七上实数经典例题及习题
(完整版)新浙教版七年级上册数学第三章《实数》知识点及典型例题
新浙教版七年级上册数学第三章《实数》知识点及典型例题注意掌握以下公式:① 2a⎧=⎨⎩② 33a a =-将考点与相关习题联系起来考点一、关于“……说法正确的是……”的题型 1、下列说法正确的是( )A .有理数只是有限小数B .无理数是无限小数C .无限小数是无理数D .4π是分数 2、有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17是17的平方根。
其中正确的有( ) A .0个 B .1个 C .2个 D .3个 3、下列结论中正确的是 ( )A .数轴上任一点都表示唯一的有理数B .数轴上任一点都表示唯一的无理数 C. 两个无理数之和一定是无理数 D. 数轴上任意两点之间还有无数个点 考点二、有关概念的识别1、下面几个数:.0.34,1.010********.064-3π,2275 ) A. 1 B. 2 C. 3 D. 4 2、下列说法中正确的是( ) A.813 B. 1的立方根是±1 C. 1=±1 D. 55的平方根的相反数3、一个自然数的算术平方根为a ,则与之相邻的前一个自然数是 考点三、计算类型题126,则下列结论正确的是( )A.4.5<a<5.0B.5.0<a<5.5C.5.5<a<6.0D.6.0<a<6.5 4、对于有理数x 120132013x x x--的值是 322(39)(310)ππ-- 4、4(x-1)2=9考点四、数形结合1. 点A 在数轴上表示的数为35,点B 在数轴上表示的数为5A ,B 两点的距离为______2、如图,数轴上表示12的对应点分别为A ,B ,点B 关于点A 的对称点为C ,则点C 表示的数是( ) A 2-1 B .12 C .22 D 2-2考点五、实数绝对值的应用1、32232+23考点六、实数非负性的应用123|49|7a baa--=+,求实数a,b的值。
七年级实数计算题
七年级实数计算题一、平方根的计算。
1. 计算√(16)- 解析:因为4^2 = 16,所以√(16)=4。
2. 计算√(25)+√(9)- 解析:√(25) = 5,因为5^2=25;√(9)=3,因为3^2 = 9。
所以√(25)+√(9)=5 + 3=8。
3. 计算√(121)-√(49)- 解析:√(121) = 11,因为11^2=121;√(49)=7,因为7^2 = 49。
所以√(121)-√(49)=11-7 = 4。
4. 计算√(0.09)- 解析:因为0.3^2=0.09,所以√(0.09)=0.3。
5. 计算√(1frac{9){16}}- 解析:先将带分数化为假分数,1(9)/(16)=(25)/(16)。
因为((5)/(4))^2=(25)/(16),所以√(1frac{9){16}}=(5)/(4)。
二、立方根的计算。
6. 计算sqrt[3]{8}- 解析:因为2^3 = 8,所以sqrt[3]{8}=2。
7. 计算sqrt[3]{ - 27}- 解析:因为( - 3)^3=-27,所以sqrt[3]{-27}=-3。
8. 计算sqrt[3]{64}+sqrt[3]{ - 1}- 解析:sqrt[3]{64}=4,因为4^3 = 64;sqrt[3]{-1}=-1,因为( - 1)^3=-1。
所以sqrt[3]{64}+sqrt[3]{-1}=4+( - 1)=3。
9. 计算sqrt[3]{0.001}- 解析:因为0.1^3 = 0.001,所以sqrt[3]{0.001}=0.1。
10. 计算sqrt[3]{1-(19)/(27)}- 解析:先计算1-(19)/(27)=(8)/(27)。
因为((2)/(3))^3=(8)/(27),所以sqrt[3]{1-(19)/(27)}=(2)/(3)。
三、实数的混合运算。
11. 计算√(4)+sqrt[3]{ - 8}- - 3- 解析:√(4)=2,sqrt[3]{-8}=-2,| - 3|=3。
七年级数学实数测试题及答案
