平面图形与立体图形从不同方向看
【教案】立体图形与平面图形(第2课时)

第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第2课时一、教学目标【知识与技能】1.能画出从不同方向看一些基本几何体(直棱柱、国柱、国锥、球)以及它们的简单组合得到的平面图形.2.在立体图形与平面图形相互转换的过程中,初步建立空间观念,发展几何直觉.【过程与方法】经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看.【情感态度与价值观】激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形.【教学难点】画出从正面、左面、上面看正方体及简单组合体的平面图.五、课前准备教师:课件、直尺、包装盒、茶壶等。
学生:三角尺、长方体包装盒、小刀、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课展示课件《题西林壁》诗句(出示课件2)思考:诗中描绘出诗人面对庐山看到的两幅不同的画面,“横看成岭侧成峰”一句中,蕴含了怎样的数学道理? 你能用简洁的图形把它们形象的勾勒出来吗?(二)探索新知1.师生互动,探究从不同方向看教师问1:他们为什么会出现争执?(出示课件5)学生回答:图上两个人从不同方向看到数字不同.教师问2:如图,把茶壶放在桌面上,那么下面五幅图片分别是从哪个方向看得到的?(出示课件6)学生回答:(1)从正面看;(2)从右面看;(3)从左面看;(4)从后面看;(5)从上面看教师问3:下面的五幅图分别是从什么方向看的?(出示课件7)学生回答:1.背面;2.顶部;3.左侧;4.正面;5.右侧教师问4:一辆汽车从小明的面前经过,小明拍摄了一组照片.请按照汽车被摄入镜头的先后顺序给下面的照片编号,并与同伴进行交流.学生回答:照片先后顺序为:2-1-5-4-3.例1:如图是由若干小正方体搭成的几何体,我们分别从正面看、从左面看和从上面看得到的平面图形分别是怎样的呢?请同学们尝试画一画.师生共同解答如下:解析:从正面看所得到的图形,从左往右有三列,分别有2,1,1个小正方形;从左面看所得到的图形,从左往右有两列,分别有2,1个小正方形;从上面看所得到的图形,从左往右有三列,分别有2,1,1个小正方形.画图如下:总结点拨:画出从不同的方向看物体的形状的方法:首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.在画三种视图时,从正面、上面看到的图形要长对正,从正面、左面看到的图形要高平齐,从上面、左面看到的图形要宽相等.2.师生互动,探究立体图形的展开图教师问5:将一个正方体的表面沿某些棱剪开,能展成哪些平面图形?(出示课件14)师生共同解答如下:正方体的展开图:(出示课件15)教师问6:这些正方体展开图可以分为几种?师生共同解答如下:共有11中情况.教师问7:观察上面的11种正方体的展开图有没有什么规律?哪几号展开图可以分为一类,为什么?师生共同解答如下:按规律分为4中:(1)1-6号归为:一四一(上中下个数);(2)7-9号归为:一三二;(3)10号归为:二二二;(4)11号归为:三三.(出示课件16-18)总结点拨:(出示课件19)教师问8:正方体相对两个面在其展开图中的位置什么特点?师生共同解答如下:相对两面不相连,上下隔一行,左右隔一列. 总结点拨:巧记正方体的展开图口诀:正方体盒巧展开,六个面儿七刀裁,十一类图记分明;一四一呈6种,二三一有3种,二二二与三三各1种;对面相隔不相连,识图巧排“凹”和“田”.(三)课堂练习(出示课件26-30)1.如图是某个几何体的展开图,该几何体是()A.三棱柱 B.三棱锥C.圆柱D.圆锥2.小明从正面观察如图所示的两个物体,看到的是()3.右图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()4.下图是由一些相同的小正方体构成的几何体从正面、左面、上面看得到的三个平面图形,这些相同的小正方体的个数是( )A.4个B.5个C.6个D.7个5.由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A.9 B.11 C.14 D.186.如图是一个立方体纸盒的展开图,使展开图沿虚线折叠成正方体后相对面上的两个数互为相反数,求:a=_____;b=_______;c=________.参考答案:1.A2.C3.B4.B5.B6.-2,-7,1(四)课堂小结今天我们学了哪些内容:1.从不同的方向观察立体图形(1)判断从不同的方向看到的图形(2)根据从不同的方向看到的图形判断几何体2.立体图形的展开图(1)几何体的展开图(2)由展开图判断几何体(五)课前预习预习下节课(4.1.2)的相关内容。
从不同方向观察几何体

主视图
从不同方向观察几何体
下图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观 察这个图形,各能得到什么平面图形?
左视图
从不同方向观察几何体
下图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观 察这个图形,各能得到什么平面图形?
俯视图
从不同方向观察几何体
1.从不同方向看立体图形,往往会得到不同形状的平面图形。 2.可以用从不同方向看它得到的平面图形来表示立体图形。 探究:
下图是3DMax的操作界面,它用从三个不同方向看到的平面图形来表示 立体图形
从不同方向观察几何体
1.从不同方向看立体图形,往往会得到不同形状的平面图形。 2.可以用从不同方向看它得到的平面图形来表示立体图形。 活动:
1、分别从正面、左面、上面观察你身边的物体,看看能得到什么平面 图形。 2、试着将你看到的平面图形画下来,在小组中进行交流。
下图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观 察这个图形,各能得到什么平面图形? 俯 视 左视
从不同方向观察几何体
1、视图中的 正视 、 左视 、 俯视 ,分别指的是从正面看、从左面看、从上面看 2、一个物体从正面看和从左面看都是长方形,从上面看是圆,这个物体是圆柱体 。 3、一个物体从正面看和从左面看都是三角形,从上面看是圆,这个物体是 圆锥体 。 4、分别画出从不同方向看圆锥和圆柱的平面图。 5、下面物体是长方体 。
第四章
图形认识初步
从不同方向观察几何体
从不同方向观察几何体
1.从不同方向看立体图形,往往会得到不同形状的平面图形。
从不同方向观察几何体
1.从不同方向看立体图形,往往会得到不同形状的平面图形。
从 正 面 看 从 左 面 看
从不同方向看立体图形(教案)

