北师大版高中数学必修4:任意角的正弦余弦函数定义说课稿

合集下载

任意角的三角函数的定义教案

任意角的三角函数的定义教案

教 案课题:《任意角的正弦函数、余弦函数、和正切函数》教学目标:1.掌握任意角的三角函数的定义;2.任意角的三角函数和锐角的三角函数的联系和区别;3.理解角的三角函数值与角终边上点的位置无关;4.正弦函数、余弦函数、正切函数的定义域;5.已知角α终边上一点,会求角α的各三角函数值。

教学重点:1. 任意角的三角函数的定义;2. 运用任意角的三角函数的定义求函数值。

教学难点:理解角的三角函数值与角终边上点的位置无关;教学方法:1. 情境教学法;2. 问题驱动教学法。

教学过程:一、 复习引入(情境1)前面我们学习了角的概念的推广,通过推广,使角动了起来,同时把角的范围也突破了0度和360度的界限,角可为任意大小。

这节课我们要研究的问题是任意角的三角函数。

初中阶段我们学习了锐角的三角函数。

【问题1】在直角三角形中,锐角的三角函数是怎样定义的?(学生回答)【问题2】如图,在R t △ABC 中,求sin α,cos α,tan α。

(学生口答)sin α= cos α=tan α=二、 新授知识【目标一】任意角的三角函数的定义是什么?【情境二】事实上,锐角的三角函数定义,可以看作是在角的锐角的一边上任取一点,构造一个直角三角形,用直角三角形的边之比来定义。

我们可以看出,取的点不同,所构造的三角形的大小也不一样。

α的各三角函数值与所构造的三角形的A CB α sin BC AB α=cos AC AB α=tan BC AC α=3 4 535443大小有关吗?(无关,由三角形相似的性质可以得到。

)【情境三】角的概念推广之后,角可以是任意大小,把角放在直角三角形中定义它的三角函数显然已经达不到要求,必须寻求一种新的方法!前面我跟同学们暗示过:今后在研究任意角的相关时,我们常常把角放在坐标系里进行研究!【问题四】任意角在坐标系中是如何放置的?(学生回答)将角的顶点放在原点,始边与x轴正半轴重合。

角的终边可能会落在某一象限内,也可能在坐标轴上。

《单位圆与任意角的正弦函数、余弦函数定义》精品课件

《单位圆与任意角的正弦函数、余弦函数定义》精品课件

解析
先考虑角的终边不在坐标轴上的情形如图设角的终边与单
位圆交于点P,则点P的坐标为 ,且 = .
点 在角的终边上,则 = + 分别过点P,Q作x轴的垂线
PM,QN,垂足为M,N.易知△ ∼△ .
所以


=


.即

学而优 ·教有方
典例剖析
高中数学
GAOZHONGSHUXUE
师生互动
教师出示例2,组织学生分组讨论,确定利用定义解题的思路,然后安排一名学生上黑板演
示例2的解答过程,其他学生在练习本上完成.教师巡视,收集信息,及时评价,纠错,讲解,规
范解题过程.
教师引导学生完成“思考交流”,根据角的范围安排学生分四组讨论交流,完成填空并回

(1)画出角;
(2)求角的正弦函数值和余弦函数值.
解析
(1)如图,以原点为角的顶点,以x轴的非负半轴为始边,顺时针旋转,
与 单 位 圆 交 于 点 P, 过 点 P 作 x 轴 的 垂 线 交 x 轴 于 点 M. 于 是 =


∠ = − 即为所作的角.
(2)设点 ,则 =
答问题,集体评价,教师归纳总结.
设计意图
通过例2和思考交流,加深学生对定义的理解,培养学生的直观想象和数学运算核心素养.
学而优 ·教有方
课堂小结
高中数学
GAOZHONGSHUXUE
1.锐角的正弦函数和余弦函数的定义.
2.任意角的正弦函数和余弦函数的两个定义:是用单位圆上点的坐标定义;
二是用终边上除原点外任意一点的坐标的比值定义.

学而优 ·教有方

+ .

任意角的正弦函数余弦函数和正切函数的概念教学设计

任意角的正弦函数余弦函数和正切函数的概念教学设计

任意角的正弦函数余弦函数和正切函数的概念教学设计教学目标:1.了解任意角的概念;2.了解正弦函数、余弦函数和正切函数的定义;3.掌握正弦函数、余弦函数和正切函数图像的特点;4.掌握正弦函数、余弦函数和正切函数的性质;5.能够应用正弦函数、余弦函数和正切函数解决问题。

教学准备:1.教材《高中数学》等教科书;2.教学工具:黑板、彩色粉笔或白板、标尺、计算器;3.准备保存有正弦函数、余弦函数和正切函数图像的PPT课件;4.打印练习题。

教学过程:Step 1:导入新知识(10分钟)教师通过问题导入,例如:“请思考一下,在一个圆中,一点在圆上运动一周,每走一段距离,与圆心连线和圆的切线所夹的角会发生什么变化?”教师引导学生观察并回答,强调所描述的角度是一个“任意角”。

Step 2:正弦函数、余弦函数和正切函数的定义(15分钟)1.教师向学生介绍正弦函数、余弦函数和正切函数的定义,正弦函数表示角的正弦值与半径之比,余弦函数表示角的余弦值与半径之比,正切函数表示角的正切值与半径之比。

2.将观察到的圆运动图示出来,并告诉学生圆心到运动点的距离为13. 教师给出正弦函数、余弦函数和正切函数的基本公式:sinθ=x,r=1;cosθ=y,r=1;tanθ=x/y。

Step 3:正弦函数、余弦函数和正切函数的图像(15分钟)1.教师以PPT课件的形式展示正弦函数、余弦函数和正切函数的图像,解释图中x轴和y轴的含义,并强调坐标轴上的单位。

2.教师详细讲解几个正弦函数、余弦函数和正切函数图像的特点,如周期性、对称轴、值域等。

Step 4:正弦函数、余弦函数和正切函数的性质(15分钟)1.教师给出正弦函数、余弦函数和正切函数的周期、对称性、增减性、奇偶性和值域等性质,并结合图像进行说明。

