小学数学的八大思维方法

合集下载

小学数学最常用的16种思维方法

小学数学最常用的16种思维方法

小学数学最常用的16种思维方法小学数学是培养学生数学思维能力的重要阶段,为了帮助学生更好地理解和解决数学问题,在教学中常采用一些特定的思维方法。

下面将介绍小学数学中最常用的16种思维方法,并对每种方法进行简要说明。

1.比较法:通过比较数值的大小、大小关系或数量的多少来解决问题,培养学生观察和总结的能力。

2.分类法:将问题中的元素按照其中一种特定的标准进行整理和归类,有助于学生深入了解问题的本质。

3.推理法:通过观察和前提条件推理出结论,培养学生逻辑思维和分析能力。

4.近似法:当问题难以准确计算时,采用近似值进行估计和计算,培养学生估算和数值计算的能力。

5.归纳法:通过观察一系列相关的事实和数据,总结出一般规律或定律,培养学生归纳和推广的能力。

6.反证法:通过假设与原命题相反的结论,推导出矛盾,从而证明原命题的正确性。

7.特例法:通过选取特定情况下的数值或图形进行分析和解答问题,帮助学生更好地理解和应用数学知识。

8.枚举法:将所有可能的情况列举出来进行分析和解答问题,培养学生观察和思维的全面性。

9.模型法:将实际问题抽象化为数学模型,通过计算和分析模型来解决问题。

10.反思法:对解题过程进行反思和总结,找出问题的根源和解决方法。

11.反馈法:将学生的解题过程和结果反馈给他们,帮助他们发现错误和改正。

12.合作法:让学生进行合作,共同解决问题,培养合作和沟通的能力。

13.自主学习法:给学生一定的时间和空间,让他们自主探索和解决问题,培养自主学习和解决问题的能力。

14.游戏法:通过数学游戏和竞赛激发学生的学习兴趣和动力,提高他们的数学思维能力。

15.比例法:通过比较不同量之间的比例关系解决问题,培养学生理解和应用比例的能力。

16.逆向思维法:从问题的结果出发,逆向推导得到问题的原因或步骤,培养学生逆向思维和问题解决的能力。

以上是小学数学中最常用的16种思维方法,每一种方法都有助于学生培养不同的数学思维能力,加深对数学概念和问题的理解,并提高解决问题的能力。

小学学习数学的10种思维方法

小学学习数学的10种思维方法

小学学习数学的10种思维方法
在小学学习数学时,学生需要掌握一些有效的思维方法,以帮助他们
更好地理解和解决数学问题。

下面是10种适用于小学生的数学思维方法:
1.具象思维:通过实际物体和图形,帮助学生将抽象的数学概念具体化,以更好地理解和应用。

2.分析思维:学生应该学会将数学问题分解为更简单的部分,逐步解决,并最终获得整体解决方案。

3.推理思维:通过观察和列举特定情况,帮助学生发现数学问题中的
模式和规律,从而推理出解决方法。

4.抽象思维:让学生从具体的实例中抽象出普遍的概念和规则,以解
决更一般化的数学问题。

5.创造性思维:鼓励学生在解决问题时灵活运用已学的数学知识,尝
试不同的方法和策略,以找到最佳解决方案。

6.归纳思维:帮助学生从已知情况中总结出普遍规律,从而应用到未
知情况中。

7.逆向思维:鼓励学生从问题的解决方案出发,思考问题的逆向路径,以检查和验证解决方法的正确性。

8.合作思维:通过小组合作来解决数学问题,鼓励学生相互协作、讨
论和分享思路,共同寻找解决方案。

9.启发思维:通过给予学生启示和提示,引导他们思考数学问题的不
同方面,培养他们的问题解决能力。

10.反思思维:鼓励学生在解决问题后反思他们的思维过程和方法,
以帮助他们提高数学思维的质量和效率。

