电磁感应中的电路问题含答案解析

合集下载

电磁感应中的电路问题简析

电磁感应中的电路问题简析
石 涛
( 山东省邹平县长山中学 2 60 ) 5 25
电磁感 应 中电路 问题 ,既与 电路 的分析计

程中只受 电场力 ,根据牛顿第二定律粒子 的加
速不 变 ,C对. 3 由等势线和轨迹判断有关问题
电场线与等势线之间的关系 :等势线和电
场线垂 直 ; 电场 线 密 ( ) 的地 方 ,电 场 强 算密切相关 ,又与电容器、力的平衡、功能关 疏 度大 ( ) 小 ,等 势线 密 ( ) 匀强 电场 的 电 系 ,牛顿第二定律等知识有机结合 ;既可考查 疏 .
和 Ⅳ是 轨 迹 上 的 两 点. 不 计 重 力 ,下 动. 图中的虚线 为 等 势 线 ,所 以 从 0点 到 b 的过 程 中电场 力对 粒 子 做 功等 于零 ,D正 点 列 表述 正确 的是 :( ) A.粒子在 点 的速率最 大 B .粒 子所受 电场力 沿电场 方 向 C .粒子 在 电场 中的加速度 不变 D .粒 子在 电场 中的 电势 能始终在 增加 确. 根据 、Ⅳ粒 子 的运 动 轨 迹 可 知 Ⅳ 受 到



做 功 即 电 场 力 做 负 功 ,所 以 锩
根 据 场线是等间距的平行线 ,等势线也是等问砸的
U= d E ,0到 肘 的平均 电场强度 大于 到 Ⅳ 平行线 ;在等势线上移动电荷 电场力不做功. . 。 的平均电场强度 ,所以有 删 > 所以c错. 例3 0 :(9年全 国) 图 3中虚线 为匀 强 电 从 0点 释放 正 电子 后 ,电场 力 做 正 功 ,该 粒 场 中与 场强方 向垂直 的 等间距 平行直 线. 一两粒 子将沿 , , 轴做加速直线运动 ,所以 D对. 2 由电场线 和轨 迹判 断有关 问题

专题三 电磁感应中的电路及图像问题

专题三  电磁感应中的电路及图像问题

专题三电磁感应中的电路及图像问题一、电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等。

这种电源将其他形式的能转化为电能。

2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成。

3.解决电磁感应中的电路问题三步曲:(1)确定电源。

利用E=n ΔΦΔt或E=BL v求感应电动势的大小,利用右手定则或楞次定律判断电流方向。

(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图。

(3)利用电路规律求解。

主要应用欧姆定律及串、并联电路的基本性质等列方程求解。

[复习过关]1.如图1甲所示,面积为0.1 m2的10匝线圈EFG处在某磁场中,t=0时,磁场方向垂直于线圈平面向里,磁感应强度B随时间变化的规律如图乙所示。

已知线圈与右侧电路接触良好,电路中的电阻R=4 Ω,电容C=10 μF,线圈EFG的电阻为1 Ω,其余部分电阻不计。

则当开关S闭合,电路稳定后,在t=0.1 s至t=0.2 s这段时间内()图1A.电容器所带的电荷量为8×10-5 CB.通过R的电流是2.5 A,方向从b到aC.通过R的电流是2 A,方向从b到aD.R消耗的电功率是0.16 W解析线圈EFG相当于电路的电源,电动势E=n ΔBΔt·S=10×20.2×0.1 V=10 V。

由楞次定律得,电动势E 的方向是顺时针方向,故流过R 的电流是a →b ,I =E R +r=104+1A =2 A ,P R =I 2R =22×4 W =16 W ;电容器U C =U R ,所带电荷量Q =C ·U C =10×10-6×2×4 C =8×10-5 C ,选项A 正确。

答案 A2.三根电阻丝如图2连接,虚线框内存在均匀变化的匀强磁场,三根电阻丝的电阻大小之比R 1∶R 2∶R 3=1∶2∶3,其余电阻不计。

电磁感应中的电路问题

电磁感应中的电路问题

电磁感应中的电路问题基本步骤:(1) 用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向 (2) 画等效电路图(3) 运用闭合电路欧姆定律,串并联电路性质,电热、电功率公式联立求解 重要推论:(1) 电磁感应中通过导体横截面的电荷量:1. 如图所示,在光滑水平面上方,有两个磁感应强度大小均为B 、方向相反的水平匀强磁场,如图所示,PQ 为两个磁场的边界,磁场范围足够大。