2.教师通过举例说明正弦函数、余弦函数和正切函数在不同象限和角度值的取值范围。

Step 5:练习与应用(30分钟)1.学生在教师的指导下,完成练习题,巩固所学的知识。

任意角的正弦函数、余弦函数和正切函数--参考教案

任意角的正弦函数、余弦函数和正切函数--参考教案

5.3《任意角的正弦函数、余弦函数和正切函数》教案授课题目任意角的正弦函数、余弦函数和正切函数授课课时3课型讲授教学目标1.知识与能力(1)能够运用公式求解任意角的三角函数值;(2)掌握三角函数的表达式;(3)正确判断任意角的三角函数值的符号.2. 过程与方法观察、分析知识形成的过程,归纳、抽象、概括知识的概念,提升寻找数学规律的能力.3. 情感、态度与价值观(1)感知数学知识与实际生活的普遍联系;(2)享受积极交流的课堂气氛,增强学习的兴趣和勇于创新的精神.教学重难点重点:任意角的三角函数值;难点:三角函数值的符号.第1课时教学过程教学活动学生活动设计思路复习引入在初中,我们在直角△ABC中,我们定义了锐角α的正弦、余弦和正切,如图1所示.正弦:asincαα∠==的对边斜边;图1余弦:cos b c αα∠==的邻边斜边;正切:tan a b ααα∠==∠的对边的邻边.现在我们将一个锐角α放入平面直角坐标系中,使得顶点与原点重合, 始边与x 轴的非负半轴重合,如图2所示.已知点(,)P x y 是锐角α终边上的任意一点,点P 与原点O 的距离(0)OP r r =>,你能利用锐角三角函数的定义计算出锐角α所对应的三角函数值吗?分析 过点P 作x 轴的垂线,垂足为M ,则线段OM 的长度为x ,线段MP 的长度为y .在Rt OMP ∆中,根据勾股定理可得,222r x y =+,即220r x y =+>.MP sin y OP r α==;OM cos xOP r α==; MP tan yOM xα==.一、探究新知在弧度制下,我们已将α的范围扩展到了全体实数.一般地,如图3所示,当α为任意角时,点结合老师给出的问题,积极主动的思考,得出初步结论.激发学生好奇心,增强学习热情,更主动参与到课堂学习过程中.图2(,)P x y 的α终边上异于原点的任意一点,点P 到原点的距离为22r x y =+.我们仍然将α的正弦、余弦、正切分别定义如下.sin y r α=,cos x r α=,tan (0)yx xα=≠ 注意:当的α终边不在y 轴上时,tan α才有意义.对于每一个确定的α,其正弦、余弦及正切都分别对应一个确定的比 值,因此,正弦、余弦及正切都是以α为自变量的函数,分别叫作正弦函 数、余弦函数及正切函数.我们将正弦函数、余弦函数和正切函数统称为三角函数,通常记为: 正弦函数 y=sin x ,x R ∈; 余弦函数 cos y x =,x R ∈; 正切函数 y=tan x ,()2x k k Z ππ≠+∈.二、例题讲解例 1.如图3所示,已知角α的终边经过点(3,4)P -, 求 sin α,cos α,tan α的值.理解记忆相关概念和结论在理解的基础上熟练写出相关函数表达式和定义域直观展示知识点,让学生在理解的基础上记忆概念图2解 由已知有,x =3,y =-4,则,()234 5.r =+-=2于是4 ,5ysin r α==-3,5x cos r α==43y tan x α==-.三、巩固练习已知角α的终边分别经过以下各点,求sin cos tan .ααα,和.(1)P(-8,6); (2)P(5,12); (3)P (-1,2).认真读题,积极思考,掌握解题的基本思路认真思考、完成相关题目展示问题解决的基本步骤,培养学生分析解决问题能力加深对定义和公式的理解和记忆图3一般地,α为任意角,(,)P x y 为α终边上异于原点的任意一点,点P 与原点O 的距离OP r =,因为0r >,由定义可知,正弦值的符号与点P 的纵坐标y 的符号相同; 余弦值的符号与点P 的横坐标x 的符号相同; 正切值的符号与点P 的纵坐标与横坐标的比值yx的符号相同. 请同学们将点P 的坐标与各象限角正弦值、余弦值和正切值的正负号列表.为了便于记忆,我们将 , , 的正负号标在各象限内,如图4所示.二、例题分析例1确定下列各值的符号.(1)() 210sin -︒; (2)17 12cos π; (3) 760tan ︒. 解 (1)因为-210°是第二象限角,所以() 2100sin -︒>. (2)由1751212πππ=+, 可看出π<π+5π12<π+6π12=3π2是第三象限的角, 所以 17012cos π<. (3)因为760402360︒=︒+⨯︒,可知760°的角与400的角终边相同,是第一象限的角,理解并熟记各象限角正弦值、余弦值和正切值的正负号认真读题,积极思考,了解知识运用的一般过程在理解的基础上记忆概念展示问题解决的基本方法,培养学生分析解决问题能力图4第3课时教学过程教学活动学生活动设计思路提出问题如图5所示,两个三角板上有几个特殊的锐角:30°,45°,60°.初中已研究了它们对应的正弦值、余弦值和正切值.现将角的范围进行了推广,已经在平面直角坐标系中研究了各象限角的正弦值、余弦值和正切值的符号分布规律.对于在平面直角坐标系中不属于任何象限的特殊角,如0°,90°,180°,270°等,它们的正弦值、余弦值和正切值又是多少?以180°为例,试求出它的正弦值、余弦值和正切值. 结合老师给出的问题,积极主动的思考,得出初步结论.激发学生好奇心,增强学习热情,更主动参与到课堂学习过程中.图5图6分析 在平面直角坐标系中,180°角的终边正好与x 轴的负半轴重合,如图6所示.以坐标原点为圆心、半径为单位长度的圆(简称单位圆)与x 轴交于点(1,0)P -,于是有1x =-,0y =,1γ=.根据任意角的正弦、余弦和正切的定义可知,sin 1800yr ︒==; cos 1801xr ︒==-;tan 1800yx︒==.一、探究新知一般地,取单位圆与坐标轴的交点就可以得到0°,90°,180°和270°等特殊角的正弦值、余弦值和正切值,如下表所示表中360°角与0°角的终边相同,对应的三角函数值也相同.二、例题讲解例1 求︒-︒+︒-︒270sin 7180tan 290sin 4180sin 5的值.解 ︒-︒+︒-︒270sin 7180tan 290sin 4180sin 5=5×0-4×1+2×0-7×(-1)=3。

正弦函数的图像(说课稿)

正弦函数的图像(说课稿)

正弦函数x=的图像(说课稿)y sin一、教材分析1、教材的地位与作用《正弦函数的图像》是高中《数学》必修4(北京师范大学版)第四章第三节的内容,其主要内容是正弦函数的图像。

过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学了锐角的正弦函数和任意角的正弦函数,在此基础上来学习正弦函数x=y sin 的图像,为今后正弦函数的性质、余弦函数、正切函数的图像与性质、函数)yAsin(ϕ+=wx的图像的研究打好基础,起到了承上启下的作用。

因此,本节的学习有着极其重要的地位。

2、教学重点和难点教学重点:用“五点作图法”画长度为一个周期的闭区间上的正弦函数图像。

教学难点:利用单位圆画正弦函数图像。

3、学习目标根据《普通高中数学教学课程标准》与《教学大纲》的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,制定本节课的教学目标如下。

1、知识目标(1)了解并理解利用单位圆画正弦函数的图像;(2)掌握正弦函数图像的“五点作图法”;2、能力目标(1)培养学生的观察能力、分析能力、归纳能力和表达能力;(2)培养学生数形结合的数学思想;(3)培养学生合作学习和数学交流的能力;3、德育目标(1)渗透由抽象到具体的思想,使学生理解动与静的辩证关系,培养辩证唯物主义观点;(2)培养学生积极探索、勤于思考的精神;(3)培养学生合作学习和数学交流的能力;(4)使学生懂得数学是源于生活,服务于生活的数学特点。

二、教法分析根据上述教材分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化课堂教学改革,确定本课主要的教法为:1、计算机辅助教学借助多媒体教学手段引导学生理解利用单位圆中的正弦线画出正弦函数的图像,使问题变得直观,易于突破难点;利用多媒体向学生展示优美的函数图像,给人以美的享受。

2、讨论式教学通过观察“正弦函数的几何作图法”课件的演示,让学生分组(四人一组)讨论、交流、总结,由小组成员代表小组发表意见(不同层次的组员回答,教师给予评价不同),说出正弦函数的主要性质和函数x=,[]π2,0∈x的图像中起着关键作用的点。

正弦函数的图像(精品说课稿)

正弦函数的图像(精品说课稿)

正弦函数的图像(精品说课稿)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN尊敬的各位评委各位老师:大家好,我是高中数学组号考生,今天我说课的题目是《正余弦函数的图像》。

下面我将从说教材、说学情、说教学目标、说教学过程等几个方面来展开我的说课。

首先来说说教材。

本课是北师大版高中数学必修四第1章第5节第1课时,本节的主要内容是正弦函数的图象,过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学了锐角的正弦函数和任意角的正弦函数,在此基础上来学习正弦函数y=sinx 的图象,为今后正弦函数的性质、余弦函数、正切函数的图象与性质,函数 y=Asin(ωx+φ)的图象的研究打好基础,起到了承上启下的作用,因此,本节的学习有着极其重要的地位。

分析完了教材,再来说说学情。

高二年级的学生,已经学习了函数基础知识和诱导公式、三角函数等知识,本节课在已有知识的基础上来研究图象,进一步体现数形结合和化归思想在高中数学中的运用。

但由于我们的学生认识问题还不够深入,其思维能力和判断分析能力尚在培养形成之中。

学生在学习函数上仍有畏难情绪,在探究问题的能力,合作交流的意识等方面发展不够,鉴于此种情况,教师要充分利用他们的兴趣引导学生进入特定的教学意境,如何学好利用已有知识来研究正弦函数的图像,就是摆在师生面前的一个亟待解决的问题。

因此,本节内容的学习是学生认知发展和知识构建的一个生长点。

基于以上教材地位、学情特点以及新课标的要求,我确定了以下三维教学目标:1、理解并掌握用单位圆作正弦函数图象的方法,用“五点作图法”画长度为一个周期的闭区间上的正弦函数图象这是本课教学的重点。