使用这些数学思维方法,可以帮助小学生更好地理解和解决数学问题,培养他们的逻辑推理、创造性思维和问题解决能力。

同时,教师和家长也
可以在教学过程中引导学生运用这些思维方法,培养他们对数学学习的兴
趣和探究精神。

小学数学八大思维方法

小学数学八大思维方法

小学数学八大思维方法1.分类思维:将问题中的对象、概念、现象按照其中一种特征或规则进行归类,进而发现问题的本质,找到问题的解题方法。

2.比较思维:将两个或多个对象或概念相互比较,找出其相同点和不同点,从中发现问题的规律和特点。

3.推理思维:根据已知条件和问题要求,运用逻辑推理和推断,推导出答案的合理性和正确性。

4.分析思维:将问题分解为几个小问题,逐步进行分析和解决。

通过分析每个小问题的解决过程,最终得出整个问题的解答。

5.逆向思维:从问题的结果出发,逆向推导出解决问题的方法和过程。

逆向思维常常能够突破传统思维的局限,找出解决问题的新途径。

6.归纳思维:从具体的事物、现象中归纳出一般的规律或结论。

通过对具体事物的观察和总结,总结出普遍规律,应用于解决类似的问题。

7.演绎思维:根据已有的规律或定理,运用逻辑关系进行推导和演绎。

从已知条件出发,通过演绎得出结论,运用于解决问题。

8.反证思维:采用假设反向地证明问题。

假设问题不成立,然后推导出矛盾的结论,从而得出问题的正向解答。

这八大思维方法在小学数学教学中都有着重要的应用和意义。

帮助学生培养和提高逻辑思维能力,激发对数学的兴趣,同时也促进他们解决实际问题的能力和创新能力的发展。

分类思维是指将问题中的对象、概念、现象按照其中一种特征或规则进行整合和归类。

通过将问题进行分组和分类,可以更加清晰地看到问题的本质和规律。

例如,当学生遇到类似于求面积或体积的问题时,可以根据几何形状的不同将问题按照圆、矩形、三角形等进行分类,然后应用相应的公式进行求解。

比较思维是将两个或多个对象或概念进行对比,找出其相同点和不同点。

通过比较,可以更好地理解问题的特点和规律。

例如,当学生学习数字大小比较时,可以通过比较数字的大小顺序,找出其中规律和特点。

推理思维是根据已知条件和问题要求,运用逻辑推理和推断,推导出答案的合理性和正确性。

通过推理,可以从已有的信息中推导出新的信息,进而解答问题。

小学数学的八大思维方法

小学数学的八大思维方法

小学数学八大思维方法目录一、逆向思维方法二、对应思维方法三、假设思维方法四、转化思维方法五、消元思维方法六、发散思维方法七、联想思维方法八、量不变思维方法一、逆向思维方法小学教材中的题目,多数是按照条件出现的先后顺序进行顺向思维的。

逆向思维是不依据题目内条件出现的先后顺序,而是从反方向(或从结果)出发而进行逆转推理的一种思维方式。

逆向思维与顺向思维是训练的最主要形式,也是思维形式上的一对矛盾,正确地进行逆向思维,对开拓应用题的解题思路,促进思维的灵活性,都会收到积极的效果,解:这是一道典型的“还原法”问题,如果用顺向思维的方法,将难以解答。

正确的解题思路就是用逆向思维的方法,从最后的结果出发,一步步地向前逆推,在逆向推理的过程中,对原来题目的算法进行逆向运算,即:加变减,减变加,乘变除,除变乘。

列式计算为:此题如果按照顺向思维来考虑,要根据归一的思路,先找出磨1吨面粉序是一致的。

如果从逆向思维的角度来分析,可以形成另外两种解法:①不着眼于先求1吨面粉需要多少吨小麦,而着眼于1吨小麦可磨多少列式计算为:由此,可得出下列算式:答:(同上)掌握逆向思维的方法,遇到问题可以进行正、反两个方面的思考,在开拓思路的同时,也促进了逻辑思维能力的发展。