七年级数学实数测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.1415926B. √2C. 0.33333(无限循环小数)D. 1/32. 以下哪个表达式的结果不是实数?A. √(-1)B. √(9)C. √(16)D. √(4)3. 两个实数相除,结果为实数的条件是:A. 两个数都是正数B. 两个数都是负数C. 除数不为零D. 被除数不为零4. 如果a和b是实数,且a > b,那么下列哪个表达式一定大于0?A. a - bB. b - aC. a * bD. a / b5. 下列哪个数是实数?A. 5.6C. √(-4)D. 0.333...(无限循环小数)6. 如果a是一个正实数,那么下列哪个表达式的结果也是正实数?A. 1/aB. -1/aC. a^2D. -a^27. 以下哪个数是实数的平方根?A. √3B. √(-3)C. -√3D. √98. 如果a是一个实数,那么下列哪个表达式的结果不是实数?A. a + 1B. a - 1C. a / aD. a * a9. 下列哪个数是实数的立方根?A. ³√8B. ³√(-1)C. ³√(-8)D. ³√110. 如果a是一个实数,那么下列哪个表达式的结果总是实数?A. √aB. a^2D. a^3二、填空题(每题2分,共20分)11. √25的值是______。
12. 一个数的立方根是2,那么这个数是______。
13. 两个实数相除,如果除数是正数,结果的符号与______相同。
14. 如果一个数的平方根是5,那么这个数是______。
15. 一个数的绝对值是3,那么这个数可以是______或______。
16. √(-1)的值是______。
17. 一个数的平方是16,那么这个数是______或______。
18. 如果a是一个实数,那么1/a的值是实数的条件是a不等于______。
七年级实数经典例题
七年级实数经典例题一、实数的概念相关例题1. 下列各数中,哪些是有理数?哪些是无理数?√(4),(1)/(3),π,0.575̇7,0.1010010001·s(相邻两个1之间0的个数逐次加1),sqrt[3]{ 8}。
解析:有理数是整数与分数的统称。
√(4)=2,是整数,所以是有理数。
-(1)/(3)是分数,属于有理数。
0.575̇7是无限循环小数,属于有理数。
sqrt[3]{ 8}=-2,是整数,是有理数。
π是无限不循环小数,是无理数。
0.1010010001·s(相邻两个1之间0的个数逐次加1)是无限不循环小数,是无理数。
2. 把下列各数分别填入相应的集合里:-√(16),(π)/(3),3.1415926,0.456,3.030030003·s(相邻两个3之间0的个数逐次加1),0,(22)/(7),sqrt[3]{ 8},7.5,√(81)。
有理数集合:{};无理数集合:{}。
解析:先对各数进行化简:-√(16)=-4。
√(81)=9。
-sqrt[3]{ 8}=2。
有理数集合:{-√(16),3.1415926,0.456,0,(22)/(7),sqrt[3]{ 8},7.5,√(81)}。
无理数集合:{(π)/(3),3.030030003·s(相邻两个3之间0的个数逐次加1)}。
二、实数的大小比较例题1. 比较√(5)与2.236的大小。
解析:因为(√(5))^2 = 5,2.236^2=4.999696。
又因为5>4.999696。
根据一个正数,它的平方越大,这个正数越大,所以√(5)>2.236。
2. 比较-√(3)与1.732的大小。
解析:因为|-√(3)|=√(3)≈1.7321,| 1.732| = 1.732。
两个负数比较大小,绝对值大的反而小。
由于1.7321>1.732。
所以-√(3)< 1.732。
三、实数的运算例题1. 计算:√(16)-sqrt[3]{ 8}+√(frac{1){4}}。
七年级数学 实数 练习题及答案
26
(2)
n-
n n2 1
n
n n2 1
(n 为大于 0 的自然数).
小结: 此类规律型问题的特点是给定一列数或等式或图形,要求适当地计算,必要的观察,猜想,归纳,验 证,利用从特殊到一般的数学思想,分析特点,探索规律,总结结论.
举一反三:
1. 某正数的平方根为 a 和 2a 9 ,则这个数为(). 33
表示的数为( ).
A. -2- 3 B. -1- 3
C. -2+ 3
D. 1+ 3
解析:∵AB= 3 +1, ∴C 点表示的数为-1-( 3 +1)=-2- 3 . 选 A
5/6
3. (1)1 的平方根是
;立方根为
;算术平方根为
.
(2)平方根是它本身的数是
.
(3)立方根是其本身的数是
.
(4)算术平方根是其本身的数是
例 3 求下列各式中的 x:(1)x2-144=0;(2)25x2-16=0;(3)(x-3)2=25.
解析: 先通过移项、系数化为 1,将原式变形为 x2=a(a≥0)的形式,再根据平方根的定义求出未知数 x 的 值.
答案: 解:(1)x2-144=0
x2=144 x=±12;(下) (2)25x2-16=0 x2= 16
A. 1 B. 2 C. 4
D. 9
解析:由平方根定义知 a 与 2a 9 互为相反数, 33
所以 a + 2a 9 =0, 33
解得 a=3, 所以这个数的平方根为±1, 所以这个数为 1.选 A.
