画树状图求概率

合集下载

画树状图求概率-人教版九年级数学上册教案

画树状图求概率-人教版九年级数学上册教案

画树状图求概率-人教版九年级数学上册教案
一、教学内容
本节课主要内容为画树状图求概率。

二、教学目标
1.熟练掌握画树状图的方法;
2.能够运用树状图求解与概率有关的问题。

三、教学重难点
教学重点
1.熟练掌握画树状图的方法;
2.能够画出适当的树状图解决与概率有关的问题。

教学难点
1.能够理解并画出较为复杂的树状图;
2.熟练掌握在树状图中计算概率的方法。

四、教学方法
本节课采用讲授、演示和练习相结合的教学方法。

五、教学过程
1. 导入
在开始本节课时,先向学生介绍什么是树状图,并要求学生简单说明其作用和意义。

2. 讲授
1.介绍画树状图的方法:
–确定问题;
–找到可列举出所有情况的基本事件;
–画出树状图;
–计算每个事件的概率并求得所需概率;
2.通过例题演示画树状图的方法。

3. 练习
1.给出一些与概率有关的问题,要求学生在纸上先列举出所有可能的基本事件,然后画出树状图并计算每个事件的概率,并最终求得答案;
2.可以让学生自己创造一些与概率有关的问题,并画出树状图求解。

4. 总结
对本节课学习的内容进行总结,并梳理出难点和易错点,提醒学生在日后的学习中需注意。

六、教学反思
本节课通过讲授、演示和练习相结合的方式,使学生能够熟练掌握画树状图的方法,并且能够运用树状图求解与概率有关的问题。

教学中,由于有些同学对概率的基本概念不理解,导致他们对画树状图的方法难以理解,需要在以后的教学中加强对概率概念的讲解。

同时,在练习环节中,少部分同学在练习过程中存在着错误的计算方法,需要老师进行指导纠正。

人教版九年级数学课件《画树状图求概率》

人教版九年级数学课件《画树状图求概率》
人教版数学九年级上册
第二十五章第2节
画树状图求概率
PEOPLE EDUCATION VERSION OF THE NINTH GRADE MATH VOLUME
学校:XXXX
老师:XXXX
学习目标
进一步理解等可能事件概率的意义. 学习运用树状图计算事件的概率.
人教版数学九年级上册
复习回顾
人教版数学九年级上册
4. 9
达标检测
人教版数学九年级上册
5.现有A、B、C三盘包子,已知A盘中有两个酸菜包和一个
糖包,B盘中有一个酸菜包和一个糖包和一个韭菜包,C盘 中有一个酸菜包和一个糖包以及一个馒头.老师就爱吃酸菜包 .如果老师从每个盘中各选一个包子(馒头除外),那么老师 选的包子全部是酸菜包的概率是多少?
CB A
开始
一次游戏共有9个可能结果,而且它们出现的可能性相等.
知识精讲
事件A发生的所有可能结果: (石头,剪刀)(剪刀,布)(布,石头);
事件B发生的所有可能结果: (剪刀,石头)(布,剪刀)(石头,布);
人教版数学九年级上册
事件C发生的所有可能结果: (石头,石头)(剪刀,剪刀)(布,布).
因此P(A)=
第三辆左直右左直右 左直右 左直右 左直右 左直右 左直右 左直右 左直右
共有27种行驶方向 (1)P(全部继续直行)= 1 ;
1
27
(2)P(两车向右,一车向左)=
(3)
P(至少两车向左)=
1. 27
9;
针对练习
人教版数学九年级上册
2.现在学校决定由甲同学代表学校参加全县的诗歌朗诵比赛,
甲同学有3件上衣,分别为红色(R)、黄色(Y)、蓝色(B),有2

树状图法求概率

树状图法求概率

树状图法求概率


当一次试验需要两步完成或者试验的结果需由两个 因素决定时,用树状图列举法可以吗?
(2013年)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到 古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一 个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择 古隆中为第一站的概率是多少? 解:李老师先选择,然后儿子选择,画出树状图如下:
课堂练习
1、(2012年)襄阳市教育局为提高教师业务素质,扎实开展了“课 内比教学”活动。在一次数学讲课比赛中,每个参赛选手都从两个分别 标有“A”、“B”内容的签中,随机抽取一个作为自己的讲课内容,某 校有三个选手参加这次讲课比赛,请你求出这三个选手中有两个抽中内 容“A”,一个抽中内容“B”的概率。 2、(2014年)从长度分别为2,4,6,7的四条线段中随机抽取三 条,能构成三角形的概率是多少?
树状图法求概率
复习回顾
解:列表如下:
乙 甲
剪刀
(剪刀,剪刀) (剪刀,锤子) (剪刀,布)
锤子
(锤子,剪刀) (锤子,锤子) (锤子,布)

