2020年与2019年高考数区别解读

合集下载

2020年高考大纲内容与变化

2020年高考大纲内容与变化

2020年高考大纲内容与变化2020年现有高考体系的考试大纲和考试大纲的说明不再修订,参考2019年版考试大纲和考试大纲的说明。

实施普通高中新课程的省份也不再制订考试大纲。

疫情背景下的高考之“变”变化一:考纲取消,命题无范围、更灵活2019年末,教育部考试中心宣布。

现有高考体系的考试大纲和考试大纲的说明不再修订,参考2019年版考试大纲和考试大纲的说明。

实施普通高中新课程的省份也不再制订考试大纲。

有人担忧,“取消划重点,整本书都成重点”。

一、未实施高考综合改革省份2020高考大纲和说明(除浙江、上海、北京、天津、山东、海南外的其他所有省份,也包括广东、河北、辽宁、江苏、湖南、湖北、福建、重庆8省市的2020届考生)1.高考大纲(沿用2019版)仍使用《2019年普通高等学校招生全国统一考试大纲(文科)》和《2019年普通高等学校招生全国统一考试大纲(理科)》。

上述考纲既是2020年各省(自治区、直辖市)高考命题的参考,也是各省(自治区、直辖市)2020年参加高考的考生复习备考的参考。

其中,“文科考试大纲”含语文、汉语、数学(文)、英语、思想政治、历史、地理七科;“理科考试大纲”含语文、汉语、数学(理)、英语、物理、化学、生物七科。

2.考试大纲的说明(沿用2019版)仍使用《2019年普通高等学校招生全国统一考试大纲的说明(文科)》和《2019年普通高等学校招生全国统一考试大纲的说明(理科)》是“2019年普通高等学校招生全国统一考试大纲”的配套图书。

两本考试说明可供2020年全部使用教育部考试中心试卷(全国卷)的省(自治区、直辖市、兵团)使用,也可供自主命题的省(自治区、直辖市)参考。

3.试题分析(2020年有重大修订)在考纲和说明不变的情况下,为了进一步明确高考内容改革的方向,提醒2020届考生关注新题型、新动向,教育部考试中心对2020年版高考试题分析将进行全面修订,对2019年各科高考试题分考查目标、解题思路、试题评析、失误防范等几个层次进行了分析,并进一步阐述高考对考生能力、素质的要求。

《中国高考评价体系2020》完整解读

《中国高考评价体系2020》完整解读

《中国高考评价体系2020》完整解读2019年12月19日,在中国高考报告学术委员会、社会科学文献出版社共同举办的《考试蓝皮书》发布暨高考评价体系研讨会上发布了《考试蓝皮书:中国高考报告(2020)》《中国高考报告:政策与命题解读》《中国高考报告:高考评价体系解读》,北京志鸿教育考试研究院是本次发布会的协办单位。

中国高考报告学术委员会与志鸿教育研究院强强联手,委托世纪天鸿作为中国高考报告系列丛书的总发行,通过专业、权威的政策解读和试题解析,强大的渠道影响为广大高考师生提供最实用的高考解决方案和备考策略。

高考是国家基本教育制度,在党和国家事业发展战略全局中具有重要地位和作用。

2014年启动的新高考改革,着力于教-考-招等领域的全景式改革,探索出了一条分类考试、综合评价、阳光招生、多元录取的道路。

2018年9月10日召开的全国教育大会,是中国教育发展史上重要的里程碑,标志着中国教育进入了现代化建设新阶段,开启了加快教育现代化的新征程。

2019年12月,教育部考试中心发布“中国高考评价体系”,为深化新时代高考内容改革和命题工作提供了可靠的理论支撑和实践指南,意味着发轫于2014年的高考综合改革正式落地。

未来新高考改革将在认真总结十八届三中全会以来高考改革取得的积极进展和成效的基础上,全面贯彻党的教育方针,突出对学生德智体美劳全面发展的要求,同时依据高校人才选拔要求和国家课程标准,深化高考内容改革、助推高中育人方式改革。

2019年的高考综合改革,走过了一条务实前行的艰苦奋进之路。

学前教育、高中教育、义务教育三大领域顶层设计悄然完成、全面发力;实施普通高中新课程的省份不再制定考试大纲,学科评价体系新立,高考命题标准发生深刻变化;规范学业考试,改善综合素质评价,提升综合素质评价在高考录取体系的重要性,多元录取的录取体系全面升级。

职业教育扩招百万,助力高考综合改革。

未来已来,新高考改革在中国教育现代化前进的大道上,稳步迈进。

2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n项和课时跟踪检测理

2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n项和课时跟踪检测理

2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n 项和课时跟踪检测理[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20 C .100D .200解析:a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100. 答案:C2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D .558解析:因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.答案:A3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D .15解析:∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.答案:A4.(xx 届太原一模)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C. 2D .2 2解析:在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q=4.答案:B5.(xx 届莱芜模拟)已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 017=( )A .92 016B .272 016C .92 017D .272 017解析:由已知条件知{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列,所以a n =3n ,b n =3n. 又c n =ba n =33n, 所以c 2 017=33×2 017=272 017.答案:D6.(xx 届海口市调研测试)设S n 为等比数列{a n }的前n 项和,a 2-8a 5=0,则S 8S 4的值为( )A.12 B .1716 C .2D .17解析:设{a n }的公比为q ,依题意得a 5a 2=18=q 3,因此q =12.注意到a 5+a 6+a 7+a 8=q 4(a 1+a 2+a 3+a 4),即有S 8-S 4=q 4S 4,因此S 8=(q 4+1)S 4,S 8S 4=q 4+1=1716,选B.答案:B7.(xx 届衡阳模拟)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n =( )A .2n +1-2 B .3n C .2nD .3n-1解析:因为数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2qn -1,因为数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n+2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n ,故选C.答案:C8.(xx 届广州市五校联考)已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n,若b 10b 11=2,则a 21=( )A .29B .210C .211D .212解析:由b n =a n +1a n ,且a 1=2,得b 1=a 2a 1=a 22,a 2=2b 1;b 2=a 3a 2,a 3=a 2b 2=2b 1b 2;b 3=a 4a 3,a 4=a 3b 3=2b 1b 2b 3;…;a n =2b 1b 2b 3…b n -1,所以a 21=2b 1b 2b 3…b 20,又{b n }为等比数列,所以a 21=2(b 1b 20)(b 2b 19)…(b 10b 11)=2(b 10b 11)10=211. 答案:C9.由正数组成的等比数列{a n }满足a 3a 8=32,则log 2a 1+log 2a 2+…+log 2a 10=________. 解析:log 2a 1+log 2a 2+…+log 2a 10=log 2(a 1a 10)·(a 2a 9)·…·(a 5a 6)=log 2(a 3a 8)5=log 2225=25.答案:2510.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 解析:因为3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.答案:3n -111.(xx 届南昌模拟)已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列.(1)求等比数列{a n }的通项公式;(2)对n ∈N *,在a n 与a n +1之间插入3n 个数,使这3n+2个数成等差数列,记插入的这3n个数的和为b n ,求数列{b n }的前n 项和T n .解:(1)因为a 4+S 4,a 5+S 5,a 6+S 6成等差数列, 所以a 5+S 5-a 4-S 4=a 6+S 6-a 5-S 5, 即2a 6-3a 5+a 4=0, 所以2q 2-3q +1=0, 因为q ≠1, 所以q =12,所以等比数列{a n }的通项公式为a n =12n .(2)b n =a n +a n +12·3n=34⎝ ⎛⎭⎪⎫32n ,T n =34×32-⎝ ⎛⎭⎪⎫32n +11-32=94⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1.12.设数列{a n }的前n 项和为S n (n ∈N *).已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n+2+5S n =8S n +1+S n -1. (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.解:(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=81+32+54+1,解得a 4=78.(2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2).∵4a 3+a 1=4×54+1=6=4a 2符合上式,∴4a n +2+a n =4a n +1(n ≥1), ∴a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n=4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 22a n +1-a n =12,∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.[能 力 提 升]1.若{a n }是正项递增等比数列,T n 表示其前n 项之积,且T 10=T 20,则当T n 取最小值时,n 的值为________.解析:T 10=T 20⇒a 11…a 20=1⇒(a 15a 16)5=1⇒a 15a 16=1,又{a n }是正项递增等比数列,所以0<a 1<a 2<…<a 14<a 15<1<a 16<a 17<…,因此当T n 取最小值时,n 的值为15.答案:152.(xx 届山西吕梁质检)已知数列2,8,4,12,…,该数列的特点是从第2项起,每一项都等于它的前后两项之积,则这个数列的前2 018项之积T 2 018等于________.解析:数列2,8,4,12,…,该数列的特点是从第2项起,每一项都等于它的前后两项之积,这个数列的前8项分别为2,8,4,12,18,14,2,8,易得从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项积为2×8×4×12×18×14=1.又因为2 018=336×6+2,所以这个数列的前2 018项之积T 2 018=1336×2×8=16. 答案:163.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). ∵a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2),∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n,则a n +1=-2a n +5×3n, ∴a n +1-3n +1=-2(a n -3n).又∵a 1-3=2,∴a n -3n≠0,∴{a n -3n}是以2为首项,-2为公比的等比数列. ∴a n -3n=2×(-2)n -1,即a n =2×(-2)n -1+3n.2019-2020年高考数学一轮总复习第五章数列5.4数列求和课时跟踪检测理[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }是等差数列,a 1=tan225°,a 5=13a 1,设S n 为数列{(-1)na n }的前n 项和,则S 2 014=( )A .2 015B .-2 015C .3 021D .-3 022解析:由题知a 1=tan(180°+45°)=1,∴a 5=13 ∴d =a 5-a 15-1=124=3. ∴a n =1+3(n -1)=3n -2. 设b n =(-1)na n =(-1)n(3n -2),∴S 2 014=(-1+4)+(-7+10)+…+(-6 037+6 040)=3×1 007=3 021.故选C. 答案:C2.设{a n }是公差不为零的等差数列,a 2=2,且a 1,a 3,a 9成等比数列,则数列{a n }的前n 项和S n =( )A.n 24+7n 4 B .n 22+3n 2C.n 24+3n4D .n 22+n2解析:设等差数列{a n }的公差为d ,则 由a 23=a 1a 9得(a 2+d )2=(a 2-d )(a 2+7d ), 代入a 2=2,解得d =1或d =0(舍). ∴a n =2+(n -2)×1=n , ∴S n =a 1+a n n2=1+n n 2=n 22+n 2.故选D. 答案:D3.等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .29B .31C .33D .36解析:设等比数列{a n }的公比为q 则a 21q 3=2a 1,①a 1q 3+2a 1q 6=52,②解得a 1=16,q =12,∴S 5=a 11-q 51-q=31,故选B.答案:B4.已知等比数列{a n }的各项均为正数,a 1=1,公比为q ;等差数列{b n }中,b 1=3,且{b n }的前n 项和为S n ,a 3+S 3=27,q =S 2a 2.(1)求{a n }与{b n }的通项公式;(2)设数列{c n }满足c n =32S n ,求{c n }的前n 项和T n .解:(1)设数列{b n }的公差为d , ∵a 3+S 3=27,q =S 2a 2,∴⎩⎪⎨⎪⎧q 2+3d =18,6+d =q 2.求得q =3,d =3,∴a n =3n -1,b n =3n .(2)由题意得S n =n 3+3n2,c n =32S n =32×23×1n n +1=1n -1n +1. ∴T n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1.5.(xx 届广州综合测试)已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项. (1)求数列{a n }的通项公式;(2)设b n =2log 2a n -1,求数列{a n b n }的前n 项和T n . 解:(1)设数列{a n }的公比为q , 因为a 2=4,所以a 3=4q ,a 4=4q 2. 因为a 3+2是a 2和a 4的等差中项, 所以2(a 3+2)=a 2+a 4, 化简得q 2-2q =0. 因为公比q ≠0,所以q =2. 所以a n =a 2qn -2=4×2n -2=2n (n ∈N *).(2)因为a n =2n,所以b n =2log 2a n -1=2n -1, 所以a n b n =(2n -1)2n,则T n =1×2+3×22+5×23+…+(2n -3)2n -1+(2n -1)2n,①2T n =1×22+3×23+5×24+…+(2n -3)2n+(2n -1)·2n +1.②由①-②得,-T n =2+2×22+2×23+…+2×2n -(2n -1)2n +1=2+2×41-2n -11-2-(2n -1)2n +1=-6-(2n -3)2n +1,所以T n =6+(2n -3)2n +1.6.S n 为数列{a n }的前n 项和,已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3. 所以{a n }是首项为3,公差为2的等差数列, 通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n32n +3.7.已知数列{a n }与{b n }满足a n +1-a n =2(b n +1-b n )(n ∈N *). (1)若a 1=1,b n =3n +5,求数列{a n }的通项公式;(2)若a 1=6,b n =2n(n ∈N *)且λa n >2n +n +2λ对一切n ∈N *恒成立, 求实数λ的取值范围.解:(1)因为a n +1-a n =2(b n +1-b n ),b n =3n +5, 所以a n +1-a n =2(b n +1-b n )=2(3n +8-3n -5)=6, 所以{a n }是等差数列,首项为1,公差为6, 即a n =6n -5. (2)因为b n =2n, 所以a n +1-a n =2(2n +1-2n )=2n +1,当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n +2n -1+…+22+6=2n +1+2,当n =1时,a 1=6,符合上式,所以a n =2n +1+2,由λa n >2n+n +2λ得λ>2n+n 2n +1=12+n 2n +1,令f (n )=12+n 2n +1,因为f (n +1)-f (n )=n +12n +2-n 2n +1=1-n 2n +2≤0, 所以12+n2n +1在n ≥1时单调递减,所以当n =1,2时,2n+n 2n +1取最大值34,故λ的取值范围为⎝ ⎛⎭⎪⎫34,+∞. [能 力 提 升]1.已知数列{a n }的首项为a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)na n ,求数列{b n }的前n 项和T n . 解:(1)由已知得S n n=1+(n -1)×2=2n -1, 所以S n =2n 2-n , 当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. a 1=1=4×1-3,所以a n =4n -3,n ∈N *.(2)由(1)可得b n =(-1)na n =(-1)n(4n -3). 当n 为偶数时,T n =(-1+5)+(-9+13)+…+[-(4n -7)+(4n -3)]=4×n2=2n ,当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1,综上,T n =⎩⎪⎨⎪⎧2n ,n =2k ,k ∈N *,-2n +1,n =2k -1,k ∈N *.2.在数列{a n }中,已知a n >1,a 1=1+3,且a n +1-a n =2a n +1+a n -2,记b n =(a n -1)2,n ∈N *.(1)求数列{b n }的通项公式;(2)设数列{b n }的前n 项和为S n ,证明:13≤1S 1+1S 2+1S 3+…+1S n <34.解:(1)因为a n +1-a n =2a n +1+a n -2,所以a 2n +1-a 2n -2a n +1+2a n =2, 即(a n +1-1)2-(a n -1)2=2. 又b n =(a n -1)2,n ∈N *,所以b n +1-b n =2,数列{b n }是以b 1=(1+3-1)2=3为首项,2为公差的等差数列, 故b n =2n +1,n ∈N *. (2)证明:由(1)得S n =n 3+2n +12=n (n +2),所以1S n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2,n ∈N *, 所以1S 1+1S 2+1S 3+…+1S n=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2<34.记T n =1S 1+1S 2+1S 3+…+1S n,因为1S n>0,n ∈N *,所以T n 单调递增.故T n ≥T 1=1S 1=13.综上13≤1S 1+1S 2+…+1S n <34.3.已知各项均为正数的数列{a n }的前n 项和为S n ,且满足a 2n +a n =2S n . (1)求数列{a n }的通项公式; (2)求证:S n2<S 1+S 2+…+S n <S n +1-12.解:(1)因为当n ∈N *时,a 2n +a n =2S n , 故当n >1时,a 2n -1+a n -1=2S n -1,两式相减得,a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n , 即(a n +a n -1)(a n -a n -1)=a n +a n -1.因为a n >0,所以a n +a n -1>0,所以当n >1时,a n -a n -1=1.又当n =1时,a 21+a 1=2S 1=2a 1,得a 1=1, 所以数列{a n }是以1为首项,1为公差的等差数列, 所以a n =n .(2)证明:由(1)及等差数列的前n 项和公式知S n =n n +12,所以S n = n n +12>n 22=n2, 所以S 1+S 2+…+S n >12+22+…+n 2= 1+2+…+n 2=S n 2. 又S n = n n +12<n +122=n +12, 所以S 1+S 2+…+S n <22+32+…+n +12=1+2+…+n +12-12=S n +1-12, 所以S n2<S 1+S 2+…+S n <S n +1-12.。

2019-2020年高考数学 专题34 空间中线线角、线面角的求法黄金解题模板

2019-2020年高考数学 专题34 空间中线线角、线面角的求法黄金解题模板

2019-2020年高考数学 专题34 空间中线线角、线面角的求法黄金解题模板【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重. 其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.【方法点评】类型一 空间中线线角的求法方法一 平移法使用情景:空间中线线角的求法解题模板:第一步 首先将两异面直线平移到同一平面中;第二步 然后运用余弦定理等知识进行求解;第三步 得出结论.例1正四面体ABCD 中, E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为 A. 6π B. 4π C. 3π D. 2π 【答案】B平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常转化为解三角形的问题处理,要注意异面直线所成角的范围为0,2π⎛⎤ ⎥⎝⎦。

【变式演练1】如图,四边形ABCD 是矩形, 沿直线BD 将ABD ∆翻折成'A BD ∆,异面直线CD 与'A D 所成的角为α, 则( )A .'A CA α<∠B .'A CA α>∠C.'A CD α<∠ D .'A CD α>∠【答案】B考点:异面直线所成角的定义及运用.【变式演练2】【2018年衡水联考】在棱长为1的正方体1111ABCD A B C D -中,点E , F 分别是侧面11AA D D 与底面ABCD 的中心,则下列命题中错误的个数为( )①//DF 平面11D EB ; ②异面直线DF 与1B C 所成角为60︒;③1ED 与平面1B DC 垂直; ④1112F CDB V -=. A. 0 B. 1 C. 2 D. 3【答案】A【解析】对于①,∵DF 11//B D ,DF ⊄平面11D EB , 11B D ⊂平面11D EB ,∴//DF 平面11D EB ,正确; 对于②,∵DF 11//B D ,∴异面直线DF 与1B C 所成角即异面直线11B D 与1B C 所成角,△11C B D 为等边三角形,故异面直线DF 与1B C 所成角为60︒,正确;对于③,∵1ED ⊥1A D , 1E D ⊥CD,且1A D ⋂CD=D ,∴1E D ⊥平面11A B DC ,即1E D ⊥平面1B DC ,正确;对于④,11CDF 1111133412F CDB B CDF V V S --==⨯⨯=⨯=,正确, 故选:A 【变式演练3】设三棱柱111ABC A B C -的侧棱与底面垂直,90BCA ∠=︒,2BC CA ==,若该棱柱的所有顶点都在体积为323π的球面上,则直线1B C 与直线1AC 所成角的余弦值为( )A .23-B .23C . 【答案】B【变式演练4】如图所示,正四棱锥P ABCD -的底面面积为3,, E 为侧棱PC 的中点,则PA 与BE 所成的角为( )A. 30︒B. 45︒C. 60︒D. 90︒【答案】C方法二 空间向量法使用情景:空间中线线角的求法解题模板:第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标;第二步 然后求出所求异面直线的空间直角坐标;第三步 再利用cos a ba bθ→→→→⋅=即可得出结论. 例2、如图,直三棱柱111ABC A B C -中,13AC BC AA ===,AC BC ⊥,点M 在线段AB 上.(1)若M 是AB 中点,证明:1//AC 平面1B CM ;(2)当BM =11C A 与平面1B MC 所成角的正弦值【答案】(1)详见解析(2(II )1,AC BC CC ABC ⊥⊥平面,故如图建立空间直角坐标系1(033),(300),(030),(000)B A B C ,,,,,,,,,BA =13BM BA = 1(1,1,0),(0,3,0)(1,1,0)(1,2,0)3BM BA CM CB BM ==-=+=+-=, 令平面1B MC 的法向量为(,,)n x y z =,由100n CB n CM ⎧⋅=⎪⎨⋅=⎪⎩,得020y z x y +=⎧⎨+=⎩ 设1z =所以(2,1,1)n =-,11(3,0,0)C A CA == ,设直线11C A 与平面1B MC 所成角为q1111||sin ||||3C A n C A n q ×===故当BM =11C A 与平面1B MC 考点:线面平行判定定理,利用空间向量求线面角【思路点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.例3、如图,正方形AMDE 的边长为2,B C、分别为线段AM MD 、的中点,在五棱锥P ABCDE -中,F 为棱PE 的中点,平面ABF 与棱PD PC 、分别交于点G H 、.(1)求证://AB FG ;(2)若PA ⊥底面ABCDE ,且PA AE =,求直线BC 与平面ABF 所成角的大小.【答案】(1)详见解析(2)6π考点:线面平行判定定理,利用空间向量求线面角【思路点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.【变式演练4】已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为______.考点:异面直线及其所成的角【变式演练5】如图,在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,4AB =,16AA =.若E ,F 分别是棱1BB ,1CC 上的点,且1BE B E =,1113C F CC =,则异面直线1A E 与AF 所成角的余弦值为( )A .6B .6C .10D .10【答案】D【解析】试题分析:以BC 的中点O为坐标原点建立空间直角坐标系如图所示,则A,1A ,(0,2,3)E ,(0,2,4)F -,1(3)A E =--,(2,4)AF =--,设1A E ,AF 所成的角为θ,则11||cos 10||||5A E AF A E AF θ⋅===⋅⨯. 考点: 线面角.类型二空间中线面角的求法方法一 垂线法使用情景:空间中线面角的求法解题模板:第一步 首先根据题意找出直线上的点到平面的射影点;第二步 然后连接其射影点与直线和平面的交点即可得出线面角;第三步 得出结论.例3如图,四边形ABCD 是矩形,1,AB AD ==E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .GD BA(Ⅰ)求证:AF ⊥面BEG ;(Ⅱ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【答案】(Ⅰ)证明见解析;.证法2:(坐标法)证明1-=⋅BE AC K K ,得BE AC ⊥,往下同证法1.证法3:(向量法)以,为基底, ∵-=+=21,,0=⋅∴)21()(AB AD AB AD BE AC -⋅+=⋅221-=01221=-⨯= ∴BE AC ⊥,往下同证法1.(2)在AGF Rt ∆中,22GF AF AG +=36)33()33(22=+= 在BGF Rt ∆中,22GF BF BG +=1)33()36(22=+= 在ABG ∆中,36=AG ,1==AB BG ∴2)66(13621-⨯⨯=∆ABG S 656303621=⨯⨯=设点E 到平面ABG 的距离为d ,则GF S d S ABF ABG ⋅=⋅∆∆3131,∴ABG ABFS GF S d ∆⋅=1030653312221=⨯⨯⨯= 22)66()33(2222=+=+=EF GF EG ,设直线EG 与平面ABG 所成角的大小为θ,则 EG d=θsin .515221030== 考点:线面垂直的判定,直线与平面所成的角.【点评】解决直线与平面所成的角的关键是找到直线上的点到平面的射影点,构造出线面角.【变式演练6】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为( )A .13 B.3 C. D .23【答案】B考点:直线与平面所成的角.【变式演练7】在四面体ABCD 中,AB AD ⊥,1AB AD BC CD ====,且ABD BCD ⊥平面平面,M 为AB 中点,则CM 与平面ABD 所成角的正弦值为( )A.2 B.3 C.2 D.3【答案】D考点:1.平面与平面垂直;2.直线与平面所成的角.方法二空间向量法使用情景:空间中线面角的求法解题模板:第一步首先建立适当的直角坐标系并写出相应点的空间直角坐标;第二步然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步再利用a bsina bθ→→→→⋅=即可得出结论.例4 [2018衡水金卷大联考]如图,在四棱锥中,底面为直角梯形,其中,,侧面平面,且,动点在棱上,且.(1)试探究的值,使平面,并给予证明;(2)当时,求直线与平面所成的角的正弦值.(2)取的中点,连接.则.∵平面平面,平面平面,且,∴平面.∵,且,∴四边形为平行四边形,∴.又∵,∴.由两两垂直,建立如图所示的空间直角坐标系.则,,,,,.当时,有,【变式演练8】【2018浙江嘉兴市第一中模拟】如图,四棱锥,底面为菱形,平面,,为的中点,.(I)求证:直线平面;(II)求直线与平面所成角的正弦值.【解析】(I)证明:,又又平面,直线平面.(方法二)如图建立所示的空间直角坐标系..设平面的法向量,.所以直线与平面所成角的正弦值为【高考再现】1. 【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A C D 【答案】C【考点】 异面直线所成的角;余弦定理;补形的应用【名师点睛】平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形; ④取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角。