2. 如图 3-3,数轴上 A,B 两点表示的数分别为-1 和 3 ,点 B 关于点 A 的对称点为点 C,则点 C 所
初一数学实数计算题专题训练(含答案)
专题一计算题训练一.计算题1.计算题:|﹣2|﹣(1+)0+.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)3.4 . ||﹣.5.计算题:.6.计算题:(1);7 .8.(精确到0.01).9.计算题:.10.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2);11.| ﹣|+﹣12. ﹣12+×﹣213. .14. 求x的值:9x2=121.15. 已知,求xy的值.16. 比较大小:﹣2,﹣(要求写过程说明)17.求x的值:(x+10)2=1618. .19. 已知m<n,求+的值;20.已知a<0,求+的值.专题一计算题训练参考答案与试题解析一.解答题(共13小题)1.计算题:|﹣2|﹣(1+)0+.解答:解:原式=2﹣1+2,=3.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)解答:解:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2),=﹣1+4×9+3,=38.3.4. ||﹣.原式=14﹣11+2=5;(2)原式==﹣1.点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.5.计算题:.考点:有理数的混合运算。
801377分析:首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可.解答:解:原式=﹣4+8÷(﹣8)﹣(﹣1)=﹣4﹣1﹣(﹣)=﹣5+=﹣.点评:本题主要考查有理数的混合运算,乘方运算,关键在于正确的去括号,认真的进行计算即可.6.;7..考点:实数的运算;立方根;零指数幂;二次根式的性质与化简。
801377分析:(1)注意:|﹣|=﹣;(2)注意:(π﹣2)0=1.解答:解:(1)(==;(2)=1﹣0.5+2=2.5.点评:保证一个数的绝对值是非负数,任何不等于0的数的0次幂是1,注意区分是求二次方根还是三次方根.8.(精确到0.01).考点:实数的运算。
七年级数学-实数习题精选(含答案)
实数单元练习题1填空题:(本题共10小题,每小题2分,共20分)1、()26-的算术平方根是__________。
2、ππ-+-43= _____________。
3、2的平方根是__________.4、实数a,b,c 在数轴上的对应点如图所示 化简c b c b a a ---++2=________________。
5、若m 、n 互为相反数,则n m +-5=_________。
6、若2)2(1-+-n m =0,则m =________,n =_________。
7、若 a a -=2,则a______0.8、12-的相反数是_________。
9、 38-=________,38-=_________。
10、绝对值小于π的整数有__________________________。
选择题:(本题共10小题,每小题3分,共30分)11、代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有( )。
A 、1个B 、2个C 、3个D 、4个12、若73-x 有意义,则x 的取值范围是( )。
A 、x >37-B 、x ≥ 37- C 、x >37 D 、x ≥37 13、若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。
A 、0B 、21 C 、2 D 、不能确定 14、下列说法中,错误的是( ). A 、4的算术平方根是2 B 、81的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-115、64的立方根是( )。
A 、±4B 、4C 、-4D 、1616、已知04)3(2=-+-b a ,则ba 3的值是( )。
A 、 41 B 、- 41 C 、433 D 、43 17、计算33841627-+-+的值是( )。
A 、1B 、±1C 、2D 、718、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。
七年级数学实数计算题练习(含答案)
七年级数学实数计算题练习(含答案)1.求下列各式中x的值.(1)4x2﹣9=0;(2)64(x﹣2)3﹣1=0.2.求下列各式中的x.(1)(x﹣1)2﹣8=1.(2)27+(1﹣2x)3=0.3.计算:(1);(2).4.(1);(2).5.(1)计算:;(2)已知8(x﹣1)2=16,求x的值.6.已知=x,,z是﹣8的立方根,求2x+y﹣z的平方根.7.求下列式子中x的值.(1);(2)3x3=﹣81.8.求等式中x的值:3(x+1)2=12.9.计算:.10.(1)若(x﹣1)3=8求x的值;(3)计算.11.计算:﹣12+﹣.12.计算:(1).(2)﹣|﹣2|+(﹣).13.计算:(1);(3).14.已知:实数a、b、c在数轴上的位置如图:且|a|=|b|,化简:|a|﹣|a+b|﹣|c﹣a|+|c+b|﹣|﹣b|.15.计算:(1)(﹣1)2021+﹣+|﹣2|;(2)﹣﹣++.16.计算题:(1);(2).17.计算:(1);(2).答案:1.求下列各式中x的值.(1)4x2﹣9=0;(2)64(x﹣2)3﹣1=0.【解答】解:(1)4x2﹣9=0,移项得:4x2=9,系数化为1得:,∴;(2)64(x﹣2)3﹣1=0,移项得:64(x﹣2)3=1,系数化为1得:,∴,∴.2.求下列各式中的x.(1)(x﹣1)2﹣8=1.(2)27+(1﹣2x)3=0.【解答】解:(1)(x﹣1)2﹣8=1,(x﹣1)2=9,x﹣1=3或x﹣1=﹣3,x=4或x=﹣2;(2)27+(1﹣2x)3=0,(1﹣2x)3=﹣27,1﹣2x=﹣3,x=2.3.