立体几何总复习.

合集下载

2023届高考数学总复习《立体几何》附答案解析

2023届高考数学总复习《立体几何》附答案解析

(2)若点 N 为 BC 的中点,求四面体 A'MNB 的体积.
【解答】证明:(1)连接 BD,设 BD∩EC=F,连接 MF,
由题意可得四边形 BCDE 为正方形,则 F 为 BD 的中点,
∴MF 为△A′BD 的中位线,可得 MF∥A′B,
又 A′B⊄平面 EMC,MF⊂平面 EMC,
∴A'B∥平面 EMC;
2023 年高考:立体几何复习题及答案
1.如图,已知直角梯形 ABCD,BC∥AD,BC=CD=2,AD=4,∠BCD=90°,点 E 为 AD 的中点,现将三角形 ABE 沿 BE 折叠,得到四棱锥 A'﹣BCDE,其中∠A'ED=120°, 点 M 为 A'D 的中点.
(1)求证:A'B∥平面 EMC;
第2页共3页
∵BE⊂平面 BEF,∴平面 BEF⊥平面 AMD, 结合题意分析知,点 F 在线段 AD 上,连接 MF, 过 A 作 AH⊥MF,交 MF 的延长线于点 H,
则结合已知条件得
,解得 AH ,
设 Dt ,
第3页共3页
【解答】解:(1)证明:由题意知 PC2+AC2=PA2,∴PC⊥AC, 同理,PC⊥BC,又 AC∩BC=C,∴PC⊥平面 ABC, ∵D,E 分别是 AC,PA 的中点,∴DE∥PC, ∴DE⊥平面 ABC, 又 DE⊂平面 BDE,∴平面 BDE⊥平面 ABC. (2)在△BDE 中,DE⊥BD,BD=2 ,DE=2,∴BE=4, 如图,过 A 作 AM⊥BE 于 M,连接 MD, 在△ABE 中,AB=BE=4,AE=2 ,解得 AM ,ME=1, ∵DM⊂平面 BDE,∴AC⊥DM, 在 Rt△ADM 中,AM ,AD=2,∴DM , ∴DM2+EM2=DE2,∴MD⊥BE, ∵AM∩MD=M,∴BE⊥平面 AMD,

2023年高考数学总复习《立体几何》附答案解析

2023年高考数学总复习《立体几何》附答案解析

所以 z1=0,
,故可取
, ,,
于是 < , >

设所成锐二面角为θ,所以 sinθ

所以平面 PAD 和平面 PBE 所成锐二面角的正弦值为 .
第3页共3页
第1页共3页
∴CF CC1 AA1 , ∵∠BAC=90°,
∴CD

在 Rt△FCD 中,tan∠FDC 맨

故直线 DF 与平面 ABC 所成角的正切值为 .
2.如图所示,四棱锥 P﹣ABCD 的底面 ABCD 是边长为 1 的菱形,∠BCD=60°,E 是 CD 的中点,PA⊥底面 ABCD,PA=2. (1)证明:平面 PBE⊥平面 PAB; (2)求平面 PAD 和平面 PBE 所成二面角(锐角)的正弦值.
【解答】(1)证明:如图所示,连接 BD,由 ABCD 是菱形且∠BCD=60°, 知△ABC 是等边三角形. ∵E 是 CD 的中点, ∴BE⊥CD,又 AB∥CD, ∴AB⊥BE,∴BE⊥平面 PAB, 又 BE⊂平面 PBE, ∴平面 PBE⊥平面 PAB. (2)解:在平面 ABCD 内,过点 A 作 AB 的垂线,如图所示,以 A 为原点建立空间直角
【解答】(1)证明:连接 DG、FG, 由直三棱柱的性质知,BB1∥CC1,且 BB1=CC1, ∵B1E=2EB,C1F=2FC, ∴EB∥FC,且 EB=FC, ∴四边形 BCFE 为平行四边形, ∴EF∥BC,EF=BC, ∵BD=2DA,CG=2GA, ∴GD∥BC,且 GD BC, ∴EF∥GD,且 GD EF, ∴四边形 DEFG 为梯形,即 D、E、F、G 四点共面, ∴点 G 在平面 EFD 内. (2)解:由直三棱柱的性质知,CC1⊥平面 ABC, ∵F 为 CC1 上一点, ∴点 F 在平面 ABC 上的投影为点 C, 连接 CD,则∠FDC 即为直线 DF 与平面 ABC 所成角. ∵点 D 在棱 AB 上,且 BD=2DA, ∴AD AB , ∵C1F=2FC,

高考数学(文)《立体几何》专题复习

高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解

《立体几何初步》复习

《立体几何初步》复习
12345
4.(2019·全国Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形, 平面ECD⊥平面ABCD,M是线段ED的中点,则 A.BM=EN,且直线BM,EN是相交直线
√B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线
5 5.

AO
与平面
ABCD
所成角的正切值为
5 5.
(3)平面AOB与平面AOC所成角的大小.
解 由(1)可知OC⊥平面AOB. 又∵OC⊂平面AOC,∴平面AOB⊥平面AOC. 即平面AOB与平面AOC所成的角为90°.
反思 感悟
(1)求异面直线所成的角常用平移转化法(转化为相交直线的 夹角). (2)求直线与平面所成的角常用射影转化法(即作垂线、找射影). (3)二面角的平面角的作法常有三种:①定义法;②三垂线法; ③垂面法.
(2)BE∥平面PAD;
证明 因为AB∥CD,CD=2AB,E为CD的中点, 所以AB∥DE,且AB=DE. 所以四边形ABED为平行四边形,所以BE∥AD. 又因为BE⊄平面PAD,AD⊂平面PAD, 所以BE∥平面PAD.
(3)平面BEF⊥平面PCD.
证明 因为AB⊥AD,且四边形ABED为平行四边形, 所以BE⊥CD,AD⊥CD. 由(1)知PA⊥底面ABCD,所以AP⊥CD. 又因为AP∩AD=A,AP,AD⊂平面PAD, 所以CD⊥平面PAD,所以CD⊥PD. 因为E和F分别是CD和PC的中点, 所以PD∥EF,所以CD⊥EF. 又因为CD⊥BE,EF∩BE=E,EF,BE⊂平面BEF, 所以CD⊥平面BEF.又CD⊂平面PCD, 所以平面BEF⊥平面PCD.