二、对应思维方法对应思维是一种重要的数学思维,也是现代数学思想的主要内容之一。

对应思维包含一般对应和量率对应等内容,一般对应是从一一对应开始的。

例1 小红有7个三角,小明有5个三角,小红比小明多几个三角?这里的虚线表示的就是一一对应,即:同样多的5个三角,而没有虚线的2个,正是小红比小明多的三角。

一般对应随着知识的扩展,也表现在以下的问题上。

这是一道求平均数的应用题,要求出每小时生产化肥多少吨,必须先求出上、下午共生产化肥多少吨以及上、下午共工作多少小时。

这里的共生产化肥的吨数与共工作的小时数是相对应的,否则求出的结果就不是题目中所要求的解。

在简单应用题中,培养与建立对应思维,这是解决较复杂应用题的基础。

小学生数学思维培养的方法与技巧

小学生数学思维培养的方法与技巧

以下是培养小学生数学思维的方法和技巧:1. 启发式教学:采用启发式教学方法,引导学生通过观察、推理和实践等方式主动探索数学问题。

教师可以提出有挑战性的问题,鼓励学生思考不同的解决方法,培养他们的逻辑思维和创造力。

2. 问题解决与应用:将数学知识应用到实际问题中,培养学生的问题解决能力。

通过设计真实的情境问题,让学生运用所学的数学概念和方法,分析和解决问题,培养他们的数学思维和实际运用能力。

3. 探究性学习:组织数学探究活动,让学生自主、合作地进行数学问题的研究和发现。

教师可以设计一系列的数学实验、观察和比较,鼓励学生提出自己的猜想和解释,并引导他们运用数学方法进行验证和证明。

4. 游戏与竞赛:运用游戏和竞赛元素来激发学生对数学的兴趣和积极参与。

教师可以设计数学游戏,培养学生的逻辑思维和计算能力。

同时,可以组织数学竞赛,提供一种挑战和比较的机会,激发学生的竞争意识和学习动力。

5. 多样化的教学资源:利用多种教学资源,如数学教具、图形模型、数字游戏等,帮助学生直观地理解抽象的数学概念。

通过实物操作和视觉呈现,加深学生对数学概念的理解和记忆,促进他们的数学思维发展。

6. 拓展思维辅助工具:引入拓展思维辅助工具,如思维导图、流程图、图表等,帮助学生整理和表达数学问题的思路和步骤。

这些工具可以帮助学生更清晰地组织自己的思维过程,提高解决问题的效率和准确性。

7. 鼓励交流与合作:鼓励学生之间的交流与合作,培养学生的团队合作精神和沟通能力。

通过小组讨论、合作解题等活动,学生可以相互借鉴和启发,共同探索和解决数学问题,促进彼此的思维发展。

通过以上方法和技巧,可以培养小学生的数学思维,激发他们对数学的兴趣和热爱,提高他们的问题解决能力、创新思维和逻辑推理能力。

同时,也能够帮助学生建立坚实的数学基础,为将来更高层次的数学学习打下良好的基础。

小学数学的思维方法和教学方法

小学数学的思维方法和教学方法

小学数学的思维方法和教学方法小学数学是培养学生数学思维的重要阶段,对于学生的思维能力发展起着至关重要的作用。

下面将介绍小学数学的思维方法和教学方法。

一、小学数学的思维方法1.抽象思维:小学生的逻辑思维较为简单,因此,在进行数学学习时,需要通过逐步引导培养其抽象思维能力。

可以通过具体的实例运用来引导学生进行抽象思维,例如将简单的实物和抽象的数学符号相对应。

2.归纳和演绎思维:小学生数学学习的新知识一般是通过归纳总结而来,因此,要培养学生通过具体的事例、观察、实验等方法,自主归纳出规律和概念。

同时,也要让学生学会运用归纳的数学规律进行演绎,从而解决问题。

3.探究思维:小学数学教学要培养学生的探究精神和求知欲望。

可以通过提出问题、引导讨论、设计实验等方式,激发学生的学习主动性,让他们参与到数学实践中,自主探究并解决问题。

4.创新思维:小学数学教学要注重培养学生的创新思维能力。

可以通过设计开放性问题、引导学生提出自己的解决方法等方式,激发学生的创新意识,让他们在解决问题的过程中形成自己的思路和方法。

二、小学数学的教学方法1.情境教学法:通过创设情境,让学生亲身体验数学内容,培养他们的兴趣和动手能力。

例如,在学习面积时,可以安排学生游戏,让他们通过实际测量和计算来探索各种图形的面积计算方法。