计算:(1);(2).【解答】解:(1)===;(2)===9+5=14.4.(1);(2).【解答】解:(1)=﹣27+2﹣﹣3+4=﹣24;(2)=2﹣﹣=.5.(1)计算:;(2)已知8(x﹣1)2=16,求x的值.【解答】解:(1)=+3;(2)8(x﹣1)2=16,(x﹣1)2=2,x﹣1=±,x﹣1=或x﹣1=﹣,x=1+或x=1﹣.6.已知=x,,z是﹣8的立方根,求2x+y﹣z的平方根.【解答】解:∵=x,,z是﹣8的立方根,∴x=5,y=4,z=﹣2,∴2x+y﹣z=10+4+2=16,∴2x+y﹣z的平方根是±4.7.求下列式子中x的值.(1);(2)3x3=﹣81.【解答】解:(1)∵,∴,解得:,;(2)∵3x3=﹣81,∴x3=﹣27,解得:x=﹣3.8.求等式中x的值:3(x+1)2=12.【解答】解:∵3(x+1)2=12,∴(x+1)2=4,∴x+4=±2,∴x+4=2或x+4=﹣2,解得:x=﹣3或x=1.9.计算:.【解答】解:=1+×4﹣(﹣4)=1+2+4=7.10.(1)若(x﹣1)3=8求x的值;(2)计算.【解答】解:(1)∵(x﹣1)3=8,∴x﹣1=2,∴x=3.(2)原式=4﹣(﹣3)+6﹣(4﹣)=4+3+6﹣4+=9+.11.计算:﹣12+﹣.【解答】解:原式=﹣1+3﹣2=0.12.计算:(1).(2)﹣|﹣2|+(﹣).【解答】解:(1)=﹣1+2+8×=﹣1+2+4=5;(2)﹣|﹣2|+(﹣)=4+﹣2+3﹣1=4+.13.计算:(1);(2).【解答】解:(1)原式=1+﹣1+3=3+;(2)原式=3﹣2+=1+.14.已知:实数a、b、c在数轴上的位置如图:且|a|=|b|,化简:|a|﹣|a+b|﹣|c﹣a|+|c+b|﹣|﹣b|.【解答】解:根据图示,可得:a<c<0<b,且|c|<|b|,∴c﹣a>0,c+b>0,﹣b<0,∵a<0<b,且|a|=|b|,∴a+b=0,∴|a|﹣|a+b|﹣|c﹣a|+|c+b|﹣|﹣b|=﹣a﹣0﹣(c﹣a)+(c+b)﹣b=﹣a﹣0﹣c+a+c+b﹣b=0.15.计算:(1)(﹣1)2021+﹣+|﹣2|;(2)﹣﹣++.【解答】解:(1)(﹣1)2021+﹣+|﹣2|=﹣1+2﹣4+2﹣=﹣1﹣;(2)﹣﹣++=3﹣0﹣++=3.16.计算题:(1);(2).【解答】解:(1)=﹣1+4﹣3=0;(2)=﹣1+3+2﹣2=3.17.计算:(1);(2).【解答】解:(1)原式=5+1=6;(2)原式=5+﹣=5.。
数学七年级上册第四章第6节《实数》专题训练及答案解析
第六节 《实数》专题训练第1题. 把下列各数分别填写在相应的括号内.03220.5550 3.1515515559(27π---π,,,,,,无理数集合{};有理数集合{ };正实数集合{ };分数集合{ };负无理数集合{}.第2题. 化简:0)m m <.第3题. 计算:200420032)2).第4题. 已知x y ==22353x xy y -+的值.第5题. 座钟的摆动一个来回所需的时间称为一个周期,其中计算公式为2T =T 表示周期(单位:s ),l 表示摆长(单位:m ),g 为重力加速度且9.8g =m/s 2.假如一台座钟的摆长为0.5m ,它每摆动一个来回发出一次滴答声,那么在1min 内,该座钟发出多少次滴答声?第6题. 计算:22--×;第7题. 和数轴上的点一一对应的数是( ) A.整数 B.有理数 C.无理数D.实数第8题. x y ,38y =-,则xy =( ) A.3-B.3C.43-D.不能确定第9题. 22)0x -=中,x = . 第10题. 计算或化简:2(7+;第11题. 若实数a b c ,,2(5)0b +=,求代数式ab c+的值. 第12题. 化简求值.22-,其中34a b ==,.第13题. 设a b c ,,都是实数,且满足条件2(2)80a c -+=,20ax bx c ++=.求代数式221x x +-的值.第14题.已知22 x y==求11x yy x⎛⎫⎛⎫++⎪⎪⎝⎭⎝⎭的值.第15题. 细心观察图,认真分析各式,然后解答各个问题.21222312213214SSS+==+==+==,,,(1)请用含n的(n为正整数)的等式表示上述变化规律.(2)推算出10OA的长度.(3)求出222212310S S S S++++的值.第16题.已知a b c===,则a b c,,的大小关系为()A.a b c>>B.a c b>>C.b a c>>D.c b a>>第17题.x.第18题.计算或化简:5.第19题.计算或化简:.第20题.,其中23x y==,.第21题. a b,为实数,在数轴上的位置如图所示,则a b-+)A.a-B.aC.2a b-D.2b a-第22题. 老师在黑板上画了一个图,如图,图中A点表示,它与1.5第23题. 21a=-,则a的值为.第24题. 我们在学习“实数”时,以数轴上的单位长度1为线段作一个正方形,然后以原点O为圆心,正方形的对角线长为半径画弧交x轴于点A,如图,请根据图形回答问题:(1)OA长度是多少?(要求写出求解过程)(2)这种研究和解决问题的方式,体现了的数学思想方法.A.数形结合B.代入C.换元D.归纳5A4A3A2A1A1S2S3S4SO1111第25题.下列各数:50-π0.30.1010010001,,中无理数的个数是()A.1 B.2 C.3 D.4 第26题. 下列说法正确的是()A.无理数之和仍为无理数B.有理数之和仍为有理数C.无理数之积仍为无理数D.有理数与无理数之积仍为无理数第27题. 实数a的平方的算术平方根是()A.aC.a-D.a第28题. 下列四个例题中,正确的是()A.数轴上任意一点都表示一个有理数B.数轴上任意一点都表示一个无理数C.数轴上的点与实数一一对应D.数轴上的点与有理数一一对应第29题. 下列计算正确的是()=B.2=236==第30题. 下列关于实数的说法中,正确的是()A.没有最大的实数,但有最小的实数B.没有最小的实数,但有最大的实数C.没有绝对值最大的数,但有绝对值最小的数D.