2、利用单位圆中的三角函数线作出 y=sinx, x∈R 的图象,明确函数的图象。

渗透数形结合和化归的数学思想。

利用单位圆画正弦函数图象本课教学的难点。

3、通过本节课的学习,激发学生学习数学的兴趣和善于发现、勇于探索的精神,体会学习的快乐。

任意角的正弦函数、余弦函数的定义

任意角的正弦函数、余弦函数的定义

周期性
总结词
正弦函数和余弦函数都是周期函数,这意味 着它们的图像会重复出现。
详细描述
周期函数的定义是,如果存在一个非零常数 $T$,使得对于定义域内的所有$x$,都有 $f(x+T)=f(x)$,则称$f(x)$是周期函数, $T$是它的周期。对于正弦函数和余弦函数, 它们的周期是$2pi$。这意味着无论角度是 多少,正弦和余弦函数的值都会在一定的周 期内重复。
04
在$0^circ$到 $360^circ$之间,余弦 函数在$0^circ$、 $180^circ$处取得最大 值1和最小值-1。
正弦函数与余弦函数的比较
正弦函数和余弦函数有许多相似之处,如它们 都是周期函数,其值域也都为$[-1,1]$。
然而,它们在图像上呈现出不同的形态。正弦 函数的图像呈现正弦波的形状,而余弦函数的 图像呈现余弦波的形状。
正弦函数的周期性
正弦函数具有周期性,其周期 为2π。
在一个周期内,正弦函数呈 现出波形变化的特点,即随 着角度的增加,正弦值在-1
和1之间循环变化。
正弦函数的周期性是三角函数 的一个重要性质,在解决实际
问题中具有广泛的应用。
02
任意角的余弦函数定义
定义
1
任意角α的余弦函数定义为:cosα = x/r,其中x 是余弦函数在单位圆上对应的横坐标,r是单位圆 的半径。
乘积公式
总结词
乘积公式是正弦函数和余弦函数之间的另一种重要关 系,用于将两个角的正弦或余弦值的乘积转换为其他 角度的正弦或余弦值。
详细描述
乘积公式是三角函数中另一个重要的公式,它表示两个 角的正弦或余弦值的乘积可以通过已知的两个角的三角 函数值计算出来。具体来说,对于任意角α和β,有: sin α cos β=1/2[sin(α+β)+sin(α-β)];cos α cos β=1/2[cos(α+β)+cos(α-β)];sin α sin β=1/2[cos(αβ)-cos(α+β)]。这些公式在解决实际问题时也非常有用, 例如在信号处理和振动分析等领域。

任意角的三角函数(教案)

任意角的三角函数(教案)

任意角的三角函数(教案)一、教学内容本节课的教学内容来自于高中数学必修一的第四章第一节,主要内容包括任意角的三角函数的定义、正弦函数、余弦函数和正切函数的图像与性质。

二、教学目标1. 让学生理解任意角的三角函数的定义,掌握正弦函数、余弦函数和正切函数的图像与性质。

2. 培养学生运用三角函数解决实际问题的能力。

3. 培养学生合作学习、探究学习的能力。

三、教学难点与重点1. 教学难点:任意角的三角函数的定义,正弦函数、余弦函数和正切函数的图像与性质的理解和应用。

2. 教学重点:任意角的三角函数的定义,正弦函数、余弦函数和正切函数的图像与性质的掌握。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:笔记本、尺子、圆规、三角板。

五、教学过程1. 实践情景引入:让学生观察教室的布置,找出角的度量单位,引出角的概念。

2. 任意角的三角函数的定义:通过多媒体展示正弦函数、余弦函数和正切函数的定义,让学生理解并掌握它们的定义。

4. 例题讲解:出示例题,让学生独立解答,然后讲解答案,讲解过程中强调解题思路和方法。

5. 随堂练习:出示随堂练习题,让学生独立完成,然后批改并讲解答案。

8. 布置作业:布置相关的作业题目,让学生巩固所学知识。

六、板书设计1. 任意角的三角函数的定义2. 正弦函数、余弦函数和正切函数的图像与性质七、作业设计1. 题目:已知一个角的度数为30°,求它的正弦值、余弦值和正切值。

答案:正弦值:1/2余弦值:√3/2正切值:√3/32. 题目:画出角α的正弦函数、余弦函数和正切函数的图像。

答案:见附图。

八、课后反思及拓展延伸1. 课后反思:本节课的教学过程中,学生对任意角的三角函数的定义掌握较好,但在正弦函数、余弦函数和正切函数的图像与性质的理解上还有待加强。

2. 拓展延伸:让学生研究任意角的三角函数在实际问题中的应用,如测量大树的高度、计算物体在斜面上的速度等。

重点和难点解析一、任意角的三角函数的定义任意角的三角函数的定义是本节课的核心内容,学生需要理解并掌握正弦函数、余弦函数和正切函数的定义。

北师大版高中数学必修4单位圆与任意角的正弦函数、余弦函数的定义

北师大版高中数学必修4单位圆与任意角的正弦函数、余弦函数的定义

课内练习
已知sinθ<0且cosθ>0,确定θ角的象限。
复习小结
1.任意角的正弦、余弦函数的定义 设α是一个任意角,它的终边与单位圆
交于点P(u,v),则sin v,cos u
2.三角函数都是以角为自变量,以单位 圆上的点的坐标(比值)为函数值的函数.
任意角的正弦函数、余 弦函数的定义
复习引入
锐角的正弦、余弦函数的定义:
斜边
对边

邻边
对边
邻边
sin _斜__边__;cos _斜__边__;
引入新知下面我们在Fra bibliotek角坐标系中,利用单位圆来进 一步研究锐角 的正弦函数、余弦函数
当点P(u,v) 就是 的终边与单位圆的交点时,
锐角三角函数会有什么结果?
得。
正弦函数和余弦函数的最小正周期是2π。
最小正周期在图象上的意义 :
最小正周期是函数图象重复出现需要的最短距离。
例题讲解
例1、求 5 的正弦、余弦。
3
y
易知
5
3
的终边与单位圆
的交点为 P(1 , 3 )
22
α M x(1,0)
O
x
P (1, 3) 22
sin 3
2 cos 1
sin 3 13, cos 2 13
13
13
变式1、设角
中 a 0 ,则 sin
的 终53 边。过点P(4a,
3a)
,其
变式2.若角 的终边过点 Pa,8,且 cos 3 ,
则a ____6____。
5
确定下列各三角函值的符号: ⑴ cos250°;⑵ sin(-π/4); ⑶ sin(-672°); ⑷ cos3π;

必修4-1.4 .1~1.4.2单位圆与正弦函数、余弦函数的定义

必修4-1.4 .1~1.4.2单位圆与正弦函数、余弦函数的定义

虹屏居
4
新 知 预读
预读1解析: 在直角坐标系中,作以坐标原点为圆心的单位 圆,对于任意角α,使角α的顶点与原点重合,始 边与x轴的非负半轴重合,终边与单位圆交于唯一 的点P(u,v),我们把点P的横坐标v定义为角α 的正弦函数,记作v=sinα;点P的横坐标u定义为 角α的余弦函数,记作u=cosα. 对于任意角α,使角α的顶点与原点重合,始边 与x轴的非负半轴重合,终边上任一点Q(x,y), OQ的长度为r,
余弦函数值.
解 x 2,y 3;
y
r (2) 2 (3) 2 13,
x
O
P
y 3 3 13 sin ; r 13 13 x 2 2 13 cos . r 13 13
虹屏居
17
新知检测
2.确定下列三角函数值的符号:
(1) cos 250 ;
Q y α N MO x
利用△POM∾△QON,
由相似比求出.
P
虹屏居
12
新知探究
例2 在直角坐标系的单位圆中,α= -/4, (1)画出角α; (2)求出角α的终边与单位圆的交点坐标.
y
解 (1)如图,以原点为角的顶点, 以x轴的非负半轴为始边,顺时针旋转 /4,与单位圆交于点P,作PM垂直x轴, 垂足为M,则∠MOP为所求的角.
5、函数 f(x)=x2 满足 f(-3+6) = f(-3),这个函数是不是以6为 周期的周期函数?
虹屏居
8
新知思议
1、在单位圆中,定义正弦函数、余弦函数时,分别 给出了角α的终边在第一象限、第二象限、第三象 限、第四象限的情况,说明了什么? 对于给定的角α,点P的横坐标u、纵坐标v都是唯 一确定的,所以正弦函数、余弦函数都是以角为自 变量,以单位圆上的点的坐标为函数值的函数.