2020年高考数学五年真题与三年模拟考点分类解读(江苏版)22 空间几何题的面积与体积(原卷版)

2020年高考数学五年真题与三年模拟考点分类解读(江苏版)22 空间几何题的面积与体积(原卷版)

考点22 空间几何题的面积与体积一、考纲要求1. 直观了解柱、锥、台、球及其简单组合体的结构特征,对柱、锥、台、球的概念的理解不作过高要求,复习时不要过分挖深.2. 多面体与旋转体表面上两点间的最短距离问题,要适当强化,体现了空间问题向平面问题转化.3. 柱、锥、台、球的表面积与体积的计算可能会在高考填空题中出现,注意体现不同几何体之间的联系,同时注意与平面几何中的面积等进行类比.二、近五年江苏高考立体几何中的计算作为江苏考纲必考知识点,每年都会考查,但是江苏高考对立体几何中的运算要求比较简单,近要求计算简单几何体的体积与表面积等简单的运算。

从近五年江苏高考试题可以发现主要考查柱、锥、球的表面积与体积,因此,在复习中要注意把握深度。

三、考点总结:把握空间几何体的结构特征是认识几何体的一个重要方面,也是进一步学习立体几何的基础. 在学习过程中,要通过互相对比的方式来把握它们的实质与不同,既要看到它们之间的不同,也要理解它们之间的联系,这样才能理解它们之间的共性和个性,做到心中有数,心中有图. 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题. 即使考查空间线面的位置关系问题,也常以几何体为依托,因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式. 同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解.四、近五年江苏高考题1、(2019江苏卷)如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.2、(2018江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.3、(2017江苏卷)如图,圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.4、(2016江苏卷)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P A 1B 1C 1D 1,下部的形状是正四棱柱ABCDA 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1) 若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大?5、(2015江苏卷)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.五、三年模拟题型一柱的表面积与体积1、(2019南通、泰州、扬州一调)已知正四棱柱的底面长是3 cm,侧面的对角线长是3 5 cm,则这个正四棱柱的体积为________cm3.2、(2019常州期末)已知圆锥SO,过SO的中点P作平行于圆锥底面的截面,以截面为上底面作圆柱PO,圆柱的下底面落在圆锥的底面上(如图),则圆柱PO的体积与圆锥SO的体积的比值为________.3、(2019苏锡常镇调研(一))已知圆柱的轴截面的对角线长为2,则这个圆柱的侧面积的最大值为________.4、(2019南京三模)有一个体积为2的长方体,它的长、宽、高依次为a,b,1.现将它的长增加1,宽增加2,且体积不变,则所得新长方体高的最大值为.5、(2018南京学情调研)将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27πcm3,则该圆柱的侧面积为________cm2.6、(2018南通、泰州一调)如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边长、高都为4 cm,圆柱的底面积为9 3 cm2.若将该螺帽熔化后铸成一个高为6 cm的正三棱柱零件,则该正三棱柱的底面边长为________cm(不计损耗).7、(2018苏北四市期末)已知正四棱柱的底面边长为3 cm,侧面的对角线长是35cm,则这个正四棱柱的体积是________cm3.8、(2018苏中三市、苏北四市三调)现有一正四棱柱形铁块,底面边长为高的8倍,将其熔化锻造成一个底面积不变的正四棱锥形铁件(不计材料损耗).设正四棱柱与正四棱锥的侧面积分别为1S ,2S ,则12S S 的值为 .9、(2017南通一调)如图,在正四棱柱ABCDA 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1A 1BD 的体积为________cm 3.10.(2017常州期末)以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为________.题型二 锥的表面积与体积1、(2019扬州期末)底面半径为1,母线长为3的圆锥的体积是________.2、(2019镇江期末) 已知一个圆锥的底面积为π,侧面积为2π,则该圆锥的体积为________.3、(2019泰州期末) 如图,在直三棱柱ABCA 1B 1C 1中,点M 为棱AA 1的中点,记三棱锥A 1MBC 的体积V 1,四棱锥A 1BB 1C 1C 的体积为V 2,则V 1V 2的值是________.4、(2019苏北三市期末)已知正四棱锥的底面边长为23,高为1,则该正四棱锥的侧面积为________.5、(2018苏州暑假测试)如图,正四棱锥PABCD 的底面一边AB 的长为2 3 cm ,侧面积为8 3 cm 2,则它的体积为________cm 3.6、(2018常州期末) 已知圆锥的高为6,体积为8.用平行于圆锥底面的平面截圆锥,得到的圆台体积是7,则该圆台的高为________.7、(2018镇江期末) 已知正四棱锥的底面边长为2,侧棱长为6,则该正四棱锥的体积为________. 8、(2018扬州期末) 若圆锥的侧面展开图是面积为3π且圆心角为2π3的扇形,则此圆锥的体积为________.9、(2018南京、盐城、连云港二模)在边长为4的正方形ABCD 内剪去四个全等的等腰三角形(如图1中阴影部分),折叠成底面边长为2的正四棱锥SEFGH(如图2),则正四棱锥SEFGH 的体积为________.(图1) (图2)10、(2018苏锡常镇调研(一))若正四棱锥的底面边长为 2 cm ,侧面积为8 cm 2,则它的体积为________cm 3.11、(2017苏锡常镇调研(一)) 已知正四棱锥的底面边长是2,侧棱长是3,则该正四棱锥的体积为________.题型三 球的表面积与体积1、(2019苏州期末)如图,某种螺帽是由一个半径为2的半球体挖去一个正三棱锥构成的几何体,该正三棱锥的底面三角形内接于半球底面大圆,顶点在半球面上,则被挖去的正三棱锥体积为________.2、(2019苏州三市、苏北四市二调)设P,A,B,C为球O表面上的四个点,PA,PB,PC两两垂直,且PA=2 m,PB=3 m,PC=4 m,则球O的表面积为________m2.3、(2018无锡期末)直三棱柱ABCA1B1C1中,已知AB⊥BC,AB=3,BC=4,AA1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为________.4、(2018苏州期末)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________(容器壁的厚度忽略不计,结果保留π).。

2019-2020年高考数学二轮复习 专题1 高考客观题常考知识 第3讲 不等式与线性规划 理

2019-2020年高考数学二轮复习 专题1 高考客观题常考知识 第3讲 不等式与线性规划 理

2019-2020年高考数学二轮复习专题1 高考客观题常考知识第3讲不等式与线性规划理不等式的解法1.设f(x)=则不等式f(x)<2的解集为( B )(A)(,+∞) (B)(-∞,1)∪[2,)(C)(1,2]∪(,+∞) (D)(1,)解析:原不等式等价于或即或解得2≤x<或x<1.故选B.2.(xx山东卷)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为( C )(A)(-∞,-1) (B)(-1,0)(C)(0,1) (D)(1,+∞)解析:f(-x)==,由f(-x)=-f(x)得=-,即1-a·2x=-2x+a,化简得a·(1+2x)=1+2x,所以a=1.f(x)=.由f(x)>3,得0<x<1,故选C.3.(xx陕西西安市模拟)关于x的不等式x2-2ax-3a2<0(a<0)的解集为(x1,x2),且x2-x1=12,则实数a的值等于.解析:因为关于x的不等式x2-2ax-3a2<0(a<0)的解集为(x1,x2),所以x1+x2=2a,x1·x2=-3a2,又x2-x1=12,(x2-x1)2=(x2+x1)2-4x1·x2,所以144=4a2+12a2=16a2,解得a=±3,因为a<0,所以a=-3.答案:-3简单的线性规划问题4.(xx北京卷)若x,y满足,则z=x+2y的最大值为( D )(A)0 (B)1 (C) (D)2解析:由x,y的约束条件可画出可行域(如图所示),其中A(,),B(0,1),易知直线x+2y-z=0经过点B(0,1)时,z取最大值2,故选D.5.(xx浙江温州市第二次适应测试)若实数x,y满足不等式组且z=y-2x的最小值等于-2,则实数m的值等于( A )(A)-1 (B)1 (C)-2 (D)2解析:由z=y-2x,得y=2x+z,作出不等式对应的可行域,平移直线y=2x+z,由平移可知当直线y=2x+z经过点A时,直线y=2x+z的截距最小,此时z取得最小值为-2, 即y-2x=-2,由解得即A(1,0),点A也在直线x+y+m=0上,则m=-1.故选A.6.(xx贵州遵义市第二次联考)若则目标函数z=的取值范围是( A )(A)[2,5] (B)[1,5] (C)[,2] (D)[2,6]解析:z==1+2,可理解为求斜率的最值问题,画出可行域如图阴影部分,可知k=在(1,2)点处最大,最大为2;在(2,1)点处最小,最小为,所以z的取值范围为[2,5].故选A.7.(xx河南开封市模拟)设不等式组表示的平面区域为D,若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是.解析:作出区域D的图象,联系指数函数y=a x的图象,能够看出,当图象经过区域的边界点C(2,9)时,a可以取到最大值3,而显然只要a大于1,图象必然经过区域内的点.则a的取值范围是1<a≤3.答案:(1,3]基本不等式的应用8.(xx甘肃省河西五地市高三第一次联考)函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A 在直线mx+ny-1=0(mn>0)上,则+的最小值为( B )(A)3 (B)4 (C)5 (D)6解析:函数y=a1-x(a>0,a≠1)的图象恒过定点A(1,1),又点A在直线mx+ny-1=0(mn>0)上,所以m+n=1,所以+=(m+n)(+)=2++≥2+2=4,当且仅当m=n=时取等号.故选B.9.(xx河南郑州市第一次质量预测)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy的最大值为( C )(A)32 (B)32 (C)64 (D)64解析:设该三棱锥的高为h,由三视图知,两式相减并整理得x2+y2=128.又因为xy≤==64(仅当x=y时取等号).10.(xx广东深圳市第一次调研考试)已知向量a=(-1,1),b=(1,)(x>0,y>0),若a⊥b,则x+4y的最小值为.解析:由a⊥b得-1+=0,+=1,(x+4y)·(+)=5++≥2+5=9.(当且仅当=时取等号)答案:9一、选择题1.(xx四川资阳市三模)已知loa<lob,则下列不等式一定成立的是( A )(A)()a<()b (B)>(C)ln(a-b)>0 (D)3a-b<1解析:因为y=lox是定义域上的减函数,且loa<lob,所以a>b>0.又因为y=()x是定义域R上的减函数,所以()a<()b;又因为y=x b在(0,+∞)上是增函数,所以()b<()b;所以()a<()b,选项A正确.2.(xx湖南卷)若变量x,y满足约束条件则z=3x-y的最小值为( A )(A)-7 (B)-1 (C)1 (D)2解析:画出可行域如图所示.当直线y=3x-z过点C(-2,1)时,z取最小值,故z min=3×(-2)-1=-7.故选A.3.(xx广西柳州市、北海市、钦州市1月份模拟)设变量x,y满足约束条件则z=2x×的最小值为( B )(A) (B) (C) (D)解析:可得z=2x-2y,设m=x-2y,不等式组表示的平面区域如图阴影部分,平移直线l:y=x,由图象可知直线l经过点A时,其截距最大,m最小,z最小,解方程组得A(2,2),则z最小=.4.(xx江西南昌市第一次模拟)已知实数x,y满足若目标函数z=2x+y的最大值与最小值的差为2,则实数m的值为( C )(A)4 (B)3 (C)2 (D)-解析:作出可行域如图,根据目标函数的几何意义可转化为直线y=-2x+z的截距,可知在N点z取最小值,在M点z取最大值.因为N(m-1,m),M(4-m,m),所以z M-z N=2(4-m)+m-2(m-1)-m=10-4m=2,所以m=2.5.(xx甘肃省河西五地市高三第一次联考)已知集合{(x,y)|}表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为( D )(A) (B) (C) (D)解析:作出不等式组对应的平面区域如图,则对应的区域为△AOB.由解得即B(4,-4).由解得即A(,).直线2x+y-4=0与x轴的交点坐标为(2,0),则△OAB的面积S=×2×+×2×4=.点P的坐标满足不等式x2+y2≤2区域面积S=×π×()2=,由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=.故选D.6.(xx陕西卷)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( D )甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8解析:设该企业每天生产甲产品x吨,乙产品y吨,每天获得的利润为z万元,则有z=3x+4y,由题意得x,y满足不等式组表示的可行域是以O(0,0),A(4,0),B(2,3),C(0,4)为顶点的四边形及其内部.根据线性规划的有关知识,知当直线3x+4y-z=0过点B(2,3)时,z取最大值18,故该企业每天可获得最大利润为18万元.故选D.7.设f(x)=ln x,0<a<b,若p=f(),q=f(),r=[f(a)+f(b)],则下列关系式中正确的是( C )(A)q=r<p (B)q=r>p(C)p=r<q (D)p=r>q解析:由题意得p=ln ,q=ln ,r=(ln a+ln b)=ln =p,因为0<a<b,所以>,所以ln >ln ,所以p=r<q.故选C.8.(xx四川南充市第一次高考适应性考试)若目标函数z=ax+by(a>0,b>0)满足约束条件且最大值为40,则+的最小值为( B )(A) (B) (C)1 (D)4解析:不等式表示的平面区域为如图阴影部分,当直线z=ax+by(a>0,b>0)过直线x-y+2=0与直线2x-y-6=0的交点(8,10)时,目标函数z=ax+by(a>0,b>0)取得最大值40,即8a+10b=40,即4a+5b=20,而+=(+)=+(+)≥+1=.故选B.9.(xx山东卷)已知x,y满足约束条件当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时, a2+b2的最小值为( B )(A)5 (B)4 (C) (D)2解析:不等式组表示的平面区域如图中阴影部分所示,根据目标函数的几何意义可知,目标函数在点A(2,1)处取得最小值,故2a+b=2.法一将2a+b=2两边分别平方得4a2+b2+4ab=20,而4ab=2×a×2b≤a2+4b2,当且仅当a=2b, 即a=,b=时取等号.所以20≤4a2+b2+a2+4b2=5(a2+b2),所以a2+b2≥4,即a2+b2的最小值为4.故选B.法二将2a+b=2看作平面直角坐标系aOb中的直线,则a2+b2的几何意义是直线上的点与坐标原点距离的平方,故其最小值为坐标原点到直线2a+b=2距离的平方,即()2=4.故选B.10.(xx重庆卷)若不等式组表示的平面区域为三角形,且其面积等于,则m的值为( B )(A)-3 (B)1 (C) (D)3解析:作出不等式组表示的平面区域如图中阴影部分所示,由图可知,要使不等式组表示的平面区域为三角形,则m>-1.由解得即A(1-m,1+m).由解得即B(-m,+m).因为S△ABC=S△ADC-S△BDC=(2+2m)[(1+m)-(+m)]=(m+1)2=,所以m=1或m=-3(舍去),故选B.11.(xx四川宜宾市二诊)已知集合A={x∈R|x4+mx-2=0},满足a∈A的所有点M(a,)均在直线y=x的同侧,则实数m的取值范围是( A )(A)(-∞,-)∪(,+∞)(B)(-,-1)∪(1,)(C)(-5,-)∪(,6)(D)(-∞,-6)∪(6,+∞)解析:因为集合A={x∈R|x4+mx-2=0},所以方程的根显然x≠0,原方程等价于x3+m=,原方程的实根是曲线y=x3+m与曲线y=的交点的横坐标,而曲线y=x3+m是由曲线y=x3向上或向下平移|m|个单位而得到的,若交点(x i,)(i=1,2)均在直线y=x的同侧,因直线y=x与y=交点为(-,-),(,);所以结合图象可得或解得m>或m<-.故选A.12.已知函数f(x)=x+sin x(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,则当y≥1时,的取值范围是( A )(A)[,] (B)[0,] (C)[,] (D)[0,]解析:因为f(-x)=-x+sin(-x)=-f(x),且f′(x)=1+cos x≥0,所以函数f(x)为奇函数,且在R上是增函数.所以由f(y2-2y+3)+f(x2-4x+1)≤0,得f(y2-2y+3)≤f(-x2+4x-1),所以y2-2y+3≤-x2+4x-1,即(x-2)2+(y-1)2≤1,其表示圆(x-2)2+(y-1)2=1及其内部.表示满足的点P与定点A(-1,0)连线的斜率.结合图形分析可知,直线AC的斜率=最小,切线AB的斜率tan∠BAX=tan 2∠PAX===最大.故选A.二、填空题13.(xx江苏卷)不等式<4的解集为.解析:不等式<4可转化为<22,由指数函数y=2x为增函数知x2-x<2,解得-1<x<2,故所求解集为(-1,2).答案:(-1,2)14.(xx新课标全国卷Ⅱ)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x-1)>0,则x的取值范围是.解析:由题意,得函数f(x)的草图如图所示.因为f(x-1)>0,所以|x-1|<2,所以-2<x-1<2,所以-1<x<3.答案:(-1,3)15.(xx合肥八中段考)若正数a,b满足a+2b=3,且使不等式+-m>0恒成立,则实数m的取值范围是.解析:不等式+-m>0恒成立,即3(+)>3m恒成立.又正数a,b满足a+2b=3,(a+2b)(+)=+++2≥,当且仅当a=b=1时取“=”,所以实数m的取值范围是(-∞,).答案:(-∞,)16.(xx浙江卷)已知函数f(x)=则f(f(-3))= ,f(x)的最小值是.解析:因为-3<1,所以f(-3)=lg[(-3)2+1]=lg 10=1,所以f(f(-3))=f(1)=1+-3=0.当x≥1时,f(x)=x+-3≥2-3(当且仅当x=时,取“=”),当x<1时,x2+1≥1,所以f(x)=lg(x2+1)≥0,又因为2-3<0,所以f(x)min=2-3.答案:0 2-3。

2020年高考数学(文)母题题源解密23 不等式选讲(全国Ⅱ专版原卷版)

2020年高考数学(文)母题题源解密23 不等式选讲(全国Ⅱ专版原卷版)