没有绝对值最小的数,但有绝对值最大的数第31题.21(2)2--⎛⎫-⎪⎪⎝⎭,与02的大小关系是()A.2012(2)2--⎛>>-⎝⎭B.210(2)22--⎛>->⎝⎭C.2012(2)-->->⎝⎭D.2012(2)-->>-⎝⎭第32题. 若x为任意实数,则下列各式中能成立的是()2 =x =22x=-第33题. 若实数a=.第34题. 如图,以1为直角边长作直角三角形,以它的斜边长和1为直角边作第二个直角三角形,再以它的斜边和1为直角边作第三个直角三角形,以此类推,所得第n个直角三角形的斜边长为.第35题. 计算:(122713(23)383+- (2)2(32(402+(501)1+第36题. 若x 是无理数,但(2)(6)x x -+是有理数,则下列结论正确的是( ) A.2x 是有理数B.2(6)x +是无理数 C.(2)(6)x x +-是无理数D.2(2)x +是无理数第37题. 若1x <,则x =( ) A.0B.44x -C.44x -D.4x第38题. 若a <a 的范围是( )A.0a <B.0a >C.1a >D.01a <<第39题. 若m 2m m += .第40题. 200320042)(32)+= .第41题. 当0x y >, 时,第42题. a 和b 的值.第43题.第44题. 若2y =,则xy = .第45题. 2== .第46题.第47题. 化简求值(122433x xy y x y-+-(其中x y ==(22.25a =) 第48题.第49题. 下列关于实数的说法中,不正确的是( )A.既没有最大的实数,也没有最小的实数 B.两个实数中,平方较大者的绝对值也较大C.没有绝对值最大的实数,但有绝对值最小的实数D.有理数都可以用数轴上的点来表示,反过来,数轴上的某点也一定可以找到一个有理数与之相对. 第50题. 写出一个3到4之间的无理数 .第51题. 设a =2b =2c =,则a ,b ,c 的大小关系是( ) A.a>b>c B.a>c>b C. c>b>a D. b>c>a第52题.已知2a <=第53题.2)得 ( )A.-22 C.2D.2第54题. 如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是 ( )A.0 B .1D.3第55题. 函数y =自变量的取值范围是( ) A.0x >B.0x <C.0x ≥D.0x ≤第56题. 第57题. 实数a = .a 0第58题.计算:222223-⎛⎛⎛⎫-+--⎪ ⎝⎭⎝⎭⎝⎭ 第59题. 若x ≤0,则化简1x -A.12x -B.21x -C.1-D.1B C第60题.已知a b ==A.5B.6C.3D.4第61题. 实数a在数轴上的位置如图所示,则化简2a -+结果为 .第62题. 下列运算正确的是A .a 2+a 3=a 5B .(-2x )3=-2x 3C .(a -b )(-a +b )=-a 2-2ab -b 2D =第63题. ( )A.在4和5之间 B.在5和6之间 C.在6和7之间 D.在7和8之间 第64题. 写出两个和为1的无理数 (只写一组即可).(第18题)(第17题)第六节 《实数》专题训练参考答案1.答案:解:无理数集合{373.151********π-2,,,,};有理数集合{0220.555( 3.14159267--π,,,,};正实数集合{0ππ2,};分数集合{220.555 3.14159267--,,,};负无理数集合{53.1515515555--,,}.2. 答案:解:0m <,m m ==-.故()22m m m m m m m =-=--==-.3. 答案:解:原式200320032)(52)=+200320032220032)2)2)22)1 2.⎡⎤=⎣⎦⎡⎤=-⎣⎦==×4. 答案:解:22223533()5x xy y x y xy -+=+-2223()253()653()11x y xy xyx y xy xyx y xy ⎡⎤=+--⎣⎦=+--=+-,又由已知可得x y +=+=321xy ==-=,故原式231113361197=-=-=×××.5. 答案:解:依题意知,0.5l =m ,9.8g =m/s 2,则该座钟的周期为22T ==又222T 11==π=π77××××2177=π=π×=s .3.16≈.故17T ≈× 3.16 3.14 1.42=×s . 又一个周期发出一次滴答声则计算6042.25442T≈≈. 故1min 该座钟发出约42次滴答声. 6.答案:解:原式431)=--=-×12111=-;7. 答案:D 8. 答案:A 9.10.答案:解:原式(73)=+-22(7749481.=+-=-=-=11. 答案:解:由题意得30a -=且50b +=且70c +=,得3a =,且5b =-且7c =-.则31574a b c ==-+--. 12.答案:解:由平方差公式得22-⎡⎤⎡⎤=+-⎣⎦⎣⎦==×当34a b ==,时,原式==13. 答案:解:由已知得220080a a b c c -=⎧⎪++=⎨⎪+=⎩,,,,解得248.a b c =⎧⎪=⎨⎪=-⎩,,222480ax bx c x x ∴++=+-=,即224x x +=,那么221413x x +-=-=.14. 答案:解:化简1112x y xy y x xy⎛⎫⎛⎫++=++ ⎪⎪⎝⎭⎝⎭,又22x y ==则(2431xy ==-=,故原式121124xy xy=++=++=.15. 答案:解:(1)这一规律如下:2112n n S +=+=,; (2)10OA 应是1011OA A Rt △的一直角边,且有101110101110122OA A S S A A OA ===Rt △××,即10122OA =×.即10OA ; (3)2222222212310123102222S S S S ⎛⎫⎛⎫⎛⎫⎛⎫++++=++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1155(123410)55444=+++++==×. 16. 答案:D17. 