一个边长为a ,质量为m,电阻为R 的 正方形金属线框垂直磁场方向,以速度v 从图示位置向右运动,当线框中心线AB 运动到与PQ 重合时,线框的速度为,则A. 此时线框屮的电功率为B. 此时线框的加速度为_C. 此过程通过线框截面的电荷量为D. 此过程回路产生的电能为0.15mv 22. 如图,矩形线圈面积为S ,匝数为N ,线圈电阻为r ,在磁感应强度为B 的匀强磁场中绕OO /轴以角速度ω匀速转动,外电路电阻为R ,在线圈由平行磁场的位置转过90O 的过程中,下列说法正确的是: A 、磁通量的变化量△Φ=NBSB 、平均感应电动势E =2NBSω/πC 、电阻R 产生的焦耳热R NBS Q 2)(2ω=D 、电阻R 产生的焦耳热22)(4)(r R R NBS Q +=πω3. 如图所示,两条电阻不计的平行导轨与水平面成 θ 角,导轨的一端连接定值电阻 R 1 ,匀强磁场垂直穿过导轨平面.一根质量为 m 、电阻为 R 2 的导体棒 ab ,垂直导轨放置,导体棒与导轨之间的动摩擦因数为 μ,且 R 2 = 2R 1.如果导轨以速度 v 匀速下滑,导轨此时受到的安培力大小为 F ,则以下判断正确的是 A .电阻消耗的热功率为B .整个装置消耗的机械功率为C .整个装置因摩擦而消耗的热功率为D .若使导体棒以 v4. 在光滑的绝缘水平面上方,有磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,PQ为磁场边界。

一个半径为a 、质量为m 、电阻为R 的金属圆环垂直磁场方向放置于磁场中A 处,现给金属圆环一水平向右的初速度υ。

专题16 电磁感应中的电路问题(解析版)

专题16 电磁感应中的电路问题(解析版)

专题16 电磁感应中的电路问题(解析版)电磁感应中的电路问题(解析版)电磁感应是电磁学中的重要概念,也是我们日常生活中常常遇到的现象。

在电磁感应中,涉及到很多与电路相关的问题。

本文将围绕电磁感应中的电路问题展开讨论,解析其中的关键概念和原理。

一、电磁感应简介电磁感应是指由于磁场的变化而在导体中产生感应电动势的现象。

根据法拉第电磁感应定律,当磁场的磁通量发生变化时,穿过电路的感应电动势将产生导致电流的运动。

二、电路中的电磁感应问题在电路中,由于电磁感应的存在,会出现一系列问题需要解决。

其中包括以下两个重要方面:1. 阻抗和电感在电路中,电感是指导体中感应电流的产生和变化所产生的自感现象。

与电感相关的一个重要概念是阻抗,它是交流电路中的电阻和电感的综合表达。

当电磁感应作用下,电路的阻抗会发生变化,从而影响电流的流动。

2. 感应电动势和电路中的能量转化电磁感应中产生的感应电动势可以引发电路中的能量转化。

当磁场发生变化时,电磁感应会引发感应电动势,从而使电流在电路中产生。

这种能量转化可以用于各种电器设备的工作。

三、解析实例:电动车发电机原理为了更好地理解电磁感应中的电路问题,我们以电动车发电机为例进行解析。

在电动车发电机中,磁场的变化产生感应电动势,从而驱动发电机工作。

首先,通过燃料燃烧,发动机带动发电机转子旋转。

转子上的永磁体与固定的线圈之间产生磁场的变化,导致感应电动势产生。

感应电动势通过电路中的导线,形成感应电流,进而为电动车提供所需的电能。

电动车发电机中的电路问题值得我们深入研究。

在这个电路中,电流的大小和方向需要合理设置,以保证发电机正常工作。

同时,电路中的电阻、电感和阻抗等参数的选择也对电磁感应的效果产生重要影响。

四、应用领域及进一步研究的方向电磁感应中的电路问题在许多领域都有重要的应用,值得我们进一步研究和探索。

例如,在能源领域,电磁感应可以用于发电机、变压器等设备中,实现能源的转化和传输。

专题16 电磁感应中的电路问题(解析版)

专题16 电磁感应中的电路问题(解析版)

专题十六 电磁感应中的电路问题基本知识点解决电磁感应电路问题的基本步骤:1.用法拉第电磁感应定律算出E 的大小,用楞次定律或右手定则确定感应电动势的方向:感应电流方向是电源内部电流的方向,从而确定电源正、负极,明确内阻r .2.根据“等效电源”和电路中其他各元件的连接方式画出等效电路图.3.根据E =Blv 或E =n ΔΦΔt结合闭合电路欧姆定律、串并联电路知识和电功率、焦耳定律等关系式联立求解.例题分析一、电磁感应中的简单电路问题例1 如图所示,足够长的平行光滑金属导轨水平放置,宽度L =0.4 m ,一端连接R =1 Ω的电阻,导轨所在空间存在竖直向下的匀强磁场,磁感应强度B =1 T 。

导体棒MN 放在导轨上,其长度恰好等于导轨间距,与导轨接触良好。

导轨和导体棒的电阻均可忽略不计。

在平行于导轨的拉力F 作用下,导体棒沿导轨向右匀速运动,速度v =5 m/s 。

(1)求感应电动势E 和感应电流I ;(2)若将MN 换为电阻r =1 Ω的导体棒,其他条件不变,求导体棒两端的电压U 。

(对应训练)如图所示,MN、PQ为平行光滑金属导轨(金属导轨电阻忽略不计),MN、PQ 相距L=50 cm,导体棒AB在两轨道间的电阻为r=1 Ω,且可以在MN、PQ上滑动,定值电阻R1=3 Ω,R2=6 Ω,整个装置放在磁感应强度为B=1.0 T的匀强磁场中,磁场方向垂直于整个导轨平面,现用外力F拉着AB棒向右以v=5 m/s的速度做匀速运动。