2.合作学习法:小学数学教学要注重培养学生的合作意识和团队精神。

可以通过小组合作学习的方式,让学生相互合作、协作,共同解决问题。

例如,可以组织学生小组进行探究活动,每个小组负责一部分内容,最后由小组共同汇报成果。

3.游戏教学法:小学生喜欢游戏,通过游戏教学可以激发学生的学习兴趣和主动性。

例如,在学习时钟的概念和读时的方法时,可以设计一些趣味的游戏,让学生通过玩游戏来学习。

4.案例教学法:通过实际案例引导学生进行数学学习。

例如,在学习三角形时,可以通过实际案例展示三角形在建筑、地图等方面的应用,并引导学生进行相应的思考和讨论。

小学数学常见的数学思想方法

小学数学常见的数学思想方法

小学数学常见的数学思想方法在小学数学中,有一些常见的数学思想方法,这些方法不仅帮助学生理解和解决数学问题,还培养了他们的逻辑思维和问题解决能力。

本文将介绍一些常见的小学数学思想方法。

第一、归纳法归纳法是一种从特殊到一般的思维方法。

通过观察和分析特殊情况,再总结规律,推广到一般情况。

例如,学习排列组合时,可以先从2个数字的排列开始归纳,然后推广到更多数字的排列。

这样做可以帮助学生理解和记忆更抽象的概念。

第二、类比法类比法是通过寻找事物之间的共同特征,把问题转化为已知问题的方法。

例如,在学习解方程时,可以把方程看作一个天平,通过移项和化简,使方程两边平衡。

这种类比可以帮助学生把抽象的数学问题转化为更具体和易于理解的形式。

第三、分解法分解法是将复杂的问题分解为若干简单的子问题来解决的思维方法。

例如,在学习长除时,可以将被除数分解成各个位的数字,并逐位进行计算。

这种分解的思维方法可以帮助学生理清思路,简化问题,更容易得到答案。

第四、逆向思维法逆向思维法是从问题的结果出发,逆向推导出解决问题的方法。

例如,在学习排序时,可以先思考如何将数字从大到小排列,然后将步骤反转,即可得到从小到大排列的方法。

逆向思维法可以培养学生的逻辑思维和反向推理能力。

第五、模型法模型法是通过建立数学模型,把实际问题转化为数学问题来解决的思维方法。

例如,在学习面积时,可以通过绘制图形模型来计算面积。

这种方法可以帮助学生理解数学概念,并将数学应用于实际问题中。

第六、试错法试错法是通过尝试不同的方法和策略,找到解决问题的最优解的思维方法。

例如,在学习解方程时,可以尝试不同的代入法或变形法,直到找到满足方程的解。

试错法可以培养学生的探索精神和自主解题能力。

小学数学常见的数学思想方法多种多样,每种方法都有其独特的特点和适用范围。

学生在学习数学时,可以根据问题的性质和自己的思维特点选择合适的方法,培养灵活运用数学思想方法的能力。

通过不断练习和思考,学生可以提高数学思维能力,更好地理解和应用数学知识。

小学数学的思维教学方法

小学数学的思维教学方法

小学数学的思维教学方法一、启发式教学法启发式教学法是指通过提供启示和引导学生思考的方式来教授数学知识和解决问题。

教师可以通过提出具有启发意义的问题,引导学生进行思考、探索和讨论,激发学生的兴趣和思维。

例如,对于一个复杂的问题,教师可以通过提出一系列相关问题,引导学生逐步解决,并帮助学生发现其中的规律。

二、探究式学习探究式学习是一种基于学生主动探索和发现的教学方法。

教师可以提供一些实际问题或情境,让学生进行观察、实验和推理,从而自主地构建数学知识。

例如,在学习几何形状时,教师可以引导学生进行实际测量和绘图,通过实践中的观察和发现,帮助学生建立几何形状的概念和属性。

三、启发性评价启发性评价是一种重要的教学评价方法,旨在促进学生的数学思维发展。

教师可以通过提出具有启发性的评价问题,引导学生进行思考和解答,帮助学生分析和总结问题解决的思路和方法。

同时,教师可以通过评价学生的解答过程和策略,以及对问题的理解和解释,了解学生的数学思维发展情况,并针对性地给予指导和反馈。

四、任务驱动学习任务驱动学习是一种以任务为核心的教学模式,强调学生通过解决问题和完成任务来学习数学知识和技能。

教师可以设计一些具有挑战性和实际意义的任务,让学生运用数学知识和思维解决问题,从而培养学生的数学思维能力和应用能力。

