平方厘米,,求三角形DCF 的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级图形问题综合(奥数)含答案例3. AKF 与三角形ADG 面积之和等于5平方厘米,DC=CE=3厘米。
求三角形BEK 的面积。
D例4. 如图,三角形ABC 的AB 和AC 两条边分别被分成5等分。
三角形ABC 面积是500,求图中阴影部分的面积?例5. 如图,设正方形ABCD 的面积为120,E 、F 分别为边AB 、AD 的中点,FC=3GC ,则阴影部分的面积是多少?A B C DF EG例6. 在如图所示的三角形AGH 中,三角形ABC ,BCD ,CDE ,DEF,EFG ,FGH 的面积分别是1,2,3,4,5,6平方厘米,那么三角形EFH 的面积是多少平方厘米?A B DEF G H例7. 如图,在平行四边形ABCD 中,AC 为对角线,EF 平行于AC ,如果三角形AED 的面积为12平方厘米,,求三角形DCF 的面积。
D CA B E F练习:1. 已知正方形ABCD 的边长是5cm ,又EF=FG ,FD=DG ,求三角形ECG 的面积。
E B CGDAF2. 正三角形ABC 的边长为12厘米,BD ,DE ,EF ,FG 四条线段把它的面积5等分,求AF ,FD ,DC ,AG ,GE ,EB 的长。
A B G E CDF3. 如图所示是某个六边形公园ABCDEF ,M 为AB 中点,N 为CD 中点,,P 为DE 中点,Q 为FA 中点,其中游览区APEQ 与BNDM 的面积之和为900平方米。
中间的湖泊面积为361平方米,其余的部分是草地,问草地面积共有多少平方米?A B C DEFQPN M4. 如图,AE=EC ,BD=2DC ,AF=3BF ,若三角形ABC 的面积为270平方厘米,求图中阴影部分的面积。
5. 如下图,正方形ABCD 的边长为12, P 是边AB 上的任意一点,M 、N 、I 、H 分别是边BC 、AD 上的三等分点,E 、F 、G 是边CD 上的四等分点,图中阴影部分的面积是______.6. 如图正方形ABCD 的边长是4厘米,CG 是3厘米,长方形DEFG 的长DG 是5厘米,那么它的宽DE 是______厘米.7. 如图,CE=4EA , BD=3CD ,AF=5BF 。
若三角形ABC 的面积为120平方厘米,求图中四个小三角形的面积。
8.DF与平行四边形ABCD的BC交于E点,与AB交于F点。
若三角形ABE的面积是97平方厘米,求三角形CEF的面积。
9.梯形ABCD,AB,CD分别是梯形的上,下底。
已知阴影部分的总面积为8平方厘米,三角形COD的面积是16平方厘米,则梯形ABCD的面积为多少平方厘米?图形与面积(一)一、填空题1.如下图,把三角形ABC的一条边AB延长1倍到D,把它的另一边AC延长2倍到E,得到一个较大的三角形ADE,三角形ADE的面积是三角形ABC面积的______倍.2. 如下图,在三角形ABC 中, BC =8厘米, AD =6厘米,E 、F 分别为AB 和AC 的中点.那么三角形EBF 的面积是______平方厘米.3. 如下图,,41,31AC CD BC BE ==那么,三角形AED 的面积是三角形ABC 面积的______.4. 下图中,三角形ABC 的面积是30平方厘米,D 是BC 的中点,AE 的长是ED 的长的2倍,那么三角形CDE 的面积是______平方厘米.5. 5. 现有一个5×5的方格表(如下图)每个小方格的边长都是1,那么图中阴影部分的面积总和等于______.6. 下图正方形ABCD 边长是10厘米,长方形EFGH 的长为8厘米,宽为5厘米.阴影部分甲与阴影部分乙的面积差是______平方厘米.7.如图所示,一个矩形被分成A、B、C、D四个矩形.现知A的面积是2cm2,B的面积是4cm2,C的面积是6cm2.那么原矩形的面积是______平方厘米.8.有一个等腰梯形,底角为450,上底为8厘米,下底为12厘米,这个梯形的面积应是______平方厘米.9.已知三角形ABC的面积为56平方厘米、是平行四边形DEFC的2倍,那么阴影部分的面积是______平方厘米.10.下图中,在长方形内画了一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是______.