求:(1)导体棒AB产生的感应电动势E和AB棒上的感应电流方向;(2)导体棒AB两端的电压U AB。

二、电磁感应中的复杂电路问题例2如图所示,ab、cd为足够长、水平放置的光滑固定导轨,导体棒MN的长度为L=2 m,电阻r=1 Ω,有垂直abcd平面向下的匀强磁场,磁感强度B=1.5 T,定值电阻R1=4 Ω,R2=20 Ω,当导体棒MN以v=4 m/s的速度向左做匀速直线运动时,电流表的示数为0.45 A,灯泡L正常发光。

专题二:电磁感应中的电路问题

专题二:电磁感应中的电路问题

电阻R2上消耗的功率为: P2=I2R2=(0.2)2×25 W=1 W 穿过螺线管的原磁场磁通量向左增加,螺线管中感应电 流的磁场方向向右,感应电流从b流向a,b端的电势高,a端 的电势低.由Uc=0,有: Uc-Ua=IR1=0.2×3.5 V=0.7 V 故Ua=-0.7 V Ub-Uc=IR2=0.2×25 V=5 V 故Ub=5 V.
答案 3 8 W 3 4 W
专题:电磁感应中的电路问题
(3)拉ab棒的水平向右的外力F为多大?
解析 3 由平衡知识得:F=BIl=4 N.
3 答案 4 N
专题:电磁感应中的电路问题
例2:如图所示,由均匀导线 制成的半径为R的圆环,以速 度 v匀速进入一磁感应强度大 小为B的有界匀 强磁场,边界 如图中虚线所示.当圆环运 动 到图示位置(∠aOb=90°)时 ,a、b两点的电势差为
专题:电磁感应中的电路问题
例5:如图甲所示,有一匝数n=1500、横截面积S=20 cm2、 电阻r=1.5 Ω的螺线管,与螺线管串联的外电阻R1=3.5 Ω, R2=25 Ω.穿过螺线管的匀强磁场的磁感应强度方向向左, 大小随时间按图乙所示的规律变化.试计算电阻R2消耗的电功 率和a、b两点的电势(设c点的电势为零).
点评 对于电磁感应问题,由法拉第电磁感应定律求出
感应电动势后,就可以将电磁感应问题等效为电路问题,再
运用电路的有关知识求解.
专题:电磁感应中的电路问题
(1)导体棒上产生的感应电动势E. 解析 ab棒匀速切割磁感线,产生的电动势为: E=Blv=3 V
答案 3 V
专题:电磁感应中的电路问题
(2)R1与R2消耗的电功率分别为多少?
解析 R1R2 电ห้องสมุดไป่ตู้的总电阻为:R=r+ =4 Ω R1+R2

电磁感应习题答案解析

电磁感应习题答案解析

四. 知识要点:第一单元电磁感应现象楞次定律〔一〕电磁感应现象1. 产生感应电流的条件:穿过闭合电路的磁通量发生变化.2. 磁通量的计算〔1〕公式Φ=BS此式的适用条件是:①匀强磁场;②磁感线与平面垂直。

〔2〕如果磁感线与平面不垂直,上式中的S为平面在垂直于磁感线方向上的投影面积.即其中θ为磁场与面积之间的夹角,我们称之为"有效面积〞或"正对面积〞。

〔3〕磁通量的方向性:磁通量正向穿过*平面和反向穿过该平面时,磁通量的正负关系不同。

求合磁通时应注意相反方向抵消以后所剩余的磁通量。

〔4〕磁通量的变化:可能是B发生变化而引起,也可能是S发生变化而引起,还有可能是B和S同时发生变化而引起的,在确定磁通量的变化时应注意。

3. 感应电动势的产生条件:无论电路是否闭合,只要穿过电路的磁通量发生变化,这局部电路就会产生感应电动势。

这局部电路或导体相当于电源。

〔二〕感应电流的方向1. 右手定则当闭合电路的局部导体切割磁感线时,产生的感应电流的方向可以用右手定则来进展判断。

右手定则:伸开右手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面,让磁感线垂直穿入手心,大拇指指向导体运动方向,则伸直四指指向即为感应电流的方向。

说明:伸直四指指向还有另外的一些说法:①感应电动势的方向;②导体的高电势处。

2. 楞次定律〔1〕容感应电流具有这样的方向:就是感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

注意:①"阻碍〞不是"相反〞,原磁通量增大时,感应电流的磁场与原磁通量相反,"对抗〞其增加;原磁通量减小时,感应电流的磁场与原磁通量一样,"补偿〞其减小,即"增反减同〞。