专题23 不等式选讲【母题来源一】【2020年高考全国Ⅱ卷文数】已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ≥,求a 的取值范围. 【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a aa a =-+-+≥---+=-+-=-,当且仅当221a x a -≤≤时取等号,()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 【母题来源二】【2019年高考全国Ⅱ卷文数】已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 【答案】(1)(,1)-∞;(2)[1,)+∞【解析】(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----. 所以,a 的取值范围是[1,)+∞.【名师点睛】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型. 【母题来源三】【2018年高考全国Ⅱ卷文数】设函数()5|||2|f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围.【答案】(1){|23}x x -≤≤;(2)(,6][2,)-∞-+∞.【解析】(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤. (2)()1f x ≤等价于|||2|4x a x ++-≥.而|||2||2|x a x a ++-≥+,且当2x =时等号成立. 故()1f x ≤等价于|2|4a +≥. 由|2|4a +≥可得6a ≤-或2a ≥, 所以a 的取值范围是(,6][2,)-∞-+∞.【命题意图】1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1)a b a b +≤+. (2) a b a c c b -≤-+-.(3)会利用绝对值的几何意义求解以下类型的不等式:; ; ax b c ax b c x a x b c +≤+≥-+-≥.2.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.3.主要考查逻辑推理能力、运算求解能力,考查分类讨论、数形结合思想方法,考查逻辑推理、数学运算等核心素养. 【命题规律】从近三年高考情况来看,此类知识点以解答题的形式出现,主要考查绝对值不等式的解法、不等式的证明、求最值问题等. 【方法总结】(一)解绝对值不等式的常用方法有:(1)公式法:对于形如|f (x )|>g (x )或|f (x )|<g (x ),利用公式|x|<a ⇔−a<x<a (a>0)和|x|>a ⇔x>a 或x<−a (a>0)直接求解不等式;(2)平方法:对于形如|f (x )|≥|g (x )|,利用不等式两边平方的技巧,去掉绝对值,需保证不等式两边同正或同负,即|f (x )|≥|g (x )|⇔f (x )2≥g 2(x );(3)零点分段法:对于形如|f (x )|±|g (x )|≥a ,|f (x )|±|g (x )|≤a ,利用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解;(4)几何法:对于形如|x±a|±|x±b|≤c ,|x±a|±|x±b|≥c ,利用绝对值三角不等式的性质求解,即 ①定理1:如果a ,b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.②定理2:如果a ,b ,c 是实数,那么|a−c|≤|a−b|+|b−c|,当且仅当(a−b )(b−c )≥0时,等号成立. ③推论1:||a|−|b||≤|a+b|. ④推论2:||a|−|b||≤|a−b|.(5)图象法:对于形如|f (x )|+|g (x )|≥a 可构造y=|f (x )|+|g (x )|−a 或y=|f (x )|+|g (x )|与y=a ,在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解或通过移项构造一个函数. (二)含绝对值不等式的恒成立问题的常见类型及其解法:(1)分享参数法运用“max min ()(),()()f x a f x a f x a f x a ≤⇔≤≥⇔≥”可解决恒成立中的参数范围问题.求最值的思路:利用基本不等式和不等式的相关性质解决;将函数解析式用分段函数形式表示,作出函数图象,求得最值;利用性质“||||||||||||a b a b a b -≤±≤+”求最值.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维和抽象思维各自的优势,可直接解决问题. (三)不等式的证明(1)比较法证明不等式最常用的是差值比较法,其基本步骤是:作差—变形—判断差的符号—下结论.其中“变形”是证明的关键,一般通过因式分解或配方将差式变形为几个因式的积或配成几个代数式平方和的形式,当差式是二次三项式时,有时也可用判别式来判断差值的符号.个别题目也可用柯西不等式来证明.(2)基本不等式:如果a ,b>0,那么2a b+≥,当且仅当a=b 时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.(3)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均数不小于它们的几何平均数,即12nn a a a n+++≥当且仅当a 1=a 2=…=a n 时,等号成立.1.(2020·山西省高三)已知函数()|1||2|f x x x a =++-. (1)若1a =,解不等式()4f x <;(2)对任意的实数m ,若总存在实数x ,使得224()m m f x -+=,求实数a 的取值范围.2.(2020·四川省泸县第二中学高三二模)已知函数()211f x x x =-++. (1)求不等式()2f x x ≤+的解集;(2)若函数()y f x =的最小值记为m ,设0a >,0b >,且有a b m +=.求1212a b +++的最小值. 3.(2020·深圳市宝安中学(集团)高三月考)已知定义在R 上的函数()|1||2|f x x x =++-的最小值为a .(1)求a 的值.(2)若p ,q ,r 为正实数,且p q r a ++=,求证:2223p q r ++≥.4.(2020·江西省高三)已知函数()221f x x x =-+-. (1)求不等式()6f x <的解集;(2)若函数()f x 的最小值为m ,且实数a ,b 满足222a b m +=,求34a b +的最大值. 5.(2020·山西省高三月考)已知函数()|1|2|2|)(R f x x x x =-+-∈,记()f x 得最小值为m . (1)解不等式()5f x ≤;(2)若2a b m +=,求22a b +的最小值.6.(2020·吉林省高三)已知函数()12f x x x =-+(1)在平面直角坐标系中作出函数()f x 的图象,并解不等式()2f x ≥; (2)若不等式()15f x x k +-≥-对任意的x ∈R 恒成立,求证:65k k+≥.7.(2020·山西省高三)已知函数()12f x x x a =++-. (1)若1a =,解不等式()4f x <;(2)对任意的实数m ,若总存在实数x ,使得()224m m f x -+=,求实数a 的取值范围.8.(2020·山西省太原五中高三月考)已知函数()1211f x x x =-+++ (1)求不等式()8f x <的解集;(2)若x R ∀∈,函数()2log f x a ≥恒成立,求实数a 的取值范围.9.(2020·全国高三)设函数()|2|f x x x =+-+,集合M 为不等式()0f x <的解集. (1)求集合M ;(2)当m ,n M ∈时,证明:3mn n ++.10.(2020·山西省高三)已知不等式23x x -<与不等式()20,x mx n m n R -+<∈的解集相同.(1)求m n -;(2)若(),,0,1a b c ∈,且ab bc ac m n ++=-,求222a b c ++的最小值. 11.(2020·重庆高三)已知函数f (x )=|2x ﹣1|﹣3|x +1|,设f (x )的最大值为M . (1)求M ;(2)若正数a ,b 满足3311a b +=Mab ,证明:a 4b +ab 443≥. 12.(2020·福建省高三)已知函数()1f x x a x =-+-. (1)当0a =时,求不等式()1f x ≤的解集A . (2)设()32f x x ≤-的解集为B ,若A B ⊆,求这数a 的值. 13.(2020·福建省高三)已知函数()12f x x x =-+-. (1)求不等式()3f x <的解集I ;(2)当a ,b ,c I ∈时,求证:11191111114333abb cc a++≤+++---.14.(2020·山西省高三)已知函数()2f x x =.(1)求不等式()1f x >的解集; (2)若正数,,a b c 满足24923a b c f ⎛⎫++=+⎪⎝⎭,求149a b c ++的最小值. 15.(2020·山西省太原五中高三月考)已知函数()()0, 0f x x a x b a b =-++>>. (1)当1a b ==时,解不等式()2f x x <+;(2)若()f x 的值域为[)3,+∞,证明:()224281a b b a b +++≥+.16.(2020·山西省高三)已知函数()()220f x x a x a a =-++>. (1)求不等式()3f x a ≥的解集;(2)若()f x 的最小值为()20b b ->17.(2020·陕西省西安中学高三)已知,,a b c R +∈,x R ∀∈,不等式|1||2|x x a b c ---≤++恒成立.(1)求证:22213a b c ++≥(2)求证 18.(2020·江苏省高三)已知x ,y ,z 均为正数,且11131112x y z ++≤+++,求证:4910x y z ++≥. 19.(2019·四川省高三月考)已知函数f (x )=|2x ﹣1|﹣|x +1|. (1)求不等式f (x )≤﹣1的解集M ;(2)结合(1),若m 是集合M 中最大的元素,且a +b =m (a >0,b >0),求+ 20.(2020·广东省高三月考) 已知函数()()20,0f x x a x b a b =-++>>. (1)当1a b ==时,解不等式()2f x x ≥-;(2)若函数()f x 的值域为[)2,+∞,求2242a b b a+的最小值. 21.(2020·宁夏回族自治区银川一中高三)已知()12f x x x =-+-. (1)求使得()2f x >的x 的取值集合M ;(2)求证:对任意实数a ,()0b a ≠,当R x C M ∈时,()a b a b a f x ++-≥恒成立. 22.(2020·河南省高三三模)已知是a ,b ,c 正实数,且21a b c ++=.()1求111abc++的最小值;()2求证:22216a b c ++≥. 23.(2020·江西省高三三模)已知()|||1|.f x k x x =+- (Ⅰ)若2k =,解不等式()5f x ≤.(Ⅱ)若关于x 的不等式()|1||22|f x x x ≤++-的充分条件是1,22x ⎡∈⎤⎢⎥⎣⎦,求k 的取值范围.24.(2020·河北省高三)已知a ,b ,c 为正实数,且a+b+c=1. (Ⅰ)证明:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭; (Ⅱ)证明:32a b c b c a c a b ++≥+++. 25.(2020·南昌市新建一中高三)已知函数()21f x x x =---,函数()421g x x x m =---+-. (1)当()0f x >时,求实数x 的取值范围;(2)当()g x 与()f x 的图象有公共点时,求实数m 的取值范围. 26.(2020·四川省高三三模)已知函数()||f x x a =-.(1)当1a =时,求不等式11()x f x +>的解集; (2)设不等式|21|()x f x x -+的解集为M ,若1,12M ⎡⎤⊆⎢⎥⎣⎦,求实数a 的取值范围. 27.(2020·福建省高三)已知函数()212f x x x =--+,()221g x x m x =-++. (1)求不等式()2f x <的解集;(2)若存在1x ,2x ∈R ,使得()()120f x g x +=,求m 的取值范围. 28.(2020·青海省高三)设函数()21|1|f x x x =---. (1)求不等式()3f x <的解集;(2)若方程2()f x x ax =+有两个不等实数根,求a 的取值范围. 29.(2020·贵州省高三)设函数()16f x x x a =++--. (1)当2a =时,求不等式()0f x ≤的解集; (2)若()23f x a ≥-,求a 的取值范围.30.(2020·重庆高三)已知函数()22f x x x =+-的最小值为m . (1)求m 的值;(2)若实数a ,b 满足22a b m +=,求221112a b+++的最小值. 31.(2020·广州市天河外国语学校高三月考)已知函数()123f x x x =--+. (1)求不等式()1f x <的解集;(2)若存在实数x ,使得不等式()230m m f x --<成立,求实数m 的取值范围. 32.(2020·广东省高三)已知函数()1=-f x x . (1)解不等式()(1)4f x f x ++≥;(2)当0x ≠,x ∈R 时,证明:1()()2f x f x-+≥.33.(2020·福建省高三)已知函数2()1,()|||21|,f x x g x x a x a R =+=---∈.(1)当12a =时,解不等式27()2g x <-;(2)对任意12,x x R ∈,若不等式12()()f x g x ≥恒成立,求实数a 的取值范围. 34.(2020·湖北省高三)已知函数()|4||24|f x x x =--+. (1)解不等式()3f x ;(2)若()f x 的最大值为m ,且2a b c m ++=,其中0a ,0b ,3c >,求(1)(1)(3)a b c ++-的最大值.35.(2020·辽宁省高三三模)已知a ,b ,c 均为正数,设函数f (x )=|x ﹣b |﹣|x +c |+a ,x ∈R . (1)若a =2b =2c =2,求不等式f (x )<3的解集; (2)若函数f (x )的最大值为1,证明:14936a b c++≥. 36.(2020·广西柳城县中学高三)设函数()133f x x x a a =-+-+,x ∈R . (1)当1a =时,求不等式()7f x >的解集; (2)对任意m R +∈,x ∈R 恒有()49f x m m≥--,求实数a 的取值范围. 37.(2020·安徽相山淮北一中高三月考)已知函数()|2|f x ax =-. (Ⅰ)当4a =时,求不等式()|42|8f x x ++≥的解集;(Ⅱ)若[2,4]x ∈时,不等式()|3|3f x x x +-≤+成立,求a 的取值范围. 38.(2020·河南高三月考)已知函数()21f x x x =--+.(1)解不等式()2f x <;(2)若正实数m ,n 满足3m n +=,试比较122m n +与()32f x -的大小,并说明理由. 39.(2020·湖南衡阳市八中高三)已知实数正数x ,y 满足1x y +=.(1)解关于x 的不等式522x y x y ++-≤; (2)证明:2211119x y ⎛⎫⎛⎫--≥ ⎪⎪⎝⎭⎝⎭. 40.(2020·湖南雨花雅礼中学高三)已知函数()33f x x a x =-++. (1)若3a =,解不等式()6f x ≤;(2)若不存在实数x ,使得()162f x a x ≤--+,求实数a 的取值范围. 41.(2020·湖北黄州黄冈中学高三)已知()3f x x x =+-. (1)求不等式()5xf x x>的解集; (2)若()f x 的最小值为M ,且22a b c M ++=(a ,b ,c ∈R ),求证:2221a b c ++≥. 42.(2020·湖北黄州黄冈中学高三)已知1()||f x x a x a=++-. (1)当1a =时,求不等式()6f x 的解集M ; (2)若a M ∈,求证:10()3f x . 43.(2020·河北桃城衡水中学高三三模)已知函数()11f x x a x =+--. (1)当2a =-时,解不等式()5f x >; (2)若()3f x a x ≤+,求a 的最小值.44.(2020·宁夏原州固原一中高三)已知函数()|3|2f x x =+-. (1)解不等式|()|4f x <;(2)若x R ∀∈,2()|1|41f x x t t ≤--+-恒成立,求实数t 的取值范围. 45.(2020·河南郑州一中高三)已知a ,b ,c 为正实数,且满足a +b +c =1.证明:(1)|a 12-|+|b +c ﹣1|12≥; (2)(a 3+b 3+c 3)(222111a b c ++)≥3. 46.(2020·贵州贵阳一中高三)已知函数()3f x x x a =--.(1)当0a =时,求解关于x 的不等式2()10f x x +->的解集;(2)当[]2,3x ∈时,该不等式()1f x ≥-恒成立,求a 的取值范围.47.(2020·云南红河高三)已知函数()|1||1|f x x x =++-.(Ⅰ)求不等式()8f x ≤的解集M ;(Ⅱ)若m 为M 中的最大元素,正数a ,b 满足.12m a b +=,证明2142a b ab ++≥.48.(2020·重庆九龙坡高三)已知函数()f x =(1)求()f x 的最大值;(2)若关于x 的不等式()|1|f x a -有解,求实数a 的取值范围.49(2019·河北辛集中学高三月考)已知函数()43f x x x =-++.(1)解不等式()9f x <;(2)若不等式()21f x a <-+在实数R 上的解集不是空集,求正数a 的取值范围.50.(2020·河南南阳高三二模)已知a ,b ,c 均为正实数,函数222111()4f x x x a b c =+-++的最小值为1.证明:(1)22249a b c ++≥;(2)111122ab bc ac++≤. 51.(2020·河南高三)已知函数()221f x x x =-++.(1)求不等式()4f x ≤的解集;(2)若函数()1y f x x =++的最小值为k ,求()220km m m+>的最小值. 52.(2020·安徽六安一中高三)已知()()2f x x m m m R =-+∈.(1)若不等式()2f x ≤的解集为13,22⎡⎤⎢⎥⎣⎦,求m 的值; (2)在(1)的条件下,若a ,b ,c +∈R ,且4a b c m ++=,求证:4436ac bc ab abc ++≥. 53.(2020·辽宁实验中学高三)设函数()|21|f x x =-.(1)设()(1)5f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b c a b c---⋅⋅≥. 54.(2020·安徽芜湖高三一模)设,,x y z ∈R ,且1x y z ++=.(1)证明:22213x y z ++≥; (2)求()()()222111x y z -++++的最小值.55.(2020·河南高三)已知函数()2f x x a x =-++.(1)当1a =时,求不等式()7f x ≤的解集;(2)若0x R ∃∈,()03f x a ≤-,求实数a 的取值范围.56.(2020·河南开封高三二模)已知函数()2231f x x x =+--.(1)求函数()f x 的最大值M ;(2)已知0a >,0b >,4a b M +=,求2221a b a b +++的最大值. 57.(2020·福建高三)已知函数()12f x x x =-+-.(1)求不等式()3f x <的解集I ;(2)当a ,b ,c I ∈时,求证:11191111114333a b b c c a ++≤+++---.58.(2020·湖南雅礼中学高三月考)已知不等式15|2|22x x -++≤的解集为M . (1)求集合M ; (2)设集合M 中元素的最大值为t .若0a >,0b >,0c >,满足111223t a b c ++=,求2993a b c ++的最小值.59.(2020·甘肃省静宁县第一中学高三)已知函数()211f x x x =++-. (1)解不等式()3f x ≥;(2)记函数()f x 的最小值为m ,若,,a b c 均为正实数,且122a b c m ++=,求222a b c ++的最小值. 60.(2020·广东东莞高三)已知函数1()|||3|2()2f x x k x k R =-++-∈. (1)当1k =时,解不等式()1f x ≤;(2)若()f x x 对于任意的实数x 恒成立,求实数k 的取值范围.。

文科高考数学重难点05 概率与统计(解析版)

文科高考数学重难点05  概率与统计(解析版)

重难点05 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【限时检测】(建议用时:35分钟)一、单选题1.(2021·广西钦州一中高三开学考试(文))点在边长为2的正方形内运动,P ABCD 则动点到顶点的距离的概率为( )P A 2PA <A .B .C .D .14124ππ【答案】C 【解析】分析:先根据题意得出PA 等于2 的临界值情况,再根据几何概型求解即可.详解:由题可知当PA=2时是以A 为圆心2为半径的四分之一圆,所以概率为P=,故选C21444r ππ=2.(2020·全国高三其他模拟(文))从某高中女学生中选取10名学生,根据其身高、体重数据,得到体重关于身高的回归方程,用来刻画回归效(cm)(kg)ˆ0.8585yx =-果的相关指数,则下列说法正确的是( )20.6R =A .这些女学生的体重和身高具有非线性相关关系B .这些女学生的体重差异有60%是由身高引起的C .身高为的女学生的体重一定为170cm 59.5kgD .这些女学生的身高每增加,其体重约增加0.85cm 1kg 【答案】B【分析】因为回归方程为,且刻画回归效果的相关指数,所以,ˆ0.8585y x =-20.6R =这些女学生的体重和身高具有线性相关关系,A 错误;这些女学生的体重差异有60%是由身高引起的,B 正确;时,,预测身高为的女学生体重为,C 错170x =ˆ0.851708559.5y=⨯-=170cm 59.5kg 误;这些女学生的身高每增加,其体重约增加,D 错误.0.85cm 0.850.850.7225(kg)⨯=故选:B3.(2020·石嘴山市第三中学高三其他模拟(文))网络是一种先进的高频传输技5G 术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手5G 5G 机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数5G x y 据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预y x0.042y x a =+测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精5G 确到月)()A .2020年6月B .2020年7月C .2020年8月D .2020年9月【答案】C【分析】:,1(12345)35x =⨯++++=1(0.020.050.10.150.18)0.15y =⨯++++=点在直线上()3,0.1ˆˆ0.042y x a =+,ˆ0.10.0423a=⨯+ˆ0.026a =-ˆ0.0420.026yx =-令ˆ0.0420.0260.5y x =->13x ≥因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C4.(2020·河南新乡市·高三一模(文))年的“金九银十”变成“铜九铁十”,全2020国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.下图是该地某小区年2019月至年月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月11202011份代码分别对应年月年月)113:2019112020:11根据散点图选择和两个模型进行拟合,经过数据处理得到的两y a =+ln y c d x =+个回归方程分别为,并得到以下一些0.9369y =+0.95540.0306ln y x =+统计量的值:是()A .当月在售二手房均价与月份代码呈正相关关系y xB .根据年月在售二手房均价约为万元/0.9369y =+20212 1.0509平方米C .曲线的图形经过点0.9369y =+0.95540.0306ln y x =+()x yD .回归曲线的拟合效果好于的拟合效0.95540.0306ln y x =+ 0.9369y =+果【答案】C【分析】对于A ,散点从左下到右上分布,所以当月在售二手房均价与月份代码呈正y x 相关关系,故A 正确;对于B ,令,由,16x =0.9369 1.0509y =+=所以可以预测年月在售二手房均价约为万元/平方米,故B 正确;20212 1.0509对于C ,非线性回归曲线不一定经过,故C 错误;()x y 对于D ,越大,拟合效果越好,故D 正确.2R 故选:C.5.(2020·全国高三专题练习(文))现行普通高中学生在高一时面临着选科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有两理一文意愿的学生数量多于有两文一理意愿的学生数量C .样本中的男生偏爱两理一文D .样本中的女生偏爱两文一理【答案】D【分析】:由条形图知女生数量多于男生数量,故A 正确;有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故B 正确;男生偏爱两理一文,故C 正确;女生中有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故D 错误.故选:D.6.(2021·全国高三专题练习(文))下图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中为直角三角形,四边形为它的内接正方形,已知ABC :DEFC ,,在内任取一点,则此点取自正方形内的概率为(2BC =4AC =ABC :DEFC)A .B .C .D .12592949【答案】D【分析】解:,,4tan 22AC B BC === tan 2EFB FB ∴==,解得,22()2(2)EF FB BC EF EF ==-=-43EF =,,1142422ACB S AC BC ∴==⨯⨯=::4416339DEFC S =⨯=根据几何概型.164949P ==故选:D .7.(2021·江西新余市·高三期末(文))2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数,使得是素数.素数对称为孪生素数.从15以p 2p +(,2)p p +内的素数中任取2个构成素数对,其中是孪生素数的概率为()A .B .C .D .13141516【答案】C【分析】以内的素数有,,,,,,共个,任取两个构成素数对,则152********有:,,,,,,,,,,()2,3()2,5()2,7()2,11()2,13()3,5()3,7()3,11()3,13()5,7,,,,,共中取法,而是孪生素数的有,()5,11()5,13()7,11()7,13()11,1315()3,5,,其概率为.()5,7()11,1331155p ==故选:C.8.(2021·安徽阜阳市·高三期末(文))如图,根据已知的散点图,得到y 关于x 的线性回归方程为,则( )ˆ0.2y bx =+ˆb =A .1.5B .1.8C .2D .1.6【答案】D【分析】因为,所以,解得12345235783,555x y ++++++++====530.2b =+ .1.6b = 故选:D .9.(2021·全国高三专题练习(文))在上随机取一个数,则事件“直线与[]1,1-k y kx =圆相交”发生的概率为( )22(x 13)25y -+=A .B .12513C .D .51234【答案】C【分析】直线与圆相交y kx =22(x 13)25y -+=555,1212d k ⎛⎫⇒∈- ⎪⎝⎭直线斜率时与圆相交,故所求概率.55,1212k ⎛⎫∈- ⎪⎝⎭10512212P ==故答案选C10.(2021·全国高三专题练习(文))给出下列说法:①回归直线恒过样本点的中心,且至少过一个样本点;ˆˆˆy bx a =+(,)x y ②两个变量相关性越强,则相关系数就越接近1;||r ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程中,当解释变量增加一个单位时,预报变量平均减少ˆ20.5y x =-x ˆy0.5个单位.其中说法正确的是( )A .①②④B .②③④C .①③④D .②④【答案】B【分析】对于①中,回归直线恒过样本点的中心,但不一定过一个样本ˆˆˆy bx a =+(x y 点,所以不正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数就越接近1,||r 所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程中,当解释变量增ˆ20.5y x =-x 加一个单位时,预报变量平均减少0.5个单位,所以是正确的.ˆy 故选:B.11.(2020·江西吉安市·高三其他模拟(文))给出一组样本数据:1,4,,3,它们出m 现的频率分别为0.1,0.1,0.4,0.4,且样本数据的平均值为2.5,从1,4,,3中任取m 两个数,则这两个数的和为5的概率为()A .B .C .D .12231314【答案】C【分析】由题意得,样本平均值为,解得,10.140.10.430.4 2.5m ⨯+⨯+⨯+⨯=2m =即这组样本数据为1,4,2,3,从中任取两个有,,,,,共6种情况,()1,4()1,2()1,3()4,2()4,3()2,3其中和为5的有,两种情况,()1,4()2,3∴所求概率为,2163P ==故选:C.12.(2020·全国高三专题练习(理))物流业景气指数反映物流业经济发展的总体LPI 变化情况,以作为经济强弱的分界点,高于时,反映物流业经济扩张;低于50%50%时,则反映物流业经济收缩。