2023届高考数学总复习:立体几何复习题附答案

2023届高考数学总复习:立体几何复习题附答案

a,
在 Rt△FCM 中,tan∠FCM .

∴sin∠FCM ,
故直线 CF 与平面 ACDE 所成角的正弦值为 . 2.如图,在三棱柱 ABC﹣A1B1C1 中,BC⊥平面 AA1C1C,D 是 AA1 的中点,△ACD 是边长
为 1 的等边三角形. (1)证明:CD⊥B1D; (2)若 BC ,求二面角 B﹣C1D﹣B1 的大小.
,令
由(1)知,平面 B1C1D 的一个法向量为
,得
,, ,
, ,,
故 th< , >

所以二面角 B﹣C1D﹣B1 的大小为 30°.
第3页共3页
在直角梯形 AEFB 中,有 AF EF,BF

∴AF2+BF2=AB2,即 AF⊥BF.
∵BC∩BF=B,BC、BF⊂平面 BCF,
∴AF⊥平面 BCF.
EF,AB=2EF,
(2)解:∵AE⊥平面 ABC,AE⊂平面 ACDE,∴平面 ACDE⊥平面 ABC,
又平面 ABC∥平面 DEF,∴平面 ACDE⊥平面 DEF.
【解答】解:(1)证明:因为△ACD 是边长为 1 的等边三角形,所以∠ADC=60°,∠ DA1C1=120° 因为 D 是 AA1 的中点,所以 AD=A1D=A1C1=1,即△A1C1D 是等腰三角形, 则∠A1DC1=30°,故∠CDC1=90°,即 CD⊥C1D, 因为 BC⊥平面 AA1C1C,BC∥B1C1,所以 B1C1⊥平面 AA1C1C, 因为 CD⊂平面 AA1C1C,所以 B1C1⊥CD, 因为 B1C1∩C1D=C1,B1C1⊂平面 B1C1D,C1D⊂平面 B1C1D,所以 CD⊥平面 B1C1D, 因为 B1D⊂平面 B1C1D,所以 CD⊥B1D;

2023届高考数学总复习:立体几何附答案

2023届高考数学总复习:立体几何附答案

设平面 PCD 的一个法向量为 (x1,y1,z1),

t
t, (0,1,1),
平面 ECD 的一个法向量为 (x2,y2,z2),
t 所以 th
t, (0,1,2), tt,
t 即二面角 P﹣DC﹣E 的余弦值为 .
t
第3页共3页
以 F 为坐标原点, , , ‐的方向为 x,y,z 轴的正方向建立空间直角坐标系,
t, t, , t,

t, , tt,
,t,tt,
t, , t,
设平面 AEF 的法向量为
,,t

t,
t

t ,∴ t
t, , t,




∴直线 B1F⊥平面 AEF.
(Ⅱ)
, , t,
【解答】(Ⅰ)证明:因为 PA=AB,E 为 PB 中点,所以 AE⊥PB,
因为 PA⊥平面 ABCD,所以 PA⊥BC,
由 BC⊥AB,所以 BC⊥平面 PAB,所以 BC⊥AE,又 AE⊥PB,BC∩PB=B,
所以 AE⊥平面 PBC,
平面 AEF⊥平面 PBC.
(Ⅱ)解:法 1:取 PA 中点 G,连结 GE,GD,由 GE∥AB,CD∥AB,
t,t, t,
设平面 B1AE 的法向量为
,,t

t ,∴
t
t
t, t
不妨取 y2=3 ,则 x2=﹣5,z2=﹣4 .

⺁, , t t,
第1页共3页
平面 AEF 的法向量为
t, , t,
设二面角 B1﹣AE﹣F 的平面角为θ,
∴ th
t⺁.
2.如图,在四棱锥 P﹣ABCD 中,底面 ABCD 为正方形,PA⊥底面 ABCD,PA=AB,E 为 PB 的中点,F 为线段 BC 上的动点. (Ⅰ)求证:平面 AEF⊥平面 PBC; (Ⅱ)求二面角 P﹣DC﹣E 的余弦值.

立体几何专题复习(自己精心整理)

立体几何专题复习(自己精心整理)

专题一证明平行垂直问题题型一证明平行关系(1)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD。

(2)在正方体AC1中,M,N,E,F分别是A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.思考题1(1)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点,求证:平面EFG∥平面PBC.(2)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.求证:PQ∥平面BCD。

题型二证明垂直关系(微专题)微专题1:证明线线垂直(1)已知空间四边形OABC中,M为BC中点,N为AC中点,P为OA中点,Q为OB中点,若AB=OC。

求证:PM⊥QN.(2)(2019·山西太原检测)如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点,求证:DF⊥AE。

微专题2:证明线面垂直(3)在正方体ABCD-A1B1C1D1中,求证:BD1⊥平面ACB1.(4)(2019·河南六市一模)在如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.若AA1=AC,求证:AC1⊥平面A1B1CD。

微专题3:证明面面垂直(5)已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证:平面DEA⊥平面A1FD1.(6)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=错误!PD,求证:平面PQC⊥平面DCQ。

思考题2(1)(2019·北京东城区模拟)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥BP交BP于点F,求证:PB⊥平面EFD。