②"阻碍〞也不是阻止,电路中的磁通量还是变化的,阻碍只是延缓其变化。

③楞次定律的实质是"能量转化和守恒〞,感应电流的磁场阻碍过程,使机械能减少,转化为电能。

〔2〕应用楞次定律判断感应电流的步骤:①确定原磁场的方向。

电磁感应中的电路问题分析

电磁感应中的电路问题分析

技法点拨电磁感应中的电路问题分析■胡楚兵摘要:《电磁感应及其用》是高中物理必修2第一主题的内容,电磁感应中的电路问题是《电磁感应及其用》的一个方面,是高考的热点内容,解题时需要将电磁感应、电路的知识综合起来应用,需要学生找出等效电源,弄清电路结构,利用电路规律。

关键词:电磁感应;电路;剖析;探究;回访一、2019年考试大纲:电磁感应、电路1.电磁感应I :电磁感应现象,磁通量,自感、涡流。

II :法拉第电磁感应定律,楞次定律。

2.电路I :电阻定律,电阻的串联、并联,电功率、焦耳定律。

II :电源的电动势和内阻,欧姆定律,闭合电路欧姆定律。

二、经典题型剖析如图所示,光滑金属导轨ac 、bd 水平平行放置,处在方向竖直向下、磁感应强度为B 的匀强磁场中,导轨左侧接有阻值为R =2r 的定值电阻,导轨间距为L ,导轨电阻不计。

一质量为m 、电阻为r 、长度也为L 的金属导体棒MN 垂直导轨放置在导轨上,在水平向右的拉力作用下向右匀速运动,速度为v 。

问:(1)画出其等效电路图。

(2)金属棒MN 产生的电动势E =____,___(M 或N )端是电源正极。

(3)电阻R 中的电流方向是_______,U MN =_____。

(4)若导体棒向右运动距离为x ,则此过程中通过导体棒的电荷量q =_____。

r 答案:BLv ,M ,a →b ,23BLv ,BLx 3r 三、科学探究(一)寻找电源:探究供电方式1.(2016年全国Ⅱ卷20)法拉第圆盘发动机的示意图如图所示。

铜圆盘安装在竖直的铜轴上,两铜片P 、Q 分别与圆盘的边缘和铜轴接触。

圆盘处于方向竖直向上的匀强磁场B 中。

圆盘旋转时,关于流过电阻R 的电流,下列说法正确的是()A.若圆盘转动的角速度恒定,则电流大小恒定B.若从上向下看,圆盘顺时针转动,则电流沿a 到b 的方向流动C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D.若圆盘转动的角速度变为原来的两倍,则电流在R 上的热功率也变为原来的2倍答案:AB2.(2019年全国Ⅰ卷20)空间存在一方向与直面垂直、大小随时间变化的匀强磁场,其边界如图(a )中虚线MN 所示,一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上。

高三物理电磁感应与电路试题答案及解析

高三物理电磁感应与电路试题答案及解析

高三物理电磁感应与电路试题答案及解析1.如图所示,足够长的光滑U型导轨宽度为L,其所在平面与水平面的夹角为,上端连接一个阻值为R的电阻,置于磁感应强度大小为B,方向垂直于导轨平面向上的匀强磁场中,今有一质量为、有效电阻的金属杆沿框架由静止下滑,设磁场区域无限大,当金属杆下滑达到最大速度时,运动的位移为,则A.金属杆下滑的最大速度B.在此过程中电阻R产生的焦耳热为C.在此过程中电阻R产生的焦耳热为D.在此过程中流过电阻R的电量为【答案】 B【解析】感应电动势为①感应电流为②安培力为③根据平恒条件得解得:由能量守恒定律得:又因所以由法拉第电磁感应定律得通过R的电量为所以选项B正确2.如图所示,间距为L、电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R的电阻连接,导轨上横跨一根质量为m、电阻也为R的金属棒,金属棒与导轨接触良好。

整个装置处于竖直向上、磁感应强度为B的匀强磁场中。

现使金属棒以初速度沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为。

下列说法正确的是A.金属棒在导轨上做匀减速运动B.整个过程中金属棒在导轨上发生的位移为C.整个过程中金属棒克服安培力做功为D.整个过程中电阻R上产生的焦耳热为【答案】C【解析】A、金属棒切割产生感应电动势,产生感应电流,从而受到向左的安培力,做减速运动,由于速度减小,电动势减小,则电流减小,安培力减小,根据牛顿第二定律知,加速度减小,做加速度逐渐减小的减速运动.故A错误.B、根据,则金属棒在导轨上发生的位移.故B错误.=0−mv2,则金属棒克服安培力做功为mv2.故C正确.C、根据动能定律得,−WAD、根据能量守恒得,动能的减小全部转化为整个回路产生的热量,则电阻R产生的热量=mv2.故D错误.QR故选C.【考点】导体切割磁感线时的感应电动势;闭合电路的欧姆定律;电磁感应中的能量转化.3.如图所示,固定在水平面上的光滑平行金属导轨,间距为L,右端接有阻值为R的电阻,空间存在在方向竖直、磁感应强度为B的匀强磁场。