2020年高考数学(理)之解析几何高频考点04 椭圆及其性质附解析

2020年高考数学(理)之解析几何高频考点04 椭圆及其性质附解析

解析几何04 椭圆及其性质一、具体目标:掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.能处理与椭圆有关的问题.二、知识概述:1. 椭圆方程的第一定义:一个动点到两个定点的距离为一个常数(大于两定点之间的距离)则动点的轨迹就是椭圆.几何表示:()121222PF PF a a F F +=>.当()121222PF PF a a F F +=<无轨迹;当()121222=PF PF a a F F +=,以12,F F 为端点的线段.⑴①椭圆的标准方程:中心在原点,焦点在x 轴上:()222210x y a b a b +=>>.中心在原点,焦点在轴上:()222210y x a b a b+=>>.②一般方程:()2210,0Ax By A B +=>>.③椭圆的标准参数方程:的参数方程为(一象限应是属于02πθ<<).⑵①顶点:或.②轴:对称轴:x 轴,轴;长轴长,短轴长. ③焦点:或.④焦距:.⑤准线:或.⑥离心率:()01c e e a=<<.⑦焦点半径:i. 设为椭圆()222210x y a b a b+=>>上的一点,为左、右焦点,则 y 12222=+b y a x ⎩⎨⎧==θθsin cos b y a x θ),0)(0,(b a ±±)0,)(,0(b a ±±y a 2b 2)0,)(0,(c c -),0)(,0(c c -2221,2b a c c F F -==c a x 2±=c a y 2±=),(00y x P 21,F F 【考点讲解】⇒-=+=0201,ex a PF ex a PF由椭圆方程的第二定义可以推出.ii.设为椭圆()222210x y a b b a+=>>上的一点,为上、下焦点,则 由椭圆方程的第二定义可以推出.由椭圆第二定义可知:()210000a PF e x a ex x c ⎛⎫=+=+< ⎪⎝⎭()220000a PF e x ex a x c ⎛⎫=-=-> ⎪⎝⎭归结起来为“左加右减”.注意:椭圆参数方程的推导:得方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:和⑶共离心率的椭圆系的方程:椭圆()222210x y a b a b+=>>的离心率是,方程是大于0的参数,0a b >>的离心率也是 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:上的点.为焦点,若,则的面积为(用余弦定理与可得). 若是双曲线,则面积为.(6)椭圆的标准方程和几何性质-a ≤x ≤a -b ≤x ≤b 对称轴:坐标轴 对称中心:原点 A (-a,0),A (a,0) A (0,-a ),A (0,a ) ),(00y x P 21,F F →)sin ,cos (θθb a N ),(2222a b c a b d -=),(2ab c )(22b a c a c e -==tt b y a x (2222=+ace =12222=+b y a x 21,F F θ=∠21PF F 21F PF ∆2tan2θb a PF PF 221=+2cot 2θ⋅b ⇒-=+=0201,ey a PF ey a PF1.【2019年高考全国Ⅰ卷】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y += B .22132x y += C .22143x y += D .22154x y += 【解析】本题考查椭圆标准方程及其简单性质.法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n nn +-⋅⋅⋅=,解得2n =. 22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得【真题分析】223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【答案】B2.【2019年高考全国Ⅱ卷理数】若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .8【解析】本题主要考查抛物线与椭圆的几何性质.因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y pp +=的一个焦点,所以23()2pp p -=,解得8p =,故选D . 【答案】D3.【2019年高考北京卷理数】已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【解析】本题考查椭圆的标准方程与几何性质.椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =,故选B. 【答案】B4.【2018年高考全国Ⅰ卷文数】已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( )A .13 B .12 C .2 D .3【解析】本题主要考查椭圆的方程及离心率.由题可得2c =,因为24b =,所以2228a b c =+=,即a =所以椭圆C 的离心率2e ==,故选C . 【答案】C5.【2018年高考全国Ⅰ卷文数】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F∠=︒,则C的离心率为()A.312-B.23-C.312-D.31-【解析】本题主要考查椭圆的定义和简单的几何性质.在12F PF△中,122190,60F PF PF F∠=∠=︒o,设2PF m=,则12122,c F F m PF===,又由椭圆定义可知1221)a PF PF m=+=,则212c cea a====,故选D.【答案】D6.【2018年高考全国Ⅱ理数】已知1F,2F是椭圆22221(0)x yC a ba b+=>>:的左、右焦点,A是C的左顶点,点P在过A且斜率为3的直线上,12PF F△为等腰三角形,12120F F P∠=︒,则C的离心率为()A.23B.12C.13D.14【解析】因为12PF F△为等腰三角形,12120F F P∠=︒,所以212||2||PF F F c==,由AP的斜率为6可得2tan6PAF∠=,所以2sin PAF∠=,2cos PAF∠=,由正弦定理得2222sinsinPF PAFAF APF∠=∠,所以2225sin()3ca c PAF==+-∠,所以4a c=,14e=,故选D.【答案】D7.【2017年高考全国Ⅰ卷文数】设A,B是椭圆C:2213x ym+=长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1][9,)+∞U B.[9,)+∞U C.(0,1][4,)+∞U D.[4,)+∞U【解析】本题考查的是以椭圆知识为背景的求参数范围的问题.解答问题时要利用条件确定ba,的关系,要借助题设条件ο120=∠AMB 转化为360tan =≥οba,简化求解过程. 当03m <<时,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60a b ≥=o≥,得01m <≤;当3m >时,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60ab≥=o≥,得9m ≥,故m 的取值范围为(0,1][9,)+∞U ,故选A . 【答案】A8.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用.方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍),又点P 在椭圆上且在x 轴的上方,求得32P ⎛- ⎝⎭,所以212PF k ==方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得3,22P ⎛- ⎝⎭,所以212PFk ==9.【2019年高考全国Ⅲ卷】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【解析】本题考查椭圆标准方程及其简单性质,解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y,22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【答案】(10.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围. 【解析】本题主要考查利用椭圆的性质来求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题, (1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF =,于是1221)a PF PF c =+=,故C的离心率是1ce a==. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b+=,即||16c y =,① 222x y c +=,② 22221x y a b+=,③由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥当4b =,a ≥存在满足条件的点P .所以4b =,a的取值范围为)+∞. 【答案】(11;(2)4b =,a的取值范围为)+∞.11.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .|2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【解析】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.(1)设椭圆的半焦距为c ,2b =,又由222a b c =+,消去b得222a c ⎫=+⎪⎪⎝⎭,解得12c a =.所以,椭圆的离心率为12. (2)由(1)知,2,a c b ==,故椭圆方程为2222143x y c c +=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-.代入到l 的方程,解得1239,214y c y c ==-. 因为点P 在x 轴上方,所以3,2P c c ⎛⎫⎪⎝⎭.由圆心C 在直线4x =上,可设(4, )C t . 因为OC AP ∥,且由(1)知( 2 , 0)A c -,故3242ct c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l2=,可得=2c .所以,椭圆的方程为2211612x y +=.【答案】(1)12;(2)2211612x y +=.12.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率. 【解析】主要考查椭圆的标准方程和几何性质、直线方程等基础知识. (1)设椭圆的半焦距为c,依题意,24,5c b a ==,又222a b c =+,可得a =2,b =1c =. 所以,椭圆的方程为22154x y +=.(2)由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P k x k =-+,代入2y kx =+得2281045P k y k -=+,进而直线OP 的斜率24510P py k x k -=-. 在2y kx =+中,令0y =,得2M x k=-. 由题意得()0,1N -,所以直线MN 的斜率为2k-.由OP MN ⊥,得2451102k k k -⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而5k =±.所以,直线PB的斜率为5或5-. 【答案】(1)22154x y +=;(2)230或230-. 13.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【解析】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题.(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =. 记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22222(2)280k x uk x k u +-+-=.① 设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k =+.从而直线PG 的斜率为322212(32)2uk uk k u k ku k-+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i )得2||21PQ u k =+,221||uk k PG +=,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.1.【2017年高考浙江卷】椭圆22194x y +=的离心率是( )A B C .23 D .59【解析】椭圆22194x y +=的离心率e ==,故选B . 【答案】B2.【2017年高考全国Ⅲ】已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A B C D .13【解析】以线段12A A 为直径的圆的圆心为坐标原点(0,0),半径为r a =,圆的方程为222x y a +=,【模拟考场】直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即2223()a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===,故选A . 【答案】A3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1C.x 212+y 28=1D.x 212+y 24=1 【解析】 根据条件可知c a =33,且4a =43,∴a =3,c =1,b =2,椭圆的方程为x 23+y 22=1.【答案】 A4.【2018年高考浙江卷】已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP u u u u r =2PB u u u u r ,则当m =___________时,点B 横坐标的绝对值最大.【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =u u u r u u u r得122x x -=,1212(1)y y -=-,所以1223y y -=-,因为A ,B 在椭圆上,所以22114x y m +=,22224x y m +=,所以22224(23)4x y m +-=, 所以224x +22324()m y -=,与22224x y m +=对应相减得234m y +=,2221(109)44x m m =--+≤, 当且仅当5m =时取最大值. 【答案】55.【2018年高考北京卷理数】已知椭圆2222:1(0)x y M a b a b +=>>,双曲线2222:1x y N m n-=.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________________;双曲线N 的离心率为________________.【解析】由正六边形性质得椭圆上一点到两焦点距离之和为c +,再根据椭圆定义得2c a +=,所以椭圆M的离心率为1c a ==.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,所以222πtan 33n m ==,所以222222234m n m m e m m ++===,所以2e =.1 26.【2016北京理】已知椭圆C :22221+=x y a b(0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,△OAB 的面积为1.(I )求椭圆C 的方程;(II )设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N . 求证:BM AN ⋅为定值.【分析】(I)根据离心率为2,即2=c a ,△OAB 的面积为1,即121=ab ,椭圆中222c b a +=列方程组进行求解;(II )根据已知条件分别求出BM AN ,的值,求其乘积为定值.【解析】(I )由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a .所以椭圆C 的方程为1422=+y x . (II )由(I )知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M ,从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N ,从而12200-+=-=y x x AN N .所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.7.已知点M 是圆心为E的圆(2216x y ++=上的动点,点)F,线段MF 的垂直平分线交EM于点P .(1)求动点P 的轨迹C 的方程;(2)矩形ABCD 的边所在直线与曲线C 均相切,设矩形ABCD 的面积为S ,求S 的取值范围.【分析】1)利用定义法求椭圆的轨迹方程;(2)设AB 的方程为1y k x m =+, CD 的方程为1y k x m =-,直线AB 与CD 间的距离为1d =,直线BC 与AD 间的距离为2d =,S =S 的范围.【解析】(1)依题PM PF =,所以4PE PF PE PM ME +=+== (为定值),EF =>所以点P 的轨迹是以,E F为焦点的椭圆,其中24,2a c ==所以P 点轨迹C 的方程是2214x y += (2)①当矩形的边与坐标轴垂直或平行时,易得8S =;②当矩形的边均不与坐标轴垂直或平行时,其四边所在直线的斜率存在且不为0,设AB 的方程为1y k x m =+, BC 的方程为2y k x n =+,则CD 的方程为1y k x m =-, AD 的方程为2y k x n =-,其中121k k ⋅=-,直线AB 与CD 间的距离为1d ==,同理直线BC 与AD 间的距离为2d ==()12*S d d =⋅=L2222211111{ 21044x y k x k mx m y k x m+=⎛⎫⇒+++-= ⎪⎝⎭=+,因为直线AB 与椭圆相切,所以221410k m ∆=+-=,所以2141m k =+,同理2241n k =+,所以 S ===44==212112k k +≥ (当且仅当11k =±时,不等式取等号),所以4S <≤810S <≤, 由①②可知, 810S ≤≤.【答案】(1) 2214x y +=;(2) 810S ≤≤.。

2019高考哪些省份使用全国卷?全国卷有几套有什么区别,2020高考各省份试卷采用类型将与2019高考大致相同

2019高考哪些省份使用全国卷?全国卷有几套有什么区别,2020高考各省份试卷采用类型将与2019高考大致相同

2019高考哪些省份使用全国卷?全国卷有几套有什么区别2020高考各省份试卷采用类型将与2019高考大致相同[摘要]2019年高考全国卷共有3套,自主命题的省市有北京、天津、上海、江苏、浙江等省市2019年高考全国卷共有3套,分别是全国Ⅰ卷(乙卷)、全国Ⅱ卷(甲卷)、全国Ⅲ卷(丙卷)。

自主命题的省市有北京、天津、上海、江苏、浙江等省市。

新课标全国卷I卷适用地区福建、河南、河北、山西、江西、湖北、湖南、广东、安徽、山东考试科目语文、数学(文/理)、外语、文综/理综新课标全国卷II卷适用地区甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆;海南:语文、数学、英语考试科目语文、数学(文/理)、外语、文综/理综新课标全国卷III适用地区云南、广西、贵州、四川、西藏考试科目语文、数学(文/理)、外语、文综/理综自主命题江苏、浙江、北京、天津、上海;海南:政治、地理、历史、生物、化学、物理考试科目江苏:语文、数学、外语、政治、地理、历史、生物、化学、物理浙江、上海:语文、数学、外语天津、北京:语文、数学(文/理)、外语、文综/理综海南省:语文、数学、英语试卷用全国2卷,政治、地理、历史、生物、化学、物理为自主命题统考时间统考时间地区:北京、天津、重庆、河北、山东、山西、河南、广东、云南、贵州、宁夏、西藏、内蒙古、广西、陕西、江西、黑龙江、吉林、辽宁、甘肃、安徽、湖南、湖北、四川、福建、青海、新疆全国统考科目中的外语分英语、俄语、日语、法语、德语、西班牙语等6个语种,由考生任选其中一个语种参加考试。

有外语听力测试内容的应安排在外语笔试考试开始前进行。

报考外语专业的考生,应参加由省级招办统一组织的外语口试。

海南高考时间江苏高考时间浙江考试时间6月7日上午:语文;下午:数学;6月8日下午:外语。

上海高考时间高考是一场青春的战役,敢拼搏,方能不留遗憾!。

2019-2020年高三数学总复习 集合的概念和表示方法教案 理

2019-2020年高三数学总复习 集合的概念和表示方法教案 理

2019-2020年高三数学总复习集合的概念和表示方法教案理教材分析集合概念的基本理论,称为集合论.它是近、现代数学的一个重要基础.一方面,许多重要的数学分支,如数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其反映的数学思想,在越来越广泛的领域中得到应用.在小学和初中数学中,学生已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(直线、圆)等,有了一定的感性认识.这节内容是初中有关内容的深化和延伸.首先通过实例引出集合与集合元素的概念,然后通过实例加深对集合与集合元素的理解,最后介绍了集合的常用表示方法,包括列举法,描述法,还给出了画图表示集合的例子.本节的重点是集合的基本概念与表示方法,难点是运用集合的两种常用表示方法———列举法与描述法正确表示一些简单的集合.教学目标1. 初步理解集合的概念,了解有限集、无限集、空集的意义,知道常用数集及其记法.2. 初步了解“属于”关系的意义,理解集合中元素的性质.3. 掌握集合的表示法,通过把文字语言转化为符号语言(集合语言),培养学生的理解、化归、表达和处理问题的能力.任务分析这节内容学生已在小学、初中有了一定的了解,这里主要根据实例引出概念.介绍集合的概念采用由具体到抽象,再由抽象到具体的思维方法,学生容易接受.在引出概念时,从实例入手,由具体到抽象,由浅入深,便于学生理解,紧接着再通过实例理解概念.集合的表示方法也是通过实例加以说明,化难为易,便于学生掌握.教学设计一、问题情境1. 在初中,我们学过哪些集合?2. 在初中,我们用集合描述过什么?学生讨论得出:在初中代数里学习数的分类时,学过“正数的集合”,“负数的集合”;在学习一元一次不等式时,说它的所有解为不等式的解集.在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.3. “集合”一词与我们日常生活中的哪些词语的意义相近?学生讨论得出:“全体”、“一类”、“一群”、“所有”、“整体”,……4. 请写出“小于10”的所有自然数.0,1,2,3,4,5,6,7,8,9.这些可以构成一个集合.5. 什么是集合?二、建立模型1. 集合的概念(先具体举例,然后进行描述性定义)(1)某种指定的对象集在一起就成为一个集合,简称集.(2)集合中的每个对象叫作这个集合的元素.(3)集合中的元素与集合的关系:a是集合A中的元素,称a属于集合A,记作a∈A;a不是集合A中的元素,称a不属于集合A,记作aA.例:设B={1,2,3},则1∈B,4B.2. 集合中的元素具备的性质(1)确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是否属于这个集合的元素也就确定了.如上例,给出集合B,4不是集合的元素是可以确定的.(2)互异性:集合中的元素是互异的,即集合中的元素是没有重复的.例:若集合A={a,b},则a与b是不同的两个元素.(3)无序性:集合中的元素无顺序.例:集合{1,2}与集合{2,1}表示同一集合.3. 常用的数集及其记法全体非负整数的集合简称非负整数集(或自然数集),记作N.非负整数集内排除0的集合简称正整数集,记作N*或N+;全体整数的集合简称整数集,记作Z;全体有理数的集合简称有理数集,记作Q;全体实数的集合简称实数集,记作R.4. 集合的表示方法[问题]如何表示方程x2-3x+2=0的所有解?(1)列举法列举法是把集合中的元素一一列举出来的方法.例:x2-3x+2=0的解集可表示为{1,2}.(2)描述法描述法是用确定的条件表示某些对象是否属于这个集合的方法.例:①x2-3x+2=0的解集可表示为{x|x2-3x+2=0}.②不等式x-3>2的解集可表示为{x|x-3>2}.③Venn图法例:x2-3x+2=0的解集可以表示为(1,2).5. 集合的分类(1)有限集:含有有限个元素的集合.例如,A={1,2}.(2)无限集:含有无限个元素的集合.例如,N.(3)空集:不含任何元素的集合,记作.例如,{x|x2+1=0,x∈R}=.注:对于无限集,不宜采用列举法.三、解释应用[例题]1. 用适当的方法表示下列集合.(1)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数.(2)平面内到一个定点O的距离等于定长l(l>0)的所有点P.(3)在平面a内,线段AB的垂直平分线.(4)不等式2x-8<2的解集.2. 用不同的方法表示下列集合.(1){2,4,6,8}.(2){x|x2+x-1=0}.(3){x∈N|3<x<7}.3. 已知A={x∈N|66-x∈N}.试用列举法表示集合A.(A={0,3,5})4. 用描述法表示在平面直角坐标中第一象限内的点的坐标的集合.[练习]1. 用适当的方法表示下列集合.(1)构成英语单词mathematics(数字)的全体字母.(2)在自然集内,小于1000的奇数构成的集合.(3)矩形构成的集合.2. 用描述法表示下列集合.(1){3,9,27,81,…}.(2)四、拓展延伸把下列集合“翻译”成数学文字语言来叙述.(1){(x,y)|y=x2+1,x∈R}.(2){y|y=x2+1,x∈R}.(3){(x,y)|y=x2+1,x∈R}.(4){x|y=x2+1,y∈N*}.点评这篇案例注重新、旧知识的联系与过渡,以旧引新,从学生的原有知识、经验出发,创设问题情境;从实例引出集合的概念,再结合实例让学生进一步理解集合的概念,掌握集合的表示方法.非常注重实例的使用是这篇案例的突出特点.这样做,通俗易懂,使学生便于学习和掌握.例题、练习由浅入深,对培养学生的理解能力、表达能力、思维能力大有裨益.拓展延伸注重数学语言的转化和训练,注重区分形似而质异的数学问题,加强了学生对数学概念的理解和认识.2019-2020年高三数学总复习频率与概率教案理教材分析频率与概率是两个不同的概念,但是二者又有密切的联系.如何从二者的异同点中抽象出概率的定义是本案例的主要内容.本节课蕴涵了具体与抽象之间的辩证关系.讲授过程中对教材处理稍有不当,可能直接影响学生对本节重点(即概念的理解)的掌握程度.因此,如何设计合适的实例,怎样引导学生理解和总结是处理好本节的关键,也是处理好本节教材的难点.教学目标通过本节课教学,使学生能理清频率和概率的关系,并能正确理解概率的意义,增强学生的对立与统一的辩证思想意识.任务分析由于频率在大量重复试验的前提下可以近似地叫作这个事件的概率,因此本节课应从具有大量重复试验的实例入手.为加深学生的理解程度,可采用学生亲自参与到试验中去,从操作中去体会,去总结.概率可看作频率理论上的期望值,从数量上反映了随机事件发生的可能性大小.因此,为巩固学生总结出的知识,最后还要回归到实例中去,让学生去运用,以符合认知过程.教学设计一、问题情境在日常生活中,我们经常遇到某某事件发生的概率是多少,如xx年2月5日《文汇报》登载的两则消息.本报讯记者梁红英报道:2月3日晚6点19分,一彩民购买的“江浙沪大乐透”彩票,同时投中10注一等奖,独揽48571620元巨额奖金,创下中国彩票史上个人一次性奖额之最.……据有关人士介绍,该彩民当时花了200元买下100注“江浙沪大乐透”彩票,分成10组,每组10注,每组的自选号码相同.结果,其中1组所选号码与前晚“江浙沪大乐透”xx015期开奖号码完全一致.本报讯记者江世亮报道:……对这种似乎不可能发生事件的发生,从数学概率论上将作何解释?为此,记者于昨日午夜电话连线采访了本市一位数学建模专家,他说,以他现在不完全掌握的情况来分析,像这名幸运者同时获得10个大奖的概率,可称得上一次万亿分之一的事件,通俗地讲就是接近于零.对文中的“万亿分之一”我们怎样理解呢?再如:天气预报说“明天降雨的概率是80%,我们明天出门要不要带伞?收音机里广播报道xx年冬某地“流行性感冒的发病率为10%”,我们这里要不要采取预防措施?……对这些在传播媒体上出现的数字80%,10%等,我们该作何理解呢?二、建立模型为了解决诸如以上的实际问题,我们不妨先从熟悉的频率的概念入手.首先,将全班同学平均分成三组,第一组做掷硬币试验,次数越多越好,观察掷出正面向上的次数,然后把试验结果和计算结果分别填入下表.表28-1第二组做抓阄试验.写五个阄,即分别标号为1,2,3,4,5,有放回地抓,每次记录下号数,次数越多越好.不妨统计一下各号数所占频率.第三组做摸围棋子试验.预先准备黑、白围棋子若干,然后给该组学生黑子30粒,白子10粒,让该组学生有放回地摸,次数为100次,每次摸出1粒,并记录下每次摸到的棋子的颜色,求出白子出现的频率.试验结束,让各组学生回答试验结果.第一组正面向上的频率必然接近,第二组结果肯定是每个号出现的频率接近,而第三组结果肯定位于附近.各组学生所得结果可能大于预定数,也可能小于预定数,但都比较接近.让学生讨论:出现与上述结果比较接近的数字受何因素影响?(学生思考,讨论,教师投影以下表格)历史上有些学者还做了成千上万次掷硬币的试验,结果如下表所示:表28-2观察上表后,引导学生总结:在多次重复试验中,同一事件发生的频率在某一个数值附近摆动,而且随着试验次数的增加,一般摆动幅度的越小,而且观察到的大偏差也越少,频率呈现一定的稳定性.通过三组试验,我们可以发现:虽然,,三个数值不等,但是三个试验存在共性,即随机事件的频率随试验次数的增加稳定在某一数值附近.同时还可看出,不同的随机事件对应的数值可能不同.我们就用这一数值表示事件发生的可能性大小,即概率.(引出概率定义)定义可采用学生口述、教师补充的方式,然后可以投影此定义:一般地,在n次重复进行的试验中,事件A发生的频率,当n很大时,总是在某个常数附近摆动,随着n的增加,摆度幅度越来越小,这时就把这个常数叫作事件A的概率,记为P(A).学生可考虑如下问题:(1)概率P(A)的取值范围是什么?(2)必然事件、不可能性事件的概率各是多少?(3)频率和概率有何关系?其中重点是问题(3),应启发、引导学生总结出:在大量重复试验的前提下,频率可以近似地称为这个事件的概率,而概率可看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性大小.为加深对二者关系的理解,可以进行如下类比:给定一根木棒,谁都不怀疑它有“客观”的长度,长度是多少?我们可以用尺或仪器去测量,不论尺或仪器多么精确,测得的数值总是稳定在木棒真实的“长度”值的附近.事实上,人们也是把测量所得的值当作真实的“长度”值.这里测量值就像本节中的频率,“客观”长度就像概率.概率的这种定义叫作概率的统计定义.在实践中,经常采用这种方法求事件的概率.三、解释应用[例题]1. 把第三组试验中的黑棋子减少10粒,即20粒黑子,10粒白子,那么摸到黑子的概率约为多少?学生通过多次试验,可以发现此概率约为.2. 为确定某类种子的发芽率,从一批种子中抽出若干批做发芽试验,其结果如下:表28-3从以上的数据可以看出,这类种子的发芽率约为0.9.[练习]某射击手在同一条件下进行射击,结果如下:表28-4(1)计算表中击中靶心的各个频率.(表中各频率分别为0.8,0.95,0.88,0.92,0.89,0.91)(2)这个射手射击一次,击中靶心的概率约是多少?(由此(1)可知,这个射手射击一次,击中靶心的概率约是0.9)四、拓展延伸“某彩票的中奖概率为”是否意味着买1000张彩票就一定能中奖?从概率的统计定义出发,我们先来考虑此题的简化情形:在投掷一枚均匀硬币的随机试验中,正面出现的概率是,这是否意味着投掷2次硬币就会出现1次正面呢?根据经验,我们投掷2次硬币有可能1次正面也不出现,即出现2次反面的情形,但是在大量重复掷硬币的试验中,如掷10000次硬币,则出现正面的次数约为5000次.买1000张彩票相当于做1000次试验,结果可能是一次奖也没中,或者中一次奖,或者多次中奖.所以“彩票中奖概率为”并不意味着买1000张彩票就一定能中奖.只有当所买彩票的数量n非常大时,才可以将大量重复买彩票这个试验看成中奖的次数约为(比如说买1000000张彩票,则中奖的次数约为1000),并且n越大,中奖次数越接近于.由此我们可以说,对于小概率事件,从理论上来讲,发生的可能性很小,甚至在一定条件下可能不会发生.但是,实际上小概率事件仍有发生的可能,如本节开头提到的万亿分之一的概率事件就发生了.点评针对这节课以概念为主,而又抽象的特点,案例设计了以学生动手试验为主,引导学生体会概念的教学方法,同时对这节中较抽象的内容:频率和概率的关系做了形象的类比,以便学生理解.这篇案例增加了试验内容,其目的是更有力地帮助学生理解定义.另外,例题与练习的配备有利于学生加深对这节内容的理解.因此,这节课的整体设计符合学生对新知识认识的规律,符合新课程标准的精神.。