答案:3x >-18. 答案:解:原式23522=--=-. 19. 答案:解:原式(1812)6=-=. 20. 答案:解:原式x yx y+=-.当23x y ==,时,原式5=-. 21. 答案:C22.1.5<23. 答案:10±,24. 答案:解:(1)OA1OB OA OB ===,OA ∴=;(2)A.25. 答案:B 26. 答案:B 27. 答案:D 28. 答案:C 29. 答案:C 30. 答案:C 31. 答案:A 32. 答案:C33. 134.35. 答案:(1) 4.5-(2)14-(3)9(4)4(536. 答案:C37. 答案:C38. 答案:D39. 答案:240. 答案:241. 答案:0≤42. 答案:584a b==,43. 答案:44. 答案:345. 答案:46. 答案:<47. 答案:(1)(2)17 8148. 答案:049. 答案:D50. 答案:π51. 答案:A52. 答案:2a-53. 答案:A54. 答案:C55. 答案:B56. 答案:解:原式==1=-.57. 答案:a-58. 答案:解:原式19124=+-34=-.59. 答案:D60. 答案:A61. 答案:162. 答案:D63. 答案:D64. 1。
初一数学实数计算题专题训练(含答案)
初一数学实数计算题专题训练(含答案) 专题一计算题训练一1.计算题:| -2 | - (1+) 0+.解答:原式 = 2 - 1 + 2 = 3.2.计算题:- + 4 × (-3)² + (-6) ÷ (-2).解答:原式 = - + 4 × 9 + 3 = 38.5.计算题:(-4)³ - 8 ÷ (-8) - (-1).解答:原式 = -64 + 1 - (-1) = -64 + 2 = -62.10.(-2)³ + (-3) × [(-4)² + 2] - (-3)² ÷ (-2).解答:原式 = -8 + (-3) × [16 + 2] - 9 ÷ (-2) = -8 + (-3) × 18 + 4.5 = -8 - 54 + 4.5 = -57.5.11.| -| -1 | - 2 |.解答:原式 = | -1 - 2 | = 1.14.求 x 的值:9x² = 121.解答:x² = 121 ÷ 9 = 13 1/3,x = ± √13 1/3.15.已知 2x + 3y = 10,3x - y = 2,求 xy 的值(精确到0.01)。
解答:将第二个式子变形为 y = 3x - 2,代入第一个式子得到 2x + 9x - 6 = 10,解得 x = 1,代入 y = 3x - 2 得到 y = 1,所以 xy = 1,精确到 0.01.16.比较大小:-2,-(-2)(要求写过程说明)。
解答:-(-2) = 2,所以 -2 < -(-2).17.求 x 的值:(x + 10)² = 16.解答:x + 10 = ± 4,解得 x = -6 或 -14.19.已知 m < n,求 (m + n) ÷ 2 和 (n - m)²的大小关系。
七年级数学上册实数经典大题例题
(每日一练)七年级数学上册实数经典大题例题单选题1、下列计算正确的是()A.√0.09=±0.3B.√414=2√12C.√−273=−3D.−√|−25|=5答案:C解析:根据平方根的性质、立方根的性质以及绝对值的性质即可求出答案.A、原式=0.3,故A不符合题意.B、原式=√174=√172,故B不符合题意.C、原式=﹣3,故C符合题意.D、原式=﹣5,故D不符合题意.故选:C.小提示:本题考查了平方根的性质、立方根的性质以及绝对值的性质,正确进行平方根与立方根的计算是关键,要注意平方根与算术平方根的区别.2、下列四个实数中,是无理数的为()A.0B.√3C.﹣1D.13答案:B解析:因为0,﹣1,1是有限小数或无限循环小数,√3是无限不循环小数,所以√3是无理3数,故选B.3、下列实数中,最大的数是()A.﹣1B.0C.√3D.13答案:C解析:根据实数的大小比较,负数总是小于零,正数总是大于零,同负绝对值大的反而小,同为正可以进行估算比较大小.,解:∵√3≈1.732>13∴﹣1<0<1<√3,3∴最大的数是√3.故选:C.本题主要考查实数的大小比较,可以根据负数总是小于零,正数总是大于零,同负绝对值大的反而小进行判断.填空题4、若一个数的立方根等于这个数的算术平方根,则这个数是_____.答案:0或1解析:设这个数为a,由立方根等于这个数的算术平方根可以列出方程,解方程即可求出a.解:设这个数为a,由题意知,3=√a(a≥0),√a解得:a=1或0,所以答案是:1或0小提示:本题主要考查算术平方根和立方根等知识点,基础题需要重点掌握,同学们很容易忽略a≥0.5、规定运算:(a*b)=|a-b|,其中a、b为实数,则(√7*3)+√7=________.解析:根据题意得(√7*3)+√7=|√7-3|+√7=3-√7+√7=3,所以答案是:3.解答题6、阅读下面的文字,解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部地写出来,于是小明用√2-1来表示√2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为√2的整数部分是1,•将这个数减去其整数部分,差就是小数部分.请解答:已知:10+√3=x+y,其中x是整数,且0<y<1,求x-y的相反数.答案:√3-12解析:本题主要考查了无理数的公式能力,解题关键是估算无理数的整数部分和小数部分. 根据题意的方法,估计√3的大小,易得10+√3的范围,进而可得xy的值;再由相反数的求法,易得答案.解:∵1<√3<2,∴1+10<10+√3<2+10,∴11<10+√3<12,∴x=11,y=10+√3-11=√3-1,x-y=11-(√3-1)=12-√3,∴x-y的相反数√3-12.。
七年级数学上册《第三章-实数》练习题及答案-浙教版