专题33 电磁感应中的电路和图像问题(解析版)

专题33 电磁感应中的电路和图像问题(解析版)

2020年高考物理一轮复习限时训练专题33电磁感应中的电路和图像问题(限时:45min)一、选择题(本大题共14小题)1.(2019·杭州调研)在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图甲所示,当磁场的磁感应强度B随时间t按图乙所示变化时,下列选项中能正确表示线圈中感应电动势E变化的是()【答案】A【解析】根据楞次定律得,0~1 s内,感应电流为正方向;1~3 s内,无感应电流;3~5 s内,感应电流为负方向;再由法拉第电磁感应定律得:0~1 s内的感应电动势为3~5 s内的二倍,故A正确。

2.(多选)一环形线圈放在匀强磁场中,设第1 s内磁感线垂直线圈平面向里,如图甲所示。

若磁感应强度B 随时间t变化的关系如图乙所示,那么下列选项正确的是()A.第1 s内线圈中感应电流的大小逐渐增加B.第2 s内线圈中感应电流的大小恒定C.第3 s内线圈中感应电流的方向为顺时针方向D.第4 s内线圈中感应电流的方向为逆时针方向【答案】BD【解析】由题给图像分析可知,磁场在每1 s内为均匀变化,斜率恒定,线圈中产生的感应电流大小恒定,因此A错误,B正确;由楞次定律可判断出第3 s、第4 s内线圈中感应电流的方向均为逆时针方向,C错误,D正确。

3.(多选)如图所示,导体棒沿两平行导轨从图中位置以速度v 向右匀速通过一正方形abcd 磁场区域。

ac 垂直于导轨且平行于导体棒,ac 右侧磁场的磁感应强度是左侧磁场的2倍且方向相反,导轨和导体棒的电阻均不计。

下列关于导体棒中感应电流和所受安培力随时间变化的图像正确的是(规定电流由M 经R 到N 为正方向,安培力向左为正方向)( )【答案】AC 【解析】设ac 左侧磁感应强度大小为B ,导轨间距为L ,导体棒在左半区域时,根据右手定则,通过导体棒的电流方向向上,电流由M 经R 到N 为正值,大小为I =B ·2vt ·v R =2Bv 2t R,根据左手定则,导体棒所受安培力向左,大小为F =BI ·2vt =4B 2v 3t 2R;同理可得导体棒在右半区域时,电流为负值,大小为I =2(22)B L vt v R⋅-⋅=4BLv -4Bv 2t R ,安培力向左,大小为F =2BI ·(2L -2vt )=2216()B L vt v R -;根据数学知识,A 、C 正确,B 、D 错误。

电磁感应中的电路问题详解

电磁感应中的电路问题详解

电磁感应中的电路问题详解知识点回顾电磁感应现象利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。

(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。

产生感应电动势的那部分导体相当于电源。

(3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

磁通量磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量。

定义式:Φ=BS。

如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数。

任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。

反之,磁通量为负。

所求磁通量为正、反两面穿入的磁感线的代数和。

楞次定律感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。

楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。

(2)对楞次定律的理解①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。

②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。

③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。

④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。

(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。

法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

表达式E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。

高中物理(新人教版)选择性必修二同步习题:电磁感应中的电路问题(同步习题)【含答案及解析】

高中物理(新人教版)选择性必修二同步习题:电磁感应中的电路问题(同步习题)【含答案及解析】

第二章电磁感应专题强化练4 电磁感应中的电路问题一、选择题1.(2020河北邯郸大名一中高二上月考,)如图所示,单匝正方形线框的边长为L,电容器的电容为C。

正方形线框的一半放在垂直于纸面向里的匀强磁场中,在磁场以变化率k均匀减弱的过程中,下列说法正确的是( )A.电压表的读数为kL 22B.线框产生的感应电动势大小为kL2C.电容器所带的电荷量为零D.回路中电流为零2.()(多选)如图甲,线圈A(图中实线,共100匝)的横截面积为0.3 m2,总电阻r=2 Ω,A右侧所接电路中,电阻R1=2 Ω,R2=6 Ω,电容C=3 μF,开关S1闭合。

A中有横截面积为0.2 m2的区域D(图中虚线),D内有按图乙所示规律变化的磁场,t=0时刻,磁场方向垂直于线圈平面向里。

下列判断正确的是( )A.闭合S2、电路稳定后,通过R2的电流由b流向aB.闭合S2、电路稳定后,通过R2的电流大小为0.4 AC.闭合S2、电路稳定后再断开S1,通过R2的电流由b流向aD.闭合S2、电路稳定后再断开S1,通过R2的电荷量为7.2×10-6 C3.(2020江苏盐城中学高二上期中,)(多选)粗细均匀的电阻丝围成边长为L的正方形线框,置于有界匀强磁场中,磁场方向垂直于线框平面,磁感应强度大小为B,其右边界与正方形线框的bc边平行。