2020年高考数学(理)函数与导数 专题02 函数的基本性质(解析版)

2020年高考数学(理)函数与导数 专题02 函数的基本性质(解析版)

函数与导数02函数函数的基本性质【考点讲解】一、具体目标:1.结合具体函数,了解函数奇偶性的含义.会用函数的图象理解和研究函数的奇偶性.2.理解函数的单调性及其几何意义.会用基本函数的图象分析函数的性质.3. 了解函数的周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、知识概述:1.偶函数、奇函数的概念一般地,如果对函数f(x)的定义域内任意一个x,都有__f(-x)=f(x)__,那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有__f(-x)=-f(x)__,那么函数f(x)就叫做奇函数.2.奇、偶函数的图象特征偶函数的图象关于__y轴__对称,奇函数的图象关于__原点__对称.3.函数奇偶性的常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.4.判断函数的奇偶性的常用方法:(1)定义法一般地,对于较简单的函数解析式,可通过定义直接作出判断;对于较复杂的解析式,可先对其进行化简,再利用定义进行判断.利用定义判断函数奇偶性的步骤:(2)图象法:奇函数的图象关于原点成中心对称,偶函数的图象关于y 轴成轴对称.因此要证函数的图象关于原点对称,只需证明此函数是奇函数即可;要证函数的图象关于y 轴对称,只需证明此函数是偶函数即可.反之,也可利用函数图象的对称性去判断函数的奇偶性. (3)组合函数奇偶性的判定方法①两个奇(偶)函数的和、差还是奇(偶)函数,一奇一偶之和为非奇非偶函数.②奇偶性相同的两函数之积(商)为偶函数,奇偶性不同的两函数之积(商)(分母不为0)为奇函数. ③复合函数的奇偶性可概括为“同奇则奇,一偶则偶”. (4)分段函数的奇偶性判定分段函数应分段讨论,注意奇偶函数的整体性质,要避免分段下结1.已知函数的奇偶性求函数的解析式. 抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于()f x 的方程,从而可得()f x 的解析式.5.已知带有字母参数的函数的表达式及奇偶性求参数.常常采用待定系数法:利用()()0f x f x ±-=产生关于字母的恒等式,由系数的对等性可得知字母的值.6.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. 7.增函数与减函数一般地,设函数f (x )的定义域为I ,(1)如果对于定义域I 内某个区间D 上的__任意两个__自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是__增函数__.(2)如果对于定义域I 内某个区间D 上的__任意两个__自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是__减函数__.8.单调性与单调区间如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)__单调性__,区间D 叫做y =f (x )的__单调区间__. 9.函数的最大值与最小值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有__f (x )≤M __;存在x 0∈I ,使得__f (x 0)=M __,那么,我们称M 是函数y =f (x )的最 大值.(2)对于任意的x ∈I ,都有__f (x )≥M __;存在x 0∈I ,使得__f (x 0)=M __,那么我们称M 是函数y =f (x )的最小值.10.函数单调性的常用结论11.对勾函数的单调性对勾函数y =x +ax (a >0)的递增区间为(-∞,-a ]和[a ,+∞);递减区间为[-a ,0)和(0,a ],且对勾函数为奇函数. 12.函数的周期性(1)对于函数f (x ),如果存在一个__非零常数__T ,使得当x 取定义域内的每一个值时,都有__f (x +T )=f (x )__,那么函数f (x )就叫做周期函数,T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的__最小__正周期. 13.函数周期性的常用结论: 对f (x )定义域内任一自变量x 的值: (1)若f (x +a )=-f (x ),则T =2a (a >0); (2)若f (x +a )=1f (x ),则T =2a (a >0); (3)若f (x +a )=-1f (x ),则T =2a (a >0).14.函数的对称性与周期性的关系(1)如果函数f (x )(x ∈D )在定义域内有两条对称轴x =a ,x =b (a <b ),则函数f (x )是周期函数,且周期T =2(b -a )(不一定是最小正周期,下同).(2)如果函数f (x )(x ∈D )在定义域内有两个对称中心A (a,0),B (b,0)(a <b ),那么函数f (x )是周期函数,且周期 T =2(b -a ).(3)如果函数f (x ),x ∈D 在定义域内有一条对称轴x =a 和一个对称中心B (b,0)(a ≠b ),那么函数f (x )是周期函数,且周期T =4|b -a |.注:对于(1)(2)(3)中的周期公式可仿照正、余弦函数的图象加强记忆.判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.15.根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.1.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【解析】本题主要考查函数的奇偶性,对数的计算.由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=,所以3a -=,即3a =-.【答案】3-2.【2019优选题】已知()f x 是R 上的偶函数,且在[0,)+∞单调递增,若(3)f a f -<(4),则a 的取值范围为 .【解析】:()f x Q 是R 上的偶函数,且在[0,)+∞单调递增,∴不等式(3)f a f -<(4)等价为 (|3|)f a f -<(4),即|3|4a -<,即434a -<-<,得17a -<<,即实数a 的取值范围是17a -<<, 【真题分析】故答案为:17a -<< 【答案】17a -<<.3.【2017课标II 】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+, 则(2)f = ________.【解析】本题考点奇函数的性质解决求函数值的问题. 法一:(2)(2)[2(8)4]12=--=-⨯-+=f f .法二:由题意可知函数()f x 是定义在R 上的奇函数,所以有()()()232x x x f x f +-=-=-,而因为()0,∞-∈x ,()∞+∈-,0x ,()232x x x f --=-所以有()⎪⎩⎪⎨⎧>-<+=0,20,22323x x x x x x x f ,()12222223=-⨯=f【答案】124. 【2017山东】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6xf x -=,则f (919)= 【解析】由f (x +4)=f (x -2)可知,()()6=+f x f x 是周期函数,且6T =,所以(919)(66531)(1)f f f =⨯+=(1)6f =-=.【答案】65. 【2019年高考江苏】设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 . 【解析】作出函数()f x ,()g x 的图象,如图:由图可知,函数2()1(1)f x x =--1()(12,34,56,78)2g x x x x x =-<≤<≤<≤<≤的图象仅有2个交点,即在区间(0,9]上,关于x 的方程()()f x g x =有2个不同的实数根,要使关于x 的方程()()f x g x =有8个不同的实数根,则2()1(1),(0,2]f x x x =--∈与()(2),(0,1]g x k x x =+∈的图象有2个不同的交点,由(1,0)到直线20kx y k -+=的距离为1211k =+,解得2(0)4k k =>, ∵两点(2,0),(1,1)-连线的斜率13k =,∴1234k ≤<,综上可知,满足()()f x g x =在(0,9]上有8个不同的实数根的k 的取值范围为123⎡⎢⎣⎭,. 【答案】123⎡⎢⎣⎭6.【2017山东理15】若函数()e x f x (e 2.71828=L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x = ④()22f x x =+【解析】①()e =e e 22xx x xy f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2x f x -=具有M 性质; ②()e =e e 33xx x x y f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3=e e xxy f x x =⋅,令()3e xg x x =⋅,则()()322e e 3e3xxxg x x x x x '=⋅+⋅=+,所以当3x >-时,()0g x '>;当3x <-时,()0g x '<,所以()3=e e xxy f x x =⋅在(),3-∞-上单调递减,在()3,-+∞上单调递增,故()3f x x =不具有M 性质;④()()2=e e 2x x y f x x =+.令()()2e 2x g x x =+, 则()()()22e 2e 2e 110xx x g x xx x ⎡⎤'=++⋅=++>⎣⎦,所以()()2=e e 2x x y f x x =+在R 上单调递增,故()22f x x =+具有M 性质.综上所述,具有M 性质的函数的序号为①④.【答案】①④7.【2017天津理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ). A.a b c << B.c b a <<C.b a c <<D.b c a <<【解析】 因为奇函数()f x 在R 上增函数,所以当0x >时,()0f x >,从而()()g x xf x =是R 上的偶函数,且在(0,)+∞上是增函数.()()22log 5.1log 5.1a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以0.8202log 5.13<<<,于是()()()0.822log 5.13g g g <<,即b a c <<.故选C.【答案】C8.【2018新课标II 卷11】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…( )A .50-B .0C .2D .50【解析】本题考点是函数的性质的具体应用,根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 由题意可知原函数的定义域为()∞+∞-,的奇函数,并且有()()x f x f +=-11,所以有()()()111--=-=+x f x f x f ,所以有()()()113-=+-=+x f x f x f ,即有()()4+=x f x f ,所以函数是以周期为4的周期函数.因此有()()()()()()()()[]()()2143211250321f f f f f f f f f f +++++=++++Λ.因为()()()()2413f f f f -=-=,,()()()()04321=+++f f f f ,由()()()113-=+-=+x f x f x f 可得()()()00112==+--=f f f从而()()()()()2150321==++++f f f f f Λ,选C .【答案】C9. .已知定义在错误!未找到引用源。

2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析

2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析

2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析 【三年高考】 1.【xx 江苏高考,10】在平面直角坐标系中,以点为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为【答案】【考点定位】直线与圆位置关系2.【xx 江苏,理9】在平面直角坐标系中,直线被圆截得的弦长为 .【答案】【解析】圆的圆心为,半径为,点到直线的距离为2222(1)33512d +⨯--==+,所求弦长为22925522455l r d =-=-=. 【考点】直线与圆相交的弦长问题.3.【xx 江苏,理12】在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是__________.【答案】4. 【xx 高考新课标2理数改编】圆的圆心到直线的距离为1,则a = .【答案】【解析】试题分析:圆的方程可化为,所以圆心坐标为,由点到直线的距离公式得:考点:圆的方程、点到直线的距离公式.【名师点睛】直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d与半径长r的大小关系来判断.若d>r,则直线与圆相离;若d=r,则直线与圆相切;若d<r,则直线与圆相交.(2)代数法:联立直线与圆的方程,消元后得到关于x(或y)的一元二次方程,根据一元二次方程的解的个数(也就是方程组解的个数)来判断.如果Δ<0,方程无实数解,从而方程组也无实数解,那么直线与圆相离;如果Δ=0,方程有唯一实数解,从而方程组也有唯一一组实数解,那么直线与圆相切;如果Δ>0,方程有两个不同的实数解,从而方程组也有两组不同的实数解,那么直线与圆相交.提醒:直线与圆的位置关系的判断多用几何法.5. 【xx高考新课标3理数】已知直线:与圆交于两点,过分别做的垂线与轴交于两点,若,则__________________.【答案】4考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.6.【xx高考山东文数改编】已知圆M:截直线所得线段的长度是,则圆M与圆N:的位置关系是.【答案】相交【解析】由()得(),所以圆的圆心为,半径为,因为圆截直线所得线段的长度是,所以=MN ==,,因为,所以圆与圆相交. 考点:1.直线与圆的位置关系;2.圆与圆的位置关系.【名师点睛】本题主要考查直线与圆的位置关系、圆与圆的位置关系问题,是高考常考知识内容.本题综合性较强,具有“无图考图”的显著特点,解答此类问题,注重“圆的特征直角三角形”是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.7.【xx 高考北京文数改编】圆的圆心到直线的距离为 .【答案】【解析】试题分析:圆心坐标为,由点到直线的距离公式可知.考点:直线与圆的位置关系【名师点睛】点到直线(即)的距离公式记忆容易,对于知求,很方便.8.【xx 高考上海文科】已知平行直线012:,012:21=++=-+y x l y x l ,则的距离________.【答案】 【解析】试题分析:利用两平行线间距离公式得d 5=== 考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.9.【xx 高考浙江文数】已知,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______.【答案】;5.【解析】试题分析:由题意,,时方程为,即,圆心为,半径为5,时方程为224448100x y x y ++++=,不表示圆.考点:圆的标准方程.【易错点睛】由方程222(2)4850a x a y x y a +++++=表示圆可得的方程,解得的值,一定要注意检验的值是否符合题意,否则很容易出现错误.10.【xx 高考天津文数】已知圆C 的圆心在x 轴的正半轴上,点在圆C 上,且圆心到直线 的距离为,则圆C 的方程为__________.【答案】【解析】 试题分析:设,则2|2|452,25355a a r =⇒==+=,故圆C 的方程为 考点:直线与圆位置关系【名师点睛】求圆的方程有两种方法:(1)代数法:即用“待定系数法”求圆的方程.①若已知条件与圆的圆心和半径有关,则设圆的标准方程,列出关于a ,b ,r 的方程组求解.②若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,列出关于D ,E ,F 的方程组求解.(2)几何法:通过研究圆的性质,直线和圆的关系等求出圆心、半径,进而写出圆的标准方程.11.【xx 高考新课标2,理7】过三点,,的圆交y 轴于M ,N 两点,则________.【答案】412.【xx 高考陕西,理15】设曲线在点(0,1)处的切线与曲线上点处的切线垂直,则的坐标为 .【答案】【解析】因为,所以,所以曲线在点处的切线的斜率,设的坐标为(),则,因为,所以,所以曲线在点处的切线的斜率,因为,所以,即,解得,因为,所以,所以,即的坐标是,所以答案应填:.13.【xx 高考湖北,理14】如图,圆与轴相切于点,与轴正半轴交于两点(在的上方), 且.(Ⅰ)圆的标准..方程为 ; (Ⅱ)过点任作一条直线与圆相交于两点,下列三个结论:①; ②; ③.其中正确结论的序号是 . (写出所有正确结论的序号)【答案】(Ⅰ);(Ⅱ)①②③【解析】(Ⅰ)依题意,设(为圆的半径),因为,所以,所以圆心,故圆的标准方程为.(Ⅱ)联立方程组,解得或,因为在的上方,所以,,令直线的方程为,此时,,所以,,,,因为,,所以. 所以2221(21)22222NBMANA MB -==-=-+,222121222222NBMANA MB +=+=+=-+14.【xx 陕西高考理第12题】若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【答案】【解析】因为圆心与点关于直线对称,所以圆心坐标为.所以圆的标准方程为:,故答案为.【xx 年高考命题预测】纵观近几年各地高考试题,对直线方程和圆的方程这部分的考查,主要考查直线的方程、圆的方程,从题型来看,高考中一般以选择题和填空的形式考查,难度较低,部分省份会在解答题中,这部分内容作为一问,和作为进一步研究其他问题的基础出现,难度较高,虽然全国各地对这部分内容的教材不同,故对这部分内容的侧重点不同,但从直线方程和圆的方程的基础知识,解析几何的基本思想的考查角度来说,有共同之处,恰当地关注图形的几何特征,提高解题效率.对直线方程的考查.一般会和倾斜角、斜率、直线方向向量或者其他知识结合.平面内两条直线的位置关系的考查,属于简单题,主要以两条直线平行、垂直为主,以小题的形式出现.对圆的方程的考查,在高考中应一般在选择题、填空题中出现,关注确定圆的条件.预测xx年对这一部分考查不会有太大变化.【xx年高考考点定位】高考对直线的方程和圆的方程的考查有二种主要形式:一是考查直线的方程;二是考查平面内两条直线的位置关系;三是考查圆的方程.【考点1】直线的方程【备考知识梳理】1、直线的倾斜角和斜率(1)直线的的斜率为k,倾斜角为α,它们的关系为:k=tanα;(2)若A(x1,y1),B(x2,y2),则.2.直线的方程a.点斜式:;b.斜截式:;c.两点式:;d.截距式:;e.一般式:,其中A、B不同时为0.【规律方法技巧】1. 斜率的定义是,其中是切斜角,故可结合正切函数的图象研究切斜角的范围与斜率的取值范围以及斜率的变化趋势.2. 直线的方向向量也是体现直线倾斜程度的量,若是直线的方向向量,则().3.平行或者垂直的两条直线之间的斜率关系要倍加注意.3.直线的五种直线方程,应注意每个方程的适用范围,解答完后应检验不适合直线方程的情形是否也满足已知条件.【考点针对训练】1.已知直线过直线和的交点,且与直线垂直,则直线的方程为________【答案】【解析】由题意得:直线可设为,又过直线和的交点,所以直线的方程为2.过点引直线,使点,到它的距离相等,则这条直线的方程为.【答案】【解析】显然直符合题意,此直线过线段的中点,又,时方程为,化简为,因此所求直线方程为或.【考点2】两条直线的位置关系【备考知识梳理】(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2 k 1=k 2;②l 1l 2 k 1k 2=-1;③(2)若0:,0:22221111=++=++C y B x A l C y B x A l 当时,平行或重合,代入检验;当时,相交;当时,.【规律方法技巧】1.与已知直线垂直及平行的直线系的设法与直线22(00)Ax By C A B ≠++=+垂直和平行的直线方程可设为:(1)垂直:;(2)平行:.2.转化思想在对称问题中的应用对称问题一般是将线与线的对称转化为点与点的对称,利用坐标转移法.【考点针对训练】1.若直线l 1:x +2y -4=0与l 2:mx +(2-m )y -3=0平行,则实数m 的值为 .【答案】【解析】由题意得:2.已知直线,直线()()2:2220l m x m y -+++=,且,则的值为____.【答案】-1或-2【解析】根据两直线平形当斜率存在时,需满足斜率相等,纵截距不等,所以当时,显然两直线平行,符合题意;当时,,,若平行需满足且,解得:,综上,答案为-1或-2.【考点3】几种距离【备考知识梳理】(1)两点间的距离:平面上的两点间的距离公式:(2)点到直线的距离:点到直线的距离.(3)两条平行线间的距离:两条平行线与间的距离.【规律方法技巧】1.点到直线的距离问题可直接代入点到直线的距离公式去求.注意直线方程为一般式.2.动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而计算简便,如本例中|PA |=|PB |这一条件的转化处理.1.已知直线与直线平行,则它们之间的距离是 .【答案】2【解析】由题意,,所以直线方程为,即,.2.已知直线l 1:ax+2y+6=0,l 2:x+(a 1)y+a 21=0,若l 1⊥l 2,则a= ,若 l 1∥l 2,则a= ,此时l 1和l 2之间的距离为 .【答案】, 1,;【考点4】圆的方程【备考知识梳理】标准式:,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小. 一般式:022=++++F Ey Dx y x ,其中为圆心为半径,,圆的一般方程中也有三个待定系数,即D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程.【规律方法技巧】1.二元二次方程是圆方程的充要条件“A=C ≠0且B=0”是一个一般的二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的必要条件.二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件为“A=C ≠0、B=0且”,它可根据圆的一般方程推导而得.2.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法:是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.3.求圆的方程时,要注意应用圆的几何性质简化运算.(1)圆心在过切点且与切线垂直的直线上.(2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.1.已知圆的圆心为抛物线的焦点,且与直线相切,则该圆的方程为_________________.【答案】【解析】抛物线的焦点为(1,0),所以圆的圆心为(1,0),圆心到直线的距离,所以所求圆的方程为.2.已知圆与直线及都相切,圆心在直线上,则圆的方程为______________________.【答案】【解析】直线与直线两条平行线的距离,圆的半径,由,得,由,得,直径的两个端点,,因此圆心坐标,圆的方程.【两年模拟详解析】1.【xx届江苏省如东高级中学高三2月摸底】在平面直角坐标系中,已知过点的直线与圆相切,且与直线垂直,则实数__________.【答案】2.【xx届湖南省长沙市长郡中学高三下第六次月考理科】若直线和直线将圆分成长度相等的四段弧,则.【答案】18【解析】试题分析:由题意得:圆心到两直线距离相等,且等于,因此或,即18考点:直线与圆位置关系3.【xx届江苏省扬州中学高三12月月考】已知动圆与直线相切于点,圆被轴所截得的弦长为,则满足条件的所有圆的半径之积是.【答案】【解析】试题分析:设圆心,半径为,根据圆被轴所截得的弦长为得:,又切点是,所以,且,所以解得或,从而或,,所以答案应填:.考点:1、直线与圆相切;2、直线与圆相交;3、圆的标准方程.4.【xx 届南京市、盐城市高三年级第二次模拟】在平面直角坐标系中,直线与直线相交于点,则当实数变化时,点到直线的距离的最大值为______.【答案】【解析】 由题意得,直线的斜率为,且经过点,直线的斜率为,且经过点,且直线所以点落在以为直径的圆上,其中圆心坐标,半径为,则圆心到直线的距离为,所以点到直线的最大距离为。

2020年高考数学五年真题与三年模拟考点分类解读(江苏版)14 两角和与差的正弦、余弦、正切(解析版)

2020年高考数学五年真题与三年模拟考点分类解读(江苏版)14 两角和与差的正弦、余弦、正切(解析版)

考点14 两角和与差的正弦、余弦、正切一、考纲要求1、了解用向量的数量积推导出两角差的余弦公式的过程,能从两角差的余弦公式推导出两角和的余弦、两角和与差的正弦、两角和与差的正切公式。

2、体会化归思想的应用;掌握上述两角和与差的三角函数公式,能运用它们进行简单的三角函数式的化简、求值及恒等式证明.3、能从两角和公式推导出二倍角的正弦、余弦、正切公式,体会化归思想的应用。