二、解答题11.已知正方形的面积是50平方厘米,三角形ABC两条直角边中,长边是短边的2.5倍,求三角形ABC的面积.12.如图,长方形ABCD中, AB=24cm,BC=26cm,E是BC的中点,F、G分别是AB、CD的四等分点, H为AD上任意一点,求阴影部分面积.13.有两张正方形纸,它们的边长都是整厘米数,大的一张的面积比小的一张多44平方厘米.大、小正方形纸的边长分别是多少?14.用面积为1,2,3,4的四张长方形纸片拼成如图所示的一个长方形.问:图中阴影部分面积是多少?一、填空题1.下图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是______厘米.2.第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一小方格的面积是 1.那么7,2,1三个数字所占的面积之和是______.3.下图中每一小方格的面积都是1平方厘米,那么用粗线围成的图形面积是______平方厘米.4.下图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是______平方厘米.5.在ABC∆的面积是18平方厘=,BE∆中,DCBD2AE=,已知ABC米,则四边形AEDC的面积等于______平方厘米.6. 下图是边长为4厘米的正方形,AE =5厘米、OB 是______厘米.7. 如图正方形ABCD 的边长是4厘米,CG 是3厘米,长方形DEFG的长DG 是5厘米,那么它的宽DE 是______厘米.8. 如图,一个矩形被分成10个小矩形,其中有6个小矩形的面积如图所示,那么这个大矩形的面积是______. 9.10. 如下图,正方形ABCD 的边长为12, P 是边AB 上的任意一点,M 、N 、I 、H 分别是边BC 、AD 上的三等分点,E 、F、G 是边CD 上的四等分点,图中阴影部分的面积是______.2523036 16 1211. 下图中的长方形的长和宽分别是6厘米和4厘米,阴影部分的总面积是10平方厘米,四边形ABCD 的面积是______平方厘米.二、解答题12. 图中正六边形ABCDEF 的面积是54.PF AP 2=,BQ CQ 2=,求阴影四边形CEPQ 的面积.13. 如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.14. 一个周长是56厘米的大长方形,按图35中(1)与(2)所示意那样,划分为四个小长方形.在(1)中小长方形面积的比是: 2:1:=B A ,2:1:=C B .而在(2)中相应的比例是3:1:=''B A ,3:1:=''C B .又知,长方形D '的宽减去D 的宽所得到的差,与D '的长减去在D 的长所得到的差之比为1:3.求大长方形的面积.15. 如图,已知5=CD ,7=DE ,15=EF ,6=FG .直线AB 将图形分成两部分,左边部分面积是38,右边部分面积是65.那么三角形ADG 面积是______.(一)答案:1. 6.如下图,连接BE ,因为AC CE 2=,所以,ABC BCE S S ∆∆=2,即ABCABE S S ∆∆=3.又因为BDAB =,所以,BDE ABE S S ∆∆=,这样以来,ABC ADE S S ∆∆=6.ABC∆的面积 的21,EBF ∆的面积又是ABF∆的面积的21.又因为24682121=⨯⨯=⨯=∆AD BC S ABC (平方厘米), 所以6242121=⨯⨯=∆EBF S (平方厘米). 3. 21.由,41,31AC CD BC BE ==可知AC AD BC EC 4,332==.因为ABC ∆与AEC∆是同一个顶点,底边在同一条线段,所以这两个三角形等高,则三角形面积与底边成正比例关系,因此ABC AEC S S ∆∆=32.同理可知AEC AED S S ∆∆=43.这样以来,AED ∆的面积是ABC ∆的32的43,即是ABC ∆的面积的21. 所以,AED ∆的面积是ABC ∆的21. 4. 5.因为D 是BC 的中点,所以三角形ADC 和三角形ABD 面积相等(等底、等高的三角形等积),从而三角形ADC 的面积等于三角形ABC 面积的一半,即30÷2=15(平方厘米).