现使线框以速度v匀速平移出磁场,如图所示,则在移出的过程中( )A.ad边的电流方向为a→dB.ad边的电流方向为d→aBLvC.a、d两点间的电势差绝对值为14D.a、d两点间的电势差绝对值为3BLv44.()(多选)如图所示,PN与QM两平行金属导轨相距1 m,电阻不计,两端分别接有电阻R1和R2,且R1=6 Ω,ab杆的有效电阻为2 Ω,在导轨上可无摩擦地滑动,垂直穿过导轨平面的匀强磁场的磁感应强度B为1 T。

现ab以恒定速度v=3 m/s匀速向右移动,这时ab杆上消耗的电功率与R1、R2消耗的电功率之和相等,则( )A.R2=6 ΩB.R1上消耗的电功率为0.375 WC.a、b间电压为3 VD.拉ab杆水平向右的拉力为0.75 N5.()如图所示,间距为L的光滑平行金属导轨弯成“∠”形,底部导轨面水平,倾斜部分与水平面成θ角,导轨与固定电阻相连,整个装置处于竖直向上、磁感应强度大小为B的匀强磁场中。

高考物理总复习课时跟踪检测(六 十) 电磁感应中的电路问题

高考物理总复习课时跟踪检测(六 十) 电磁感应中的电路问题

课时跟踪检测(六 十) 电磁感应中的电路问题1.如图所示,MN 、PQ 是间距为L 的平行光滑金属导轨,置于磁感应强度为B 、方向垂直导轨所在平面向里的匀强磁场中,导轨固定不动,M 、P 间接有一阻值为R 的电阻。

一根与导轨接触良好、接入电路的电阻为R2的金属导线ab 垂直导轨放置,并在水平外力F 的作用下以速度v 向右匀速运动,则(不计导轨电阻)( )A .通过电阻R 的电流方向为P→R→MB .a 、b 两点间的电压为BLvC .a 端电势比b 端电势高D .外力F 做的功等于电阻R 上产生的焦耳热解析:选C 由右手定则可知通过电阻R 的电流方向为M→R→P,A 错误;金属导线ab 相当于电源,电源内部电流从电势低的一端流向电势高的一端,所以a 端电势高于b 端电势,C 正确;由法拉第电磁感应定律可知,E =BLv ,由闭合电路欧姆定律得a 、b 两点间的电压为U a b =ER +R 2·R=23BLv ,B 错误;由于金属导线ab 做匀速直线运动,外力F 做的功等于克服安培力做的功,等于整个电路产生的焦耳热,并非电阻R 上产生的焦耳热,D 错误。

2. (河南灵宝月考)如图所示,由均匀导线制成的半径为R 的圆环,以速度v 匀速进入一磁感应强度大小为B 的有界匀强磁场,边界如图中虚线所示。

当圆环运动到图示位置(∠aOb =90°)时,a 、b 两点间的电势差为( )A.2BRvB.22BRv C.24BRv D.324BRv解析:选D 圆环的ab 段切割磁感线产生的感应电动势为E =2BRv ;由欧姆定律得a 、b 两点间的电势差为U ab =E -Ir ab =2BRv -2BRv r ·r4=32BRv4,选项D 正确。

3.(多选)在如图甲所示的电路中,螺线管匝数n =1 500匝,横截面积S =20 cm 2。

螺线管导线电阻r =1 Ω,R 1=4 Ω,R 2=5 Ω,C =30 μF。

专题九-电磁感应中的电路和图象问题

专题九-电磁感应中的电路和图象问题


p2hd=f+F 安

F 安=BId

根据欧姆定律,有 I=RU+0 r

两导体板间液体的电阻
r=ρLdh

由②③④⑤⑥⑦式得
Δp=p2-p1=LLhdRv+0Bd2ρ

题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
专题九 电磁感应中的电路和图象问题
(3)电阻 R 获得的功率为 P=I2R