举例解释:
-通过实际操作和模型展示,帮助学生建立空间概念,如使用纸模型折叠出立体图形,增强空间感知。
-利用多媒体软件或动画,展示视图生成的过程,帮助学生理解视图之间的转换关系。
-设计具有挑战性的问题,如给出不完整的视图,让学生推测可能的立体图形,锻炼他们的逻辑推理能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“立体图形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.提高逻辑推理能力:在识别和判断立体图形的过程中,训练学生运用逻辑推理,分析视图之间的关系,提高解决问题的能力。
4.培养合作交流能力:通过小组合作、讨论等活动,使学生学会倾听、表达、交流,提高合作解决问题的能力。
5.增强数学应用意识:让学生在实际情境中运用所学知识,体会数学与现实生活的联系,提高数学应用意识。
-对于视图遮挡的情况,通过实例分析,引导学生理解如何通过已知视图推断被遮挡的部分。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“从不同方向看立体图形”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过不同的物体在不同的角度看起来是什么样子?”比如,我们常见的铅笔,从侧面看是一个长方形,从上面看却是一个圆形。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索立体图形的奥秘。
从不同方向看立体图形与立体图形的展开图 课件(共20张PPT) 人教版七年级数学上册

同学们,这节课我们学习了从不同方向看立体图形与立体图形的展开图,认识了多种立体图形的展开图,并且从展开图的角度进一步了解了立体图形与平面图形的转化关系.
教材习题:完成课本158-159页习题2,4,6,7,8,9,11题.实践性作业:在家里找一个物品放置在桌面上,请你分别画出从前面看、从左面看、从上面看该物体得到的图形.
重点
难点
古诗导入
《题西林壁》苏轼横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.问题1:从诗中可以看出作者苏轼从不同角度对庐山进行了仔细观察,那他都从哪些角度对庐山进行了观察呢?问题2:诗中隐含着什么道理?对你有什么启发?
同学们,你们知道这些精美的包装盒是怎么制成的吗?要设计、制作一个包装盒, 除了美术设计以外,还要了解它展开后的形状,根据它来准备材料.
知识点2:立体图形的展开图(重难点)
名称
正方体
长方体
五棱柱
圆柱
圆锥
立体图形
展开图(举例)
3.正方体的展开图:“一四一”型 : “二三一”型: “阶梯”型:
注:(1)不是所有的立体图形都能展开成平面图形,如球.(2)同一个立体图形】从不同方向观察几何体
6.1 几何图形
6.1.1 立体图形与平面图形
第2课时 从不同方向看立体图形与立体图形的展开图
1. 经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能会看到不一样的结果,能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得到的平面图形,提高学生的画图能力.2.通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,初步建立空间观念,发展几何直观,培养动手操作能力和语言表达能力.
图片导入
1. 分别从前面、左面、上面看长方体、球、圆柱、圆锥,各能得到什么平面图形?2.请同学们阅读课本152-153页,动手画一画分别从前面、左面、上面观察图6.1-5得到的平面图形.
新人教版六年级数学下册《立体图形与平面图形(2)》教案