例如,在学习分数时,教师可以提出一些与分数相关的实际问题,让学生通过比较和计算,解决实际生活中的分数问题。

五、多样化的教学资源为了激发学生的学习兴趣和培养他们的数学思维,教师可以利用丰富的教学资源和多媒体技术。

例如,教师可以利用教学软件、数学游戏和实物模型等多样化的教学资源,帮助学生理解和应用数学知识,提高学生的学习效果和能力。

综上所述,小学数学的思维教学方法是一种能够培养学生数学思维能力和解决问题能力的重要方法。

通过启发式教学法、探究式学习、启发性评价、任务驱动学习和多样化的教学资源,教师可以激发学生的学习兴趣,培养学生的数学思维能力,提高学生的学习效果和能力。

小学数学课堂中渗透的数学思想方法

小学数学课堂中渗透的数学思想方法

小学数学课堂中渗透的数学思想方法一、抽象思维:抽象思维是指孩子从具体的事物中抽离出共同特征,形成概念的思维方式。

在数学课堂中,老师可以通过举例子、比喻等方式,引导学生从具体的问题中抽象出数学概念,培养学生的抽象思维能力。

在学习几何图形的时候,老师可以引导学生观察不同形状的图形,比如圆形、正方形、长方形等,然后引导学生总结出每个形状的共同特征,形成相应的几何概念。

二、逻辑思维:逻辑思维是指按照一定的推理规则进行思考和分析的思维方式。

在数学课堂中,学生需要学会运用逻辑思维解决问题,培养他们的推理能力。

在学习数学运算时,老师可以给学生出一些逻辑题,让他们通过推理和分析找到解题的规律。

老师还可以通过游戏的形式,培养孩子的逻辑思维能力,锻炼他们的反应速度和解决问题的能力。

三、探究思维:探究思维是指通过观察、实验、猜想等方式主动地积极学习和探索问题的思维方式。

在数学课堂中,老师可以鼓励学生提出问题、展开探究,培养他们的独立思考能力。

在学习分数的概念和运算规则时,老师可以设计一些实践活动,让学生亲自动手操作、观察、探索,从中发现规律和解决问题的方法。

通过这种方式,学生能够更加深入地理解数学概念和运算规则。

四、问题解决思维:问题解决思维是指通过分析问题、寻找解决方案、评估和调整解决方案的思维方式。

在数学课堂中,老师可以引导学生运用问题解决思维解决实际问题,培养他们的问题解决能力。

在学习应用题时,老师可以给学生一些实际问题,让他们自己分析问题、寻找解决方案,并进行实际操作和计算。

通过这种方式,学生能够将数学知识应用到实际生活中,提高他们解决实际问题的能力。

通过渗透这些数学思想方法,可以使学生在数学课堂中更加主动、积极地参与学习,培养他们的数学思维能力和解决问题的能力,提高他们的学习效果和综合素质。

这些数学思想方法也能够增强学生的学习兴趣,培养他们对数学的理解和热爱。

小学数学八大思维方法

小学数学八大思维方法

小学数学八大思维方法目录一、逆向思维方法二、对应思维方法三、假设思维方法四、转化思维方法五、消元思维方法六、发散思维方法七、联想思维方法八、量不变思维方法一、逆向思维方法小学教材中的题目,多数是按照条件出现的先后顺序进行顺向思维的;逆向思维是不依据题目内条件出现的先后顺序,而是从反方向或从结果出发而进行逆转推理的一种思维方式;逆向思维与顺向思维是训练的最主要形式,也是思维形式上的一对矛盾,正确地进行逆向思维,对开拓应用题的解题思路,促进思维的灵活性,都会收到积极的效果,解:这是一道典型的“还原法”问题,如果用顺向思维的方法,将难以解答;正确的解题思路就是用逆向思维的方法,从最后的结果出发,一步步地向前逆推,在逆向推理的过程中,对原来题目的算法进行逆向运算,即:加变减,减变加,乘变除,除变乘;列式计算为:此题如果按照顺向思维来考虑,要根据归一的思路,先找出磨1吨面粉序是一致的;如果从逆向思维的角度来分析,可以形成另外两种解法:①不着眼于先求1吨面粉需要多少吨小麦,而着眼于1吨小麦可磨多少列式计算为:由此,可得出下列算式:答:同上掌握逆向思维的方法,遇到问题可以进行正、反两个方面的思考,在开拓思路的同时,也促进了逻辑思维能力的发展;二、对应思维方法对应思维是一种重要的数学思维,也是现代数学思想的主要内容之一;对应思维包含一般对应和量率对应等内容,一般对应是从一一对应开始的;例1 