中职数学《立体几何》总复习专项测试题

中职数学《立体几何》总复习专项测试题

第九章立体几何总复习专项测试题一、判断题(立体几何基本概念)1、在一个平面内有三条直线和另一个平面平行,那么这两个平面平行…………(A B)2、分别在两个平行的平面内的两条直线一定平行…………………………………(A B)3、不存在与两条异面直线都相交的两条直线………………………………………(A B)4、平面就是平行四边形………………………………………………………………(A B)5、过直线外一点可以作无数条直线与这条直线平行………………………………(A B)6、空间内不相交的两条直线是异面直线……………………………………………(A B)7、在空间中,互相垂直的两条直线一定是相交直线………………………………(A B)8、过空间一点与已知直线垂直的直线有且只有一条………………………………(A B)9、空间内垂直同一条直线的两条直线一定平行……………………………………(A B)10、求两条异面直线所成的角的大小与在空间内选取的点的位置有关……………(A B)11、与两条异面直线都分别相交的两条直线一定是异面直线………………………(A B)12、平行于同一条直线的两条直线必平行……………………………………………(A B)13、平行于同一个平面的两条直线必平行……………………………………………(A B)14、垂直于同一条直线的两条直线必平行……………………………………………(A B)15、垂直于同一个平面的两条直线平行………………………………………………(A B)16、平行于同一个平面的两平面必平…………………………………………………(A B)17、垂直于同一个平面的两平面平行…………………………………………………(A B)18、如果一个平面内的两条直线和另一个平面平行,那么这两个平面平行…………(A B)二、填空题(柱、锥、球)①棱柱:侧面积:_________________;全面积:________________;体积:______________ .②棱锥:侧面积:_________________;全面积:________________;体积:______________ .③圆柱:侧面积:_________________;全面积:________________;体积:______________ .④圆锥:侧面积:_________________;全面积:________________;体积:______________ .⑤球:表面积:_____________________________;体积:__________________________ .1、正四棱柱的底面边长为3cm,高为4cm,则它的侧面积为_____;全面积_____;体积_____ .2、一个四棱锥的底面是长为4cm宽为3cm的矩形,侧棱长都为5cm,则它的体积为_______ .3、已知圆柱OO′的母线l = 4cm,表面积为42πcm2,则圆柱OO′的底面半径r=________cm .4、圆锥的母线长为10,高为8,则它的表面积为____________;体积为______________ .5、一个平面截球,得到的截面面积为36π,且球心到截面的距离为8,则该球的体积为_____ .再试牛刀:1、如果直线21//l l ,2l //平面α,那么1l _________平面α.2、设直线a 与b 是异面直线,直线c //a ,则b 与c 的位置关系是_____________.3、正四棱锥底面边长为a ,侧面积是底面积的2倍,则它的体积是____________ .4、圆柱的底面半径为2cm ,高为5cm,则这个圆柱的体积为___________cm 3 .5、圆锥的母线长12cm ,母线和轴的夹角30°,则圆锥的侧面积为______;全面积为:_______ .三、选择题(确定了答案再选)1、设P 为平面α外一点,则下述结论中,正确的是( ).A.过点P 可作无数条直线与α垂直B.过点P 只能作一条直线与α成60°的角C.过点P 只有一条直线与α平行D.过点P 有无数条直线与α平行2、两两相交的四条直线所确定平面的个数最多的是( ).A.4个B.5个C.6个D.8个3、如图,在直二面角α—PQ —β中,直角△ACB 在α内,斜边AB 在棱PQ 上,若AC 与平面α内,斜边AB 在棱PQ 上,若AC 与平面β成30°的角,则BC 与β所成的角为( ).A.60°B.45°C.30°D.90°4、若△ABC 在平面α内,P 是平面α外一点,则图中异面直线的对数是( ).A 、2对 B.3对 C.4对 D.5对5、如果直线l 和直线m 没有公共点,那么这两条直线的位置关系是( ).A.共面B.平行C.异面直线D.可能是平行直线,也可能是异面直线6、若点E 、F 、G 、H 分别是空间四边形ABCD 四边中点,EH 和FG 的位置关系是( ).A.异面直线B.平行直线C.相交直线D.相交直线或异面直线7、已知a 、b 是异面直线,c ∥b ,那么a 与c ( ).A 一定是平行直线B 一定是相交直线C 一定是异面直线D 不可能是平行直线8、分别在两个相交平面内的两条直线的位置关系是( ).A.异面直线B.平行直线C.相交直线D.以上三种情况均有可能9、直线a 与直线b 、c 所成的角都相等,则b 、c 的位置关系是( ).A.异面直线B.平行C.相交D.以上三种情况均有可能10、如果a 、b 是异面直线,那么与a 、b 都平行的平面有( ).A.有且只有一个B.有两个C.有无数个D.不一定存在11、下列结论中,错误的是( ).A.在空间内,与定点的距离等于定长的点的集合是球面B.球面上的三个不同的点,不可能在一条直线上C.过球面上的两个不同的点只能做一个大圆D.球的体积是这个球的表面积与球半径的31 12.设直线m //平面α,直线n 在α内,则( ).A.m //nB.m 与n 相交C.m 与n 异面D.m 与n 平行或异面四、简答题1、(直线与直线的位置关系)已知空间四边形OABC的边长和对角线长都为1,D、E分别为OA、BC的中点,连结DE .(1)求证:DE是异面直线OA和BC的公垂线;(2)求异面直线OA和BC的距离;(3)求点O到平面ABC的距离.2、(直线与平面的位置关系)已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD;(2)求证:MN⊥CD;(3)若∠PDA=45º,求证:MN⊥平面PCD.3、(平面与平面的位置关系)已知二面角α- -β的平面角是锐角θ,若点C∈α,C到β的距离为3,C到棱AB的距离为4,试求sin2θ的值.∆中,AB=AC=2,且∠A=90º(如图(1)所示),以BC边上的高AD为折4、(翻折问题)已知ABC痕使∠BDC=90º.(如图(2)所示)①求∠BAC;②求点C到平面ABD的距离;③求平面ABD与平面ABC所成的二面角的正切值.高考仿真:1、如图,平面α∩β=CD,EA⊥α,EB⊥β,且A∈α,B∈β.求证:(1)CD⊥平面EAB;(2)CD⊥直线AB.2、已知正方体ABCD-A1B1C1D1.(1)求直线DA1与AC1的夹角;(2)求证:AC1⊥平面A1BD.3、已知:在60º二面角的棱上,有两个点A、B,AC、BD分别在这个二面角的两个面内,且垂直于线段AB,且AB=4cm,AC=6cm,BD=8cm,求CD的长.4、已知等腰梯形ABCD,AB∥CD,上底=4,下底=6,高=3,沿它的对角线AC折成60º的二面角,求B、D两点之间的距离.。