4、掌握二倍角公式(正弦、余弦、正切),能运用它们进行简单的三角函数式的化简、求值及恒等式证明。

二、近五年江苏高考“两角和(差)的正弦、余弦和正切”是C 级要求,课标要求是“两个周期函数的叠加仍然是一个周期函数”,其本质就是a sin x +b cos x = A sin ( x + φ )的转化,根据高考考试说明只需对特殊角进行转化,不必涉及非特殊角的情形. 此外,三角恒等式的证明未必会考(近 5 年江苏高考都没有考),但常利用三角恒等变换进行化简与变形来解决综合题,因为化简的正确性将直接关系到整道题目能否顺利、正确的解决,所以“两角和(差)的正弦、余弦和正切”这个C 级要求务必要引起足够的重视,此C 级要求与其特例“二倍角的正弦、余弦和正切” B 级要求的熟练和准确必须强化训练到位三、考点总结:注意此处的教学要求为C 级,必须要引起足够的重视. 首先,两角和(差)的正弦、余弦及正切是三角恒等变换的基础和核心,后续的二倍角等公式实际是两角和(差)的特例;其次,高考并不一定会考三角恒等式的证明(近五年的江苏省高考试卷就说明了这一点),在这里重要的是强化三角恒等变换的能力,弱化公式的机械记忆;最后,用三角变换研究较复杂函数的性质,更易体现“在知识的交汇点处命题”这一高考命题的基本思想,这样的题目更显得活泼、有生气,这一点在 2008~2018 年的各地高考试卷中均有相当明显的反映.四、近五年江苏高考试题1、(2019年江苏卷)已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是_____.【答案】10. 【解析】由题意首先求得tan α的值,然后利用两角和差正余弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.【详解】由()tan 1tan tan tan 2tan 1tan 13tan 1tan 4αααααπααα-===-++⎛⎫+ ⎪-⎝⎭, 得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. sin 2sin 2cos cos 2sin 444πππααα⎛⎫+=+ ⎪⎝⎭)22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎫+-=+⎪+⎝⎭222tan 1tan =2tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式22221221⎫⨯+-⎪+⎝⎭ 当1tan 3α=-时,上式=22112133=210113⎛⎫⎛⎫⎛⎫⨯-+--⎪ ⎪ ⎪⎝⎭⎝⎭⎪ ⎪⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭综上,sin 2410πα⎛⎫+= ⎪⎝⎭【点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.2、(2018年江苏卷) 已知为锐角,,.(1)求的值; (2)求的值.【解析】(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此. 因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.3、(2017年江苏卷).若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 【答案】 75思路分析 α=⎝⎛⎭⎫α-π4+π4. tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4·tan π4=16+11-16=75.4、(2016年江苏卷) 在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是________. 【答案】:8解法1 因为sin A =2sin B sin C ,所以sin(B +C )=2sin B sin C ,即sin B cos C +cos B sin C =2sin B sin C ,因为△ABC 为锐角三角形,所以cos B cos C ≠0,所以tan B +tan C =2tan B tan C ,又tan A =-tan(B +C )=-tan B +tan C 1-tan B tan C ,所以tan A tan B tan C =-tan B tan C tan B +tanC1-tan B tan C=-2tan 2B tan 2C 1-tan B tan C=2-⎝⎛⎭⎫1tan B tan C -122+14≥8,当tan B tan C =2时等号成立.故tan A tan B tan C 的最小值为8.解法2 因为sin A =2sin B sin C ,所以sin(B +C )=2sin B sin C ,即sin B cos C +cos B sin C =2sin B sin C ,因为△ABC 为锐角三角形,所以cos B cos C ≠0,所以tan B +tan C =2tan B tan C ,又由tan A =-tan(B +C )=-tan B +tan C1-tan B tan C ,从而得tan A tan B tan C =tan A +tan B +tan C =tan A +2tan B tan C ,因为△ABC 为锐角三角形,所以tan A ,tan B ,tan C >0,所以tan A tan B tan C ≥22tan A tan B tan C ,即tan A tan B tan C ≥22,即tan A tan B tan C ≥8,当且仅当tan A =2tan B tan C =4时等号成立.故tan A tan B tan C 的最小值为8.解法3 因为tan A tan B tan C =sin A sin B sin C cos A cos B cos C ,而sin A =2sin B sin C ,所以tan A tan B tan C =sin 2A2cos A cos B cos C ,又cos A =-cos(B +C )=sin B sin C -cos B cos C ,从而cos B cos C =sin B sin C -cos A =12sin A -cos A ,故tan A tan B tan C =sin 2A 2cos A ⎝⎛⎭⎫12sin A -cos A =tan 2A tan A -2=(tan A -2)+4tan A -2+4≥24+4=8(因为△ABC 为锐角三角形,所以tan A tan B tan C >0,故tan A -2>0),当且仅当tan A =4时等号成立.故tan A tan B tan C 的最小值为8.5、(2015年江苏卷) 已知tan α=-2,tan(α+β)=17,则tan β的值为________【答案】: 3【解析】由题意得tan β=tan[(α+β)-α]=α+β-tan α1+α+βtan α=17+21-27=3.6、(2015年江苏卷)在△ABC 中,AC =6,cos B =45,C =π4.(1) 求AB 的长; (2) 求cos ⎝⎛⎭⎫A -π6的值. 解题过程:(1) 因为cos B =45,0<B <π,所以sin B =1-cos 2B =1-⎝⎛⎭⎫452=35.由正弦定理知AC sin B =AB sin C,所以AB =AC ·sin Csin B =6×2235=5 2.(2) 在△ABC 中,A +B +C =π,所以A =π-(B +C ),于是cos A =-cos(B +C )=-cos ⎝⎛⎭⎫B +π4=-cos B cos π4+sin B sin π4,又cos B =45,sin B =35,故cos A =-45×22+35×22=-210. 因为0<A <π,所以sin A =1-cos 2A =7210.因此,cos ⎝⎛⎭⎫A -π6=cos A cos π6+sin A sin π6=-210×32+7210×12=72-620. 五、三年模拟题型一 两角和与差的正弦、余弦和正切1、(2019无锡期末)已知θ是第四象限角,且 cos θ=45,那么sin ⎝⎛⎭⎫θ+π4cos ()2θ-6π的值为________.【答案】5214因为θ是第四象限角,所以sin θ<0, 则sin θ=-1-cos 2θ=-35,所以sin ⎝⎛⎭⎫θ+π4cos (2θ-6π)=sin θcos π4+cos θsin π4cos 2θ=22(sin θ+cos θ)cos 2-sin 2θ=22(sin θ+cos θ)(cos θ+sin θ)(cos θ-sin θ)=2245-⎝⎛⎭⎫-35=5214.解后反思 本题考查了同角三角函数关系,诱导公式,两角和的正弦公式以及二倍角的余弦公式的应用,应注意正确选择二倍角的余弦公式进行化简.2、(2019扬州期末)设a ,b 是非零实数,且满足a sin π7+b cosπ7a cos π7-b sinπ7=tan 10π21,则ba =________.【答案】 3解法1(方程法) 因为a ,b 是非零实数,由a sin π7+b cos π7a cos π7-b sin π7=tan 10π21,得tan π7+b a 1-b a tanπ7=tan 10π21,解得ba =tan10π21-tan π71+tan 10π21·tanπ7,即b a =tan ⎝⎛⎭⎫10π21-π7=tan π3= 3. 解法2(系数比较法) tan 10π21=tan ⎝⎛⎭⎫π7+π3=tan π7+31-3tan π7=sin π7+3cos π7cos π7-3sin π7,tan 10π21=sin π7+b a cos π7cos π7-b a sinπ7=sin π7+3cos π7cos π7-3sin π7,所以ba = 3.解后反思 为了求b a 的值,自然要解出ba ,所以解法1是最自然的一种解法;解法2通过配角的技巧,再通过系数比较法求出了ba的值,技巧性强了点.3、(2018南京、盐城一模) 已知锐角α,β满足(tan α-1)(tan β-1)=2,则α+β的值为________. 【答案】34π【解析】因为(tan α-1)(tan β-1)=2,所以tan αtan β-(tan α+tan β)+1=2,即tan α+tan β1-tan αtan β=-1,所以tan (α+β)=-1.又α,β为锐角,所以α+β∈(0,π),即α+β=34π4、(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调)在平面直角坐标系xOy 中,已知角α,β的始边均为x 轴的非负半轴,终边分别经过点A(1,2),B(5,1),则tan (α-β)的值为________.【答案】 97【解析】 由三角函数的定义可知tan α=21=2,tan β=15,故tan (α-β)=tan α-tan β1+tan αtan β=2-151+2×15=97.5、(2017南京、盐城二模) 若sin ⎝⎛⎭⎫α-π6=35,α∈⎝⎛⎭⎫0,π2,则cos α的值为________. 【答案】43-310【解析】令α-π6=β,由已知得β是锐角,且sin β=35,cos β=45,所以cos α=cos ⎝⎛⎭⎫β+π6=cos βcos π6-sin βsin π6=45×32-35×12=43-310.6、(2017苏州暑假测试) 已知α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫π2,π,cos α=13,sin(α+β)=-35,则cos β=________. 【答案】 -4+6215【解析】因为α∈⎝⎛⎭⎫0,π2,cos α=13,所以sin α=223.又α+β∈π2,3π2,sin(α+β)=-35<0,所以α+β∈⎝⎛⎭⎫π,3π2,故cos(α+β)=-45,从而cos β=cos(α+β-α)=cos(α+β)cos α+sin(α+β)sin α=-45×13-35×223=-4+6215. 7、(2017苏北四市一模)若tan β=2tan α,且cos αsin β=23,则sin(α-β)的值为________.【答案】 -13【解析】因为tan β=2tan α,所以sin βcos β=2sin αcos α,即cos αsin β=2sin αcos β.又因为cos αsin β=23,所以sin αcos β=13,从而sin(α-β)=sin αcos β-cos αsin β=13-23=-13. 8、(2017苏锡常镇调研) 已知sin α=3sin ⎝⎛⎭⎫α+π6,则tan ⎝⎛⎭⎫α+π12=________. 【答案】 23-4解法 1 由题意可得sin ⎝⎛⎭⎫α+π12-π12=3sin ⎝⎛⎭⎫α+π12+π12,即sin ⎝⎛⎭⎫α+π12cos π12-cos ⎝⎛⎭⎫α+π12·sin π12=3sin ⎝⎛⎭⎫α+π12cos π12+3cos ⎝⎛⎭⎫α+π12sin π12,所以tan ⎝⎛⎭⎫α+π12=-2tan π12=-2tan ⎝⎛⎭⎫π3-π4=-23-21+3=23-4. 解法2 tan π12=tan ⎝⎛⎭⎫π3-π4=3-11+3=2- 3.因为sin α=3sin αcos π6+3cos αsin π6,即sin α=332sin α+32cos α,即tan α=32-33,所以tan ⎝⎛⎭⎫α+π12=tan α+tan π121-tan αtan π12=32-33+2-31-32-33-3=16-83-4=23-4.9、(2017南京学情调研)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边的锐角α和钝角β的终边分别与单位圆交于点A ,B .若点A 的横坐标是31010,点B 的纵坐标是255.(1) 求cos(α-β)的值; (2) 求α+β的大小.【答案】规范解答 因为锐角α的终边与单位圆交于点A ,且点A 的横坐标是31010,所以由任意角的三角函数的定义可知cos α=31010,从而sin α=1-cos 2α=1010.(2分) 因为钝角β的终边与单位圆交于点B ,且点B 的纵坐标是255,所以sin β=255,从而cos β=-1-sin 2β=-55.(4分) (1) cos(α-β)=cos αcos β+sin αsin β=31010×⎝⎛⎭⎫-55+1010×255=-210.(8分)(2) sin(α+β)=sin αcos β+cos αsin β=1010×⎝⎛⎭⎫-55+31010×255=22.(11分) 因为α为锐角,β为钝角,所以α+β∈⎝⎛⎭⎫π2,3π2, 所以α+β=3π4.(14分)易错警示 求角的大小,经常会因为忽略角的取值范围而导致增解.另外,在求角的大小时,一般地,应首先确定所求角的范围,然后根据角的范围来确定求角的哪个三角函数,通常所选择的那个三角函数应该在范围内是单调的.题型二 二倍角的正弦、余弦和正切1、(2019镇江期末) 若2cos 2α=sin ⎝⎛⎭⎫π4-α,α∈⎝⎛⎭⎫π2,π,则sin 2α=________. 【答案】 -78解法1 设π4-α=β⎝⎛⎭⎫β∈⎝⎛⎭⎫-34π,-π4,则α=π4-β.由2cos 2α=sin ⎝⎛⎭⎫π4-α,得2cos ⎝⎛⎭⎫π2-2β=2sin 2β=4sin βcos β=sin β,而sin β≠0,故cos β=14.所以sin 2α=sin ⎝⎛⎭⎫π2-2β=cos 2β=2cos 2β-1=-78. 解法2 由2cos 2α=sin ⎝⎛⎭⎫π4-α得2(cos α+sin α)(cos α-sin α)=22(cos α-sin α).又α∈⎝⎛⎭⎫π2,π,则cos α-sin α≠0,故cos α+sin α=22.两边平方得sin 2α=-78. 2、(2019通州、海门、启东期末)设α∈⎝⎛⎭⎫0,π3,已知向量a =(6sin α,2),b =⎝⎛⎭⎫1,cos α-62,且a ⊥b .(1) 求tan ⎝⎛⎭⎫α+π6的值; (2) 求cos ⎝⎛⎭⎫2α+7π12的值. 【解析】(1) 因为a =(6sin a ,2),b =⎝⎛⎭⎫1,cos α-62,且a ⊥b . 所以6sin a +2cos α=3,所以sin ⎝⎛⎭⎫α+π6=64.2分 因为α∈⎝⎛⎭⎫0,π3,所以α+π6∈⎝⎛⎭⎫π6,π2,(4分) 所以cos ⎝⎛⎭⎫α+π6=104, 故sin ⎝⎛⎭⎫α+π6=1-cos 2⎝⎛⎭⎫α+π6=64所以tan ⎝⎛⎭⎫α+π6=155.(6分)(2) 由(1)得cos ⎝⎛⎭⎫2α+π3=2cos 2⎝⎛⎭⎫α+π6-1=2×⎝⎛⎭⎫1042-1=14.(8分)因为α∈⎝⎛⎭⎫0,π3,所以2α+π3∈⎝⎛⎭⎫π3,π, 所以sin ⎝⎛⎭⎫2α+π3=154.(10分) 所以cos ⎝⎛⎭⎫2α+7π12==cos ⎝⎛⎭⎫2α+π3cos π4-sin ⎝⎛⎭⎫2a +π3sin π4(12分) =2-308.(14分) 3、(2017南通、扬州、淮安、宿迁、泰州、徐州六市二调)已知sin ⎝⎛⎭⎫α+π4=210,α∈⎝⎛⎭⎫π2,π.求: (1) cos α的值; (2) sin ⎝⎛⎭⎫2α-π4的值. 思路分析 (1) 记α+π4=β,则cos ⎝⎛⎭⎫β-π4=22(cos β+sin β),所以要先求出cos β.(2) 2α-π4=2β-3π4,由(1)易得sin2β与cos2β的值.规范解答 (1) 记α+π4=β,则β∈⎝⎛⎭⎫3π4,5π4,sin β=210,cos β=-1-sin 2β=-7210.(3分) 所以cos α=cos ⎝⎛⎭⎫β-π4=22(cos β+sin β)=-35.(6分) (2) 由(1)得,sin ⎝⎛⎭⎫2α-π4=sin ⎝⎛⎭⎫2β-3π4=-22(sin2β+cos2β).(10分) 因为sin2β=2sin βcos β=-725,cos2β=cos 2β-sin 2β=2425,(12分)所以sin ⎝⎛⎭⎫2α-π4=-17250.(14分) 解后反思 (1) 也可由sin ⎝⎛⎭⎫α+π4=210,展开得sin α+cos α=15.又因为sin 2α+cos 2α=1,及α∈⎝⎛⎭⎫π2,π,解得sin α=45,cos α=-35.(2) 由(1)得sin2α=-2425,cos2α=-725,所以sin ⎝⎛⎭⎫2α-π4=22(sin2α-cos2α)=-17250.。

2020年高考数学(理)高频考点 三角函数与解三角形 专题10 高考常考题型综合解析(解析版)

2020年高考数学(理)高频考点 三角函数与解三角形 专题10 高考常考题型综合解析(解析版)

三角函数与平面向量10 高考常考题型综合解析一、具体目标:高考对本内容的考查主要有:(1)正弦定理和余弦定理以及解三角形问题是B 级要求,主要考查:①边和角的计算;②三角形形状的判断;③面积的计算;④有关的范围问题.由于此内容应用性较强,与实际问题结合起来进行命题将是今后高考的一个关注点,不可轻视.(2)三角函数的有关知识大部分是B 级要求,只有函数y =A sin(ωx +φ)的图象与性质是A 级要求;试题类型可能是填空题,同时在解答题中也有考查,经常与向量结合考查,构成基础题. 二、知识概述:1.正、余弦定理、三角形面积公式 (1)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C=2R (R 为△ABC 外接圆的半径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C ;sin A =a 2R ,sin B =b 2R ,sin C =c2R ; a ∶b ∶c =sin A ∶sin B ∶sin C .(2)a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C ; 推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ; 变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . (3)S △ABC =12ab sin C =12ac sin B =12bc sin A . 2.常见三种函数的图象与性质函数 y =sin xy =cos xy =tan x图象【考点讲解】单调性在⎣⎢⎡-π2+2k π,⎦⎥⎤π2+2k π (k ∈Z )上单调递增; 在⎣⎢⎡π2+2k π,⎦⎥⎤3π2+2k π(k ∈Z )上单调递减在[-π+2k π,2k π](k ∈Z )上单调递增;在[2k π,π+2k π](k ∈Z )上单调递减在⎝ ⎛-π2+k π,⎭⎪⎫π2+k π (k ∈Z )上单调递增 对称性对称中心:(k π,0)(k ∈Z );对称轴:x =π2+k π(k ∈Z )对称中心:⎝ ⎛⎭⎪⎫π2+k π,0 (k ∈Z );对称轴:x=k π(k ∈Z )对称中心:⎝ ⎛⎭⎪⎫k π2,0(k ∈Z )【温馨提示】1.解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则考虑两个定理都有可能用到. 2.关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角恒等变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”. 3.三角形中判断边、角关系的具体方法:(1)通过正弦定理实施边角转换;(2)通过余弦定理实施边角转换;(3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若涉及两个(或两个以上)三角形,这时需作出这些三角形,先解条件多的三角形,再逐步求出其他三角形的边和角,其中往往用到三角形内角和定理,有时需设出未知量,从几个三角形中列出方程(组)求解.4.对于三角函数图象的平移变换问题,其平移变换规则是“左加、右减”,并且在变换过程中只变换其自变量x ,如果x 的系数不是1,则需把x 的系数提取后再确定平移的单位和方向.5.已知图象求函数y =A sin ()ωx +φ(A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为( )2sin cos ++x xx x 【真题分析】A .B .C .D .【解析】本题考查函数的性质与图象,由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【答案】D2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点④f (x )的最大值为2其中所有正确结论的编号是( ) A .①②④B .②④C .①④D .①③【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.【答案】C3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x | 【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ;作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确; 作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B ,故选A .图1图2图3【答案】A4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=( )A .15B .55C .33D .255【解析】2sin 2cos21αα=+Q ,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭Q ,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,5sin 5α∴=,故选B . 【答案】B5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,) 其中所有正确结论的编号是( )A .①④B .②③C .①②③D .①③④ 【解析】①若()f x 在[0,2π]上有5个零点,可画出大致图象, 由图1可知,()f x 在(0,2π)有且仅有3个极大值点.故①正确;②由图1、2可知,()f x 在(0,2π)有且仅有2个或3个极小值点.故②错误;④当()f x =sin (5x ωπ+)=0时,5x ωπ+=k π(k ∈Z ),所以ππ5k x ω-=, 因为()f x 在[0,2π]上有5个零点,所以当k =5时,π5π52πx ω-=≤,当k =6时,π6π52πx ω-=>,解得1229510ω≤<, 故④正确.③函数()f x =sin (5x ωπ+)的增区间为:πππ2π2π252k x k ω-+<+<+,732π2π1010k k x ωω⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭<<.取k =0,当125ω=时,单调递增区间为71ππ248x -<<, 当2910ω=时,单调递增区间为73ππ2929x -<<,综上可得,()f x 在π0,10⎛⎫⎪⎝⎭单调递增.故③正确. 所以结论正确的有①③④.故本题正确答案为D. 【答案】D6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且24g π⎛⎫= ⎪⎝⎭,则38f π⎛⎫= ⎪⎝⎭( ) A .2-B .2-C .2D .2【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=;又12π()sin ,2π,122g x A x T ωω=∴==∴2ω=,又π()24g =,∴2A =,∴()2sin 2f x x =,3π() 2.8f =故选C.【答案】C7.【2018年高考全国卷II 理数】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是( ) A .π4 B .π2 C .3π4D .π 【解析】因为()πcos sin 2cos 4f x x x x ⎛⎫=-=+ ⎪⎝⎭,所以由π02ππ2π()4k x k k +≤+≤+∈Z 得π3π2π2π()44k x k k -+≤≤+∈Z ,因此[]π3ππ3ππ,,,,,,044444a a a a a a a ⎡⎤-⊂-∴-<-≥-≤∴<≤⎢⎥⎣⎦,从而a 的最大值为π4,故选A.【答案】A 8.【2018年高考天津】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )A .在区间35[,]44ππ上单调递增 B .在区间3[,]4ππ上单调递减 C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减 【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为ππsin 2sin2105y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足()ππ2π22π22k x k k -≤≤+∈Z ,即()ππππ44k x k k -≤≤+∈Z ,令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦. 函数的单调递减区间满足:()π3π2π22π22k x k k +≤≤+∈Z ,即()π3πππ44k x k k +≤≤+∈Z , 令1k =可得一个单调递减区间为:5π7π,44⎡⎤⎢⎥⎣⎦.故选A. 【答案】A9.【2017年高考山东卷理数】在ABC △中,角A ,B ,C 的对边分别为,,.若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是( ) A . B . C .2A B = D .2B A = 【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+,所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,故选A.【答案】A10.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 . 【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭a b c 2a b =2b a =()2222222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭2222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭, 当tan 2α=时,上式22222122==22110⎛⎫⨯+-⨯ ⎪+⎝⎭; 当1tan 3α=-时,上式=22112()1()2233[]=1210()13⨯-+--⨯-+.综上,π2sin 2.410α⎛⎫+= ⎪⎝⎭ 【答案】21011.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =, 解得23,23c c ==-(舍去),所以243a c ==,113sin 43236 3.222ABC S ac B ==⨯⨯⨯=△ 【答案】6312.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,225AC =AB +BC =,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以1225BD =. ππ72cos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【答案】1225,721013.【2018年高考江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ 【答案】π6-14.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 【解析】因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα 所以11sin ,cos 22==αβ,因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα【答案】12-15.【2017年高考浙江卷】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==, ∴1115cos ,sin 14164DBC DBC ∠=-∠=-=, ∴115sin 22BCD S BD BC DBC =⨯⨯⨯∠=△. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=, 解得10cos 4BDC ∠=或10cos 4BDC ∠=-(舍去). 综上可得,△BCD 面积为152,10cos 4BDC ∠=. 【答案】1510,2416.【2019年高考全国Ⅰ卷】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(2)若22a b c +=,求sin C .【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-,由题设及正弦定理得()2sin sin 1202sin A C C ︒+-=,即631cos sin 2sin 222C C C ++=,可得()2cos 602C ︒+=-. 由于0120C ︒︒<<,所以()2sin 602C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+624+=.【答案】(1)60A ︒=;(2)62sin 4C +=.17.【2018年高考浙江卷】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455-,-).(1)求sin (α+π)的值; (2)若角β满足sin (α+β)=513,求cos β的值. 【解析】(1)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin(π)sin 5αα+=-=. (2)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++,所以56cos 65β=-或16cos 65β=-. 【答案】(1)45;(2)56cos 65β=-或16cos 65β=-. 18.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值. 【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a aa cb B ac a a +-+-===-⋅⋅. (2)由(1)可得215sin 1cos 4B B =-=, 从而15sin 22sin cos 8B B B ==-,227cos 2cos sin 8B B B =-=-,故15371357sin 2sin 2cos cos 2sin 666828216B B B πππ+⎛⎫+=+=-⨯-⨯=-⎪⎝⎭. 【答案】(1)14-;(2)35716+-.19.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==.所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=.由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米).解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-,直线PB 的方程为42533y x =--. 所以P (−13,9),22(134)(93)15PB =-+++=.因此道路PB 的长为15(百米). (2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟. 在线段AD 上取点M (3,154),因为22221533454OM ⎛⎫=+<+= ⎪⎝⎭,所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=.由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由22(4)(93)15(4)AQ a a =-+-=>,得a =4321+,所以Q (4321+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4321+,9)时,d 最小,此时P ,Q 两点间的距离4321(13)17321PQ =+--=+.因此,d 最小时,P ,Q 两点间的距离为17321+(百米).1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c =2,则C =( )A .π12B .π6C .π4D .π3【解析】本题考点是三角形内角和公式,两角和的正弦公式,辅助角公式及正弦定理的应用. 由题意可知,π=++C B A 所以有()C A B +=sin sin ,所以原等式可整理成:()sin sin (sin cos )0++-=A C A C C ,也就是:sin cos cos sin sin sin sin cos 0++-=A C A C A C A C ,【模拟考场】即()sin sin cos 2sin sin 04π⎛⎫+=+= ⎪⎝⎭C A A C A ,因为是三角形△ABC ,.0π或≠C 所以有43π=A .由正弦定理得:C c A a sin sin =,得.6,21sin π==C C 得【答案】B2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1D .3【解析】解法1:(余弦定理)由a 2=b 2+c 2-2bc cos A 得3=1+c 2-2c ×1×cos π3=1+c 2-c ,所以c 2-c -2=0.所以c =2或-1(舍去).法2:(正弦定理)由a sin A =b sin B ,得3sin π3=1sin B ,所以sin B =12,因为b <a ,所以B =π6,从而C =π2,所以c 2=a 2+b 2=4,所以c =2.【答案】B3.函数y =2xsin2x 的图象可能是( )A .B .C .D .【解析】令()2sin2xf x x =,因为()()(),2sin22sin2xxx f x x x f x -∈-=-=-=-R ,所以()2sin2xf x x =为奇函数,排除选项A ,B ;因为π,π2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C ,故选 D.【答案】D4.设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x =D .()f x 在(π2,π)单调递减【解析】函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图象的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图象关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确; 当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.【答案】D5.设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则( ) A .23ω=,12ϕπ= B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕ<π得12ϕπ=,故选A . 【答案】A6.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【答案】D7.在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为315 ,12,cos ,4b c A -==- 则a 的值为 .【解析】因为0A π<<,所以215sin 1cos 4A A =-=, 又115sin 315,2428ABC S bc A bc bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得 2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【答案】88.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A BA B B A+=+ (Ⅰ)证明:a +b =2c ;(Ⅱ)求cos C 的最小值. 【解析】()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B⎛⎫+=+⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+,即()2sin sin sin A B A B +=+.因为A B C π++=,所以()()sin sin sin A B C C π+=-=.从而sin sin =2sin A B C +. 由正弦定理得2a b c +=.()∏由()I 知2a bc +=, 所以 2222222cos 22a b a b a b c C ab ab +⎛⎫+- ⎪+-⎝⎭==311842b a a b ⎛⎫=+-≥ ⎪⎝⎭,当且仅当a b =时,等号成立. 故 cos C 的最小值为12. 9.在平面四边形ABCD 中,90ADC ∠=o ,45A ∠=o ,2AB =,5BD =.(1)求cos ADB ∠;(2)若22DC =,求BC . 【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin 45sin ADB =︒∠,所以2sin 5ADB ∠=.由题设知,90ADB ∠<︒, 所以223cos 1255ADB ∠=-=. (2)由题设及(1)知,2cos sin 5BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠225825225=+-⨯⨯⨯25=.所以5BC =. 【答案】(1)235;(2)5. 10. ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求ABC △的周长.【解析】(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =. 由正弦定理得1sin sin sin 23sin A C B A =.故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin 2B C B C -=-,即1cos()2B C +=-. 所以2π3B C +=,故π3A =. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即2()39b c bc +-=,得33b c +=.故△ABC 的周长为333+.【答案】(1)23;(2)333+. 11. ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin2B AC +=. (1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b .【解析】(1)由题设及A B C ++=π,可得2sin 8sin2BB =,故()sin 41cos B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=,解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14=sin 217△ABC S ac B ac =. 又=2ABC S △,则172ac =.由余弦定理及6a c +=得:()()222217152cos 21cos 362(1)4,217b ac ac B a c ac B =+-=+-+=-⨯⨯+=所以2b =.【答案】(1)15cos 17B =;(2)2b =.12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b =2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 【解析】(1)因为23,2,cos 3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)(2)323c c c c +-=⨯⨯,即213c =.所以33c =. (2)因为sin cos 2A B a b =,由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =.从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =. 因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =.因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭. 【答案】(1)33c =;(2)255. 13.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为107cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计) (1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.记玻璃棒的另一端落在1CC 上点M 处. 因为107,40AC AM ==,所以2240(107)30MC =-=,从而3sin 4MAC =∠, 记AM 与水面的交点为1P ,过1P 作P 1Q 1⊥AC ,Q 1为垂足, 则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=1116sin P MACQ =∠.答:玻璃棒l 没入水中部分的长度为16cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG .同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1.记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32.因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而222211 243240GG KG GK =+=+=. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠. 因为2απ<<π,所以3cos 5α=-. 在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是42473sin sin()sin()sin co 3s cos sin ()5252555NEG αβαβαβαβ=π--=+=+=⨯+-⨯=∠. 记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH ,故P 2Q 2=12,从而EP 2=2220sin P NEGQ =∠. 答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)【答案】(1)16 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm);(2)20 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm).。