9.1 几何图形第二课时9.1.1立体图形与平面图形(二)——从不同方向看立体图形一、教学目标(一)学习目标1.会识别从正面、左面、上面看物体所得的平面图形;2.会画一些常见几何体及简单组合体从正面、左面、上面看物体所得的平面图形;3.由从正面、左面、上面看物体所得平面图形,还原为实物图,即在立体图形与平面图形的相互转化过程中,建立空间观念,发展几何直觉.(二)学习重点识别、画出简单几何体从正面、左面、上面看物体所得平面图形.(三)学习难点由从正面、左面、上面看物体所得的平面图形,还原为实物图.二、教学设计(一)课前设计1.预习任务(1)观察第81页的几何体,从正面看得到的平面图形是将一个长方形左上角挖去一个小长方形后余下部分;从左面看得到的平面图形是一个长方形;从上面看得到的平面图形是一个长方形.(2)圆柱体分别从正面、左面、上面看得到的平面图形是长方体、长方体、圆.2.预习自测(1)如图所示,一个斜插吸管的盒装饮料从正面看到的图形是()【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:通过直观想象,学生判断作答,选A.【思路点拨】引导学生直观想象,一束光线从正面平行照射物体得到的影子即为所得平面图形. 【答案】A.(2)将一包装卷筒卫生纸按如图所示的方式摆放在水平桌面上,则从上面看得到的平面图形是( )【知识点】从不同方向看立体图形. 【数学思想】【解题过程】解:从上面看可得两个同心圆,故选C.【思路点拨】找到从上面看所得到的图形即可,注意所有能看到的棱都应表现在平面图形中. 【答案】C .(3)图甲是某零件的直观图,则从左面看所得到的平面图形为( )【知识点】从不同方向看立体图形. 【数学思想】【解题过程】解:从左面看所得平面图形为:故选D.【思路点拨】根据从左面看得到的视图判定则可. 【答案】D.(4)在如图四个几何体中,从正面、上面看所得平面图形都是圆的为( )A.B.C.D.A.B. C.D.【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:圆柱从正面、左面看所得图形都是矩形,从上面看所得图形是圆;圆台从正面、左面看所得图形都是等腰梯形,从上面看所得图形是圆环;圆锥从正面、左面看所得图形都是等腰三角形,从上面看所得图形是圆和圆中间一点;球从正面、左面、上面看所得图形都是圆.故选D.【思路点拨】分别分析四个选项从正面、左面、上面看所得平面图形,从而得出都是圆的几何体.【答案】D.(二)课堂设计1.知识回顾(1)回顾常见的平面图形和立体图形(2)立体图形的分类及名称2.问题探究探究一:识别从正面、左面、上面看物体所得平面图形★▲●活动①学生自主学习:教材81页,体会、感悟从正面、左面、上面看得到的平面图形.师问:在教材图9.1—6(1)中,你从正面看得到的平面图形是什么?学生举手抢答.师问:从正面看立体图形,可知道立体图形的长、宽、高中的哪部分?学生举手抢答:可知立体图形的长和高.师问:在教材图9.1—6(1)中,你从左面看得到的平面图形是什么?学生举手抢答.师问:从左面看立体图形,可知道立体图形的长、宽、高中的哪部分?学生举手抢答:可知立体图形的宽和高.师问:在教材图9.1—6(1)中,你从上面看得到的平面图形是什么?学生举手抢答.师问:从上面看立体图形,可知道立体图形的长、宽、高中的哪部分?学生举手抢答:可知立体图形的长和宽.总结:提炼判断的方法:从正面看:可知立体图形的长和高;从左面看:可知立体图形的宽和高;从上面看:可知立体图形的长和宽.【设计意图】通过实物模型,让学生充分发挥想象,识别从正面、左面、上面不同方向看得到的平面图形,并让学生相互交流,提炼判断的方法:从正面看:可知立体图形的长和高;从左面看:可知立体图形的宽和高;从上面看:可知立体图形的长和宽.探究二会画从正面、左面、上面看物体所得平面图形★▲●活动①师问:如图是由4个大小相等的正方体搭成的几何体,同学们能画出从正面、左面、上面看得到的平面图形吗?请同学们试一试.学生活动:分别抽一个学生到黑板上画从正面、左面、上面看得到的平面图形,其余学生在练习本上画.总结:画从正面、左面、上面看得到的平面图形分别是.【设计意图】通过画实物模型从正面、左面、上面看得到的平面图形,掌握画视图的方法,进一步体会立体图形与平面图形的关系,发展学生的空间想象能力.●活动②集思广益,讨论交流解决问题师问:你能找出下列几何体从正面看所得的平面图形与其他三个不同的是谁吗?学生举手抢答:C.总结:师引导学生辨析:A.从正面看第一层三个小正方形,第二层中间一个小正方形;B.从正面看第一层三个小正方形,第二层中间一个小正方形;C.从正面看第一层三个小正方形,第二层左边一个小正方形、中间一个小正方形;D.从正面看第一层三个小正方形,第二层中间一个小正方形.【设计意图】本题设计考查了简单组合体从正面所得的平面图形,目的让学生仔细观察,细心分辨,展示学生几何直观能力,在训练中进一步掌握识别视图的方法.●活动③反思过程,发散思维师问:如图所示,由若干个相同的小正方体组合而成的一个几何体从正面、左面、上面看得到的平面图形,你想象这个几何体是由几个小正方体组成的吗?学生举手抢答:该几何体从正面、上面看所得平面图形可确定该几何体共有2层2列,于是可判定这个几何体的底层应该有3个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为3+1=4个.总结:由从正面、左面、上面看得到的平面图形还原为实物,提炼方法:“从上面看得到的图打地基,从正面看得到的图疯狂盖,从左面看得到的图拆违章”,并解释其含义.【设计意图】由几何体从正面、左面、上面看得到的平面图形,还原实物的小正方体的个数,让学生进一步熟悉立体图形与平面图形之间的关系,同时发展学生的逆向思维,培养空间观念.探究三运用知识解决问题●活动①例1.如图的几何体是由一个正方体切去一个小正方体形成的,从正面看得到的图形是()【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:从正面看得到的图形是大正方形的右上角有个小正方形,故选D.【思路点拨】从正面看得到的图形是大正方形的右上角有个小正方形,强调看得见的画实线,看不见的画虚线.A. B. C. D.【答案】D.练习:下列水平放置的四个几何体中,从正面看得到的图形与其它三个不相同的是()【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:A.从正面看得到的图形为长方形;B.从正面看得到的图形为长方形;C.从正面看得到的图形为长方形;D.从正面看得到的图形为三角形.则从正面看得到的图形与其它三个不相同的是D.【思路点拨】分别找到四个几何体从正面看所得到的图形比较即可.【答案】D.【设计意图】再次训练由实物模型(立体图形)向平面图形转化.●活动2例2.如图所示的几何体从上面看得到的图形是()【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:A.是从左边看得到的图形;B. 是从正面看得到的图形;从上面看是一个有直径的圆环,C错误,故选D.【思路点拨】从上面看是一个有直径的圆环,看得见的线画实线.【答案】D.练习:如图是由4个大小相同的正方体搭成的几何体,其从上面看所得到的图形是()【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:从上面看可得到一行正方形的个数为3,故选:C.【思路点拨】从上面看可得到一行正方形的个数为3个.【答案】C.【设计意图】再次训练由实物模型(立体图形)向平面图形转化.●活动3例3 .一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:根据所给出的图形和数字可得:从正面看有3列,每列小正方形数目分别为3、2、3,则符合题意的是D.【思路点拨】由已知条件可知,从正面看有3列,且每列小正方形数目为从上面看所得图形中该列小正方形数字中的最大数字,每列小正方形数目分别为3、2、3,据此可得出图形.【答案】D.练习:某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们从正面、左面、上面看所得的平面图形,则货架上的红烧牛肉方便面至少有()盒.A.8B.9C.10D.11【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:易得第一层有4碗,第二层最少有3碗,第三层最少有2碗,所以至少共有9个碗.故选B.【思路点拨】掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.【答案】B.【设计意图】由几何体从正面、左面、上面看得到的平面图形,还原实物的个数,考查学生对三视图掌握程度和灵活运用能力,同时发展学生的逆向思维,培养空间观念.3.课堂总结知识梳理(1)会识别从正面、左面、上面看物体所得的平面图形;(2)会画简单组合几何体从正面、左面、上面看物体所得的平面图形;(3)根据从正面、左面、上面看物体所得平面图形,还原实物图.重难点归纳(1)准确识别从正面、左面、上面看物体所得的平面图形;(2)根据从正面、左面、上面看物体所得平面图形,还原实物图.(三)课后作业基础型自主突破1.6月15日“父亲节”,小明送给父亲一个礼盒(如图),该礼盒从正面看所得的平面图形是()【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:从正面看,是两个矩形,右边的较小.故选A.【思路点拨】从正面看,是两个矩形,右边的较小.【答案】A.2.如图1放置的一个机器零件,若其从正面看所得到的图形如图2,则从上面看所得到的图形是()【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:从上面看可得到左右相邻的3个矩形.故选D.【思路点拨】从正面看上面的小正方体放在下面长方体的中间,从上面看可得到左右相邻的3个矩形,且中间矩形要大些.【答案】D.3.如图,从左面观察这个立体图形,能得到的平面图形是()【知识点】从不同方向看立体图形.【数学思想】【解题过程】解;从左面看下面一个正方形,上面一个正方形,故选A.【思路点拨】从左面看下面一个正方形,上面一个正方形.【答案】A.4.下列水平放置的几何体中,从上面看所得平面图形不是圆的是()【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:A.从上往下看得到的平面图形是一个圆,故本选项错误;B.从上往下看得到的平面图形是一个圆,故本选项错误;C.从上往下看得到的平面图形是一个正方形,不是圆,故本选项正确;D.从上往下看得到的平面图形是一个圆,故本选项错误.【思路点拨】上往下看得到的视图,分别判断出各选项的视图即可得出答案.【答案】C.5.如图所示的几何体是由4个小正方体搭成,则从正面看所得的平面图形是()【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:从正面看第一层两个小正方形,第二层左边一个小正方形,故选C.【思路点拨】从正面看第一层两个小正方形,第二层左边一个小正方形,可得答案.【答案】C.6.从不同方向看一只茶壶,你认为是从上面看得到的图形是()【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:从上面看得到的图形,A符合题意.【思路点拨】从上面看得到的图形,注意分清是实线或是虚线.【答案】A.能力型师生共研1.如图所示是某几何体从正面、左面、上面所得的图形,则对应的几何体是()【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:逐个验证下面的实物,B符合题意,故选B.【思路点拨】由下面的实物,反过来验证即可,注意有无线段连接.【答案】B.2.一个几何体的三视图如图所示,则该几何体的形状可能是()【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:从正面、左面看可得此几何体上面为台,下面为柱体,从上面往下看,是圆环,故选D.【思路点拨】从正面、左面看可得此几何体上面为台,下面为柱体,从上面往下看,是圆环,即可判定答案.【答案】D.探究型多维突破1.如图是某几何体的从正面、左面、上面看所得的平面图形,该几何体的侧面积()12A.6B.π4C.π6D.π【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:观察从正面、左面、上面看所得的平面图形知:该几何体为圆柱,高为3cm,底面直径为2cm,侧面积为:2π×3=6π,故选C.【思路点拨】先判断出该几何体为圆柱,然后计算其侧面积即可.【答案】C.2.如图,是由若干个相同的小立方体搭成的几何体从上面、左面看所得的平面图形.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或7【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选D.【思路点拨】观察易得这个几何体共有2层,由从上面看可得第一层立方体的个数,由从左面看可得第二层最多和最少小立方体的个数,相加即可.【答案】D.自助餐1.如图中几何体从上面看的平面图形是()【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:从上面看易得第一层最右边有1个正方形,第二层有3个正方形.故选A.【思路点拨】从上面看易得第一层最右边有1个正方形,第二层有3个正方形.【答案】A.2.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体D.三棱柱【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形.故选:C.【思路点拨】几何体可分为柱体,锥体,球体三类,长方体、圆柱体、三棱体为柱体,它们从正面看图形都是矩形;球从三个方向看都是圆.【答案】C.3.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体从上面看所得图形的面积是.【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:从上面看三个正方形组成的矩形,矩形的面积为1×3=3.【思路点拨】根据从上面看得到的图形是三个正方形组成的矩形即可解答.【答案】3.4. 一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为___________.【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:上面看所得图形可得:碟子共有3摞,从正面和左面所得图形看,可得每摞碟子的个数,如下图所示:故这张桌子上碟子的个数为3+4+5=12个.【思路点拨】从上面看所得图形可得:碟子共有3摞,结合从正面(主视图)和左面(左视图)图形看,可得每摞碟子的个数,相加可得答案.【答案】12.5.如图是一个几何体的从正面、左面、上面看所得的图形,若这个几何体的体积是36,求它的表面积.【知识点】从不同方向看立体图形.【数学思想】【解题过程】解:∵由从正面、左面看所得图形得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h ,则6×2×h=36,解得:h=3,∴它的表面积是:722)636232(=⨯⨯+⨯+⨯.【思路点拨】根据从正面看与从左面看所得图形得出长方体的边长,再利用图形的体积得出它的高,进而得出表面积.【答案】72.6.如图所示是由若干个完全相同的小正方体搭成的几何体从正面、上面看所得的图形.试讨论这个几何体可能是由多少个正方体搭成的.【知识点】从不同方向看立体图形.【数学思想】分类讨论.【解题过程】解:综合从正面看所得图形和从上面看所得图形,这个几何体的底层有4个小正方体,第二层最少有1个,最多有2个,第三层最少有1个,最多有2个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:4+1+1=6个,至多需要小正方体木块的个数为:4+2+2=8个,即这个几何体可能是由6或7或8个正方体搭成的.【思路点拨】由从正面看所得图形分析,这个几何体共有3层,由从上面看所得图形可得第一层立方体的个数,由从正面看所得图形可知第二、三层立方体的可能的个数,相加即可.【答案】6或7或8.。
立体图形与平面图形(第2课时)从不同的方向看立体图形和立体图形的展开图(课件)七年级数学上册人教版