小红有7个三角,小明有5个三角,小红比小明多几个三角这里的虚线表示的就是一一对应,即:同样多的5个三角,而没有虚线的2个,正是小红比小明多的三角;一般对应随着知识的扩展,也表现在以下的问题上;这是一道求平均数的应用题,要求出每小时生产化肥多少吨,必须先求出上、下午共生产化肥多少吨以及上、下午共工作多少小时;这里的共生产化肥的吨数与共工作的小时数是相对应的,否则求出的结果就不是题目中所要求的解;在简单应用题中,培养与建立对应思维,这是解决较复杂应用题的基础;这是因为在较复杂的应用题里,间接条件较多,在推导过程中,利用对应思维所求出的数,虽然不一定是题目的最后结果,但往往是解题的关键所在;这在分数乘、除法应用题中,这种思维突出地表现在实际数量与分率或倍数的对应关系上,正确的解题方法的形成,就建立在清晰、明确的量率对应的基础上;这是一道“已知一个数几分之几是多少,求这个数”的分数除法应用题,题中只有20本这唯一具体的“量”,解题的关键是要找这个“量”所对应的“率”;如图:的“率差”,找出“量”所对应的“率”,是解答这类题的唯一思考途径,按照对应的思路,即可列式求出结果;答:书架上原有书240本;如果没有量率对应的思维方法,用20除以而得的不是所对应的率,必然导致错误的计算结果;因此,培养并建立对应的思维方法,是解答分数乘除法应用题一把宝贵的钥匙;三、假设思维方法这是数学中经常使用的一种推测性的思维方法;这种思维方法在解答应用题的实践中,具有较大的实用性,因为有些应用题用直接推理和逆转推理都不能寻找出解答途径时,就可以将题目中两个或两个以上的未知条件,假设成相等的数量,或者将一个未知条件假设成已知条件,从而使题目中隐蔽或复杂的数量关系,趋于明朗化和简单化,这是假设思维方法的一个突出特点;当“假设”的任务完成后,就可以按照假设后的条件,依据数量的相依关系,列式计算并做相应的调整,从而求出最后的结果来;各长多少米解答这道题就需要假设思维方法的参予;如果没有这种思维方法,将难以找到解题思路的突破口;题目中有两数的“和”;而且是直接条件,两数的“倍”不仅是间接条件,并且附加着“还”多0.4米的条件,这是一道较复杂的和倍应用题,思考这道题,必须进行如下的假设;是直接对应的,至此,就完全转化成简单的和倍应用题;根据题意,其倍数关系如图:答:第一块4.36米,第二块3.3米;电线各长多少米两个标准量的分率一旦一致,就可以用共长的米数乘以假设后的统一分率,求出假设后的分量,这个分量与实际8.6米必有一个量差,这个量差与实际的率差是相对应的;这样就可以求出其中一根电线的长度,另一根电线的长度可通过总长度直接求出;列式计算为:长度;列式计算为:答:同上;上述两种解法都是从率入手的,此题如从量入手也有两种解法,无论从率从量入手,都需要假设的思维方法作为解题的前提条件;由此可见,掌握假设的思维方法,不仅可以增加解题的思路,在处理一些数量关系较抽象的问题时,往往又是创造性思维的萌芽;四、转化思维方法在小学数学的应用题中,分数乘、除法应用题既是重点,又是难点;当这类应用题的条件中,出现了两个或两个以上的不同标准量,从属于这些标准量的分率,就很难进行分析、比较以确定它们之间的关系;运用转化的思维方法,就可以将不同的标准量统一为一个共同的标准量;由于标准量的转化和统一,其不同标准量的分率,也就转化成统一标准量下的分率,经过转化后的数量关系,就由复杂转化为简单,由隐蔽转化为明显,为正确解题思路的形成,创造了必要的条件;培养转化的思维方法,必须具备扎实的基础知识,对基本的数量之间的相依关系以及量率对应等关系,都能做到熟练地掌握和运用,没有这些作为基础,转化的思维方法就失去了前提;转化的思维方法,在内容上有多种类型,在步骤上也有繁有简,现举例如下;从题意中可知,求这批货物还剩下几分之几,必须先知道三辆车共运走全部的几分之几,全部看作标准量“1”,但条件中的标准量却有三个,“全部”、“甲车”和“乙车”,如果不把“甲车”和“乙车”这两个标准量,也统一成“全部”这个标准量,正确的思路将无法形成;上面的转化的思维方法,都是分率在乘法上进行的,简称“率乘”;乙两人年龄各多少岁从题目中的条件与问题来分析,这是一