-2020年全国各省新高考改革方案详细政策解读

-2020年全国各省新高考改革方案详细政策解读

在已启动的省份中发现的突出问题之一就是:文理不分科,考生根据自身兴趣、优势及高校招生要求自主选考科目,选考物理的人数大幅减少,比如浙江省2014年夏季高一新生开始启动,随后2015、2016年选考物理人数锐减:
随后,国家提出物理选考保障机制,在报考大学专业范围上设限(一流大学的一流专业选考物理),选不选物理成为考生和家长十分头痛的问题,分析利弊如下:
执行:2021年
2018年秋季入学的高一学生起,不分文理科。2021年起,高考统考科目为语文、数学、外语3科。高考成绩由统考科目和学生选考科目构成。外语听力“一年两考”,取较高一次成绩计入高考总分
执行:2021年
2018年秋季入学的高一学生起,不分文理科。2021年起,高考统考科目为语文、数学、外语3科。高考成绩由统考科目和学生选考科目构成。
执行:2022年
实行“3+3”的考试模式,选考科目“6选3”;外语科目提供两次考试机会;高考招生录取基于“两依据、一参考”;2018年在各批次全面实行平行志愿,并创造条件逐步取消高校招生录取批次。
执行:2022年
暂无。
执行:2021年
2018年入学的高中一年级新生开始,考试不分文理科;2021年开始,高考总成绩为全国统考科目(语文、数学、外语)+高中学业水平考试选考科目的总和;
数据仅供参考了解!
那么在新的高考改革方案中,你认为最吃香的专业会是什么?谢谢您的关注,期待您的点赞!
执行:2017年
考试科目为语数外+3门选考科目,不分文理;除语数,其他科目都有2次考试机会,成绩2年有效;高校提前两年公布选考科目范围,至多3门,考生1门符合就可报考;高考录取不分批次,“专业+学校”平行志愿,按专业平行投档;等级赋分方案:考生各科成绩按等级赋分,以当次高中学考合格成绩为赋分前提,高中学考不合格不赋分。起点赋分40分,满分100分,共分21个等级,每个等级分差为3分。

2019-2020年高考数学一轮复习 第五篇 平面向量 第2讲 平面向量基本定理及其坐标表示教案 理 新人教版

2019-2020年高考数学一轮复习 第五篇  平面向量 第2讲 平面向量基本定理及其坐标表示教案 理 新人教版

2019-2020年高考数学一轮复习 第五篇 平面向量 第2讲 平面向量基本定理及其坐标表示教案 理 新人教版【xx 年高考会这样考】1.考查平面向量基本定理的应用. 2.考查坐标表示下向量共线条件. 【复习指导】本讲复习时,应理解基本定理,重点运用向量的坐标进行加、减、数乘的运算以及向量共线的运算.基础梳理1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中不共线的向量e 1,e 2叫表示这一平面内所有向量的一组基底. 2.平面向量坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,当且仅当x 1y 2-x 2y 1=0时,向量a ,b 共线.一个区别向量坐标与点的坐标的区别:在平面直角坐标系中,以原点为起点的向量OA →=a ,点A 的位置被向量a 唯一确定,此时点A 的坐标与a 的坐标统一为(x ,y ),但应注意其表示形式的区别,如点A (x ,y ),向量a =OA→=(x ,y ).当平面向量OA →平行移动到O 1A 1→时,向量不变,即O 1A 1→=OA →=(x ,y ),但O 1A 1→的起点O 1和终点A 1的坐标都发生了变化.两个防范(1)要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.(2)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.双基自测1.(人教A 版教材习题改编)已知a 1+a 2+…+a n =0,且a n =(3,4),则a 1+a 2+…+a n -1的坐标为( ). A .(4,3)B .(-4,-3)C .(-3,-4)D .(-3,4)解析 a 1+a 2+…+a n -1=-a n =(-3,-4). 答案 C2.若向量a =(1,1),b =(-1,1),c =(4,2),则c =( ). A .3a +b B .3a -b C .-a +3b D .a +3b解析 设c =x a +y b ,则⎩⎪⎨⎪⎧x -y =4,x +y =2,∴⎩⎪⎨⎪⎧x =3,y =-1.∴c =3a -b . 答案 B3.(xx·郑州月考)设向量a =(m,1),b =(1,m ),如果a 与b 共线且方向相反,则m 的值为( ).A .-1B .1C .-2D .2解析 设a =λb (λ<0),即m =λ且1=λm .解得m =±1,由于λ<0,∴m =-1. 答案 A4.设向量a =(1,-3),b =(-2,4),若表示向量4a 、3b -2a 、c 的有向线段首尾相接能构成三角形,则向量c =( ).A .(4,6)B .(-4,-6)C .(4,-6)D .(-4,6) 解析 设c =(x ,y ), 则4a +(3b -2a )+c =0,∴⎩⎪⎨⎪⎧4-6-2+x =0,-12+12+6+y =0,∴⎩⎪⎨⎪⎧x =4,y =-6.答案 C5.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________. 解析 a +b =(1,m -1).∵(a +b )∥c ,∴2-(-1)(m -1)=0,∴m =-1. 答案 -1考向一 平面向量基本定理的应用【例1】►(xx·南京质检)如图所示,在△ABC 中,H 为BC 上异于B ,C 的任一点,M 为AH 的中点,若AM →=λAB →+μAC →,则λ+μ=________.[审题视点] 由B ,H ,C 三点共线可用向量AB →,AC →来表示AH →.解析 由B ,H ,C 三点共线,可令AH →=xAB →+(1-x )AC →,又M 是AH 的中点,所以AM →=12AH →=12xAB →+12(1-x )AC →,又AM →=λAB →+μAC →.所以λ+μ=12x +12(1-x )=12.答案 12应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用.当基底确定后,任一向量的表示都是唯一的.【训练1】 如图,两块斜边长相等的直角三角板拼在一起.若AD →=xAB →+yAC →,则x =________,y =________.解析 以AB 所在直线为x 轴,以A 为原点建立平面直角坐标系如图,令AB =2,则AB →=(2,0),AC →=(0,2),过D 作DF ⊥AB 交AB 的延长线于F ,由已知得DF =BF =3,则AD →=(2+3, 3).∵AD →=xAB →+yAC →,∴(2+3,3)=(2x,2y ).即有⎩⎨⎧2+3=2x ,3=2y ,解得⎩⎪⎨⎪⎧x =1+32,y =32.另解:AD →=AF →+FD →=⎝ ⎛⎭⎪⎫1+32AB →+32AC →,所以x =1+32,y =32. 答案 1+32 32考向二 平面向量的坐标运算【例2】►(xx·合肥模拟)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3CA →,CN →=2CB →.求M ,N 的坐标和MN →.[审题视点] 求CA →,CB →的坐标,根据已知条件列方程组求M ,N . 解 ∵A (-2,4),B (3,-1),C (-3,-4), ∴CA →=(1,8),CB →=(6,3).∴CM →=3CA →=3(1,8)=(3,24),CN →=2CB →=2(6,3)=(12,6). 设M (x ,y ),则CM →=(x +3,y +4). ∴⎩⎪⎨⎪⎧x +3=3,y +4=24,得⎩⎪⎨⎪⎧x =0,y =20.∴M (0,20).同理可得N (9,2),∴MN →=(9-0,2-20)=(9,-18).利用向量的坐标运算解题,主要就是根据相等的向量坐标相同这一原则,通过列方程(组)进行求解;在将向量用坐标表示时,要看准向量的起点和终点坐标,也就是要注意向量的方向,不要写错坐标.【训练2】 在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →=( ). A .(-2,-4) B .(-3,-5) C .(3,5)D .(2,4)解析 由题意得BD →=AD →-AB →=BC →-AB →=(AC →-AB →)-AB →=AC →-2AB →=(1,3)-2(2,4)=(-3,-5). 答案 B考向三 平面向量共线的坐标运算【例3】►已知a =(1,2),b =(-3,2),是否存在实数k ,使得k a +b 与a -3b 共线,且方[审题视点] 根据共线条件求k ,然后判断方向.解 若存在实数k ,则k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4).若这两个向量共线,则必有 (k -3)×(-4)-(2k +2)×10=0. 解得k =-13.这时k a +b =⎝ ⎛⎭⎪⎫-103,43,所以k a +b =-13(a -3b ).即两个向量恰好方向相反, 故题设的实数k 存在.向量共线问题中,一般是根据其中的一些关系求解参数值,如果向量是用坐标表示的,就可以使用两个向量共线的充要条件的坐标表示列出方程,根据方程求解其中的参数值. 【训练3】 (xx·西安质检)已知向量a =(1,2),b =(2,-3),若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( ).A.⎝ ⎛⎭⎪⎫79,73B.⎝ ⎛⎭⎪⎫-73,-79C.⎝ ⎛⎭⎪⎫73,79D.⎝ ⎛⎭⎪⎫-79,-73解析 设c =(m ,n ),则a +c =(1+m,2+n ),a +b =(3,-1).∵(c +a )∥b ,∴-3×(1+m )=2×(2+n ),又c ⊥(a +b ), ∴3m -n =0,解得m =-79,n =-73.答案 D阅卷报告5——平面几何知识应用不熟练致误【问题诊断】 在平面几何图形中设置向量问题,是高考命题向量试题的常见形式,求解这类问题的常规思路是:首先选择一组基向量,把所有需要的向量都用基向量表示,然后再进行求解.【防范措施】 一是会利用平行四边形法则和三角形法则;二是弄清平面图形中的特殊点、线段等.【示例】►(xx·湖南)在边长为1的正三角形ABC 中,设BC →误.=2BD →,CA →=3CE →,则AD →·BE →=错因 搞错向量的夹角或计算错 实录 -12(填错的结论多种).正解 由题意画出图形如图所示,取一组基底{AB →,AC →},结合图形可得AD →=12(AB →+AC →),BE →=AE →-AB →=23AC →-AB →,∴AD →·BE →=12(AB →+AC →)·⎝ ⎛⎭⎪⎫23AC →-AB →=13AC →2-12AB →2-16AB →·AC →=13-12-16cos 60°=-14. 答案 -14【试一试】 (xx·天津)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________. [尝试解析]以D 为原点,分别以DA 、DC 所在直线为x 、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x .∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ),PA →=(2,-x ),PB →=(1,a -x ),∴PA →+3PB →=(5,3a -4x ),|PA →+3PB →|2=25+(3a -4x )2≥25,∴|PA →+3PB →|的最小值为5. 答案 52019-2020年高考数学一轮复习 第五篇 平面向量 第3讲 平面向量的数量积教案 理 新人教版【xx 年高考会这样考】1.考查平面向量数量积的运算.2.考查利用数量积求平面向量的夹角、模. 3.考查利用数量积判断两向量的垂直关系. 【复习指导】本讲复习时,应紧扣平面向量数量积的定义,理解其运算法则和性质,重点解决平面向量的数量积的有关运算,利用数量积求解平面向量的夹角、模,以及两向量的垂直关系.基础梳理1.两个向量的夹角已知两个非零向量a 和b (如图),作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向;如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 2.两个向量的数量积的定义已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,规定零向量与任一向量的数量积为0,即0·a =0.3.向量数量积的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b|cos θ的数量积. 4.向量数量积的性质设a 、b 都是非零向量,e 是单位向量,θ为a 与b (或e )的夹角.则 (1)e ·a =a ·e =|a |cos θ; (2)a ⊥b ⇔a ·b =0;(3)当a 与b 同向时,a ·b =|a |·|b |;当a 与b 反向时,a ·b =-|a ||b |,特别的,a ·a =|a |2或者|a |=a ·a ;(4)cos θ=a ·b |a ||b |;(5)|a ·b |≤|a ||b |. 5.向量数量积的运算律 (1)a ·b =b ·a ;(2)λa ·b =λ(a ·b )=a ·(λb ); (3)(a +b )·c =a ·c +b ·c . 6.平面向量数量积的坐标运算设向量a =(x 1,y 1),b =(x 2,y 2),向量a 与b 的夹角为θ,则 (1)a ·b =x 1x 2+y 1y 2; (2)|a |=x 21+y 21; (3)cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21 x 22+y 22; (4)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.7.若A (x 1,y 1),B (x 2,y 2),AB →=a ,则|a |=x 1-x 22+y 1-y 22(平面内两点间的距离公式).一个条件两个向量垂直的充要条件:a ⊥b ⇔x 1x 2+y 1y 2=0. 两个探究(1)若a ·b >0,能否说明a 和b 的夹角为锐角? (2)若a ·b <0,能否说明a 和b 的夹角为钝角? 三个防范(1)若a ,b ,c 是实数,则ab =ac ⇒b =c (a ≠0);但对于向量就没有这样的性质,即若向量a ,b ,c 若满足a ·b =a ·c (a ≠0),则不一定有b =c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量.(2)数量积运算不适合结合律,即(a ·b )c ≠a (b ·c ),这是由于(a ·b )c 表示一个与c 共线的向量,a (b ·c )表示一个与a 共线的向量,而a 与c 不一定共线,因此(a ·b )c 与a (b ·c )不一定相等.(3)向量夹角的概念要领会,比如正三角形ABC 中,AB →与BC →的夹角应为120°,而不是60°.双基自测1.(人教A 版教材习题改编)已知|a |=3,|b |=2,若a ·b =-3,则a 与b 的夹角为( ). A.π3 B.π4 C.2π3 D.3π4 解析 设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=-33×2=-12.又0≤θ≤π,∴θ=2π3.答案 C2.若a ,b ,c 为任意向量,m ∈R ,则下列等式不一定成立的是( ). A .(a +b )+c =a +(b +c ) B .(a +b )·c =a ·c +b ·c C .m (a +b )=m a +m bD .(a ·b )·c =a ·(b ·c )答案 D3.(xx·广东)若向量a ,b ,c 满足a ∥b ,且a ⊥c ,则c ·(a +2b )=( ). A .4 B .3 C .2 D .0解析 由a ∥b 及a ⊥c ,得b ⊥c ,则c ·(a +2b )=c ·a +2c ·b =0. 答案 D4.已知向量a =(1,2),向量b =(x ,-2),且a ⊥(a -b ),则实数x 等于( ). A .9 B .4 C .0 D .-4 解析 a -b =(1-x,4). 由a ⊥(a -b ),得1-x +8=0. ∴x =9. 答案 A5.(xx·江西)已知|a |=|b |=2,(a +2b )·(a -b )=-2,则a 与b 的夹角为________. 解析 由|a |=|b |=2,(a +2b )(a -b )=-2, 得a ·b =2,cos 〈a ,b 〉=a ·b |a ||b |=22×2=12,又〈a ,b 〉∈[0,π]所以〈a ,b 〉=π3. 答案π3考向一 求两平面向量的数量积【例1】►(xx·合肥模拟)在△ABC 中,M 是BC 的中点,|AM →|=1,AP →=2PM →,则PA →·(PB →+PC →)=________.[审题视点] 由M 是BC 的中点,得PB →+PC →=2PM →.解析 如图,因为M 是BC 的中点,所以PB →+PC →=2PM →,又AP →=2PM →,|AM →|=1,所以PA →·(PB →+PC →)=PA →·2PM →=-4|PM →|2=-49|AM →|2=-49,故填-49.答案 -49当向量表示平面图形中的一些有向线段时,要根据向量加减法运算的几何法则进行转化,把题目中未知的向量用已知的向量表示出来,在这个过程中要充分利用共线向量定理和平面向量基本定理、以及解三角形等知识. 【训练1】 如图,在菱形ABCD 中,若AC =4,则CA →·AB →=________.解析 AB →=AO →+OB →,故CA →·AB →=CA →·(AO →+OB →)=CA →·AO →+CA →·OB →.而AO →=-12CA →,CA →⊥OB →.所以CA →·AB →=-12CA 2=-8.答案 -8考向二 利用平面向量数量积求夹角与模【例2】►已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |和|a -b |.[审题视点] 由平面向量数量积的运算法则得a ·b 的值,再求其夹角的余弦值,从而得其夹角.解 (1)(2a -3b )·(2a +b )=61,解得a ·b =-6. ∴cos θ=a ·b |a ||b |=-64×3=-12,又0≤θ≤π,∴θ=2π3. (2)|a +b |2=a 2+2a ·b +b 2=13, ∴|a +b |=13.|a -b |2=a 2-2a ·b +b 2=37. ∴|a -b |=37.在数量积的基本运算中,经常用到数量积的定义、模、夹角等公式,尤其对|a |=a ·a 要引起足够重视,是求距离常用的公式.【训练2】 已知a 与b 是两个非零向量,且|a |=|b |=|a -b |,求a 与a +b 的夹角. 解 设a 与a +b 的夹角为θ,由|a |=|b |得|a |2=|b |2. 又由|b |2=|a -b |2=|a |2-2a ·b +|b |2.∴a ·b =12|a |2, 而|a +b |2=|a |2+2a ·b +|b |2=3|a |2,∴|a +b |=3|a |. ∴cos θ=a a +b |a ||a +b |=|a |2+12|a |2|a |·3|a |=32. ∵0°≤θ≤180°,∴θ=30°,即a 与a +b 的夹角为30°.考向三 平面向量的数量积与垂直问题【例3】►已知平面向量a =(1,x ),b =(2x +3,-x )(x ∈R ).(1)若a ⊥b ,求x 的值;(2)若a ∥b ,求|a -b |.[审题视点] 利用a ⊥b ⇔x 1x 2+y 1y 2=0及a ∥b ⇔x 1y 2-x 2y 1=0,求解.解 (1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x )=1×(2x +3)+x (-x )=0.整理,得x 2-2x -3=0,解得x =-1或x =3.(2)若a ∥b ,则有1×(-x )-x (2x +3)=0,即x (2x +4)=0,解得x =0或x =-2.当x =0时,a =(1,0),b =(3,0),a -b =(-2,0),∴|a -b |=-2+02=2. 当x =-2时,a =(1,-2),b =(-1,2),a -b =(2,-4),∴|a -b |=2 5.综上,可知|a -b |=2或2 5.已知两向量垂直就是利用其数量积为零列出方程,通过解方程求出其中的参数值.在计算数量积时要注意方法的选择:一种方法是把互相垂直的两个向量的坐标求出来,再计算数量积;另一种方法是根据数量积的运算法则进行整体计算,把这个数量积的计算化归为基本的向量数量积的计算.【训练3】 已知平面内A ,B ,C 三点在同一条直线上,OA →=(-2,m ),OB →=(n,1),OC →=(5,-1),且OA →⊥OB →,求实数m ,n 的值.解 由于A ,B ,C 三点在同一条直线上,则AC →∥AB →,AC →=OC →-OA →=(7,-1-m ),AB →=OB →-OA →=(n +2,1-m ),∴7(1-m )-(-1-m )(n +2)=0,即mn +n -5m +9=0,①又∵OA →⊥OB →,∴-2n +m =0.②联立①②,解得⎩⎪⎨⎪⎧ m =6,n =3或⎩⎪⎨⎪⎧ m =3,n =32.规范解答10——如何解决平面向量与解三角形的综合问题【问题研究】 平面向量与三角的综合性问题大多是以三角题型为背景的一种向量描述.它需要根据向量的运算性质将向量问题转化为三角的相关知识来解答,三角知识是考查的主体.考查的要求并不高,解题时要综合利用平面向量的几何意义等将题中的条件翻译成简单的数学问题.【解决方案】 解决这类问题时,首先要考虑向量工具性的作用,如利用向量的模与数量积转化边长与夹角问题,然后注意三角形中边角的向量关系式的表达形式,最后用三角知识规范解答.【示例】► (本题满分12分)(xx·安徽)△ABC 的面积是30,内角A ,B ,C 所对边长分别为a ,b ,c ,cos A =1213.(1)求AB →·AC →;(2)若c -b =1,求a 的值.先求sin A ,再利用面积公式求bc ,最后利用数量积及余弦定理可解决.[解答示范] 由cos A =1213,得sin A = 1-⎝ ⎛⎭⎪⎫12132=513.(2分) 又12bc sin A =30, ∴bc =156.(4分)(1)AB →·AC →=bc cos A =156×1213=144(8分) (2)a 2=b 2+c 2-2bc cos A =(c -b )2+2bc (1-cos A ) =1+2×156×⎝ ⎛⎭⎪⎫1-1213=25,又a >0(10分) ∴a =5.(12分)三角形的三边可与三个向量对应,这样就可以利用向量的知识来解三角形了,解决此类问题要注意内角与向量的夹角之间的联系与区别,还要注意向量的数量积与三角形面积公式之间关系的应用.【试一试】 已知△ABC 的面积S 满足3≤S ≤3,且AB →·BC →=6,设AB →与BC →的夹角为θ.(1)求θ的取值范围;(2)求函数f (θ)=sin 2θ+2sin θ·cos θ+3cos 2θ的最小值.[尝试解答] (1)∵AB →·BC →=6,∴|AB →|·|BC →|·cos θ=6.∴|AB →|·|BC →|=6cos θ. 又∵S =12|AB →|·|BC →|·sin(π-θ)=3tan θ, ∴3≤3tan θ≤3,即33≤tan θ≤1. 又∵θ∈(0,π),∴π6≤θ≤π4. (2)f (θ)=1+2cos 2θ+sin 2θ=cos 2θ+sin 2θ+2=2sin ⎝⎛⎭⎪⎫2θ+π4+2, 由θ∈⎣⎢⎡⎦⎥⎤π6,π4,得2θ∈⎣⎢⎡⎦⎥⎤π3,π2,∴2θ+π4∈⎣⎢⎡⎦⎥⎤712π,34π. ∴当2θ+π4=34π即θ=π4时,f (θ)min =3.。