P=LLdRv+0Bhρ2R
流、路端电压以及闭合电路中能量的转化.
2.对电磁感应电路的理解 (1)在电磁感应电路中,相当于电源的部分把其他形式的能通过电流做
功转化为电能.
(2)“电源”两端的电压为路端电压,而不是感应电动势.
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
专题九 电磁感应中的电路和图象问题
【例 1】(2014·福建·22)如图 5 所示,某一新型发电装置的发电管是横截面
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
专题九 电磁感应中的电路和图象问题
【例 2】(2013·山东理综·18)将一段导线绕成
图 7 甲所示的闭合回路,并固定在水平面
(纸面)内.回路的 ab 边置于垂直纸面向里
的匀强磁场Ⅰ中.回路的圆环区域内有垂
图7
直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度 B 随时
考点一 电磁感应中的电路问题
1.电磁感应中的电路问题分类.
(1)以部分电路欧姆定律为中心,包括六个基本物理量(电压、电流、
电阻、电功、电功率、电热),三条定律(部分电路欧姆定律、电阻定
律和焦耳定律),以及若干基本规律(串、并联电路特点等). (2)以闭合电路欧姆定律为中心,讨论电动势概念,闭合电路中的电
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应中的电路问题一、基础知识 1、电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源. (2)该部分导体的电阻或线圈的电阻相当于电源的阻,其余部分是外电路. 2、电源电动势和路端电压(1)电动势:E =Blv 或E =n ΔΦΔt . (2)路端电压:U =IR =E -Ir . 3、对电磁感应中电源的理解(1)电源的正负极、感应电流的方向、电势的高低、电容器极板带电问题,可用右手定则或楞次定律判定.(2)电源的电动势的大小可由E =Blv 或E =n ΔΦΔt 求解. 4、对电磁感应电路的理解(1)在电磁感应电路中,相当于电源的部分把其他形式的能通过电流做功转化为电能. (2)“电源”两端的电压为路端电压,而不是感应电动势. 5、解决电磁感应中的电路问题三步曲(1)确定电源.切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,利用E =n ΔΦΔt 或E =Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向.(2)分析电路结构(、外电路及外电路的串、并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 二、练习1、[对电磁感应中等效电源的理解]粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是( )答案 B解析 线框各边电阻相等,切割磁感线的那个边为电源,电动势相同均为Blv .在A 、C 、D 中,U ab =14Blv ,B 中,U ab =34Blv ,选项B 正确.2、如图所示,竖直平面有一金属环,半径为a ,总电阻为R (指拉直时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环的最高点A 铰链连接的长度为2a 、电阻为R2的导体棒AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两端的电压大小为( )A.Bav 3B.Bav 6C.2Bav 3D .Bav答案 A解析 摆到竖直位置时,AB 切割磁感线的瞬时感应电动势E =B ·2a ·(12v )=Bav .由闭合电路欧姆定律得,U AB =E R 2+R 4·R 4=13Bav ,故选A.3、如图所示,两根足够长的光滑金属导轨水平平行放置,间距为l =1 m ,cd 间、de 间、cf 间分别接阻值为R =10 Ω的电阻.一阻值为R =10 Ω的导体棒ab 以速度v =4 m/s 匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小为B =0.5 T 、方向竖直向下的匀强磁场.下列说法中正确的是( )A .导体棒ab 中电流的流向为由b 到aB .cd 两端的电压为1 VC.de两端的电压为1 VD.fe两端的电压为1 V答案BD解析由右手定则可判知A选项错;由法拉第电磁感应定律E=Blv=0.5×1×4 V=2 V,U cd=RR+R E=1 V,B正确;由于de、cf间电阻没有电流流过,故U cf=U de=0,所以U fe=U cd=1 V,C错误,D正确.4、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感应强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、有效阻值为R2的金属导线ab垂直导轨放置,并在水平外力F的作用下以速度v向右匀速运动,则(不计导轨电阻) () A.通过电阻R的电流方向为P→R→MB.a、b两点间的电压为BLvC.a端电势比b端电势高D.外力F做的功等于电阻R上产生的焦耳热答案 C解析由右手定则可知通过金属导线的电流由b到a,即通过电阻R的电流方向为M→R→P,A错误;金属导线产生的感应电动势为BLv,而a、b两点间的电压为等效电路路端电压,由闭合电路欧姆定律可知,a、b两点间电压为23BLv,B错误;金属导线可等效为电源,在电源部,电流从低电势流向高电势,所以a端电势高于b端电势,C正确;根据能量守恒定律可知,外力F做的功等于电阻R和金属导线产生的焦耳热之和,D错误.5、如图所示,两光滑平行金属导轨间距为L,直导线MN垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B.电容器的电容为C,除电阻R外,导轨和导线的电阻均不计.