七年级数学上册《第三章 实数》练习题及答案-浙教版一 、选择题1.下列各数:1.414,2,-13,0,其中是无理数的是( ) A.1.414 B. 2 C.-13D.0 2.下列各数中,无理数的个数有( )A.1个B.2个C.3个D.4个3.计算1916+42536的值为( ) A.2512 B.3512 C.4712 D.57124.当14 a 的值为最小时,a 的取值为( )A.-1B.0C.﹣14D.1 5.下列说法正确的是( )A.|-2|=-2B.0的倒数是0C.4的平方根是2D.-3的相反数是36.若a=10,则实数a 在数轴上对应的点的大致位置是( )A.点EB.点FC.点GD.点H7.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心、正方形对角线的长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .- 2B .2- 2C .1- 2D .1+ 28.实数-7,-2,-3的大小关系是( )A.-7<-3<-2B.-3<-2<-7C.-2<-7<-3D.-3<-7<-2二 、填空题9.写出一个3到4之间的无理数 .10.化简:|3﹣2|= .11.实数a,b在数轴上的位置如图所示,则a2﹣|a﹣b|=______.12.比较大小:5﹣3 0.(填“>”、“﹦”或“<”号)13.点A在数轴上和原点相距7个单位,点B在数轴上和原点相距3个单位,且点B在点A的左边,则A,B两点之间的距离为 .14.如图,数轴上与1,2对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为x,则|x-2|的值是____________.三、解答题15.在数轴上画出表示下列各数的点,并用”<”连接.16.已知表示实数a,b的两点在数轴上的位置如图所示,化简:|a-b|+(a+b)2.17.一个长方体木箱,它的底面是正方形,木箱高1.25m,体积是11.25m3,求这个木箱底面的边长.18.如图,某玩具厂要制作一批体积为100 0cm3的长方体包装盒,其高为10cm. 按设计需要,底面应做成正方形. 求底面边长应是多少?19.例:试比较4与17的大小.解:∵42=16,(17)2=17又∵16<17∴4<17.请你参照上面的例子比较下列各数的大小.(1)8与65;(2)1.8与3;(3)-5与-24.20.阅读理解∵4<5<9,即2<5<3.∴1<5﹣1<2∴5﹣1的整数部分为1.∴5﹣1的小数部分为5﹣2.解决问题:已知a是17﹣3的整数部分,b是17﹣3的小数部分,求(﹣a)3+(b+4)2的平方根.参考答案一、选择题1.【答案】B2.【答案】C3.【答案】B4.【答案】C5.【答案】D6.【答案】C7.【答案】B8.【答案】D二、填空题9.【答案】π.10.【答案】2﹣ 3.11.【答案】﹣b12.【答案】<.13.【答案】3±7.14.【答案】22-2三、解答题15.【答案】解:数轴略-2<-3<0<0.5<2< 516.【答案】解:由图知b<a<0,∴a-b>0,a+b<0.故|a-b|=a-b,(a+b)2=-(a+b)=-a-b∴原式=a-b-a-b=-2b.17.【答案】解:11.25÷1.25=3m.18.【答案】解:由题意可知:底面面积为:1000÷10=100 cm2所以底面边长:10 cm19.【答案】解:(1)8<65 (2)1.8> 3 (3)-5<-2420.【答案】解:∵<<∴4<17<5∴1<17﹣3<2∴a=1,b=17﹣4∴(﹣a)3+(b+4)2=(﹣1)3+(17﹣4+4)2=﹣1+17=16∴(﹣a)3+(b+4)2的平方根是:±4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点总结及题型考点一、实数的概念及分类 (3分) 1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分) 1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分) 1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0 3、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
考点四、科学记数法和近似数 (3—6分) 1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法把一个数写做n a 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。
考点五、实数大小的比较 (3分) 1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a bab a b a b a b a <⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。
(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。
考点六、实数的运算 (做题的基础,分值相当大)1、加法交换律 a b b a +=+2、加法结合律 )()(c b a c b a ++=++3、乘法交换律 ba ab =4、乘法结合律 )()(bc a c ab =5、乘法对加法的分配律 ac ab c b a +=+)(6、实数混合运算时,对于运算顺序有什么规定?实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。
同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。
7、有理数除法运算法则就什么?两有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不为零的数,商都是零。
8、什么叫有理数的乘方?幂?底数?指数?相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。
记作: a n9、有理数乘方运算的法则是什么?负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数。