2020学年高中数学近年年数学高考真题新人教A版选修2-2(2021-2022学年)

2020学年高中数学近年年数学高考真题新人教A版选修2-2(2021-2022学年)

2019年数学高考真题剖析解读高考全国Ⅰ、Ⅱ、Ⅲ卷都是教育部按照普通高考考试大纲统一命题,适用于不同省份的考生.虽然难度上会有一些差异,但在试卷结构、命题方向上基本都是相同的.试题稳中求新、稳中求变.与往年相比,三角、数列、立体几何、圆锥曲线、函数与导数等依然是考查的重点,注重基础知识,凸显主干知识.试卷结构、题型保持一致,各题型所占分值与分值分布没有变化,试题顺序有较大变化,考查方式有所改变,难度明显增加,客观题与去年的难度相当,主观题难易梯度明显增加,解决了区分度低的诟病.今年试题立足学科素养,落实关键能力,加强数学应用,渗透数学文化.以真实情境为载体,贴近生活,联系社会实际,注重能力考查,增强综合性、应用性,在各部分内容的布局和考查难度上都进行了调整和改变,这在一定程度上有助于考查学生灵活应变的能力和主动调整适应的能力,有助于学生全面学习掌握重点知识和重点内容,同时有助于打破考试题的僵硬化,更好地提升学生的综合分析能力,打破了传统的应试教育.全国Ⅰ、Ⅱ、Ⅲ卷对选修2-2推理与证明、数系的扩充与复数的引入的考查,相对来说比较常规、难度不大、变化小、综合性低,属于基础类必得分试题;对导数及其应用的考查,难度大、综合性强、运算能力要求高、得分比较困难,主要考查导数的计算、几何意义,利用导数研究函数的单调性、极值、最值、零点、不等式等.其他省市试题和全国卷类似,难度相当.要想学好这部分知识不仅要有扎实的基础知识、基本能力,还要注意一些数学思想的培养,比如分类讨论思想、数形结合思想、转化与化归思想等!下面列出了2019年全国Ⅰ、Ⅱ、Ⅲ卷及各地区对选修2-2所考查的全部试题,请同学们根据所学知识,测试自己的能力,寻找自己的差距,把握高考的方向,认清命题的趋势!(说明:有些试题带有综合性,是与以后要学的内容的小综合试题,同学们可根据目前所学习的内容,有选择性地试做!)穿越自测一、选择题1.(2019·全国卷Ⅰ,理2)设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则( )ﻬA.(x+1)2+y2=1 B.(x-1)2+y2=1C.x2+(y-1)2=1ﻩD.x2+(y+1)2=1答案C解析由已知条件,可得z=x+y i。

回归本源,立足教材--2019年数学高考江苏卷第13题解法评析及教学思考

回归本源,立足教材--2019年数学高考江苏卷第13题解法评析及教学思考

38福建中学数学2020年第12期1试题呈现23回归本源,立足教材2019年数学高考江苏卷第13题解法评析及教学思考朱阳帆江苏省扬中高级中学(212200)(2019年高考江苏卷•13、已知求sin(2a+彳)_tan atan(a+n)评析本解法是常规思路,分别用到了和角公式,倍角公式,同角的三角函数关系,计算量较大,而且考后和部分学生交流得知学生对用不同的正切算出了相同的答案有所怀疑,进行二次计算,浪费了时间.该题是对两角和与差的三角函数的考查,解决此类问题,需要用到一系列三角公式与变换:和角公式,倍角公式,同角的三角函数关系进行恒等变换,测试目标是应用公式,但需要整合,且经多个目标完成[1].笔者今年任教高三,考后与学生交流,发现有部分学生写了土寻这个答案,觉得有些可解法2tan atan atan(a+n)22-亍tan(a+—)232tan a+131-tan a /.3tan2a-5tan a-2_0,惜.本文给出第13题填空题的5种解法,并浅析出现土寻这个答案的原因,并就此题谈谈笔者在/.tan a_-1或tan a_2,3-41:.sin(2a+—)_-^-(sin2a+cos2a)高三复习教学时的拙见.2五种解法及评析—•(2sin a cos a+cos2a-sin2a)解法1tan atan(a+n)2322一2血一2一一一一2sin a cos a+cos2a-sin2a2•2cos a+sin atan a_一亍tan(a+—)_2tan a+131-tan a2tan a+1-tan2a1+tan2a1[21°当tan a_一一时,sin(2a+—)_——,3410tan a_2或-一3P2 2°当tan a_2时'sin(2a+4)_I?,sin a_巫5或-sin a2丘5sin(2a+n)cos a_5a/10 sin a_---,10顶cos a_-----10或-cos a10 5a/10sin a_-----103顶cos a_----10sin2a_—,cos2a_35评析解法2和解法1比较少了分类讨论的过程,其实教材必修四第一章练习题后有好几道三角函数化简求值的练习,最好的处理方式都是添加分母sin2a+cos2a然后把整个分式化成正切处理,这样避免讨论,所以无论是平时教学还是高三复习课都要以课本为主,教材是高三复习最好的资料.从代数角度看sin2a_-—5 sin(2a+—c4cos2a_—,5:~~~(sin2a+cos2a)_2102tan a+1-tan2a1+tan2a_-3和tan atan(a+n)2-2同解,所以也解释了为什么tan a算出来是不同值得到的确是同样的结果.2020年第12期福建中学数学39解法 3 •/ tan a =-—tan(a + n )sin a cos(a +—)23,2—,cos a sin(a + —迈.忑.22 sin a cos a 2 sin a即―.+近2 =——cos a sin a +---cos a 2 2dsin2a -1-cos2a 2二 4 2 =—2.宀 1 + cos2a 34 21 sin(2a + n ) -1 ,=2 ' r 2=—21sin(2a + n )+1 3亠 sin(2a + n ) 忑评析本解法是把正切都化成了正弦余弦后用二倍角公式化简后进行合一变形处理,合一变形在教材必修4课后链接上有详细介绍•对学生三角函数各种公式应用熟练程度以及代数变形能力要求较高,相较于解法1和解法2,解法3少掉了解一 元二次方程和分类讨论的过程,最后直接得出要求的代数式值.102t \ + 3t 2 = 0,_a /2t 1— t 2 =T ‘令 sin(a + n )cos a = t 1 , cos(a + )sin a = t 2 ,3迈t 1 =---,1 102近2 10/. t 1 +12 =返,即 sin(2a + —) = ^2 .1 2 10, r \ 4 10n <由①②③得{评析通过解法4发现可以通过代数变形直接得出所求代数式的值,那么可以想到能否对代数式进行拆角处理构造对称式,①和③对一些学生而言 想到并不困难,①展开有a 和a +占,所以对③进4行拆角处理,关键②的构造很难想到•解法5利用万能公式,当tan a = 2时,.tan a 4sin2a =------2—=—,1 + tan a 5- 1 - tan2 a 3cos 2a =---------- =——,1 + tan2 a 5sin(2a + —) = ^2 (sin 2a + cos 2a ) = ^^ ,4 2 10当 tan a = -1 时,sin2a = —tan a 2—=3 1 + tan 2 a 宀 1 - tan 2 a 4cos 2a =----------=—,1 + tan2 a 5sin(2a + —) = ^2 (sin 2a + cos 2a ) = ^24 2 1035• cos(a +—) ,解法 4 叫=-2,cos a sin(a + n )3-3sin a cos(a + —) = cos a sin(a + —),442cos a sin(a + 彳)+ 3sin a cos(a + n ) = 0 ①,匸,•兀 • < it 、 a 乂 sin — = sin(a +---a )= 一 ,4 4 2评析笔者认为三角函数万能公式是解决这道题目的最好解法,教材上也有万能公式的内容,但是局限于很多同行在讲授新课的时候都略过了万能公式或者稍稍一笔带过,或者在平时解题的时候很少讲授利用万能公式解题,所以学生应用万能公sin(a + n ) cos a -sin a cos(a + n ) = ~^~ ②,sin(2a + —) = sin(a +a + —).4 4式解决这道问题的少之又少.3可能出现±春的原因当学生算出tan a = 2或-—后,采取的策略是sin(2a +孑)=sin(a + —) cos a + sin a cos(a + —)③,44算出tan2a-—或 tan2a =3—,tan(2a +彳)=1 或tan(2a +—)=—,4 7sin(2a + n )cos(2a + n )1 sin(2a +=-或-------cos(2a + —)40福建中学数学2020年第12期-1,与同角的三角函数关系联立,并经历复杂的缩角过程,发现两个都可以保留,得到了土春这个答案,凭空多出来-菁•其实用tan a算出tan2a4的过程是不等价转换,因为tan2a_-3,tan2a_-3,用正切的二倍角公式tan2a_半二,可41-tan2a以得出tan a_2或-2或3或-3,产生了增根,所以sin(2a+中)_-春是由增根tan a_-2或-1产生的多余的解.4教学反思4.1教师研究教材,深度挖掘教材习题中的思想方法与三角恒等变化有关的计算问题是历年来江苏高考数学考查的重点,今年的第13题,属于中档题,但是研究本题的5种解法可以发现,好的解法(解法2,解法4)来源于教材习题的解法与章节补充内容,容易想到的解法(解法1)考查学生对公式运用的熟练程度与代数变形能力.所以对于整个高三的数学复习教学,还是要以教材为主,对于一些重要例习题,使用一题多解、一题多变的方式进行串讲,培养求异思维,促进能力形成,强化重点题型、重要方法的理解与领悟,起到触类旁通的作用.最后,对一些解法相同或相近题型,采用多题一解的收敛方式串讲,侧重对通性通法进行归纳总结,真正达到举一反三、事半功倍的教学效果.4.2要让学生重视教材,力求做到真正的师生一起“回归教材”根据笔者近几年的高三教学经验发现,目前高三数学复习往往有个误区,教师很重视教材,学生倒不是很重视,而是沉溺于各种题海无法自拔,注重解题技巧而忽略了对教材上本源题型的研究,对数学学习急功近利,实则高考的试题就是来源于教材习题的改编,教材的编写也汇集了无数数学人的智慧,上面的例题,习题,蕴含着朴实无华的数学思想方法和最本源的数学解题技巧.所以在平时的教学中,要在学生面前强调教材对高三数学复习的重要性,重做教材上的经典题目,领悟其中的数学思想方法与解题技巧,使教材习题与课外习题产生“共鸣,,.参考文献[1]渠东剑.素养视角下的2019年高考数学江苏卷分析[J].中学数学教学参考,2019(9):56-60(本文系镇江市“十三五”教育规划课题《镇江市高中数学老师数学素养的现状与调查》(课题编号:2017jy-128)阶段性研究成果之一)导数中隐零点问题的处理策略朱广智广东省东莞市第六高级中学(523420)在高考数学导数压轴题中,导函数的零点在解题过程中处于“咽喉”位置至关重要.研读近几年高考题,我们发现经常会碰到导函数具有零点但求解相对繁琐甚至无法求解的问题•此类问题我们称之为“隐零点问题”.面对这种问题,我们不必正面强求,可以将这个零点设而不求,然后谋求一种整体的转化和过渡,再结合其他条件,从而获得问题的解决方法.本文结合2018年高考导数压轴题,探究了这类问题的一般处理策略,并且把这种策略应用于往年高考题进行了有效验证.在本文最后对此类问题指出了相应的备考策略.1问题探究案例1(2018年高考全国皿卷•文21)已知函数f(x)_处节1•证明:当a>1时,f(x)+e>e x0.师生互动要证f(x)+e>0,即证ax2+x-1+ e x+1>0.设g(x)_ax2+x-1+e x+1(a>1),只要证[g(x)]mm>0即可.令g'(x)_2ax+1+e x+1_0,g'(x) _ 2ax+1+e x+1_0是一个超越方程,导函数g'(x)_ 2ax+e x+1的零点不可求,是一个隐零点.怎么处理导函数的零点不可求问题?处理此类隐零点问。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

强调数学应用考查关键能力
教育部考试中心命题专家认为,2019年高考数学卷一个突出的特点是,试题突出学科素养导向,注重能力考查,全面覆盖基础知识,增强综合性、应用性,以反映我国社会主义建设的成果和优秀传统文化的真实情境为载体,贴近生活,联系社会实际,在数学教育、评价中落实立德树人的根本任务。

1、素养导向,落实五育方针
教育部考试中心命题专家介绍,2020年高考数学科结合学科特点,在学科考查中体现五育要求,整份试卷站在落实“五育”方针的高度进行整体设计。

比如:理科Ⅱ卷第13题以我国高铁列车的发展成果为背景。

文科Ⅱ卷第5题以“一带一路”知识测试为情境进行设计,引导学生关注现实社会和经济发展。

理科Ⅱ卷第4题结合“嫦娥”四号实现人类历史首次月球背面软着陆的技术突破考查近似估算的能力,反映我国航天事业取得的成就。

这些试题都发挥了思想教育功能,体现了对考生德育的渗透和引导。

除此之外,今年的试题重视结合学科知识,展示数学之美。

比如:文、理科Ⅱ卷第16题融入了中国悠久的金石文化,赋予几何体真实背景。

文、理科Ⅰ卷第4题以著名的雕塑“断臂维纳斯”为例,探讨人体黄金分割之美,将美育教育融入数学教育。

今年还体现了劳动教育的内容和要求
比如:文科Ⅰ卷第17题以商场服务质量管理为背景设计,体现对服务质量的要求,倡导高质量的劳动成果。

文、理科Ⅲ卷第16题再现了学生到工厂劳动实践的场景,引导学生关注劳动、尊重劳动、参加劳动,体现了劳动教育的要求。

2、突出重点,灵活考查数学本质
2019年数学高考更加注重对高中基础内容的全面考查,集合、复数、平面向量、二项式定理等内容在选择题、填空题中得到了有效的考查。

在此基础上,试卷强调对主干内容的重点考查,体现了全面性、基础性和综合性的考查要求。

在解答题中重点考查了函数、导数、三角函数、概率统计、数列、立体几何、直线与圆锥曲线等主干内容。

今年试题排序顺序上依然是由易到难,循序渐进。

在整体平稳的基础上,在主观题的设计上进行了适当的调整。

主观题在各部分内容的布局和考查难度上进行动态设计,打破了过去压轴题的惯例。

3、情景真实,综合考查应用能力
教育部考试中心命题专家表示:“2019年的数学试题注重考查数学应用素养,体现综合性和应用性的考查要求。

试卷设置的情境真实、贴近生活,同时具有深厚的文化底蕴,体现数学原理和方法在解决问题中的价值和作用。


比如:理科Ⅰ卷第6题以我国古代典籍《周易》中描述事物变化的“卦”为背景设置了排列组合试题,体现了中国古代的哲学思想。

理科Ⅲ卷第3题,以学生阅读“四大名著”的调查数据为背景设计,情境贴近实际,为考生所熟悉。

4、重点提示,理科考生特别要注意
2020年高考会越来越活,就拿2019年高考数学来说,算人的身高,就是把数学考活用,今年高考更加会把高考知识点活用起来,比如用在建设方面,高速或者高铁建设问题,在规划一条高铁时遇见一座山,让考生计算成本,看用打洞还是高架,还是避开等让,成不最低。

让考生去算。

对于物理,生物,化学,地理等学科来说,也会像数学一样越来越厉害多变,这样越来考生只会刷题已经不能拿到高分,要懂得知识点的活用,考试中心命题老师提示,考生要把高考的知识点梳理清楚,要知道什么是难点,什么是易错点,什么是失分点等,只要把知识点梳理清楚那么这是也就很容易知道了,知识点也会活用了。

知识点梳理最典型的就是衡水中学他们的学生都会进行知识点梳理,梳理好了再刷题,所以他们的学生错过的知识点不会考错第二次,他们有自己内部的知识点梳理资料,名字叫名校周考试题汇编,大家快去去找找,拿来用,如果找不到也可以找到类似的,搜高考必刷知识点就行。

对2020高考数学解读
2020高考数学应该还是延续2019年的风格,注重逻辑能力的考查,考查学生缜密思维、严格推理的能力。

同时,通过多种渠道渗透数学文化,如有的试题将通过数学史展示数学文化的民族性与世界性;有的将通过揭示知识的产生背景和形成过程,体现数学的创造、发现和发展特点;有的将通过对数学思维方法的总结、提炼,呈现数学的思想性。

备考注意事项
1、要重视基本概念的复习
从概念的定义出发,由表及里,去伪存真,掌握概念的本质属性,这是提升数学素养的必要条件。

此外,在概念复习中还要避免模式化,避免机械套用有关结论。

2、要重视基本定理、公式的复习
很多学生存在重应用轻推导的现象,就是只重视定理公式的应用,而忽视公式的推导、定理的证明。

事实上,重视公式的推导、定理的证明,不仅有利于理解与掌握定理和公式,理解公式之间的相互关系,而且还可以进一步挖掘公式中蕴含的数学思想,从而成为我们解决有关问题的敲门砖。

3、要重视基本技能的复习
基本技能是数学基础知识的重要组成部分,在数学建模、数学运算以及数据分析等核心素养中都有它的影子,也是历年高考考查的重点。

对基本技能的复习,主要包括掌握入手点、了解隐藏点与熟悉易错点。

如果不懂知识点梳理的考生可以借助书籍来把高考必考知识点,高考易错知识点,易错题型梳理一遍。

所谓掌握入手点,就是要掌握基本思想方法,通过分析其本质特征,熟练掌握其适应范围,掌握基本问题的基本解法。

所谓了解隐藏点,就是要了解哪些知识有隐藏的漏洞,必须与哪些知识配合使用才能避免产生错误。

如在解析几何中解决直线与圆锥曲线相交的问题时,如果使用了韦达定理,就必须检验判别式是否大于零,否则就可能出现直线与圆锥曲线没有交点的情况。

所谓熟悉易错点,如忽略函数的定义域、数列中没有注意n的取值范围等问题而导致错误。

这些虽然不难掌握,但是如果不注意很容易出现错误。

这也体现了数学核心素养中逻辑推理的严谨性。

4、要重视数学本质
数学核心素养中的数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学知识的产生、发展、应用的全过程中。

5、要重视中国古代数学文化
近几年的高考试题增加对中国传统文化进行考查的内容,将中国古代文明作为试题背景材料,体现中国传统文化对人类发展和社会进步的贡献。

这个题目虽然难度不大,但是立意新颖,富有创新精神,特别是巧妙地利用我国优秀的传统文化设计试题,不仅使学生对我国的传统文化有所了解,同时也考查了学生的各种能力,如阅读能力、思维能力、运算能力、数据处理能力等,很好地渗透了数学的核心素养。

相关文档
最新文档