2023年高考数学总复习:立体几何及答案解析

2023年高考数学总复习:立体几何及答案解析

又∵已知 E 为 PB 的中点,∴OE∥PD.
∵PD⊄平面 AEC,OE⊂平面 AEC,
∴PD∥平面 AEC.
解:(2)∵
⺁,
⺁ ,∴
⺁ ⺁.
又∵PD⊥底面 ABCD,∴ 三棱锥 െ
∵E 是 PB 的中点,∴ 三棱锥 െ
⺁ 三棱锥 െ
⺁ ⺁⺁ ⺁ ⺁
⺁.
⺁ 三棱锥 െ
⺁ ⺁.
2.如图,在四棱锥 P﹣ABCD 中,PA⊥平面 ABC,AD∥BC,∠ABC=90°,AD=2, ⺁ , BC=6. (1)求证:平面 PBD⊥平面 PAC; (2)PA 长为何值时,直线 PC 与平面 PBD 所成角最大?并求此时该角的正弦值.
第1页共3页
【解答】(1)证明:∵PA⊥平面 ABCD,BD⊂平面 ABCD,∴BD⊥PA,
又 ㋨๗
, ㋨๗

∴∠ABD=30°,∠BAC=60°,∴∠AEB=90°,即 BD⊥AC(E 为 AC 与 BD 交点).
又 PA∩AC,∴BD⊥平面 PAC
又因为 BD⊂平面 PBD,所以平面 PBD⊥平面 PAC.
则๗ ๗
,即 െ ⺁ ㌳ ⺁ െ⺁ ㌳ ൅
,取 x=1,
⺁ 得平面 PBD 的一个法向量为๗ (1, , ),
所以 cos< ,๗>



쳌㌳ ⺁

⺁ ⺁
㌳ ⺁㌳ ⺁
因为 ㌳ ⺁ ㌳ ⺁
㌳⺁ ⺁ ⺁
,当且仅当 t=2 时等号成立,
所以 cos< ,๗>
,记直线 PC 与平面 PBD 所成角为θ,
则 sinθ=|cos< ,๗>|,故 t๗ ,
即 ⺁ 时,直线 PC 与平面 PBD 所成角最大,此时该角的正弦值为 .

2024年高考数学立体几何复习试卷及答案解析

2024年高考数学立体几何复习试卷及答案解析

2024年高考数学立体几何复习试卷及答案
一、选择题
1.已知直线l和平面α,若l∥α,P∈α,则过点P且平行于l的直线()
A.只有一条,不在平面α内
B.只有一条,且在平面α内
C.有无数条,一定在平面α内
D.有无数条,不一定在平面α内
答案B
解析假设过点P且平行于l的直线有两条m与n,则m∥l且n∥l,由平行公理得m∥n,这与两条直线m与n相交与点P相矛盾,故过点P且平行于l的直线只有一条,又因为点P 在平面内,所以过点P且平行于l的直线只有一条且在平面内.故选B.
2.设m,n为两条不同的直线,α为平面,则下列结论正确的是()
A.m⊥n,m∥α⇒n⊥αB.m⊥n,m⊥α⇒n∥α
C.m∥n,m⊥α⇒n⊥αD.m∥n,m∥α⇒n∥α
答案C
解析对于A,若m⊥n,m∥α时,可能n⊂α或斜交,故错误;
对于B,m⊥n,m⊥α⇒n∥α或n⊂α,故错误;
对于C,m∥n,m⊥α⇒n⊥α,正确;
对于D,m∥n,m∥α⇒n∥α或n⊂α,故错误.
故选C.
3.已知l⊥平面α,直线m⊂平面β.有下面四个命题:
①α∥β⇒l⊥m;②α⊥β⇒l∥m;
③l∥m⇒α⊥β;④l⊥m⇒α∥β.
其中正确的命题是()
A.①②B.③④
C.②④D.①③
答案D
解析∵l⊥α,α∥β,∴l⊥β,∵m⊂β,∴l⊥m,故①正确;∵l∥m,l⊥α,∴m⊥α,又∵m⊂β,∴α⊥β,故③正确.
4.如图所示,在四面体D-ABC中,若AB=BC,AD=CD,E是AC的中点,则下列命题中正确的是()
第1页共11页。

立体几何知识点归纳(复习资料)

立体几何知识点归纳(复习资料)

立体几何知识点归纳(复习资料)高考总复习主干知识三:立体几何主干知识三:立体几何知识点归纳一.直线和平面的三种位置关系:1. 线面平行l方法一:用线线平行实现。

l//m??m????l//? l????方法二:用面面平行实现。

α符号表示:αlAβl2. 线面相交?//????l//? l???方法三:用平面法向量实现。

符号表示:若n为平面?的一个法向量,n?l且lαnl3. 线在面内ααl??,则l//?。

符号表示:3. 面面平行:方法一:用线线平行实现。

二.平行关系: 1. 线线平行:方法一:用线面平行实现。

l?l//l’??l????l//m ????m?? l//???m//m’????//?l,m??且相交?αl’,m’??且相交?? 方法二:用线面平行实现。

βl’m’ml?ml//?方法二:用面面平行实现。

lβγαm?//???????l??l//m ????m??? ?m//???/ /??l,m??且相交?? 方法三:用向量方法:两个平面的法向量共线三.垂直关系: 1. 线面垂直:方法一:用线线垂直实现。