《三角函数的诱导公式》新课程高中数学必修4省优质课比赛说课教案

《三角函数的诱导公式》新课程高中数学必修4省优质课比赛说课教案

三角函数的诱导公式教材:在北师大版普通高中课程标准实验教科书必修4中,单位圆与正弦、余弦函数的内容约4课时,下面笔者从教学背景分析、教学设计分析、目标分析、过程分析、板书设计等方面谈谈“三角函数的诱导公式”这节课的教学设计.一、教学背景分析(一)教材的地位和作用本节教学内容是4组三角函数诱导公式的推导过程及其简单应用.承上,有任意角三角函数正弦、余弦和正切的比值定义、三角函数线、同角三角函数关系等;启下,学生将学习利用诱导公式进行任意角三角函数的求值化简以及三角函数的图象与性质(包括三角函数的周期性)等内容.同时,学生在初中就接触过对称等知识,对几何图形的对称等知识相当熟悉,这些构成了学生的知识基础.诱导公式的作用主要在于把任意角的三角函数化归成锐角的三角函数,体现了把一般化特殊、复杂化简单、未知化已知的数学思想.(二)目标定位诱导公式可以帮助我们把任意角的三角函数化为锐角三角函数,但是随着计算器的普及,上述意义不是很大.我们认为,诱导公式的教学价值主要体现在以下几个方面:第一,感受探索发现,通过几何对称这个研究工具,去探索发现任意角三角函数间的数量关系式,即三角函数的基本性质乃是圆的几何性质(主要是其对称性质)的代数解析表示.第二,学会初步应用,能够选用恰当的诱导公式将任意角的三角函数转化为锐角三角函数问题并求解.第三,领悟思想方法,在诱导公式的学习过程中领悟化归、数形结合等思想方法.第四,积累数学经验,为学生认识任意角的三角函数既是一个起源于圆周运动的周期函数又是研究现实世界中周期变化现象的“最有表现力的函数”做好准备.二、教学设计分析在进行本课教学设计时,有以下两条典型教学路线可供选择:(1)两个角的终边有哪些特殊的对称关系?(2)怎样把非第一象限的角转化为第一象限的角?笔者最终选择了第一条路线,主要基于以下两点考虑.(一)尊重教材的编写方式从对教材的分析来看,北师大版教材将三角函数作为一种数学模型来定位,力图在单位圆中借助对称性来考察对应点的坐标关系,从而统整各组诱导公式.教材的编写处理体现了教材专家的集体智慧和版本教材的一贯特色,教师应该努力体会和把握,不宜轻率抛开教材另搞一套.(二)切合学生的认知水平利用学生熟悉的圆及其对称性研究三角函数的相关性质,符合学生的认知心理.同时,单位圆及其对称性的表象对学生推导诱导公式、理解公式之间的内在联系、形象记忆三角函数诱导公式都将起到事半功倍的效果.三、教学环境分析根据教学内容和学生实际情况,确定选择使用多媒体教室.四、教学目标分析(一)知识与技能1.能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式.2.能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题.(二)过程与方法1.经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力.2.通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力.(三)情感、态度、价值观1.通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度.2.在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神.五、教学重点与难点教学重点:探求π-α的诱导公式.π+α与-α的诱导公式在小结π-α的诱导公式发现过程的基础上,教师引导学生推出.教学难点:π+α,-α与角α终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”.六、教学方法与教学手段问题教学法、合作学习法,结合多媒体课件.七、教学过程角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值怎么求呢?先看一个具体的问题.(一)问题提出如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题.【问题1】求390°角的正弦、余弦值.一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系.即有sin(α+k·360°) = sinα,cos(α+k·360°) = cosα, (k∈Z)tan(α+k·360°) = tanα.这组公式用弧度制可以表示成sin(α+2kπ) = sinα,cos(α+2kπ) = cosα, (k∈Z) (公式一)tan(α+2kπ) = tanα.【设计意图】前面的学习中,已经将角的概念从锐角扩充到了任意角,学习了任意角三角函数的定义,接下来自然地会提出任意角的三角函数值怎么去求.于是,先安排求特殊值再过渡到一般情形比较符合学生的身心特点和认知规律,意在培养学生从特殊到一般归纳问题和抽象问题的能力,引导学生在求三角函数值时抓坐标、抓角终边之间的关系.同时,首先考虑α+2kπ(k∈Z)与α的三角函数值之间的关系,有助于学生理解三角函数被看成刻画现实世界中周期性变化的数学模型的确切含义.(二)尝试推导如何利用对称推导出角π-α与角α的三角函数之间的关系.由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等.反过来呢?如果两个角的三角函数值相等,它们的终边一定相同吗?比如说:【问题2】你能找出和30°角正弦值相等,但终边不同的角吗?角π-α与角α的终边关于y轴对称,有sin(π-α) = sinα,cos(π-α) = -cosα,(公式二)tan(π-α) = -tanα.【设计意图】对问题2的提问方式的设计主要是考虑到我们在研究问题的时候常常会研究它的逆命题、否命题、等价命题等.事实上问题2可以看成是“若两个角的终边相同,则它们的正弦值相同”的逆命题,即“若两个角的正弦值相同,则两个角的终边相同”.但这里是以问题的形式提出的,实际上教会了学生一种自己研究问题的方法.〖思考〗请大家回顾一下,刚才我们是如何获得这组公式(公式二)的?因为与角α终边关于y 轴对称是角π-α,利用这种对称关系,得到它们的终边与单位圆的交点的纵坐标相等,横坐标互为相反数.于是,我们就得到了角π-α与角α的三角函数值之间的关系:正弦值相等,余弦值互为相反数,进而,就得到我们研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系.【设计意图】阶段小结,让学生将对称作为研究三角函数问题的一种方法使用.将上述研究过程进行梳理,得出“角间关系→对称关系→坐标关系→三角函数值间关系”的研究路线图.(三)自主探究 如何利用对称推导出π+ α,- α与α的三角函数值之间的关系.刚才我们利用单位圆,得到了终边关于y 轴对称的角π-α与角α的三角函数值之间的关系,下面我们还可以研究什么呢?【问题3】两个角的终边关于x 轴对称,你有什么结论?两个角的终边关于原点对称呢?角-α与角α的终边关于x 轴对称,有:sin (-α) = -sin α,cos (-α) = cos α,(公式三)tan (-α) = -tan α.角π +α与角α终边关于原点O 对称,有:sin (π +α) = -sin α,cos (π +α) = -cos α,(公式四)tan (π +α) = tan α.上面的公式一到四都称为三角函数的诱导公式.【设计意图】从两个角的终边关于y 轴对称的情况进行自然过渡,给学生留下了自主探究的空间,让他们再次经历公式的研究过程,从而得出公式三和四,并将问题2研究方法一般化.(四)简单应用例:求下列各三角函数值: (1) ; (2) 2cos 3π;(3) . 7sin()6-π31cos 6-π【设计意图】初步熟悉诱导公式的使用,让学生感悟在解决问题的过程中,如何合理地使用这几组公式.此外,引导学生注意同一个三角函数的求值问题可以采用不同的诱导公式,启发学生这些公式的内在关系和联系,体会数学方法的多样性.(五)回顾反思【问题4】回顾一下,我们是怎样获得诱导公式的?研究的过程中,你有哪些体会?知识上,学会了四组诱导公式;思想方法层面:诱导公式体现了由未知转化为已知的化归思想;诱导公式所揭示的是终边具有某种对称关系的两个角三角函数之间的关系.主要体现了化归和数形结合的数学思想.具体可以表示如下:【设计意图】开放式小结,使得不同的学生有不同的学习体验和收获.这些问题的提出,侧重于诱导公式推导方法的回顾和反思,侧重于个体情感体验的分享和表达,从而区别于侧重公式规律的总结和记忆.(六)分层作业1.阅读课本,体会三角函数诱导公式推导过程中的思想方法;2.必做题:课本20页A组1, 6,21页B组 1;3.选做题:(1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗?(2)角α和角β的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗?【设计意图】分层作业有利于不同层次的学生巩固知识,提升思维能力.阅读课本旨在引导学生教科书是学习的根本,阅读课本有利于培养学生良好的回归课本的学习习惯.而出现选做题目,目的是提供多元化和挑战性选择,促使学有余力的学生课后思考和自主探究几组公式之间的内在联系.(七)板书设计。