现给导线MN一初速度,使导线MN向右运动,当电路稳定后,MN以速度v向右做匀速运动时() A.电容器两端的电压为零B.电阻两端的电压为BLvC.电容器所带电荷量为CBLvD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2vR答案 C解析 当导线MN 匀速向右运动时,导线MN 产生的感应电动势恒定,稳定后,电容器既不充电也不放电,无电流产生,故电阻两端没有电压,电容器两极板间的电压为U =E =BLv ,所带电荷量Q =CU =CBLv ,故A 、B 错,C 对;MN 匀速运动时,因无电流而不受安培力,故拉力为零,D 错.6、如图所示,垂直纸面的正方形匀强磁场区域,有一位于纸面且电阻均匀的正方形导体框abcd ,现将导体框分别朝两个方向以v 、3v 速度匀速拉出磁场,则导体框从两个方向移出磁场的两过程中( )A .导体框中产生的感应电流方向相同B .导体框中产生的焦耳热相同C .导体框ad 边两端电势差相同D .通过导体框截面的电荷量相同 答案 AD解析 由右手定则可得两种情况导体框中产生的感应电流方向相同,A 项正确;热量Q =I 2Rt =(Blv R )2R ·l v =B 2l 3vR ,可知导体框产生的焦耳热与运动速度有关,B 项错误;电荷量q =It =Blv R ·l v =Bl 2R ,故通过截面的电荷量与速度无关,电荷量相同,D 项正确;以速度v 拉出时,U ad =14Blv ,以速度3v 拉出时,U ad =34Bl ·3v ,C 项错误.7、两根平行的长直金属导轨,其电阻不计,导线ab 、cd 跨在导轨上且与导轨接触良好,如图所示,ab 的电阻大于cd 的电阻,当cd 在外力F 1(大小)的作用下,匀速向右运动时,ab 在外力F 2(大小)的作用下保持静止,那么在不计摩擦力的情况下(U ab 、U cd 是导线与导轨接触间的电势差) ( )A .F 1>F 2,U ab >U cdB .F 1<F 2,U ab =U cdC .F 1=F 2,U ab >U cdD .F 1=F 2,U ab =U cd答案 D解析 通过两导线电流强度一样,两导线都处于平衡状态,则F 1=BIl ,F 2=BIl ,所以F 1=F 2,A 、B 错误;U ab =IR ab ,这里cd 导线相当于电源,所以U cd 是路端电压,U cd =IR ab ,即U ab =U cd ,故D 正确.8、把总电阻为2R 的均匀电阻丝焊接成一半径为a 的圆环,水平固定在竖直向下的磁感应强度为B 的匀强磁场中,如图所示,一长度为2a 、电阻等于R 、粗细均匀的金属棒MN 放在圆环上,它与圆环始终保持良好的接触.当金属棒以恒定速度v 向右移动经过环心O 时,求: (1)棒上电流的大小和方向及棒两端的电压U MN ; (2)圆环和金属棒上消耗的总热功率. 答案 (1)4Bav 3R ,从N 流向M 2Bav3(2)8B 2a 2v 23R解析 (1)把切割磁感线的金属棒看成一个阻为R 、电动势为E 的电源,两个半圆环看成两个并联的相同电阻,画出等效电路图如图所示.等效电源电动势为E =Blv =2Bav 外电路的总电阻为 R 外=R 1R 2R 1+R 2=12R棒上电流大小为I =E R 外+R =2Bav 12R +R =4Bav3R电流方向从N 流向M .根据分压原理,棒两端的电压为 U MN =R 外R 外+R·E =23Bav .(2)圆环和金属棒上消耗的总热功率为P =IE =8B 2a 2v 23R .9、如图4(a)所示,水平放置的两根平行金属导轨,间距L =0.3 m ,导轨左端连接R =0.6 Ω的电阻,区域abcd 存在垂直于导轨平面B =0.6 T 的匀强磁场,磁场区域宽D =0.2 m .细金属棒A 1和A 2用长为2D =0.4 m 的轻质绝缘杆连接,放置在导轨平面上,并与导轨垂直,每根金属棒在导轨间的电阻均为r =0.3 Ω.导轨电阻不计.使金属棒以恒定速度v =1.0 m/s 沿导轨向右穿越磁场.计算从金属棒A 1进入磁场(t =0)到A 2离开磁场的时间,不同时间段通过电阻R 的电流强度,并在图(b)中画出.解析 t 1=Dv=0.2 s在0~t 1时间,A 1产生的感应电动势E 1=BLv =0.18 V . 其等效电路如图甲所示. 由图甲知,电路的总电阻甲R 总=r +rR r +R =0.5 Ω 总电流为I =E 1R 总=0.36 A通过R 的电流为I R =I3=0.12 AA 1离开磁场(t 1=0.2 s)至A 2刚好进入磁场(t 2=2Dv =0.4 s)的时间,回路无电流,I R =0,乙从A 2进入磁场(t 2=0.4 s)至离开磁场t 3=2D +Dv =0.6 s 的时间,A 2上的感应电动势为E 2=0.18 V ,其等效电路如图乙所示.由图乙知,电路总电阻R 总′=0.5 Ω,总电流I ′=0.36 A ,流过R 的电流I R =0.12 A ,综合以上计算结果,绘制通过R 的电流与时间关系如图所示.10、(2011·理综·23)有人设计了一种可测速的跑步机,测速原理如图所示.该机底面固定有间距为L 、长度为d 的平行金属电极.电极间充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,且接有电压表和电阻R .绝缘橡胶带上镀有间距为d 的平行细金属条,磁场中始终仅有一根金属条,且与电极接触良好,不计金属电阻.若橡胶带匀速运动时,电压表读数为U ,求: (1)橡胶带匀速运动的速率; (2)电阻R 消耗的电功率;(3)一根金属条每次经过磁场区域克服安培力做的功.答案 (1)U BL (2)U 2R (3)BLUdR解析 (1)设该过程产生的感应电动势为E ,橡胶带运动速率为v . 由:E =BLv ,E =U ,得:v =UBL .(2)设电阻R 消耗的电功率为P ,则P =U 2R .(3)设感应电流大小为I ,安培力为F ,克服安培力做的功为W . 由:I =U R ,F =BIL ,W =Fd ,得:W =BLUdR .。

相关文档
最新文档