道和倍应用题,但标准量却有两个甲年龄与乙年龄,不通过转化来统一标准量,则无法确定甲乙年龄之间的倍数关系;两人年龄和是60岁,就可以求出甲乙两人各自的年龄;答:甲36岁,乙24岁;如果把甲乙年龄不同的标准量,通过转化统一为乙年龄的标准量,把乙龄则是:如果根据题意画出线段图,还可以转化成另外一种思路;倍,通过这个转化,就可以确定甲乙年龄的倍数关系;答:甲36岁,乙24岁;如果结合对图形中相等部分的观察,转化一下思维的角度,可以将这道较复杂的分数和倍应用题转化为按比例分配的应用题;2,有了两人年龄的“和”,又有了两人年龄“比”的关系,按比例分配应用题的条件已经具备;上述的四种解法,前两种运用了分率转化法,第三种运用了倍比转化法,第四种是将原题转化为按比例分配的应用题,这几种思路,在算法上大同小异,在算理上也有难有易,但都有一个明显的共同点:与转化的思维方法紧密相连;五、消元思维方法在小学数学中,消元的思维方法,也叫做消去未知数的方法;在一些数量关系较复杂的应用题里,有时会出现由两种或两种以上物品组合关系所构成的问题,而已知条件只给了这几种物品相互混合后的数量和总值,如果按照其他的思维方法,很难找到解决问题的线索;这就需要运用消元的思维方法,即:依据实际的需要,通过直接加、减或经过乘、除后,再间接加、减的方法,消去其中一个或一个以上未知数的方法,来求出第一个结果,然后再用第一个结果推导出第二个或第三个结果来;运用消元的思维方法,是从求两个未知数先消去其中一个未知数开始的,然后过渡到求三个未知数,首先消去其中两个未知数;例 1 有大小两种西红柿罐头,第一次买了2个小罐头,3个大罐头,、小罐头每个各重多少公斤根据题目中的条件,排列如下:从条件排列中观察到:两次买罐头的总重量是不一样的,关键在于两次买的大罐头的个数不一样,如果用第二次的总重量减去第一次的总重量,所得到的量差与两次买的大罐头的个数差是直接对应的;这样一减,实际上就消去了2个小罐头的重量,所得的结果就是7-3=4个大罐头的重量,据此,可以求出每个大罐头的重量,有了每个大罐头的重量,再代入原题中任何一个条件,就可以求出每个小罐头的重量;列式计算为:例2 食堂买盐、酱、醋,第一次各买2斤,共付0.96元,第二次买4斤盐、3斤酱、2斤醋共付1.48元,第三次买5斤盐、4斤酱和2斤醋,共付1.82元,求每斤各多少元根据第三次和第二次所买的物品数量,醋的斤数一样,两次付出钱数相减,就把醋消去了;所得的结果就是两次盐、酱斤数差所对应的钱数;考虑到第一次各买2斤付出0.96元,用0.96元除以2,所得的0.48元,正是各买1斤应付的钱数;再用0.48元减去1斤盐、1斤酱的0.34元,就可求出1斤醋的价钱;每斤醋的价钱已求出,再想办法消去盐和酱,如果先消去酱,可用:0.34元×3=1.02元,这1.02元是3斤盐和3斤酱的价钱和,再用第二次共付的1.48-0.14×2=1.2元,这1.2元是消去2斤醋的价钱,也就是4斤盐、3斤酱的价钱之和,由于1.02元里也有3斤酱的价钱,这两个数相减,即可求出每斤盐的价钱;如果求出每斤醋的价钱后,也可以先消去盐,即用:0.34×4=1.36元,这是4斤盐与4斤酱的价钱和;然后按上述求出4斤盐与3斤酱的价钱和1.2元,即可求出每斤酱的价钱;如下式:通过以上两例说明:解答上面这类应用题,按照一般的常规思路,会感到不得其门而入;运用消元的思维方法,就会发现解答上面这类题的规律;由于解题步骤和分析消元的角度上,不是唯一的,因此,消元的思维方法也会促进整个思维的发散性;小学数学中的消元思维方法与中学代数中的消元法是一致的,所不同的是小学数学中的消元没有字母,都是具体的数量;六、发散思维方法发散的思维方法,是依据题目中的条件与条件、条件与问题的相依关系,从不同的角度去分析,从不同的途径去思考,在推理中寻求正确的答案,在比较中选择最佳思路,从而使学生的求异思维得到锻炼和发展;求同思维是求异思维的前提,没有求同就没有真正的求异,或者说就没有真正的发散,但求异思维不是求同思维的自然发展,重要的是教师有计划、有重点地进行发散思维方法的培养;让学生在“同中求异”和“异中求同”,使求同思维与求异思维协同配合,做到培养中的同步发展;是一个正确答案,却是从不同角度进行发散思维的结果;出1300公斤;倍,小数点向右移动三位,结果是1300公斤;上述的三种思路,其与旧知识的联系不尽相同,所以形成了不同的发散加的方法,实际上在运算中使用了乘法的分配律;思路②是用求一个数是另一个数的几又几分之几倍的分数乘法则来进行计算的;思路③是先将分数化成小数,然后在乘法中,根据小数点移位所引起的小数大小变化的规律,从而简便、准确、迅速地求出结果;例2 