在CDE ∆与ADC ∆中,DA DE 31=,高相等,所以CDE ∆的面积是ADC ∆面积的31.即CDE ∆的面积是51531=⨯(平方厘米) 5. 10三个阴影三角形的高分别为3,2,2,底依次为2,4,3,所以阴影部分面积总和等于10322142212321=⨯⨯+⨯⨯+⨯⨯. 6. 60设正方形ABCD 的面积为a ,长方形EFGH 的面积为b ,重叠部分EFNM 的面积为c ,则阴影部分的面积差是:b a c b c a -=---)()(.即阴影部分的面积差与重叠部分的面积大小无关,应等于正方形ABCD的面积与长方形EFGH 的面积之差.所求答案:10×10-8×5=60(平方厘米).7. 24图中的四个矩形是大矩形被两条直线分割后得到的,矩形的面积等于一组邻边的乘积.从横的方向看,两个相邻矩形的倍比关系是一致的,B 是A 的2倍,那么D也应是C 的2倍,所以D 的面积是2×6=122cm ,从而原矩形的面积是2+4+6+12=242cm .8. 20如下图,从上底的两个端点分别作底边的垂线,则BCFE是矩形, 22)812(=÷-==CD AB (厘米).因为045=∠A ,所以ABE ∆是等腰直角三角形,则2==AB BE (厘米).根据梯形的求积公式得:()2022128=⨯+=梯形S (平方厘米). 9. 14由已知条件,平行四边形DEFC 的面积是:56÷2=28(平方厘米)如下图,连接EC,EC 为平行四行形DEFC 的对角线,由平行四边形的性质如,S S DEC21=∆DEFC2821⨯=14=(平方厘米).在AED ∆与CED ∆中,ED 为公共底边,DE 平行于AC ,从而ED 边上的高相等,所以,CED AEDS S ∆∆=14=(平方厘米).10. 97因为长方形的面积等于ABC ∆与ECD ∆的面积和,所以ABC ∆与ECD ∆重叠部分的面积等于长方形未被这两个三角形盖住部分的面积和,即97133549=++=影阴S .11. 画两条辅助线如下图,根据条件可知,正方形面积是长方形ABCD 面积的2.5倍.从而ABCD的面积是50÷2.5=20(平方厘米).所以ABC ∆的面积是20÷2=10(平方厘米).12. 连结BH ,BEH ∆的面积为)(21624)236(212cm =⨯÷⨯.把BHF ∆和DHG∆结合起来考虑,这两个三角形的底BF 、DG 相等,且都等于长方形宽的41,它们的高AH 与DH 之和正好是长方形的长,所以这两个三角形的面积之和是:)(212112DH AH BF DH DG AH BF +⨯⨯=⨯⨯+⨯⨯ )(10836244121212cm AD BF =⨯⨯⨯=⨯⨯=.于是,图中阴影部分的面积为216+108=324)(2cm .13. 把两张正方形纸重叠在一起,且把右边多出的一块拼到上面,成为一个长方形,如图:这个长方形的面积是44平方厘米,它的长正好是两个正方形的边长的和,它的宽正好是两个正方形的边长的差.因为两个整数的和与它们的差是同奇或同偶,而44又只能分解成下面的三种形式: 44=1×44=2×22=4×11.所以,两个正方形的边长的厘米数的和与差只能是22与2.于是,两个正方形的边长是(22+2)÷2=12(厘米),12-2=10(厘米).14. 如图大长方形面积为1+2+3+4=10.延长RA 交底边于Q,延长SB 交底边于P .矩形ABPR 面积是上部阴影三角形面积的2倍.矩形ABSQ 是下部阴影三角形面积的2倍.所以矩形RQSP 的面 积是阴影部分面积的两倍.知1,CD CB 73=CDCD CD CA CB AB 2123173=-=-=∴因此矩形RQSP 的面积是大矩形面积的212,阴影部分面积是大矩形面积的211.阴影部分面积=211×10=2110.(二)答案:1. 170.每个小正方形的面积为400÷16=25平方厘米,所以每个小正方形的边长为5cm,因此它的周长是34×5=170厘米.2. 25. 7,2,1所占面积分别为7.5,10和7.5 .3. 6.5.直接计算粗线围成的面积是困难的,我们通过扣除周围的正方形和直角三角形来计算.周围有正方形3个,面积为1的三角形5个,面积为1.5的三角形一个,因此围成面积是4×4-3-5-1.5=6.5(平方厘米).4. 