βml α方法三:用线面垂直实现。

若l??,m??,则l//m。

方法四:用向量方法:若向量l和向量m共线且l、m不重合,则l//m。

2. 线面平行: 1 / 8 l?AC?l?AB??lAC?AB?A??l?? ?CAC,AB? ???αAB方法二:用面面垂直实现。

????βl????m???l?? l?m,l???m?α方法三:用向量方法:直线与平面的法向量共线 2. 面面垂直:方法一:用线面垂直实现。

l???βll???????? α方法二:计算所成二面角为直角。

方法三:用向量方法:两平面的法向量垂直 3. 线线垂直:方法一:用线面垂直实现。

ll???m?????l?m mα 方法二:三垂线定理及其逆定理。

PO???Pl?OA???l?PA l????αAlO方法三:用向量方法:若向量l和向量m 的数量积为0,则l?m。

立体几何复习(知识点+经典习题)

立体几何复习(知识点+经典习题)

立体几何复习(知识点+经典习题)1.给出以下命题:1) 若平面α内的两条相交直线分别平行于平面β内的两条直线,则平面α平行于平面β;2) 若平面α外一条直线l与平面α内的一条直线平行,则直线l和平面α平行;3) 设平面α和平面β相交于直线l,若平面α内有一条直线垂直于l,则平面α和平面β垂直;4) 直线l与平面α垂直的充分必要条件是直线l与平面α内的两条直线垂直。

写出所有真命题的序号。

2.在空间中,以下命题正确的是:A) 平行直线的平行投影重合;B) 平行于同一直线的两个平面平行;C) 垂直于同一平面的两个平面平行;D) 垂直于同一平面的两条直线平行。

考点为二三视图与直观图及面积与体积。

基础训练】1.如图,E和F分别为正方体的面ADD1A1和面BCC1B1的中心,则四边形BFD1E在该正方体的面上的投影可能是什么形状。

2.如果一个水平放置的图形的斜二测直观图是一个底角为45度,腰和上底均为1的等腰梯形,则原图形的面积是多少?3.在三角形ABC中,AB=2,BC=1.5,∠ABC=120度。

若使其绕直线BC旋转一周,则它形成的几何体的体积是多少?4.已知一个长方体共一顶点的三个面的面积分别是2,3,6,则这个长方体的对角线长是多少?若长方体共顶点的三个侧面面积分别为3,5,15,则它的体积是多少?5.正方体的内切球和外接球的半径之比为多少?6.一个正方体的顶点都在球面上,它的棱长为2,则球的表面积是多少?7.若三个球的表面积之比是1:2:3,则它们的体积之比是多少?8.长方体的一个顶点上三条棱长分别为3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是多少?9.半径为R的半圆卷成一个圆锥,则它的体积为多少?高考链接】1.一个棱锥的三视图如图,则该棱锥的全面积为多少?2.设某几何体的三视图如下,则该几何体的体积为多少?1.在三棱锥ABCDE中,AB=AC=AD=2,BC=3,CD=4,BE=5,CE=6,DE=7,求∠AED的大小。

2024年高考数学总复习:立体几何附答案

2024年高考数学总复习:立体几何附答案
2024 年高考:立体几何例题及答案
1.如图,矩形 ABCD 中,AB=6, 平面 A'CD⊥平面 BCD. (1)求证:直线 A'D⊥平面 A'BC;
,沿对角线 BD 将△ABD 向上折起至 A',使得
(2)求直线 CD 与平面 A'BD 所成角的正弦值.
【解答】(1)证明:因为 ABCD 为矩形,所以 A'D⊥A'B,BC⊥CD,
又平面 A'CD⊥平面 BCD,平面 A'CD∩平面 BCD=CD,
所以 BC⊥平面 A'CD,且 A'D⊂平面 A'CD,
则 A'D⊥BC,又 BC∩A'B',
故 A'D⊥平面 A'BC;
(2)解:法一:几何法
过 C 作 CF⊥A'B 交 A'B 于 F,连接 DF,
由(1)知 A'D⊥平面 A'BC,且 CF⊂平面 A'BC,
在 Rt△A'CD 中,|A'E|×|CD|=|A'D|×|A'C|,
即ⵈ
ⵈ⃈ ⵈ ⃈

以点 C 为原点,建立如图所示的空间直角坐标系.
则 C(0,0,0), 宋体, ,体 ,D(6,0,0),ⵈ 宋t,体, ,
所以 ⃈ 宋 ,体,体 , ⃈ 宋 ,
,体 ,ⵈ ⃈ 宋 ,体,

令h 宋h, , 为平面 A'BD 的一个法向量,则 h ⵈ ⃈ h
体,
h⃈ h

取 x=1 得

即h 宋 , , ,
记 CD 与平面 A'BD 所成的角为θ,则 th
݊ < ⃈,h>

立体图形的认识(总复习知识点)

立体图形的认识(总复习知识点)

立体图形的认识(总复习知识点)一.我们已经学过哪些立体图形?出示立体几何图形。

二、分类长方体正方体:它们的每个面都是平面;①立体图形圆柱圆锥:它们都有一个面是曲面。

或者长方体正方体圆柱:它们的高都有无数条②立体图形圆锥:它只有一条高三.研究立体图形可以从以下方面考虑:①图形的特征:点、线、面②展开图③从线想起④图形的运动:平移、旋转四.已学过的立体图形它们有什么特点?(一)长方体和正方体的特征。