零的任何正整数幂都是零。
10、加括号和去括号时各项的符号的变化规律是什么?去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。
经典例题类型一.有关概念的识别1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念,∵=9,9的平方根是±3,∴A正确.∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、1.4C、D、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.【变式3】【答案】∵π= 3.1415…,∴9<3π<10因此3π-9>0,3π-10<0∴类型二.计算类型题2.设,则下列结论正确的是()A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________. 3)___________,___________,___________.【答案】1);.2)-3. 3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4或x=-2(3)x=-4类型三.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().A.-1 B.1-C.2-D.-2【答案】选C[变式2]已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用4.化简下列各式:(1) |-1.4|(2) |π-3.142|(3) |-| (4) |x-|x-3|| (x≤3)(5) |x2+6x+10|分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。
解:(1) ∵=1.414…<1.4∴|-1.4|=1.4-(2) ∵π=3.14159…<3.142∴|π-3.142|=3.142-π(3) ∵<, ∴|-|=-(4) ∵x≤3, ∴x-3≤0,∴|x-|x-3||=|x-(3-x)|=|2x-3| =说明:这里对|2x-3|的结果采取了分类讨论的方法,我们对这个绝对值的基本概念要有清楚的认识,并能灵活运用。
(5) |x2+6x+10|=|x2+6x+9+1|=|(x+3)2+1|∵(x+3)2≥0, ∴(x+3)2+1>0∴|x2+6x+10|= x2+6x+10举一反三:【变式1】化简:【答案】=+-=类型五.实数非负性的应用5.已知:=0,求实数a, b的值。
分析:已知等式左边分母不能为0,只能有>0,则要求a+7>0,分子+|a2-49|=0,由非负数的和的性质知:3a-b=0且a2-49=0,由此得不等式组从而求出a, b的值。
解:由题意得由(2)得a2=49 ∴a=±7由(3)得a>-7,∴a=-7不合题意舍去。
∴只取a=7把a=7代入(1)得b=3a=21∴a=7, b=21为所求。
举一反三:【变式1】已知(x-6)2++|y+2z|=0,求(x-y)3-z3的值。
解:∵(x-6)2++|y+2z|=0且(x-6)2≥0, ≥0, |y+2z|≥0,几个非负数的和等于零,则必有每个加数都为0。
∴解这个方程组得∴(x-y)3-z3=(6-2)3-(-1)3=64+1=65【变式2】已知那么a+b-c的值为___________【答案】初中阶段的三个非负数:,a=2,b=-5,c=-1; a+b-c=-2类型六.实数应用题6.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。
解:设新正方形边长为xcm,根据题意得x2=112+13×8∴x2=225∴x=±15∵边长为正,∴x=-15不合题意舍去,∴只取x=15(cm)答:新的正方形边长应取15cm。
举一反三:【变式1】拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。
(4个长方形拼图时不重叠)(1)计算中间的小正方形的面积,聪明的你能发现什么?(2)当拼成的这个大正方形边长比中间小正方形边长多3cm时,大正方形的面积就比小正方形的面积多24cm2,求中间小正方形的边长.解析:(1)如图,中间小正方形的边长是:,所以面积为=大正方形的面积=,一个长方形的面积=。
所以,答:中间的小正方形的面积,发现的规律是:(或)(2) 大正方形的边长:,小正方形的边长:,即,又大正方形的面积比小正方形的面积多24 cm2所以有,化简得:将代入,得:cm答:中间小正方形的边长2.5 cm。
类型七.易错题7.判断下列说法是否正确(1)的算术平方根是-3;(2)的平方根是±15.(3)当x=0或2时,(4)是分数解析:(1)错在对算术平方根的理解有误,算术平方根是非负数.故(2)表示225的算术平方根,即=15.实际上,本题是求15的平方根,故的平方根是.(3)注意到,当x=0时,=,显然此式无意义,发生错误的原因是忽视了“负数没有平方根”,故x≠0,所以当x=2时,x=0.(4)错在对实数的概念理解不清. 形如分数,但不是分数,它是无理数.类型八.引申提高8.(1)已知的整数部分为a,小数部分为b,求a2-b2的值.(2)把下列无限循环小数化成分数:①②③(1)分析:确定算术平方根的整数部分与小数部分,首先判断这个算术平方根在哪两个整数之间,那么较小的整数即为算术平方根的整数部分,算术平方根减去整数部分的差即为小数部分.解:由得的整数部分a=5, 的小数部分,∴(2)解:(1) 设x=①则②②-①得9x=6∴.(2) 设①则②②-①,得99x=23∴.(3) 设①则②②-①,得999x=107,∴.学习成果测评:A组(基础)一、细心选一选1.下列各式中正确的是()A. B. C. D.2. 的平方根是( )A.4 B. C. 2 D.3. 下列说法中①无限小数都是无理数②无理数都是无限小数③-2是4的平方根④带根号的数都是无理数。