任意角的三角函数 说课稿 教案 教学设计

任意角的三角函数   说课稿  教案  教学设计

任意角的三角函数●三维目标1.知识与技能(1)掌握任意角的三角函数的定义.(2)已知角α终边上一点,会求角α的各三角函数值.(3)记住三角函数的定义域、值域、诱导公式一.2.过程与方法(1)通过直角三角形中三角函数定义到单位圆中三角函数定义,最后到直角坐标系中一般化的三角函数定义,培养学生发现数学规律的思维方法和能力.(2)树立映射观点,正确理解三角函数是以实数为自变量的函数.(3)通过对定义域、三角函数值的符号、诱导公式一的推导,提高学生分析、探究、解决问题的能力.3.情感、态度与价值观(1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式.(2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神.●重点、难点重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式.公式一是本小节的另一个重点.难点:利用角的终边上点的坐标刻画三角函数,三角函数的符号以及三角函数的几何意义.●教学建议学生已经学过锐角三角函数,它是用直角三角形边长的比来刻画的.锐角三角函数的引入与“解三角形”有直接关系.任意角的三角函数是刻画周期变化现象的数学模型,它与“解三角形”已经没有什么关系了.因此,与学习其他基本初等函数一样,学习任意角的三角函数,关键是要使学生理解三角函数的概念、图象和性质,并能用三角函数描述一些简单的周期变化规律,解决简单的实际问题.先以锐角三角函数为引子,利用单位圆上点的坐标定义三角函数,从而很容易建立角的终边和单位圆的交点坐标、单位圆中的三角函数线之间的关系;在此基础上定义任意角的三角函数,并直接用定义研究三角函数的定义域、函数值的符号、诱导公式一等问题.●教学流程知识点1任意角的三角函数【问题导思】使锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,PM⊥x轴于M,设P(x,y),|OP|=r.1.角α的正弦、余弦、正切分别等于什么?【提示】sin α=yr,cos α=xr,tan α=yx.2.对于确定的锐角α,sin α、cos α、tan α的值是否随P点在终边上的位置的改变而改变?【提示】不会.3.在问题1中,取|OP|=1时,sin α,cos α,tan α的值怎样表示?【提示】sin α=y,cos α=x,tan x=yx.1.单位圆:在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆为单位圆.2.定义:图1-2-1在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y)那么:(1)y叫做α的正弦,记作sin_α,即sin α=y;(2)x叫做α的余弦,记作cos_α,即cos α=x;(3)yx叫做α的正切,记作tan_α,即tan α=yx(x≠0).对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.3.正弦函数sin α的定义域是R;余弦函数cos α的定义域是R;正切函数tan α的定义课标解读1.掌握任意角的正弦、余弦、正切的定义及其应用.(重点)2.初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切.(难点)3.掌握诱导公式及其应用.(重点难点)域是{x |x ∈R ,且x ≠k π+π2,k ∈Z }.知识点2 正弦、余弦、正切函数值在各象限的符号【问题导思】三角函数在各象限的符号由什么来确定?【提示】 由三角函数的定义知三角函数在各象限的符号由角α终边上任意一点的坐标来确定.1-2-2口诀:“一全正,二正弦,三正切,四余弦”.知识点3诱导公式【问题导思】当角α分别为30°,390°,-330°时,它们的三角函数值有什么关系?为什么? 【提示】 相等,因为它们的终边重合.诱导公式一sin (α+k ·2π)=sin α,k ∈Ztan (α+k ·2π)=tan α,k ∈Zcos (α+k ·2π)=cos α,k ∈Z知识点4有向线段与三角函数线在平面直角坐标系中,任意角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,过A (1,0)作AT ⊥x 轴,交终边或其反向延长线于点T ,如图所示:结合三角函数的定义,你能得到sin α,cos α,tan α 与MP ,OM ,AT 的关系吗? 【提示】 可以,sin α=|MP |,cos α=|OM |,tan α=|AT |. 1.有向线段:带有方向的线段. 2.三角函数线:1-2-3类型1用三角函数的定义求三角函数值例1 已知角θ的终边上有一点P (-3,m ),且sin θ=24m ,求cos θ与tan θ的值. 【思路探究】 此类问题的解答一般根据三角函数的定义求解.对于本题可由定义求出m 的值,再求cos θ与tan θ的值.【自主解答】 点P 到原点的距离r =(-3)2+m 2=3+m 2, ∴sin θ=m 3+m 2=24m ,解得m =0或m =±5. (1)当m =0时,cos θ=-33=-1,tan θ=0.(2)当m =5时,cos θ=-38=-64,tan θ=5-3=-153.(3)当m =-5时,cos θ=-38=-64,tan θ=-5-3=153.规律方法1.当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.2.解决此类问题有两种方法:(1)先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值;(2)注意到角的终边为射线,所以应分两种情况处理,取射线上任意一点坐标(a ,b ),则对应角的正弦值sin α=b a 2+b 2,余弦值cos α=aa 2+b2. 变式训练a ≠0),求sin α,cos α,tan α的值; sin α,cos α,tan α的值. 是第四象限角,则 (2)因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点. 则r =a 2+(3a )2=2|a |(a ≠0).若a >0,则α为第一象限角,r =2a ,所以 sin α=3a 2a =32, cos α=a 2a =12,tan α=3aa= 3. 若a <0,则α为第三象限角,r =-2a ,所以sin α=3a -2a=-32,cos α=-a 2a =-12,tan α=3aa= 3.例2 (1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°); (2)sin(-11π6)+cos 125π·tan 4π.【思路探究】 利用诱导公式,把每个角化为[0,2π)间的角,再利用特殊角的三角函数求值.【自主解答】 (1)原式=a 2sin(-4×360°+90°)+b 2tan(360°+45°)-2ab cos(-3×360°) =a 2sin 90°+b 2tan 45°-2ab cos 0° 利用诱导公式一可把任意角的三角函数化归为[0,2π)内的三角函数,实现“负化正,.一定要熟记一些特殊角的三角函数,有利于准确求值. (1)cos 253π+tan(-154π);(2)sin 810°+tan 1 125°+cos 420°. 【解】 (1)cos 253π+tan(-154π)=cos(8π+π3)+tan(-4π+π4)=cos π3+tan π4=12+1=32.(2)原式=sin(2×360°+90°)+tan(3×360°+45°)+cos(360°+60°) =sin 90°+tan 45°+cos 60° =1+1+12=52.类型3三角函数线及其应用例3 在单位圆中画出适合下列条件的角α的终边范围,并由此写出角α的集合. (1)sin α≥32;(2)cos α≤-12. 【思路探究】 根据三角函数线.在单位圆中首先作出满足sin α=32,cos α=-12的角的终边,然后由已知条件确定角α的终边范围.【自主解答】 (1)作直线y =32,交单位圆于A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域(图(1)中阴影部分)即为角α的终边的范围.故满足条件的角α的集合为{α|2k π+π3≤α≤2k π+2π3,k ∈Z }.(2)作直线x =-12,交单位圆于C ,D 两点,连接OC 与OD ,则OC 与OD 围成的区域(图(2)中的阴影部分)即为角α的终边的范围.故满足条件的角α的集合为{α|2k π+2π3≤α≤2k π+4π3,k ∈Z }. 规律方法1.三角函数线是利用数形结合思想解决有关问题的工具,要注意利用其来解决问题. 2.三角函数线的主要作用是解三角不等式、比较大小及求函数的定义域,在求三角函数定义域时,一般转化为不等式(组),因此必须牢固掌握三角函数线的画法及意义.变式训练求函数y =2cos x -1的定义域.【解】 由题意得:2cos x -1≥0,则有cos x ≥12.如图在x 轴上取点M 1使OM 1=12,过M 1作x 轴的垂线交单位圆于点P 1,P 2,连接OP 1,OP 2.则OP 1与OP 2围成的区域(如图中阴影部分)即为角x 的终边的范围.∴满足cos x ≥12的角的集合即y =2cos x -1的定义域为:{x |2k π-π3≤x ≤2k π+π3,k ∈Z }.易错易误辨析 忽视三角函数的定义域致误典例 求满足y =sin x ·tan x 的x 的取值范围.【错解】 由题意知,只需要sin x ·tan x ≥0,即⎩⎪⎨⎪⎧ sin x ≥0,tan x ≥0,①或⎩⎪⎨⎪⎧sin x ≤0,tan x ≤0,② 对①可知x 为第一象限角或终边在x 轴或y 轴上的角. 对②可知x 为第四象限角或终边在x 轴或y 轴上的角. 因此x 的取值范围为-π≤+π或=k π,即⎩⎪⎨⎪⎧sin x ≥0,tan x ≥0,x ≠k π+π2(k ∈Z ),或⎩⎪⎨⎪⎧sin x ≤0,tan x ≤0,x ≠k π+π2(k ∈Z ).根据x 所在象限情况可判断x 的取值范围是{x |2k π-π2<x <2k π或2k π<x <2k π+π2或x =k π,k ∈Z }.课堂小结1.三角函数的定义是以后学习一切三角函数知识的基础,要充分理解其内涵,把握住三角函数值只与角的终边所在位置有关,与所选取的点在终边上的位置无关这一关键点.2.诱导公式一指的是终边相同的角的同名三角函数值相等,反之不一定成立,可结合三角函数的定义进行记忆.3.三角函数值的符号主要涉及开方、去绝对值等计算问题,同时也要注意终边在坐标轴上的角的三角函数值情况,因角的终边经过的点决定了三角函数值的符号,所以当点的位置不确定时注意进行讨论,体现了分类讨论的思想.4.三角函数线的引入,为我们解决三角函数问题提供了几何方法,体现了数形结合的思想.其主要作用是解三角不等式、比较三角函数值的大小和求函数定义域.当堂双基达标1.cos(-11π6)等于( )A.12 B .-12C.32D .-32【解析】 cos(-11π6)=cos(-2π+π6)=cos π6=32.【答案】 C2.(2013·包头高一检测)已知cos θ·tan θ<0,那么角θ是( ) A .第一或第二象限角 B .第二或第三象限角 C .第三或第四象限角 D .第一或第四象限角【解析】 由cos θtan θ<0知,cos θ与tan θ异号,所以θ在第三或第四象限. 【答案】 C3.用三角函数线比较sin 1和cos 1的大小,结果是 _______________.【解析】 如图,借助三角函数线可知【答案】 sin 1>cos 14.已知角α的终边过点P (5,a ),且tan α=-125,求sin α+cos α的值.【解】 ∵角α的终边过点P (5,a )且tan α=-125,∴a 5=-125,∴a =-12. 因此r =|OP |=52+a 2=13,sin α=-1213,cos α=513,故sin α+cos α=-1213+513=-713.课后知能检测一、选择题α=( ) α的终边与单位圆交点的横坐标为角α的余弦值,的值为( )【解析】 cos 2α=cos(π3+4k π)=cos π3=12.【答案】 B3.(2013·铜川高一检测)已知角α的终边过点P (-3,4),则sin α+cos α=( ) A.35 B .-45 C.15 D .-15【解析】 ∵r =x 2+y 2=(-3)2+42=5, ∴sin α+cos α=y +x r =15.【答案】 C4.(2013·周口高一检测)如果点P (sin θcos θ,2cos θ)位于第三象限,那么θ在( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】 由题意知⎩⎪⎨⎪⎧sin θcos θ<02cos θ<0,∴sin θ>0且cos θ<0,故θ在第二象限. 【答案】 B5.若420°角的终边所在直线上有一点(-4,a ),则a 的值为( )A .4 3B .-4 3C .±4 3 D. 3【解析】 由三角函数的定义有:tan 420°=a -4.【答案】 28.角α的终边上有一点M (a ,a ),a ∈R 且a ≠0,则sin α的值为________.【解析】 当a >0时,r =a 2+a 2=2a ,sin α=y r =a 2a =22. 当a <0时,r =a 2+a 2=-2a ,sin α=y x =a -2a =-22. ∴sin α=22或-22. 【答案】22或-22 三、解答题9.判断下列各式的符号.(1)sin 105°·cos 230°;(2)sin 240°·sin 300°;(3)cos 16π3·sin π; (4)cos 4·cos 5.【解】 (1)∵105°是第二象限角,∴sin 105°>0,又∵230°是第三象限角,∴cos 230°<0,∴sin 105°·cos 230°<0.(2)∵240°是第三象限角,∴sin 240°<0;)sin 750°;(2)cos(-233π)+tan 17π4. 【解】 (1)原式=sin(-4×360°+120°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°) =sin 120°cos 30°+cos 60°sin 30° =32×32+12×12=1. (2)原式=cos[π3+(-4)×2π]+tan(π4+2×2π) =cos π3+tan π4=12+1=32. 11.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,求m -n 的值.【解】由题意,P(m,n)是解α终边上一点,sin α=yr=nm2+n2<0,∴n<0.又角α的终边与y=3x重合,故n=3m<0,∴m<0,由OP=10,则m2+n2=10,10m2=10,m2=1,∴m=-1,由n=3m,∴n=-3,∴m-n=-1-(-3)=2.【教师备课资源】1.三角函数线的应用(2013·聊城高一检测)如果π4<α<π2,那么下列不等式成立的是()A.cos α<sin α<tan αB.tan α<sin α<cos αC.sin α<cos α<tan αD.cos α<tan α<sin α【解析】如图所示,在单位圆中分别作出α的正弦线MP、余弦线OM、正切线AT,很容易地观察出OM<MP<AT,即cos α<sin α<tan α.【答案】 A1.单位圆中的三角函数线可以用来解决同名三角函数值比较大小.解三角不等式.研究三角函数值域或最值等问题.2.准确做出单位圆中的三角函数线是解决这类问题的关键.。