24仿上题,大、小两个正方形面积之和减去两只空白三角形的面积和,所得的差就是阴影部分的面积.]2)84(4288[8422+⨯+⨯-+=16+64-(32+24)=80-56=24(平方厘米)5. 12如下图,连接AD ,因为DC BD 2=,所以ADC ABD S S ∆∆=2;又18==+∆∆∆ABC ADC ABD S S S ,所以12=∆ABD S .因为BEAE =,所以621===∆∆∆ABD ADE BDE S S S ;因此12618=-=-=∆∆BDEABCAEDC SSS(平方厘6. 3.2如下图,连接BE ,则8442121=⨯⨯==∆正方形S S ABE (平方厘米).从另一角度看,OBS ABE ⨯⨯=∆521,于是8521=⨯⨯OB .528÷⨯=∴OB =3.2(厘米)7. 3.2如下图,连接AG ,则AGD ∆的面积是正方形ABCD 面积的21,也是长方形 DEFG 的面积的21,于是长方形DEFG 的面积等于正方形ABCD的面积4×4=16(平方厘米).2.3516=÷=∴DE (厘米).8. 243我们用A ,B ,C ,D 分别表示待计算的小矩形面积上、下两个矩形,长是相同的.A 25 20 30 D36B16C12因此它们的面积之比,就是宽之比,反之,宽之比,就是面积之比.这样就有:20:16=A:36,45163620=⨯=A ;20:16=25:B,20202516=⨯=B ;20:16=30:C,24203016=⨯=C ; 20:16=D :12, 15161220=⨯=D .因此,大矩形的面积是:45+36+25+20+20+16+30+24+15+12=243 9. 60 如下图,连接PD ,则阴影部分就是由四个三角形: PDH ∆,PGD ∆,PEF ∆和PMN ∆组成.PGD∆和PEF∆的底都有3,高为12,所以1812321=⨯⨯==∆∆PEF PGD S S .PDH ∆和PMN ∆的底都是4,两条高分别为PA 和PB 则:PB PA S S PMN PDH ⨯⨯+⨯⨯=+∆∆421421=2(PA +PB )=2×12=24所以,阴影部分的面积是:++∆∆PEF PGD S S PMNPDH S S ∆∆+=18+18+24=6010. 4长方形EFGH的面积是6×4=24(平方厘米)1221==+∴∆∆EFGH AHG AEF S S S (平方厘米)阴影总面积S S S S S AHG AEF ADH EBA -+=+∴∆∆∆∆=12-10=2(平方厘米)又6244141=⨯==∆EFGH ECH S S (平方厘米)所以,四边形ABCD 的面积等于:)(ADHEBA ECH SS S ∆∆∆+-=6-2=4(平方厘米)11. 如图,将正六边形ABCDEF 等分为54个小正三角形.根据平行四边形对角线平分平行四边形面积.采用数小三角形的办法来计算面积.PEF ∆面积=3;CDE ∆面积=9;四边形ABQP 面积=11.上述三块面积之和为3+9+11=23,因此,阴影四边形CEPQ 面积为54-23=31.12. 如图,涂阴影部分小正六角星形可分成12个与三角形OPN 全等(能完全重叠地放在一起)的小三角形.三形OPN 的面积是341216=平方厘米.正三角形OPM 面积是由三个与三角形OPN 全等的三角形组成.所以正三角形OPM 的面积等于4334=⨯(平方厘米). 由于大正方六角星形由12个与正三角形OPM全等的三角形组成,所以大正六角星形的面积是4×12=48(平方厘米) 13. 设大长方形的宽为x,则长为28-x.因为,x D 32=宽,x D 43='宽, 所以,12x D D =-'宽宽. ()x D -=2854长,()x D -='28109长,()x D D -=-'28101长长.由题设可知,12x :11028=-x :3 或 41028x x =-,于是2071028x =, 8=x .大长方形的长=28-8=20,从而大长方形的面积为8×20=160平方厘米. 14. 三角形AEG面积是三角形AED面积的(15+6)÷7=3(倍),三角形BEF 面积是三角形BEC 面积的15÷(5+7)=45(倍).所以65-38×45等于三角形AEG 面积与三角形AED 面积的45之差,因此三角形AED 的面积是(65-38×45)÷(3-45)=10.三角形ADG面积是10×(3+1)=40.。