(布,剪刀) (布,锤子) (布,布)
剪刀 锤子 布
由上表可知,甲和乙猜拳所有可能的结果有9种,其中甲获胜 (记为事件A)的结果有3 种,所以甲获胜的概率为:
本题中元音字母:
A 、E、I
辅音字母:
B 、C、D、H
在这个试验中,一个结果由几个因素决定 ?
当一次试验涉及3个因素或3个以上的因素时,列表法 能胜任吗?
树状图法求概率
解决问题
(1)取出的3个小球上,恰好有1个,2个和3个元音字母的概率分别是多少?

人教版九年级上册2第2课时用画树状图法求概率课件

人教版九年级上册2第2课时用画树状图法求概率课件



正 反正反
正 反 正 反正 反正反
25.2 第2课时 用画树状图法求概率
方法归纳
画树状图求概率的基本步骤
(1)明确一次实验的几个步骤及顺序; (2)画出树状图列举一次实验的所有可能结果; (3)数出随机事件A包含的结果数m,实验的所有 可能结果数n; (4)代入概率公式进行计算.
25.2 第2课时 用画树状图法求概率
色上的区分,随机从袋中摸出2个小球,两球恰好是一个黄
球和一个红球的概率为( A )
A. 1
2
B. 1
3
C. 1
4
D. 1
6
25.2 第2课时 用画树状图法求概率
3.某市教育局为提高教师业务素养,扎实开展了“课内比教学” 活动.在一次数学讲课比赛中,每个参赛选手都从两个分别标有 “A”“B”内容的签中,随机抽出一个作为自己的讲课内容, 某校有三个选手参加这次讲课比赛,则这三个选手中有两个抽中 内容“A”,一个抽中内容“B”的概率是___3__.
②在摸球实验一定要弄清“放回”还是“不放回”.
25.2 第2课时 用画树状图法求概率
第二十五章 概率初步
25.2 第2课时 用画树状图法求概率
25.2 第2课时 用画树状图法求概率
情景导入 问题1:同时掷两枚质地均匀的硬币,落地后,两枚都是正面向上的
概率是多少?
解:设正面向上为1,反面向上为2.
第二枚
第一枚
1
2
1
(1,1) (1,2)
2
(2,1) (2,2)
25.2 第2课时 用画树状图法求概率
取球实验

A
B

CD ECD E
丙 H I H I H I H IH I H I

25.2第2课时画树状图法求概率

25.2第2课时画树状图法求概率
开始
第一个因素
A
B
第二个因素 1
2
3
1
2
3
第三个因素 a b a b a b a b a b a b 树状图法:按事件发生的次序,列出事件可能出现的结果.
所有可能出现的情况 n=2×3×2=12
一、利用画树状图法求概率
引例示范 同时掷三枚质地均匀的硬币,求恰有两枚正面向上的概率?
解:根据题意,可画树状图得: 开始
第一枚


第二枚




第三枚 正 反 正 反 正 反 正 反
由上图可知,共有8种等可能的情况, 其中恰有两枚正面向上的情况有 3 种。 ∴P(两枚正面向上)=38
一、利用画树状图法求概率
方法归纳
画树状图求概率的基本步骤
(1)明确一次试验的几个步骤及顺序; (2)画树状图列举一次试验的所有可能结果; (3)数出试验的所有可能结果数n,随机事件A包含的结果数m; (4)用概率公式进行计算。
拓展训练
有两把不同的锁和三把钥匙,其中两把钥匙恰好能分别打开这两把锁,第三
把钥匙不能打开这两把锁。任意取一把钥匙去开任意一把锁,一次打开锁的
概率是多少?
解: 设有A,B两把锁和a,b,c三把钥匙,其中钥匙a,b分别可以打开锁A,B。
列出所有可能的结果如下:
开始
由树状图可知,共有6种等可能的情况,

B. 1
C. 1
D. 3
4
3
2
4
课堂检测
4. 某班要派出一对男女混合双打选手参加学校的乒乓球比赛,准备在小娟、 小敏、小华三名女选手和小明、小强两名男选手中选男、女选手各一名组成 一对参赛,一共能够组成 6 对;采用随机抽签的办法,恰好选出小敏和