1.长方体和正方体的特征,它们之间有什么区别和联系?2、圆柱和圆锥的基本特征3. 公式。

相交于同一顶点的三条棱的长度分别叫长方体的长、宽、高,12条棱分成长、宽、高3组,每组4条,如果用a、b、h分别表示长方体的长、宽、高,那么长方体的棱长总=4(a+b+h);正方体是长、宽、高都相等的特殊的长方体,如果用a表示正方体的边长,那么正方体的棱长总和=12a。

五、立体图形的展开图1. 正方体的平面展开图的形式正方体的展开(1)“141型”,中间一行4个图:作侧面,上下两个各作为上下底面,•共有6种基本图形。

(2)“231型”,中间3个作侧面,共3种基本图形。

见上图(3)“222”型,两行只能有1个正方形相连。

(4)“33”型,两行只能有1个正方形相连。

巧记正方体展开图的儿歌。

中间4个一连串,两边各一随便放,二三紧连错一个,三一相连一随便。

两两相连各错一,三个两排一对齐。

要找两个相对面,切记相隔一个面。

2. 长方体平面展开图的特点:3.圆柱和圆锥的展开图。

A. 圆柱(1)圆柱有3个面,上、下两个底面是大小相同的圆,侧面是个曲面。

(2)圆柱两个底面之间的距离叫做圆柱的高。

它有无数条高。

(3)圆柱沿侧面上的高展开后是长方形或正方形(底面周长和高相等)。

(4)以长方形或正方形的一条边为轴旋转一周形成圆柱,该边就是圆柱的半径。

(5)从上、下看是个圆,从侧面看是个长方形或正方形(底面直径和高相等)。

B. 圆锥(1)圆锥有2个面,它的底面是圆,侧面是曲面。

高三《立体几何》专题复习

高三《立体几何》专题复习

高三《立体几何》专题复习一、常用知识点回顾1、三视图。

正侧一样高,正俯一样长,侧府一样宽,看不到的线画虚线。

2、常用公式与结论。

(1)圆柱、圆锥、圆台的侧面展开图及侧面积公式;(2)空间几何体的表面积与体积公式;(3)全品高考复习方案(听课手册)105页的常用结论3、两条异面直线所成的角;直线与平面所成的角。

4、证明两条直线平行的常用方法;直线与平面平行的判定与性质;面面平行的判定与性质。

5、证明两条直线垂直的常用方法;直线与平面垂直的判定与性质;两个平面垂直的判定与性质。

二、题型训练题型一:三视图的运用,求几何体的体积、表面积例1、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()(A)18+(B)54+(C)90(D)81【练习1】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()C.3D.2【练习2】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π【练习3】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π(B )24π(C )28π(D )32π例2、在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )(A )4π (B )9π2 (C )6π (D )32π3变式1:在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=5,则V的最大值是变式2:在封闭的长方体ABCD-A1B1C1D1内有一个体积为V的球.若AB=BC=6,AA1=3,则V的最大值是变式3:(1)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为(2)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为变式4:【练习1】已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A. B.12π C. D.10π【练习3】已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°,若SAB的面积为8,则该圆锥的体积为_______题型二:平行问题例1、如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明MN∥平面PAB; (II)求四面体N-BCM的体积.【练习1】如图,四棱锥P-ABCD中,侧面PADAD,为等边三角形且垂直于底面ABCD,AB=BC=12∠BAD=∠ABC=90°。

高考数学总复习《立体几何》部分试题及答案

高考数学总复习《立体几何》部分试题及答案

高考数学总复习试卷立体几何综合训练第 I 卷(选择题共60分)一、选择题(本大题共 12 个小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.以下命题正确的选项是()A .直线 a, b 与直线 l 所成角相等,则a//bB.直线 a,b 与平面α成相等角,则a//bC.平面α,β与平面γ所成角均为直二面角,则α// βD.直线 a, b 在平面α外,且a⊥α, a⊥b,则 b//α2.空间四边形ABCD , M , N 分别是 AB 、 CD 的中点,且AC=4 , BD=6 ,则()A . 1<MN<5B . 2<MN<10C. 1≤ MN ≤ 5 D . 2<MN<53.已知 AO 为平面α的一条斜线,O 为斜足, OB 为 OA 在α内的射影,直线OC 在平面α内,且∠AOB=∠ BOC=45 °,则∠ AOC 等于()A . 30°B. 45°C.60°D.不确立4.甲烷分子构造是:中心一个碳原子,外头四个氢原子组成四周体,中心碳原子与四个氢原子等距离,且连成四线段,两两所成角为θ,则cosθ值为()A .1B.111 33C.D.225.对已知直线 a,有直线 b 同时知足下边三个条件:①与 a 异面;②与 a 成定角;③与 a 距离为定值 d,则这样的直线 b 有()A.1 条B.2 条C.4条D.无数条6.α,β是不重合两平面,l, m 是两条不重合直线,α//β的一个充足不用要条件是()A .l, m,且 l// β, m// βB .l,m,且 l//mC. l ⊥α, m⊥β,且 l//m D .l// α, m//β,且 l//m7.如图正方体ABCD A B C D中, E, F 分别为 AB ,CC的中点,则异面直线A C 与EF所成角的余111111弦值为()A .3B.2C.1D .133368.关于任一个长方体,都必定存在一点:①这点到长方体的各极点距离相等;②这点到长方体的各条棱距离相等;③这点到长方体的各面距离相等,以上三个结论中正确的选项是()A .①②B.①C.②D.①③9.在斜棱柱的侧面中,矩形最多有几个?A.2B.3C.4D.610.正六棱柱的底面边长为2,最长的一条对角线长为 2 5 ,则它的侧面积为()A.24B.12C.242D.12211.异面直线a,b 成 80°角, P 为 a,b 外的一个定点,若过P 有且仅有 2 条直线与a, b 所成的角相等且等于α,则角α属于会合()A . { α|0° <α <40° }B. { α |40° <α <50 ° }C. { α |40° <α <90° } D . { α |50°<α <90 ° }12.从水平搁置的球体容器的顶部的一个孔向球内以同样的速度灌水,容器中水面的高度与灌水时间t 之间的关系用图象表示应为()第 II 卷(非选择题共90分)二、填空题(本大题共 4 个小题,每题 4 分,共 16 分,把答案填在题中横线上)13.正四棱锥S-ABCD 侧棱长与底面边长相等, E 为 SC 中点,BE 与 SA 所成角的余弦值为_____________ 。