针对训练
5. 如图,分别从正面、左面、上面观察这个立体图形, 请画出你看到的平面图形.
针对训练
6. 说出下面三个平面图形分别是物体从哪里看到的?
从正面看
从上面看
从左面看
针对训练
7. 分别从正面、左面、上面看一个由若干个正方体组成的立体 图形,得到的平面图形如下图所示,你能搭出这个立体图形吗? 动手试试看!
课堂小结
这节课我们主要学习了从不同方向看立体图形得到平面图形及常 见几何体的展开图,谈一谈自己有哪些学习成果. 常见几何体的展开图:
圆锥
四棱锥 长方体
三棱柱
三棱锥
三棱柱 正方体
圆柱
布置作业
P121:习题4.1:第4题. P122:习题4.1:第5、6、7题. P123:习题4.1:第12、13题.
当堂巩固
1. 下面图形是一些多面体的表面展开图,你能说出这些多面体的名字吗?
当堂巩固
2. 下列立体图形的平面展开图是什么?
当堂巩固
展开
当堂巩固
展开
能力提升
1. 下图所示的从正面、上面看到的图形对应的是 ( B )
A
B
C
D
能力提升
2. 下图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既 可以堵住圆形空洞,又可以堵住方形空洞的是 ( B )
正面
左面
上面
典例分析
例:如图是由若干小正方体搭成的几何体,我们分别从正面 看、从左面看和从上面看得到的平面图形分别是怎样的呢? 请同学们尝试画一画.
典例分析
从上面看
从左面看 从正面看
从正面看
从左面看
从上面看
针对训练
1. 从正面、左面、上面看这 个由正方体组合成的立体图 形各能得到什么平面图形?
4.1.1 第2课时 从不同的方向看立体图形