人教版数学九年级上册《画树状图求概率》教案4

人教版数学九年级上册《画树状图求概率》教案4

人教版数学九年级上册《画树状图求概率》教案4一. 教材分析《画树状图求概率》是人教版数学九年级上册的一章内容,主要讲述了利用树状图来求解概率问题。

本节课通过树状图的方法,让学生更好地理解概率的计算,培养学生的逻辑思维能力和图形表达能力。

二. 学情分析九年级的学生已经掌握了概率的基本概念和计算方法,但对树状图的应用还不够熟练。

因此,在教学过程中,需要引导学生运用已学过的知识,将树状图与概率计算相结合,提高学生解决问题的能力。

三. 教学目标1.知识与技能:让学生掌握树状图求概率的方法,能熟练运用树状图解决实际问题。

2.过程与方法:通过小组合作、讨论交流,培养学生解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:树状图求概率的方法。

2.难点:如何将实际问题转化为树状图,并准确计算概率。

五. 教学方法1.情境教学法:通过生活实例,引发学生对概率问题的思考。

2.小组合作法:引导学生分组讨论,培养学生的团队协作能力。

3.启发式教学法:教师提问,引导学生思考,激发学生的求知欲。

六. 教学准备1.准备相关的生活实例,用于导入新课。

2.准备树状图的模板,方便学生操作。

3.准备练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如抽奖活动,引导学生思考如何计算中奖的概率。

从而引出本节课的主题——利用树状图求概率。

2.呈现(10分钟)讲解树状图求概率的方法,引导学生通过树状图来解决问题。

以抽奖活动为例,展示如何将问题转化为树状图,并计算出中奖的概率。

3.操练(10分钟)学生分组讨论,尝试解决其他实际问题,如抛硬币、掷骰子等。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)出示练习题,让学生独立完成。

教师选取部分学生的作业进行点评,总结错误原因,巩固所学知识。

5.拓展(5分钟)引导学生思考:如何利用树状图解决更复杂的概率问题?引发学生对概率问题的深入思考。

用画树状图法求概率(22张PPT)

用画树状图法求概率(22张PPT)

⑴.取出的3个小球上恰好有1个、2个和3个元音字母的概率 分别是多少? ⑵.取出的3个小球上全是辅音字母的概率是多少?
分析: 前面“两步试验的树状图”的例题和练习其实用“列表 法”也是可以的,但本例当一次试验是从三个口袋中取球时, 列表法就不方便了,为不重不漏地列出所有可能的结果,通常 采用画树状图法.
从树形图可以看出总共有(红1,红2),(红1,蓝1),……12 种等可能情矿,而都是蓝色球体有(蓝1,蓝2),(蓝2,蓝1) 两种,故:
用树状图法求概率的“四个步骤”:
1.定:确定该试验的几个步骤、顺序、每一步可能产生的结果. 2.画:列举每一环节可能产生的结果,得到树状图. 3.数:数出全部均等的结果数m和该事件出现的结果数n. 4.算:代入公式 .
1.学习用树形图法计算概率,并通过比较概率 大小作出合理的决策. 2.会运用树形图法计算事件的概率(重点);能 根据不同情况选择恰当的方法进行列举,解决 较复杂事件概率的计算问题(难点). 3.经历探索知识过程,感受数学知识的价值和 魅力,培养合作学习的意识和探索精神.
问:你知道孙膑给田忌将军的是怎样的建议吗?
6.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每 张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡 片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下 字母,用画树状图的方法,求小玲两次抽出的卡片上的字母相同的 概率. a b c 略解:画出树状图为
a
b
c
a
b
c
第一摸取 第二摸取 共12种等可能的情况;即:A 1 A 2 ,A 1 B2 ,……其中恰好能组
成一张完整图片的结果有4种,则:
新课引入的)
第一场

用列表法或画树状图法求概率

用列表法或画树状图法求概率

用列表法或画树状图法求概率(放回、不放回)
【方法】使用列表法或画树状图法求概率时,首先要通过列表或画树状图列出所有可能出现的结果数n ,然后找出符合事件A 出现的结果数m ,用公式求出
n
m A P )(即得所求事件的概率。

【出错点】求m 或n 的值。

【分类】放回、不放回
(一)明确写出放回、不放回类型
例1:(2018·威海中考)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是?
例2:一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取一张卡片后放回再抽取的一张卡片上数字之积为负数的概率是?
(二)隐含放回、不放回类型
例3:选人(不放回)(2019济南)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率。