高中数学 立体几何专题复习

高中数学  立体几何专题复习

图2侧视图俯视图正视图4x33x4DCBA侧视图正视图立体几何专题(一)一、三视图考点透视:①能想象空间几何体的三视图,并判断(选择题) ②通过三视图计算空间几何体的体积或表面积③解答题中也可能以三视图为载体考查证明题和计算题④旋转体(圆柱、圆锥、圆台或其组合体)的三视图有两个视图一样。

⑤基本几何体的画法,如:三棱柱(侧视图)、挡住的注意画虚线。

1. 一空间几何体的三视图如图2所示, 该几何体的 体积为85123π+,则正视图中x 的值为 A. 5 B . 4 C. 3 D . 22. 一个正方体截去两个角后所得几何体的正视图(又称主视图)、 侧视图(又称左视图)如右图所示,则其俯视图为c3.如图4,已知一个锥体的正视图(也称主视图),左视图(也称侧视图)和俯视图均为直角三角形, 且面积分别为3,4,6,则该锥体的体积是 4 .4. 如图1-3,某几何体的正视图(主视图)是平行四边形, 侧视图(左视图)和俯视图都是矩形,则该几何体的体积 为A .63B .93C .123D .1835、已知某几何体的直观图(图1)与它的三视图(图2), 其中俯视图为正三角形,其它两个视图是矩形.已知D 是正视图 左视图俯视图图4_3 _3 这个几何体的棱11C A 上的中点。

(Ⅰ)求出该几何体的体积;(Ⅱ)求证:直线11//BC AB D 平面; (Ⅲ)求证:直线11B D AA D ⊥平面.二、直观图掌握直观图的斜二测画法:①平行于两坐标轴的平行关系保持不变;②平行于y 轴的长度为原来的一半,x 轴不变;③新坐标轴夹角为45°。

6、如图,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图(斜二测),若A 1D 1∥O 1y 1,A 1B 1∥C 1D 1,A 1B 1=2,C 1D 1=3,A 1D 1=1,则梯形ABCD 的面积是( ) A .10 B .5 C .5 2D .102三、表面积和体积不要求记忆,但要会使用公式。

高考立体几何知识点详细复习总结

高考立体几何知识点详细复习总结

立体几何知识点一、立体几何网络图:(1)线线平行的判断:⑴平行于同一直线的两直线平行。

⑶如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

⑹如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

⑿垂直于同一平面的两直线平行。

(2)线线垂直的判断:⑺在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

⑻在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。

⑽若一直线垂直于一平面,这条直线垂直于平面内所有直线。

补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

(3)线面平行的判断:⑵如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

⑸两个平面平行,其中一个平面内的直线必平行于另一个平面。

(4)线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。

⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

(5)面面平行的判断:⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。

⒀垂直于同一条直线的两个平面平行。

(6)面面垂直的判断: ⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。

二、其他定理:(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线; (2)直线与直线的位置关系: 相交 ; 平行 ; 异面 ;直线与平面的位置关系: 在平面内 ; 平行 ; 相交(垂直是它的特殊情况) ; 平面与平面的位置关系: 相交 ;; 平行 ;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。

高三立体几何专题复习

高三立体几何专题复习

高考立体几何专题复习一.考试要求:〔1〕掌握平面的根本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。

〔2〕了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念〔对于异面直线的距离,只要求会计算已给出公垂线时的距离〕。

〔3〕了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。

〔4〕了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。

掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。

〔5〕会用反证法证明简单的问题。

〔6〕了解多面体的概念,了解凸多面体的概念。

〔7〕了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。

〔8〕了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。

〔9〕了解正多面体的概念,了解多面体的欧拉公式。

〔10〕了解球的概念,掌握球的性质,掌握球的外表积、体积公式。

二.复习目标:1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的根底上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的根底上,掌握它们的求法(其根本方法是分别作出这些角,并将它们置于*个三角形通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步稳固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握根本的立体几何解题方法和常用解题技巧,开掘不同问题之间的在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和"说话要有根据〞的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.三.教学过程:〔Ⅰ〕根底知识详析高考立体几何试题一般共有4道(选择、填空题1--2道, 解答题1道), 共计总分20分左右,考察的知识点在20个以. 选择填空题考核立几中的计算型问题, 而解答题着重考察立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着"多一点思考,少一点计算〞的开展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探常考常新的热门话题.1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的容,因此在主体几何的总复习中,首先应从解决"平行与垂直〞的有关问题着手,通过较为根本问题,熟悉公理、定理的容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.2.判定两个平面平行的方法:〔1〕根据定义——证明两平面没有公共点;〔2〕判定定理——证明一个平面的两条相交直线都平行于另一个平面;〔3〕证明两平面同垂直于一条直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四种运算:
1.加法运算: (1)三角形法则:
b
a
a b
首尾相接
(2)平行四边形法则:
a ab
起点相同
b
注意:两向量共线时,平行四边形法则不适用.
(3) 向量加法满足的运算律: ①交换律 ②结合律
坐标运算
设:a (x1, y1),b (x2, y2) 则 a b ( x1 x2 , y1 y2 )
空间 向量 的坐 标运