高中数学第一章三角函数441单位圆与任意角的正弦函数余弦函数的定义42单位圆与周期性课件北师大版必

高中数学第一章三角函数441单位圆与任意角的正弦函数余弦函数的定义42单位圆与周期性课件北师大版必
一、预习教材·问题导入 1.正弦、余弦函数是怎样定义的?
2.正弦、余弦函数在各象限的符号是什么? 3.周期函数的定义是什么? 4.正弦、余弦函数的周期性怎样?
二、归纳总结·核心必记
1.正弦、余弦函数的定义 (1)对于任意角 α,使角 α 的顶点与原点重合,始边与 x 轴非负 半轴重合,终边与单位圆交于唯一的点 P(u,v),那么点 P 的
3.[变设问]本例(2)条件不变,设问变为α2终边在第几象限? 解:由 sin α>0,cos α<0 知 α 的终边在第二象限,即 2kπ +π2<α<2kπ+π(k∈Z),∴kπ+π4<α2<kπ+π2(k∈Z),∴α2终 边在第一、三象限.
考点三 利用 2kπ+α(k∈Z)的正、余弦公式求值
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)终边相同的角的同名三角函数值相等
( √)
(2)若 sin α>0,则 α 是第一、二象限角
(× )
(3)函数 f(x)=|x|满足 f(-1+2)=f(-1),则这个函数的周期
为-1
(× )
(4)若 T 是函数 ƒ(x)的周期,则 kT,k∈N*也是函数 f(x)的周期.
解:∵f(x+6)=f[(x+3)+3]=-fx+1 3=--11 =f(x), fx
∴f(x)是周期函数,且 6 是它的一个周期.
结束
语 同学们,你们要相信梦想是价值的源泉,相信成
功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油。
(1)点 P 的坐标; (2)∠AOQ 的正弦函数值、余弦函数值.
[解] (1)设点 P 的坐标为(x,y),则 x=cos∠AOP=cosπ3=12,

正弦函数和余弦函数的定义教案

正弦函数和余弦函数的定义教案

1.4 正弦函数和余弦函数的定义与诱导公式1.4.1 任意角的正弦函数、余弦函数的定义(必修4 第一章三角函数)《正弦函数和余弦函数的定义与诱导公式》教案一、教学目标1:知识与技能观察正弦、余弦函数图像得到正弦函数、余弦函数的性质,并灵活应用性质解题。