例4:选课(放回)(2016济南中考)某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小容两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是?。

25.2.2+用画树状图求概率课件2024-2025学年人教版数学九年级上册

25.2.2+用画树状图求概率课件2024-2025学年人教版数学九年级上册

25.2.2 用画树状图求概率 (2)根据题意,列表如下:
由表格可知,共有12种等可能的结果,甲、丁同学都被选为宣传员
的结果有2种,
∴P(甲、丁同学都被选为宣传员)=
2 12
1 6
.
25.2.2 用画树状图求概率
一题多解 根据题意,画树状图如解图: 由树状图可得,共有12种等可能的结果,甲、丁同学都被选为宣传员 的结果有2种, ∴P(甲、丁同学都被选为宣传员)= 2 1
(2)这个游戏不公平.理由如下:画树状图如图,由树状图可知,共有 16种等可能的结果,其中
两数之积为偶数的结果有12种,两数之积为
奇 ∴P数(小的明结胜果)=有412种,3,P(小亮胜)= 4 1
16 4
16 4
∵ 31
44
∴这个游戏不公平
25.2.2 用画树状图求概率
课堂小结
步骤
①确定每一步有几种结果 ②在树状图下面对应写出所有可能的结果 ③利用概率公式进行计算
12 6
25.2.2 用画树状图求概率
4.如图,可以自由转动的转盘被4等分, 指针落在每个扇形内的机会 均等.
(1)若转动转盘一次,求转出的数字是
1
2的概率为____4____;(2)小明、小亮利用这个转盘做游戏.若采用下 列游戏规则,你认为这个游戏公平吗?请利用画树状图或列表的方法 说明理由.
25.2.2 用画树状图求概率
25.2.2 用画树状图求概率

A
B

CDE
CD E
丙 结果:
HIH I H I
A AA A A A C CD D E E HI HI H I
H I HIHI
B B BB B B C C DD E E H I HI H I

用列表法或画树状图法求概率 (3)

用列表法或画树状图法求概率 (3)

用列表法或画树状图法求概率(放回、不放回)【方法】使用列表法或画树状图法求概率时,首先要通过列表或画树状图列出所有可能出现的结果数n ,然后找出符合事件A 出现的结果数m ,用公式求出nmA P =)(即得所求事件的概率。

【分类】放回、不放回类型一:明确写出放回、不放回类型例1:一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是?例2:一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取一张卡片后放回再抽取的一张卡片上数字之积为负数的概率是?类型二:隐含放回、不放回类型例3:(指定特殊条件)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,先她选择从A 入口进入、从C ,D 出口离开的概率是( ) A .12B .13C .16D .23答:根据题意,列表如下: 共有 6 种可能的结果,每种结果出现的可能性都相同。

其中恰好选中“A 入口进入、从C ,D 出口”的结果有2种,所以3162)出口D ,C 入口A (==P例4:选人(不放回)(2019济南)该年级学生会宣传部有 2 名男生和 2 名女生,现从中随机挑选 2 名同学参加“防控近视,爱眼护眼”宣 传活动,请用树状图法或列表法求出恰好选中“1 男 1 女”的概率.有 8 种,所以32128)(==选择一男一女P 出口出口【同类题】1.(2019历下一模)调查结果中,该校九年级(2)班有四名同学相当优秀,了解程度为“很了解”,他们是三名男生、一名女生,现准备从这四名同学中随机抽取两人去市里参加“舜文化”知识竞赛,用树状图或列表法,求恰好抽中一男生一女生的概率.2.(2019年市中一模)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.3.(2019长清一模)已知受访的教师中,E 组只有2名女教师,F 组只有1名男教师,现要从E 组、F 组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.例5:选课(放回)(2018济南中考)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.A (A,A ) (B,A ) (C,A )B (A,B ) (B,B ) (C,B ) C(A,C )(B,C )(C,C )共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:39=13.【同类题】1. (2015年中考)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.2. (2014年中考)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( ) A .32 B .21 C .31 D .41。

画树状图法求概率教案

画树状图法求概率教案

画树状图法求概率教案教案标题:画树状图法求概率教案目标:1. 了解概率的基本概念和计算方法;2. 掌握使用树状图法求解概率问题;3. 培养学生的逻辑思维和问题解决能力。