上面
正面 图4-1-22
侧面
4.1 几何图形
2.我们曾经学过苏轼的《题林西壁》:横看成岭侧成峰,远 近高低各不同.不识庐山真面目,只缘身在此山中.诗中蕴涵 了一个怎样的数学原理? [答案] 在观察同一个物体的时候,由于方向和角度不同,可 能看到的图形不同,因此所得结论也不一样.
4.1 几何图形
[解析] 这个几何体共有三层,从上至下分别有 1,3,6 个小 正方体,即共有 10 个小正方体,所以它的体积为 10 cm .从 上、下、左、右、前、后分别观察这个几何体,所得到的平 面图形的面积都是 6 cm2,而这个几何体正好由这六个面所包 围,所以它的表面积为 6×6=36(cm2).
(1)从正面看(即从前向后看)得到的平面图形是____________. (2)从左面看(即从左向右看)得到的平面图形是____________. (3)从上面看(即从上向下看)得到的平面图形是____________. (4)从右面看(即从右向左看)得到的平面图形是____________. (5)从后面看(即从后向前看)得到的平面图形是____________.
解:(1)它的体积是 10 cm . (2)它的表面积是 36 cm2.
3
3
4.1 几何图形
[归纳总结] 换个角度求面积:在确定组合体的表面积时,通 过“从不同方向看立体图形”来解决是一种快捷而有效的方 法.
[归纳总结]
实物图 几何图 从正面看 从左面看 从上面看
4.1 几何图形
例2
形为
从左面看如图4-1-25所示的几何体,所得的平面图
( B )
图4-1-25
[解析]
Hale Waihona Puke 图4-1-26从左面看几何体,得到的平面图形是由四个小正方
观察物体三知识点总结

观察物体三知识点总结在我们的数学学习中,观察物体是一个非常重要的部分。
通过观察物体,我们能够培养空间想象力和逻辑思维能力,更好地理解和把握周围的世界。
下面,就让我们一起来详细总结一下观察物体三的相关知识点。
一、从不同方向观察物体从不同的方向观察同一个物体,所看到的形状可能是不同的。
一般来说,我们会从前面、上面和左面(或右面)这三个方向来观察物体。
比如,观察一个长方体,从前面看可能是一个长方形,从上面看可能是一个长方形或者正方形,从左面看又会是一个长方形。
在观察时,要注意视线与物体的垂直关系,这样才能准确地看到物体的形状。
二、根据平面图形推测立体图形当我们只看到物体的几个平面图形时,要能够通过想象和推理,推测出原来的立体图形是什么样子的。
这需要我们对常见的立体图形的特征有清晰的认识。
例如,如果从前面看到的是一个长方形,从上面看到的也是一个长方形,那么这个立体图形可能是一个长方体;如果从前面看到的是一个圆形,从上面看到的也是一个圆形,那么这个立体图形很可能是一个圆柱体。
但要注意的是,仅仅根据几个平面图形来推测立体图形并不是唯一确定的,可能会有多种可能性。
三、观察物体的方法1、要有顺序地观察按照一定的顺序观察物体,比如从前往后、从上往下、从左往右等,这样可以避免遗漏和重复。
2、多角度观察不仅仅局限于三个固定的方向,还可以从不同的角度去观察,这样能更全面地了解物体的形状。
3、对比观察将不同物体的观察结果进行对比,找出它们的相同点和不同点,有助于加深对物体形状的理解。
四、通过观察物体解决实际问题在生活中,我们经常会用到观察物体的知识来解决实际问题。
比如,在设计房屋、摆放家具时,需要考虑从不同角度看到的效果;在包装物品时,要根据物品的形状选择合适的包装盒。
另外,在一些数学题目中,也会通过给出物体的观察图形,让我们计算物体的表面积、体积等。
五、观察物体中的易错点1、容易忽略视线的垂直问题导致观察到的形状不准确。
人教版七年级数学上册.1从不同方向看立体图形

如图,将一个圆柱和长方体相邻放在一起,请 在括号内填主视图、左视图、俯视图?
( 主视图 )
( 俯视图 )
( 左视图 )
合作探究二:从平面图形还原组合体
一个由几个小正方体组成的几何图形,分别 从正面、左面、上面看所得到的平面图形如下,
则该几何体由___4______个小正方体组成的。
平
面
图
形
主视图
问题探究一:从不同方向看几何体
从上面看
主视图
从 左 面
左视图 看
正方体
从 正 面 看
俯视图
从上面看
从左边看
长方体
从正面看
15:59
问题1:将长方体用两个小正方体组合而成,分 别从正面、左面、上面视察这个图形,各能得到 什么平面图形?
主视图Leabharlann 左视图从上面看从左面看
俯视图
从正面看
变式1:
正视图
左视图
主视图
2 13
21
从上面看
左视图 俯视图
三、畅谈收获,反思升华:
课堂小结: 正面、左面、上面三个方向
立
平
体
面
图 转化思想 图
形
形
生活处处有数学,热爱生活,学会 数学,学以致用,将使我们毕生受益。
请同学们画出下面图形的三视图
主视图
左视图
俯视图
左视图
俯视图
立 体 图 形
从上面看
从
左
面
看
从不同方向视察右图,往
往会得到不同形状的平面 图形,聪明的你一定知道
从正面看
1
2
吧?(填序号)
从正面看得到的是__12__;
从左面看得到的是__34__.
《从不同方向观察立体图形》教案