培养分析、探索、类比和数形结合等数学思想方法在解决问题中的能力。

2:过程与方法理解利用单位圆定义的正弦函数、余弦函数的概念。

通过初中知识的回顾,探索新知,会利用单位圆研究正弦函数、余弦函数的周期性及诱导公式。

通过借助单位圆讨论正弦函数、余弦函数的过程,感悟数形结合思想方法是学习数学的重要思想方法之一。

3:情感态度与价值观由锐角的正,余弦函数推广到任意鱼的正,余弦函数的过程中,体会特殊与一般的关系,形成一种辩证统一的思想;通过单位圆的学习,建立数形结合的思想,激发学习的学习积极性;培养学生分析问题,解决问题的能力。

一二、学情分析初中运算以具体数字为主,运算量小;高中以字母为主,更加抽象(也更接近数学的本质),并且引入对字母的分类讨论,对学生的发散思维能力提出了很高要求,教师讲的太多,会导致学生产生依赖心理,时间一长,会形成恶性循环;教师讲的太多,往往拔苗助长,适得其反;让学生积极动脑思考,过程虽然慢一些,但可以培养学生捕捉问题的敏捷性,对以后的数学学习非常有利,可谓“磨刀不误砍柴工”。

教师要从各方面引导学习数学要深入下去,不能浅尝辄止,半途而废,要适时鼓励学生,给学生以学好数学的勇气和信心。

鼓励学生不要怕出错,大胆尝试,大胆地写,给学生敢写、敢做树立自信心。

在初中学生已经学习过三步作图法(列表,描点、连线)——“描点作图”法,在第一册学生已经掌握了函数的有关对应的知识和概念,同时已经具备了一定的自学能力,这在我们今天学校用“五点法”作图提供了基础,让学生动手作出函数y=sinx和y=cosx的图象,学生不会感到困难。

积极地鼓励学生自主的去完成作业。

遇到有疑问的问题积极的解决。

高中数学说课稿模板6篇

高中数学说课稿模板6篇

高中数学说课稿模板6篇高中数学说课稿模板6篇作为一名无私奉献的老师,时常需要编写说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。

那么说课稿应该怎么写才合适呢?下面是小编整理的高中数学说课稿6篇,仅供参考,大家一起来看看吧。

高中数学说课稿篇1一、教学目标1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义.2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程.领悟直角坐标系的工具功能,丰富数形结合的经验.3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观.4.培养学生求真务实、实事求是的科学态度.二、重点、难点、关键重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法.难点:把三角函数理解为以实数为自变量的函数.关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化).三、教学理念和方法教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用"启发探索、讲练结合"的方法组织教学.四、教学过程[执教线索:回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)--问题情境:能推广到任意角吗?--它山之石:建立直角坐标系(为何?)--优化认知:用直角坐标系研究锐角三角函数--探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)--自主定义:任意角三角函数定义--登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)--例题与练习--回顾小结--布置作业](一)复习引入、回想再认开门见山,面对全体学生提问:在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?探索任意角的三角函数(板书课题),请同学们回想,再明确一下:(情景1)什么叫函数?或者说函数是怎样定义的?让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x 叫做自变量,自变量x的取值范围叫做函数的定义域.现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A,其中x叫自变量,自变量x的取值范围A叫做函数的定义域.设计意图:函数和三角函数是一般和特殊的关系,是共性和个性的关系,学生已经学习了函数的概念,因此对三角函数的学习就是一个从一般到特殊的演绎的过程,也是以具体函数丰富函数概念的过程.教学经验表明:学生对函数两种定义的记忆是有一定困难的,容易遗忘,此处让学生对函数概念进行回想再认,目的在于明确函数概念的本质,为演绎学习任意角三角函数概念作好知识和认知准备.(情景2)我们在初中通过锐角三角形的边角关系,学习了锐角的正弦、余弦、正切等三个三角函数.请回想:这三个三角函数分别是怎样规定的?学生口述后再投影展示,教师再根据投影进行强调:设计意图:学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展).温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少.(二)引伸铺垫、创设情景(情景3)我们已经把锐角推广到了任意角,锐角的三角函数概念也能推广到任意角吗?试试看,可以独立思考和探索,也可以互相讨论!留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导.能推广吗?怎样推广?针对刚才的问题点名让学生回答.用角的对边、临边、斜边比值的说法显然是受到阻碍了,由于4.1节已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数.设计意图:从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的"再创造"征程.教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!师生共做(学生口述,教师板书图形和比值):把锐角α安装(如何安装?角的顶点与原点重合,角的始边与x轴非负半轴重合)在直角坐标系中,在角α终边上任取一点P,作Pm⊥x轴于m,构造一个RtΔomP,则∠moP=α(锐角),设P(x,y)(x>0、y>0),α的临边om=x、对边mP=y,斜边长|oP∣=r.根据锐角三角函数定义用x、y、r列出锐角α的正弦、余弦、正切三个比值,并补充对应列出三个倒数比值:设计意图:此处做法简单,思想重要.为了顺利实现推广,可以构建中间桥梁或公共载体,使之既与初中的定义一致,又能自然地迁移到任意角的情形.由于前一节已经以直角坐标系为工具来研究任意角了,学生自然能想到仍然以直角坐标系为工具来研究任意角的三角函数.初中以直角三角形边角关系来定义锐角三角函数,现在要用坐标系来研究,探索的结论既要满足任意角的情形,又要包容初中锐角三角函数定义.这是一个认识的飞跃,是理解任意角三角函数概念的关键之一,也是数学发现的重要思想和方法,属于策略性知识,能够形成迁移能力,为学生在以后学习中对某些知识进行推广拓展奠定了基础(譬如从平面向量到空间向量的扩展,从实数到复数的扩展等).(情景4)各个比值与角之间有怎样的关系?比值是角的函数吗?追问:锐角α大小发生变化时,比值会改变吗?先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:保持r不变,让P绕原点o旋转即α在锐角范围内变化,六个比值随之变化的直观形象。

5.3《任意角的正弦函数、余弦函数和正切函数》课件(1)

5.3《任意角的正弦函数、余弦函数和正切函数》课件(1)
余弦和正切函数的值。
设 ∠ = (是锐角),角的邻边=,对边
= ,斜边长 = => 0。根据锐角三角函
数定义用, , 表示锐角的正弦、余弦、正切三个
比值:
对边 | PM | y
邻边 |OM | x
对边 |PM | y
sin


cos

;tan

此时tan =

无意义。因此,正弦函数、余弦函数及正切函数

的定义域如下表所示:
三角函数
sin
cos
tan
定义域



≠ + , ∈
2
巩固知识 典型例题
例1 已知角的终边经过点P 2, −3 ,求角的正弦、余弦、
正切值。
分析:已知角的终边一点的坐标,求角的三个函数值时,
这些比值发生变化吗?






动脑思考 探索新知
正弦函数:sin =

;余弦函数:cos

=

;正切函数:tan

=



关于定义两点说明:
1.在比值存在的情况下,对角的每一个确定的值,按照相
应的对应关系,角的正弦、余弦、正切、都分别有唯一的比
值与之对应,它们都是以角为自变量的函数,分别叫做正
弦函数、余弦函数、正切函数,统称为三角函数。
2.当角采用弧度制时,角的取值集合与实数集R之间具有
一一对应的关系,所以三角函数是以实数为自变量的函数。
三角函数定义域
由任意角三角函数的定义可以看出,当角 的终边在 轴上时,

= + , ∈ ,终边上任意一点的横坐标的值都等于0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题4:探究当角取特殊值时,角的正弦、余弦函数值情况。
问题5:对于确定的角α ,正弦函数、余弦函数值是否随点P在角α 的终边上的位置的改变而改变呢?
问题1:本节所给正弦函数、余弦函数的定义与初
中是否一致?
承上启下:角是在平面直角坐标系中推广的,因

此一我步们研究也它可的以将正锐弦角函放数入和平余面弦直函角数坐。标系中,进y O 1
(3)求出角 的正弦、余弦函数值。
解:
y
(1)如图6,以原点为角的顶点,以 x轴正
半轴为始边,顺时针旋转 后,与单位圆交
于点P,