教学重点:1. 树状图的构建和使用;2. 利用树状图法解决概率问题。

教学难点:1. 复杂问题的树状图构建;2. 确定正确的概率计算方法。

教学准备:1. 教师准备:白板、彩色粉笔/白板笔、树状图示例;2. 学生准备:笔记本、铅笔、橡皮擦。

教学过程:Step 1: 引入概率概念1. 教师简要介绍概率的定义和基本概念,如样本空间、事件等。

2. 引导学生举例说明概率的应用场景,如掷骰子、抽牌等。

Step 2: 树状图法概述1. 教师通过示意图或实际例子介绍树状图法的基本思想和步骤。

2. 强调树状图的层次结构和分支表示不同的可能性。

Step 3: 树状图的构建1. 教师通过一个简单的问题示例,引导学生一起构建树状图。

2. 解释如何根据问题的条件和可能性分支来构建树状图。

Step 4: 树状图法求解概率问题1. 教师通过示例问题演示如何使用树状图法求解概率问题。

2. 强调计算概率的方法,如乘法原理、加法原理等。

Step 5: 练习与巩固1. 学生个人或小组练习,使用树状图法解决给定的概率问题。

2. 教师提供反馈和指导,纠正学生的错误和困惑。

Step 6: 拓展应用1. 学生尝试解决更复杂的概率问题,如多次独立事件的概率计算。

2. 教师提供挑战性问题,鼓励学生探索更高级的概率计算方法。

Step 7: 总结与评价1. 教师与学生一起总结树状图法求解概率问题的基本步骤和注意事项。

2. 学生进行自我评价,检查自己对概率和树状图法的理解程度。

教学延伸:1. 学生可以在课后继续探索更复杂的概率问题,并尝试使用树状图法进行求解。

2. 学生可以与同学分享自己的概率问题解决过程,互相学习和提供反馈。

教学评估:1. 教师观察学生在课堂上的参与程度和问题解决能力。

25.2用列举法求概率画树状图法求概率((教案))

25.2用列举法求概率画树状图法求概率((教案))
-简单事件的列举:强调结果的完整性,确保不遗漏任何一种可能性。
-复合事件的列举:指导学生如何将复合事件分解为若干个简单事件,以及如何整合不同简单事件的概率。
-树状图法求解概率:重点在于教授学生如何构建树状图,并通过树状图来分析事件发生的所有可能性。
-树状图的构建:强调树状图的逻辑结构,以及如何从初始事件出发,逐步展开所有分支。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解概率的基本概念。概率是指某个事件在所有可能事件中发生的频率或可能性。它是帮助我们量化不确定性,进行合理决策的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。通过列举法或树状图法求解一个实际问题,展示概率在实际中的应用,以及如何帮助我们解决问题。
此外,学生在构建树状图时,对于如何正确地表示事件之间的分支关系显得有些吃力。我意识到,这里我需要给出更清晰的指导,比如通过逐步引导的方式,让学生在课堂上一起参与构建,而不是仅仅观看我在黑板上演示。
我还观察到,在小组讨论环节,有些学生显得不够积极。为了鼓励他们更主动地参与进来,我打算在下次课堂上尝试一些互动性更强的教学方法,比如角色扮演或者辩论赛,让每个学生都能在活动中找到自己的位置,发挥自己的作用。以下核心素养:
1.数据分析观念:通过列举法和树状图法求解概率问题,提高学生分析数据、处理信息的能力,使其能够从实际问题中抽象出数学模型。
2.逻辑推理能力:在求解过程中,引导学生运用逻辑推理,分析事件之间的关联,培养学生严谨的逻辑思维。
3.数学抽象能力:让学生在列举和画树状图的过程中,提高对事件抽象和概括的能力,形成数学模型。
在教学过程中,教师需要针对这些重点和难点,通过直观的例子、互动讨论和反复练习,帮助学生深入理解核心知识,并克服学习中的困难。