《从不同方向观察立体图形》教案教学目标一.知识与能力.使学生能从一组图形辨认出从不同方向看立体图形得到的平面图形,并能说出从不同方向看一些简单立体图形(直棱柱.圆柱.圆锥.球)以及它们的简单组合得到的平面图形.二.过程与方法.1.过程:在从不同方向看立体图形的活动过程中,体验立体图形与平面图形之间的相互转化,从而建立空间观念,发展几何直觉.2.方法:能从不同方向看立体图形,并用平面图形描述从不同方向看一些立体图形得到的平面图形.重点与难点重点:进一步认识立体图形,体验立体图形与平面图形之间的相互转化,发展几何直觉.难点:使学生能从一组图形辨认出从不同方向看立体图形得到的平面图形.教学准备正方体木块若干,易拉罐,三棱镜,圆锥,排球,六角扳手等.预习尝试从某方向观察一个几何体,可得到一个相应的平面图形.从不同方向观察一个几何体,得到的平面图形一般也不尽相同.课前观察生活中的与直棱柱、圆柱、圆锥、球等相类似的物体,从不同角度看,体会得到什么样的平面图形.想一想,有没有这样的一个几何体,不管你从何方向观察,所得到的平面图形都相同?如果有,试举一例,并说明这个平面图形的形状.教学过程一.创设情景,引入新课.“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).你能说出“横看成岭侧成峰”中蕴含的数学道理吗?二.精讲点拨,质疑问难.1.从不同角度看直棱柱、圆柱、圆锥、球.让学生分别从正面、左面、右面,上面等各个角度观察:正方体木块,长方体木块,三棱镜,六角扳手,易拉罐,排球,圆锥,由浅入深,体会从不同方向看直棱柱、圆柱、圆锥、球等立体图形得到的平面图形,难点是在体会曲面的透视图,让学生交流、体验,集体作出小结.并回应预习题中的问题.2.从不同角度看简单的组合图形.由少数组合逐步加多,如下图,画出下列几何体分别从正面、左面,上面看,得到的平面图形.(学生独立思考、合作交流,最后从模型上得到验证)三.课堂活动,强化训练.学生拿出课前准备的正方体、圆柱体、圆锥、球,或者是身边的文具物品等进行自由组合,然后互相观察,体会,讨论.四.延伸拓展,巩固内化.1.如图,桌上放着一个球和一个圆柱,下面a、b、c、d、e这五幅图分别是从什么方向看到的?2.在一个正方体中,截去一个小正方体的立体图如图所示,从左面观察这个图形,得到的平面图形是( ).3.如图,从正面、左面、上面观察下列两个立体图形,所得的平面图形中,什么图形相同?什么图形不同?4.一个由8个正方体组成的立体图形,从正面和上面观察这个图形时,得到的平面图形如图所示,那么从左面观察这个图形时,得到的平面图形可能是( ).5.圆柱三视图是( ).A.两个圆和一个长方形B.三个圆C.两个长方形和一个圆D.两个三角形和一个圆6.如图所示的圆锥的三视图是( ).A.正视图,左视图是三角形,俯视图是圆B.正视图,俯视图是三角形,左视图是圆和圆心C.正视图,左视图是三角形,俯视图是圆和圆心D.正视图,左视图是三角形,俯视图是圆和直径7.从不同的方向观察同一物体,我们把从正面看到的做,从左面看到的图形叫做,从上面看到的图形叫做.五.小结.这节课我们主要学习了从不同方向看立体图形得到平面图形,回顾学习过程,谈一谈自己有哪些学习成果.。
人教版七年级上册第四章4.1.1 立体图形与平面图形(第二课时)教案

4.1.1 立体图形与平面图形(第二课时)一、内容及其分析1、内容:本节内容从生活中存在的大量图形入手,引出了几何图形的概念,并在复习学生前两个学段学习的几何图形的基础上,引出立体图形与平面图形概念,结合从不同方向看立体图形和展开立体图形,以及体、面、线、点的关系的内容,让学生体验立体图形与平面图形的相互转化,从而初步建立空间观念。
2、分析:在观察、摸索、讨论中直观认识立体图形,了解球体、柱体、锥体的特征;通过一系列活动,培养学生的空间想象能力、语言表达能力、总结归纳能力、实际动手能力及探索发现能力;组织学生积极参与观察、比较,并在讨论、探究的过程中,增强小组合作,建立一种互相帮助、合作探究的小组合作关系,并建立师生合作探索问题的新型师生关系。
重点:1.能从一组图形中辨认并能说出一些简单立体图形以及他们的简单组合从不同方向看得到的平面图形,对于一些不易用语言表达的图形,可以大致画出他们的示意图;2.了解常见立体图形的展开图。
难点:能识别不同方向看一些常见的立体图形所得到的平面图形,了解常见立体图形的展开图。
二、目标及其分析1、目标1.能辨别一个立体图形从不同角度看到的平面图形;2.了解正方体、长方体、圆柱等常见立体图形的展开图。
2、分析通过一系列活动,培养学生的空间想象能力、语言表达能力、总结归纳能力、实际动手能力及探索发现能力;三、教学问题诊断分析学生在学习时可能会遇到的问题和困难是:学生不清楚如何选取角度从正面、左面、上面观察立体图形,同时,学生对圆锥、棱柱、、棱锥、正方体的展开图可能会存在一定的问题。
因此教师应通过一些实物,让学生从不同角度观察,从而使学生掌握从三个角度观察立体图形的方法;同时,教学中要充分利用实物、模型和信息技术工具,让学生多观察,多动手操作,让他们在活动中体验图形的变化过程,发展空间观念。
教学中还可以让学生展开同一个几何体的展开图,让学生在动手实践的基础上,互相交流自己得到的图形,描述如何展开,以发展他们的空间观念和语言表达能力。
人教版(2024数学七年级上册第6章 几何初步 小结与复习

2. 从不同方向看立体图形 考点1
从前面看 从左面看 从上面看 3. 立体图形的展开图 考点2
正方体
圆柱
三棱柱
圆锥
4. 点、线、面、体之间的联系 (1) 体是由 面 围成,面与面相交成 线 ,线 与线相交成 点 ;
(2) 点动成线、线动成面、面动成体.
二、直线、射线、线段
1. 有关直线的基本事实 经过两点有一条直线,并且只有一条直线.
第六章 几何初步
小结与复习
知识结构图
立体 几 图形 何 图 形 平面
图形
从不同方向看立体图形 展开立体图形 直线、射线、线段
角的度量
角 角的比较与运算
平面图形 角的平分线
余角和补角
知识回顾 一、几何图形
1. 立体图形与平面图形 (1) 立体图形的各部分不都在同一平面内,如:
(2) 平面图形的各部分都在同一平面内,如:
C
D
E
A OB
练一练
7. 若∠A = 56°20′,则∠A 余角的大小是 ( B )
A. 34°40′
B. 33°40′
C. 124°40′ D. 123°40′
8. (甘肃平凉期末) 已知∠α 的补角比∠α 大 30°, 则∠α =__7_5__°.
考点1:从不同方向看立体图形
例1 如图所示的立体图形从上面看到的图形是 ( C )
A.
B.
C.
D.
练一练
1. 一个几何体由大小相同的小立方块搭成,从上面观
察这个几何体,看到的形状如图所示,其中小正方形
中的数字表示在该位置小立方块的个数, 则从正面看该几何体的形状图为 ( A )
2 41
32
A.
2024鲁教版六年级数学1.2从立体图形到平面图形(一)从不同方向看几何体