MO。
4
(2)由于 ,点P在第四象限,
4
M
o
1
4
P
所以点P的坐标为( 2 , 2 )
22
图6
(3)根据任意角的三角函数定义,易得sin( ) 2 ,cos( ) 2 . 点评:本例的目的是巩固并加深理解任4意角的2 正弦4、余2
是[-1,1]。
设计意图:在定义了任意角的正弦函数、余弦函数后,设置了思考 与交流的问题.其目的是:在教师的引导和启发下,经过同学们之间的 讨论和交流,加深对正弦函数、余弦函数定义的理解.
利用几何画板,
3.概念深化
(1)探究当角的终边分别在第一、第二、第三、第四象限 时,角的正弦、余弦函数值的正负号的情况。将自己的思 考探究结果先填入下表,然后再填入直角坐标系的各个象 限中,以便于加强记忆,灵活运用。
y
1
1y
x -1
x M M
x
M Mx
-1
O M MM M O
-1
O
-1
O
P
P
P
依据:(1)无论 为任意角,恒有:
P
MP M P ,即 sin y
OP OP
1r
OM OM ,即 cos x
OP OP
1r
比值一样,只需要考虑正负号。
(2)规定r x2 y2 0,且sin和y符号相同,cos和x符号相同。
教法:启发探索、讲解讨论结合、交流练习
学法:自主探究、动手实践、小组合作交流
教学手段:在由直角三角形过渡到直角坐标系的任意角时,我 使用了PPT动态效果。在分析任意角的正弦函数、余弦函数的正
四. 教学过程设计
创设情境,揭示课题
1.复习引入
教师提问1:在初中,我们学习了锐角的正弦函数、余弦函数,它
们是如何定义的?
4.应用举例
例1 确定下列三角函数值的符号:
(1)cos250
(2)sin
4
解:(1)因为 250 是第三象限角,所以cos250 0 ;
(2)因为

4
是第四象限角,所以
s in


4


0
.
例2
在直角坐标系的单位圆中,



4
,
(1)画出角 ; (2)求出角 的终边与单位圆的交点坐标;
因此本课从初中锐角三角函数的定义出发,结合任意角在 直角坐标系中的表示,让学生运用从特殊到一般的探究方法探 究任意角三角函数的定义,体会在直角坐标系中定义三角函数 的优越性,避免传统教学中老师给出定义、诠释定义的填鸭式 教学方法。
三. 说教法与手段
三角函数定义“简单易记”,学生很容易轻视它,不少学 生机械记忆、一知半解。新课的教学,应走出“概念一带而过, 演习铺天盖地”的误区,走向“重视过程、重视探究、重视交 流” 的新天地。本课采用“启发探索、讲练结合”的常规教学 方法,围绕学生的学习目标设计了一系列符合学生认知规律的 问题,层层深入,力求使学生体会定义产生、发展的过程及作 用,培养学生自主学习能力 。师生通过合作共同完成教学任务, 充分调动学生的积极性,培养学生的观察思考能力,不仅掌握了 知识,更重要的是锻炼了学生的思维能力和创造思维活动. 同时 让学生参与到解决问题的过程中去,充分体现“教为主导,学为 主体”的教学原则。
设计意图:回顾旧知,为后面探索任意角三角函数的定义做铺垫。
为了研究方便,引入单位圆的定义。

yO
1
P(u, v),
M
以原点为圆心,以单位 长度为半径的圆叫做 单位圆.
-1 -1
x
1
设计意图:此处做法简单,思想重要。 把角放入坐标系中一个简单的动作,将 形与数结合了起来,体现出了一种重要 的思想方法——数形结合法。
若OP r 1,则
根据初中所学的锐角三角函数定义,
有:sin MP v v
OP 1
cos OM u u
OP 1
-1 -1
P(u, v),
M
1x
结论:本节给出的正弦函数和余弦函数与初中给出的定义是一致的。 对于锐角来说,既可以用直角三角形边的比来定义正弦函数和余弦 函数,也可以依托坐标系中单位圆上点的坐标来定义。
提问:若 sin 0,求角的取值范围。
学生误区:一二象限角 ,忽略了特殊角情形。
利用几何画板,
(2)探究当角取特殊值 0, , , 3 ,2 时,角的正弦、余弦
函数值情况。
22
设计意图:使用几何画板很直观,学生更容易理解,注意力更加集 中,积极性也更高。
思考题:分小组填课本P15动手实践,并借助单位圆记 住特殊角的三角函数值。
当点P在第一、二象限时,纵坐标 y >0; 当点P在第三、四象限时,纵坐标 y <0。
所以,正弦函数值对于第一、二象限角是正的,对于第三、四象限 角是负的。同样地,余弦函数值在第一、四象限是正的,在第二、 三象限是负的。
设计意图:巩固了定义,又让学生感受到数学规律是自己发
现的,而不是教材中给出的生硬结论。
弦函数的定义以及利用单位圆解题,熟悉并善于利用数
形结合的思想解题。
提问:课本是从单位圆定义正弦、余弦函数,那从终边上任一 点是否也可以定义定义正弦、余弦函数呢?
5.难点突破
问题5:对于确定的角α ,正弦函数、余弦函数值是否随
点P在角α 的终边上的位置的改变而改变呢?为什么?
P
1
y P
P
y P1
r 13
13
变式:若将P(-2,-3)改为 P(-2a,-3a)(a≠0),试求角
a 的正弦函数值余弦函数值?
设计意图:熟练定义,变式是提醒同学们角的终边是射线, 应分情况讨论。
6.归纳小结
谈谈你的收获?
正弦函数、余弦函数是如何定义?定义域和值域是?
函数值在各象限的符号?
教自
特殊角的正弦、余弦函数值?
1
y P
y
1
P
x -1
-1
OM
MO
y
1
x
M
-1
O
P
1y
x -1
Mx
O
P
探索发现: 对于给定的任意角α,终边与单位圆的交点P的纵坐标v和横坐
标u都是唯一确定的。所以正弦函数余弦函数都是以角α为自变量, 以单位圆上点的坐标为函数值的函数。
设计意图:让学生在讨论、争辩的过程中认识三角函数,并培养学 生的合作意识。学生已经学习了函数的概念,因此对正弦函数、余 弦函数的学习就是一个从一般到特殊的演绎过程。
给出课本定义:
2.概念建构
在直角坐标系中,以坐标原点为圆心,以单位长为半径的圆,
称为单位圆。对于任意角 ,使角 的顶点与原点重合,始边与 x
轴的非负半轴重合,终边与单位圆交于唯一的点 P(u, v), 则称点P的
纵坐标v定义为角 的正弦函数,横坐标u定义为角 的余弦函数,分
别记作 v sin u cos
北师大版教材必修四第一章第4节
任意角的正弦函数、余弦函数定义
一. 说教材
1.教材的地位和作用
“任意角的正弦函数、余弦函数”是本章教学内容的基本概念, 是学生在学习了锐角三角函数后,对三角函数有一定的了解的基础 上,进行的推广。它是后续研究三角函数诱导公式,三角函数周期 性的基础。又是以后学习平面向量、解析几何等内容的必要准备。 并且,通过这部分内容的学习,可以帮助学生更加深入理解函数这 一基本概念。
3.教学重难点
重点:任意角的正弦、余弦函数的定义和定义域,函数值在各象 限的符号,以及特殊角的正弦、余弦函数值。 难点:从单位圆定义正弦、余弦函数推广到从终边上任一点定义 正弦、余弦函数。
二. 说学生
初中学生已经学过锐角三角函数的定义,对锐角三角函数 有一定的了解,而且学生通过任意角与弧度制的学习,已经会 利用直角坐标系来研究任意角。同时,学生已经具备一定的自 学能力,多数同学对数学的学习有相当的兴趣和积极性。
例3 假设角 的顶点是直角坐标系的原点,始边与 x
轴的非负半轴重合,已知角 终边上任一点Q(x, y) ,
求角 的正弦函数值余弦函数值。
例4 已知角 a 的终边经过P(-2,-3),求 a 的正弦函数 值余弦函数值。
sin a = y = - 3 = - 3 13
r 13
13
cosa = x = - 2 = - 2 13
如果对于任意角
何进行定义呢?
,是不是也存在正弦函数、余弦函数呢?该(如 让
在直角三角形中定义:

斜边



α

邻边

教师提问2:函数是怎样定义的呢?

设A、B是两个非空的数集,如果按某种对应法则f,对于集合A中
的每一个元素,在集合B中都有惟一的元素y和它对应,那么这样
的对应叫做从A到B的一个函数,通常记为y= f(x),x∈A 。其 中,所有的自变量x组成的集合A叫做函数y= f(x)的定义域。
问题2:探究正弦函数、余弦函数的定义域和值域?
相关文档
最新文档