夹角和距离 平行和垂直
一、基本概念
1、空间直角坐标系
以单位正方体 OABC DABC z
的顶点O为原点,分别以射线
D'
OA,OC,OD 的方向 为正方
A'
向,以线段OA,OC,OD 的
O
长为单位长,建立三条数轴:
x轴,y轴,z轴,这时我们建立了一 x A
个空间直角坐标系 O xyz
设P x, y, P1 x1, y1 , P2 x2, y2 , 且P1P PP2,则
x
y
x1 x2 1
y1 y2
1
中 点 坐
x
x1
x2 2

公 式
y
y1
y2
2
空间向量
空间 向量
空间 向量 的运

知识结构
加减 和数 乘运

共线 向量 共面 向量
空间 向量 基本 定理
空间 向量 的数 量积
C' B'
Cy BΒιβλιοθήκη O为坐标原点, x轴,y轴,z轴叫坐标轴,通过每两个坐 标轴的平面叫坐标平面
空间直角坐标系 —Oxyz
z
竖轴
1
纵轴
o
1
1
y
x
右手直角坐标系
横轴
2、空间直角坐标系中点的坐标
有序实数组(x,y,z)叫做点M在此空间 直角坐标系中的坐标,记作M(x,y,z) 其中x叫做点M的横坐标,y叫做点M的 纵坐标, z叫做点M的竖坐标
2.减法运算:
(1)定义: a b a ( b)
(2)三角形法则:
a a b
b
相同起点
坐标运算
设:a (x1, y1),b (x2, y2)

rr ab
( x1
x2 , y1
y2 )
3.实数与向量的积
(1)定义: (1) a a
(2)当 0 时, a 的方向与 a 的方向相同;
设a ( x, y),则| a | x2 y2
6.向量的夹角: 向量夹角的范围[0,π]
定义:已知两个非零向量 a 和 b ,作OA a,OB b,
则 AOB (00 1800 ) 叫做向量 a 与 b 的
夹角.
rr 7. b在a方向上的投影
cos a b
|ab|
| b | cos叫做b在a方向上的投影
1、假设平面法向量的坐标为n=(x,y,z).
n
2、根据n·a = 0且n·b = 0可列出方程组
x1x x2 x
y1 y2
y y
z1z z2 z
0 0
ab
3、取某一个变量为常数(当然取得越简单越好), 便得到平面法向量n的坐标.
例、已知A(2,1,1),B(-2,7,0),C(6,4,-1).求平
五个结论:
1.平面向量基本定理
若 e1, e2 是平面上两个不共线向量,则此平面上的
任意一个向量 a均可表示为下列形式:a 1e1 2 e2
2、向量共线定理:
① a // b a b
② 设a x1, y1,b x2, y2 ,则 a // b x1y2 x2 y1 0
3.向量垂直定理: ① a b ab 0
面ABC的法向量
r 解:平面ABC的法向量为: n (x, y, z)
uuur
uuur
AB (4, 6, 1), AC (4,3, 2)
4x 6y z 0 4x 3y 2z 0

z 4x
z
3
y
r
令z 12 得 n (3, 4,12)
r 平面ABC的法向量 n (3, 4,12)
向量方法部分
平面向量复习 空间向量 基本概念 基本公式 基本应用 基本方法 典型例题
平面向量复习
一.基本知识
一组概念:
1.定义:既有大小又有方向的量. 注:向量可以平行移动,与起点位置无关
2.两个特殊向量: 零向量与单位向量 3.两个向量之间的关系: (1)平行向量(也称共线向量):方向相同或相反的二个向量
4、平面向量的数量积
平面向量 数量积
定义:
a
b
a
b
cos
(为a与b的夹角) 几何意义:a与b在a方向上投影的乘积
运算律: 分配律、1交.换a律、b数乘结a合b律 0
数量积的性质:
23..acosaa| a2a||b|ab||2
坐标运算 设a x1, y1,b x2, y2 ,则 a b x1x2 y1 y2
例、在棱长为2的正方体ABCD-A1B1C1D1中,O是面 AC的中心,求面OA1D1的法向量.
② 设a x1, y1,b x2, y2 ,则 a b x1x2 y1y2 0
4、已知
uuur
A(x1, y1), B( x2 , y2 ), 则
AB ( x2 -x1, y2 -y1 )
| AB | ( x2 x1 )2 ( y2 y1 )2
5.线段的定比分点公式
uuuur uuur
当 0 时, a 的方向与 a 的方向相反;
特别地,当 0 或 a 0 时, a 0 (2)r坐标运算:
设 a (x, y) ,则 a (x, y) (x,y)
(3)运算律:
设a,b为任意向量,λ,μ为任意实数,则有: ①λ(μa)=(λμ) a ②(λ+μ)a=λa+μa ③λ(a+b)=λa+λb
点M
(X,Y,Z)
3、直线的方向向量
rr
r
若a // l, 则称a是直线l 的方向向量
4、平面的法向量
如果表示向量n的有向线段所在的直线垂 直于平面α,称这个向量垂直于平面α,记作n⊥α,
这时向量n叫做平面α的法向量.ur
n
α
5、平面法向量的求法
设a=( x1,y1,z1)、b=(x2,y2,z2)是平面α内的两个不共 线的非零向量,由直线与平面垂直的判定定理知,若 n⊥a且n⊥b,则n⊥α.换句话说,若n·a = 0且n·b = 0, 则n⊥α.可按如下步骤求出平面的法向量的坐标
(规定 0 与任意向量平行)
(2)相等向量: 大小相等,方向相同的两个向量
(3)垂直向量: 夹角是900的两个向量
4.向量的坐标: 有且只有一对实数x、y,使得
a =xi + yj.(x,y)叫做向量a的坐标.
那么i =(1 , 0) j = (0, 1) 0 = (0,0) 5.向量的模: 向量的大小或长度.
相关文档
最新文档