第一章 丰 富 的 图 形 世 界
1.2从立体图形到平面图形(一) ——从不同方向看几何体
主讲:
新课导入
小学我们学过, 从不同的方向看立体图形,往往 会得到不同形状的平面图形。一般地分从正面看、从 左边看、从上面看三种情况。
新课讲解
1.画几何体的三视图 下面几何体是用相同的小立方体搭建而成,从以下三个 方向看,能得到哪些平面图形呢? 从上面看
由图确定正方体个数: 利用俯视图确定位置,正面图或左面图确定每个位置的个数.
课堂ห้องสมุดไป่ตู้习
用若干大小相同的小立方块搭成一个几何体,使得 从正面和从上面看到这个几何体的形状如图所示, 搭成该几何体所用小立方块的个数至多要多少个?
课堂练习
21 21 2
解:由从上面看得到的形状图可知该几何体底层有5个 正方体,左侧每个至多有2个正方体,
每一列按行数中最大的数字画。
课堂练习
由几个相同的小正方体堆成一个几何体,它的俯视 图如图所示,小正方形内的数字表示该位置上的小 正方体的个数,画出这个几何体的左视图.
新课讲解
3.由图确定正方体个数 一个几何体有几个大小相同的小立方块搭成,从上
面和左面看到的这个几何体的形状图如图所示,你能搭 出几种几何体呢?
新课讲解
解题思路:正面图有3列,每列小正方 数形数目分别为3,2,3,左面图有2列, 每列小正方形数目分别为3,3.据此可 画出图形.
从正面看
从左面看
新课讲解
利用俯视图来判断其他图形规律: 正面图:根据俯视图中的列数画,有几列画几列,
每一列按列数中最大的数字画; 左面图:根据俯视图中的行数画,有几行画几列,
D.
从不同的方向看立体图形和立体图形的展开图

从上面看
三
棱
从左面看
柱
从正面看
典例精析
例1 下图是一个由9个正方体组成的立体图形,分别
从正面、左面、上面观察这个图形,各能得到什么平面
图形?
从上面看
从左面看 从正面看
练一练
图中的几何体从正面看得到的平面图形是___D____, 从左面看得到的平面图形是____C____, 从上面看得到的平面图形是____A____.
相 对 两 面 不 相 连
左右隔一列
上
下
隔
蓝
一
行
?
黄
总结归纳
巧记正方体的展开图口诀: 正方体盒巧展开, 六个面儿七刀裁, 十一类图记分明; 一四一呈6种, 二三一有3种, 二二二与三三各1种; 对面相隔不相连, 识图巧排“凹”和“田”.
红 蓝
黄
做一做
1.下列图形中,不是正方体表面展开图的是( C )
A
B
C
5.如图是一个立方体纸盒的展开图,使展开图沿虚 线折叠成正方体后相对面上的两个数互为相反数,求:
a _-_2_,b _-_7_,c __1__
2 c 7 -1 b
a
课堂小结
常见几何体的展开图
圆锥
四棱锥
长方体
三棱柱
三棱锥
三棱柱
正方体
圆柱
2.下图是一块带有圆形空洞和方形空洞的小木板, 则下列物体中既可以堵住圆形空洞,又可以堵住方形空 洞的是( B ).
3.下图是由一些相同的小正方体构成的几何体的 从正面、左面、上面看得到的三个平面图形,这些相 同的小正方体的个数是( B ).
A.4个 B.5个 C.6个 D.7个
4.下列的三幅平面图是三棱柱的表面展开图的有(A C)
《从不同方向看立体图形》评课稿

《从不同方向看立体图形》评课稿本课选自新课标人教版七年级数学上册的4.1《几何图形》的第二课时,是学生已经在第一课时中认识了许多的几何图形之后继续认识几何图形的一个延续。
本节课为我们认识立体图形提供了一个良好的平台,让初步体会立体图形与平面图形相互转换的过程,初步建立空间观念,发展几何直觉。
在本课设计中,我以苏轼的诗句“横看成岭侧成峰,远近高低各不同”中所蕴含的数学道理引入新课,然后从学生熟悉的长方体、圆柱等立体图形着手,让学生了解到在数学中主要是从立体图形的正面、左面以及上面三个方向去看这个立体图形。
注重了引导学生经历观察、想象、交流等数学活动,教师引导学生积极地参与到数学学习活动中,真正成为数学学习的主人,充分体现了学生的主体地位,有意识地让学生在抽象思维、情感态度等方面得到进步与发展。
以下是我对这节课的教学反思。
这节课比较成功的地方,我觉得有这么几点:1、激发了学生的探究兴趣。
兴趣是学习的最佳动力。
在这节课一开始我就通过诗句中的数学来激发学生的学习兴趣,将学生自然的引入到了对新知的探究中。
2、为学生营造了探究的情境。
这节课中,在解决了如何从不同方向去看长方体后,接下来通过“练一练”、“猜一猜”、“动动手,画一画”等数学活动引导学生自己去探究圆柱、圆锥、球等几何图形分别从三个方向看到的平面图形,将学生引导到对知识的探索与研究中去。
在教学中,教师提供给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。
3、注重让学生在操作中探究。
动手操作是一种充分展示学生个体的过程,是深受学生喜欢的实践活动,它为发挥学生学习的主体性作用提供了时间和空间。
因此,在本节教学中,比较注重学生的动手操作能力,尤其是平时一些学习比较弱的学生,及时的给予一些指导,让他们更好更快的掌握知识。
不足之处:在刚开始的教学设计中,是要求学生将之前制作好的一些立体图形的模型带到课堂中来看的,但是考虑到七(16)班的学生在平时上课时就比较活,所以在教学过程中如果放开让学生自己去看手中的模型,害怕不容易将学生收回来,这样的话可能教学内容就没有办法顺利的完成,所以最后就选择了不让学生带模型,直接让学生去看幻灯片。
6.1.1 立体图形与平面图形(第2课时) 课件 人教版数学七年级上册