人教版数学九年级上册25.2画树状图求概率教案

人教版数学九年级上册25.2画树状图求概率教案
4.培养学生通过画树状图整理、分析事件的方法,提高数据处理的核心素养。
在教学过程中,重点关注学生对概率知识的理解和应用,以及通过树状图分析事件的逻辑推理过程,使学生在掌握知识的同时,提升Байду номын сангаас科核心素养。
三、教学难点与重点
1.教学重点
-理解并掌握利用树状图求概率的方法,包括单个事件和组合事件的概率计算;
1.讨论主题:学生将围绕“概率在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
在教学过程中,教师应通过具体实例、图示演示、互动讨论等方式,反复强调和练习这些重点和难点内容,确保学生能够透彻理解和掌握。同时,应注重引导学生通过自主探索和小组合作来发现和解决问题,以提高他们的自主学习能力和解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《画树状图求概率》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算可能性大小的情况?”比如,抛硬币时,你想过得到正面的概率是多少吗?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解概率的基本概念。概率是指某个事件发生的可能性大小。它在生活中有广泛的应用,比如天气预报、抽奖活动等。
2.案例分析:接下来,我们来看一个具体的案例。抛掷两枚硬币,求得到两个正面的概率。这个案例将展示如何利用树状图来分析事件和计算概率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 怎样计算所有等可能的结果:如a×b .
3. 当试验分两步完成时,列表法比较方便, 当然也可用画树状图法;当试验分三步及 以上完成时应用树状图法,而不用列表法.
中考链接
有两个可以自由转动的均匀转盘(如图),刘聪和李 明同学用这个转盘做游戏,其规则如下:①分别转动转 盘A和B;②两个转盘停止后,将两个指针所指区域内的 数字相加(如果指针恰好停在等分线上,那就重转,直 到指针停在某一区域内为止);③如果和为0,刘聪获胜, 否则李明获胜.
第三步 ···
最后 在树形图下面对应着写出所有可能的结果.
课堂热身
1.有的同学认为:抛三枚普通硬币,硬 币落地后只可能出现四种情况: ①全是正面; ②两正一反; ③两反一正; ④全是反面. 因此这四个事件出现的机会相等.你同意 这种说法吗?为什么?
第1次

分析

第2次 正 反 正 反
第3次 正 反 正 反 正 反 正 反
情景导入
【问题1】抛一枚普通硬币1次,硬 币落地后,会出现哪些可能的结果?
【问题2】抛一枚普通硬币2次,共有 几种可能的结果?
抛3次呢?
探索问题
抛掷一枚普通的硬币3次.连续掷 出三个正面和先掷出两个正面再掷出 一个反面的概率一样吗?
第1次


第2次 正 反 正 反
第3次 正 反 正 反 正 反 正 反
在分析这个问题中,我们用了画图的方法.这幅图 好像一棵倒立的树,因此我们常把它称为树形图, 也称树状图、树图.
第一步可能产生的结果为A、B 、···(可能性相同 且不分先后)写在第一行.
第二步可能产生的结果为C 、D 、···(可能性相同 且不分先后),从A 、 B、···分别画出几个分支,在 第二行分别写上C 、D、···.
①所得点数之积有多少种可能? ②点数之积为多少的概率最大?其概率为多少? ③点数之积为奇数的概率是多少?
123 4 5 6 2 4 6 8 10 12 3 6 9 12 15 18 4 8 12 16 20 24 5 10 15 20 25 30 6 12 18 24 30 36
归纳小结
1. 用列举法分析概率的两种方法: 画树状图法、列表法.
(1) 画树状图或列表求刘聪获胜的概率. (2) 你认为这个游戏对双方公平吗?请说明理由.
解: (1) 画树状图(或列表)如下:
(此略)
∵转盘A和B转出的数字的等可能的
结果共有 种,而它们的和为 0
的结果共有 种,
∴ P (刘聪获胜)=
.
(2) 这个游戏对双方不公平,理由如下: ∵ P (刘聪获胜)= ,
P (பைடு நூலகம்明获胜)= . ∴ ······
请同学们想一想本节课 学习了哪些知识?
书面作业
参见《作业题单》

天 更 美 好
!
祝 同 学 们 学



执教:李同彬 制作:李同彬
2018/11/4
P(全是正面)=
1 8
P(两反一正)=
3 8
P(两正一反)=
3 8
P(全是反面)=
1 8
课堂热身
2.口袋中装有1个红球和2个白球 . ①搅匀后从中摸出1个球,会出现哪 些可能的结果? ②若将摸出的第一个球放回搅匀再 摸出第二个球,两次摸球会出现哪些可 能的结果?
第1次 红
白1
白2
第2次 红白1白2 红白1白2 红白1白2
P(都是红球)=
1 9
P(一红一白)=
4 9
P(都是白球)=
4 9
分析
第1次
红1
白2
3
3
第2次
红1
3
白2
3
红1 白2
3
3
P(都是红球)=
1 9
P(一红一白)=
4 9
P(都是白球)=
4 9
分析

白1
白2
红白1白2 红白1白2 红白1白2
甲袋 红白1白2
乙袋 红白1白2
错误画法
探索问题
问题3 掷两枚普通的正六面体骰子.
相关文档
最新文档