(3)如图是由几个相同大小的小正方体搭建而成的几 何体从前面和上面看到的图形,则搭建这个几何体所
需要的小正方体的个数至少为 6 个.
从前面看
从上面看
5.由若干个边长相等的小正方体构成的立体图形从三
个不同方向看到的图形如图所示,则构成这个立体图形
的小正方体有 ( B )
A.5个
B.6个
C.7个
D.8个
6.由若干相同大小的小正方体组成的立体图形,从不
同方向看到的图形如图所示,则组成该立体图形最少 需要多少个小正方体,最多需要多少个小正方体?
解:最多有:3+2+2+2+1=10(个), 最少有:3+2+1+1+1=8(个). 提示:如答案图.
面看:可以分清物体的长度和宽度.
1.如图所示四个立体图形,从前面看到的平面图形是四
边形的个数是( B ) A.1个 B.2个 C.3个 D.4个
2.某物体如图所示,从它上面看到的图形是 ( D )
3.如图所示,由6个相同的小正方体搭成的立体图形,那
么从上面看到的平面图形是 ( A )
A
B
C
D
4.如图是由5个完全相同的小正方体搭成的立体图形,如 果将小正方体A放到小正方体B的正上方,则它 ( A ) A.从前面看到的图形会发生改变 B.从上面看到的图形会发生改变 C.从左面看到的图形会发生改变 D.从三个不同方向看到的图形都
解:(2)它的所有棱长之和为
(3+4+5)×2+9×3=51(cm).
它的表面积为
2-从不同的方向看立体图形和立体图形展开图知识梳理

立体图形与平面图形的转化
知识梳理:
立体图形可以通过从不同方向看立体图形(三视图)或立体图形的展开图转化为平面图形问题进行研究。
1. 从不同方向看立体图形
(1)从不同方向看是指从正面(从前向后)、上面和左面三个方向看立体图形。
当我们分别从正面、上面和左面看一个立体图形时,就得到这个立体图形的三个平面图形,然后把这三个平面图形按一定的规则放在同一个平面上,就把立体图形转化成了平面图形。
从不同方向看把立体图形转化成平面图形的规则是:
①从上面看的图形放在从正面看的图形的下面;从左面看的图形放在从正面看的图形的右面。
②长对正:从上面、正面观察,所得的图形长度相等;高平齐:从上面、左面观察,所得的图形高度相等;宽相等:从上面、左面观察,所得的图形宽度相等。
(2)常见的几种几何体从正面、左面、上面看到的几何图形:
2. 立体图形的展开图
(1)对于由一些平面围成的立体图形,将它们的表面适当的剪开,展开成平面图形,这个平面图形叫做这个立体图形的展开图。
(2)几种常见的立体图形的展开图
解析:[1] 不是所有的立方体图形都可以展开,如球就不能展开;
[2] 对于同一个立方体按不同的方式展开,可以得到不同的展开图,如正方体有11种展开图;
[3] 由立方体的展开图可以识别出立方体的形状,具体方法是:展开图中有圆,一般考虑圆柱或圆锥;展开图中有三角形,一般考虑棱柱或棱锥;展开图中有长方形或正方形,一般考虑棱柱。
[4]
[5]
[6] 立体图形展开图中,相邻面的规律:①有公共顶点的面是相邻的面; ②有公共边的面是相邻的面。
如图三棱柱的展开图是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2(1)
3(2)
3(3)
3(4)
3(1)\4(4)
3(5)
3(6)
4(1)
4(2)
4(3)
立体图形的展开图
操作:把一个包装盒剪开铺平,看看它由哪些平面 图形组成?再把展开的纸板复原为包装盒体会立体 图形与平面图形的关系。
探究:用下列图形能拼成怎样的立 体图形?
C
A
B
棱柱
圆柱
圆锥
你有收获吗?
立体图形:长方体、正方体、球、圆柱、圆锥、棱柱、棱锥· · · · · ·
3. 6 3 2 平 曲
从正面看
从正面看
从左面看
从上面看
从正面看
从左面看
从上面看
从上面看
从左面看
从正面看
从正面看
从左面看
从上面看
利用正方体,摆成下面的图形,分别从正 面、左面、上面观察这个图形,各能得到什么 平面图形?
从正面看
从上面看
从左面看
例1:下面是一些立体图形 的三视图,请根据视图说出立 体图形的名称.
从正面看 从左面看
平面图形:长方形、正方形、三角形、圆、五边形、六边形· · · · · ·
从正面看、从左面看、从上面看· · · · · ·
……..
1.点、线、面构成图形
2.面和面相交得到线. 线和线相交得到点. 3.点动成线、线动成面、面动成体.
[例]下列图形绕虚线旋转一周,能形成一个什么样的几何体.
解:图(1)可形成上面是圆锥,
从上面看
从左面看 从正面看
从上面看
下面是一个物体从正面、左面、上面 看到的平面图,试说出物体的形状.
从左面看 从正面看
从上面看
本节课你有哪些收获? 1、能画出从不同方向看立体图形或简 单组合体的平面图形。 2、能根据从不同方向看到的平面图形 想出立体图形。
思考:下列图形能拼成立方体 的有哪些?还有别的图形吗?
下面是圆柱的上下底面重合的几何体. 图(2)可形成一个圆柱. 图(3)可形成一个球. 图(4)可形成一个圆锥. 图(5)可形成两个底面重合的圆锥.
1.几何图形是由_____、_____、_____构 成,面有_____面和_____面之分. 2.点动成_____、线动成_____、面动 成_____. 3.长方体是由_____个面围成的,圆柱是由 _____个面围成的,圆锥是由_____个面围 成的.其中围成圆锥的面有_____面,也有 _____面. 解:1.点 线 面 曲 平 2.线 面 体
从不同的方向看立体图形
学习目标
1、能画出从不同方向看立体图形或简 单组合体的平面图形。 2、能根据从不同方向看到的平面图形 想出立体图形。
3、体会立体图形与平面图形的关系。
画出从正面、左面、上面看下列图形所得到的平 面图形。
从上面看
从左面看
从正面看从上面看 从左面看