当分数、百分数应用题学完后,可通过变直接条件为间接条件的表述,来进行发散思维方法的培养;甲储蓄80元,乙储蓄50元;如果把乙储蓄的这个直接条件改为间接条件,并用分数或百分数的形式进行表述,可能有几种表述方式:……如果把甲储蓄的钱数转化为间接条件,仍用分数或百分数的形式进行表述,可有以下几种表述方式:类似的表述方法还有多种,解答步骤也会由简到繁;由此可见,发散思维方法的形成,对于应用题中的数量关系或量率关系,能够进行多角度、多侧面的发散性思考,这种自觉习惯的养成,将是一种宝贵的思维品质;七、联想思维方法联想思维方法是沟通新旧知识的联系,在处理新问题的数量关系时,能够对已掌握的旧知识与新问题之间,产生丰富的联想,并运用知识的正迁移规律,变换审题的角度,使问题得到更顺利、更简捷的解决;例如:当学完分数和比例应用题后,下面的一组数量关系,就可以显示联想思维方法在开阔思路上的作用;行驶一段路程,甲车与乙车速度的比是5∶4;①甲车与乙车的速度比是5∶4,甲车与乙车所用的时间比就是4∶5;这是依据速度与时间成反比关系而联想出来的;如果原题的后面条件是给了甲或乙行完全路的时间,按原来速度比去思考,此题将是反比例应用题,通过联想,将速度比转化为时间比,此题便由反比例应用题转化为正比例应用题;是依比与除法关系联想的结果;如果原题条件的后面给了乙车的速度求甲车速度是多少,就可以用求一个数几又几分之几倍的方法,将原题的正比例应用题转化成分数乘法的应用题;如果原题给了甲车的速度去求乙车的速度,就可以用已知一个数的几又几分之几倍是多少,求这个数的方法,将原题转化成分数除法的应用题;依据分数与比的关系联想的结果;如果后面给了甲车速度,求乙车速度,则转化成求一个数几分之几是多少的乘法应用题;反之,则转化成已知一个数的几分之几是多少,求这个数的除法应用题;在比与除法关系的基础上,联想到求一个数比另一个数多几分之几;乙车速个差率直接对应,那么,用分数除法就可以直接求出乙车的速度;是依据求一个数比另一个数少几分之几而联想出来的;甲车作为标准量,如除法可求出甲车的速度;⑥根据甲车与乙车速度的比是5∶4,则甲乙两车的速度和为5+4据按比例分配应用题所进行的联想;如果原题后面给出两车速度和是多少的条件,就可以用分数乘法分别求出甲车和乙车的速度;⑦根据甲车与乙车速度的比是5∶4,在速度与时间成反比的基础上,联想到甲车与乙车的时间比是4∶5,并由此联想出甲车每小时行完全路的出发,相向而行,求中途的相遇时间,那么,把全路作为标准量,这道题又转化成分数的工程问题;从上例可以看出:联想的面越广,解题思路就越宽,解题的步骤也就会越加准确和敏捷;由此可见,联想思维方法所带来的效益,不仅可以促进学生思维力的发展,也可以直接、有效地提高解答应用题的能力;实践证明:联想思维方法往往是创造性思维的先导;八、量不变思维方法在一些较复杂的分数应用题中,每个量的变化都会引起相关联的量的变化,就如同任何一个分量的变化都会引起总量变化一样,这种数量之间的相依关系,常常出现以下情况:即在变化的诸量当中,总有一个量是有恒的,不论其他量如何变化,而这个量是始终固定不变的;有了量不变的思维方法,就能在纷繁的数量关系中,确定不变量,理顺它们之间的关系,理清解题的思路,从而准确、迅速地确定解答的步骤与方法;运用量不变思维方法,处理应用题时,大体上有以下三种情况:1分量发生变化,总量没有变;2总量发生变化,但其中的分量没有变;3总量和分量都发生了变化,但分量之间的差量没变;因此,要结合题目内容,区别不同情况,做出具体的分析;从题意分析中可以得出:这是一道总量不变的应用题,乙给甲12元后,二人的存款数分量都发生了变化,但二人存款的总钱数总量却始终不变,抓住了这个不变量,就抓住了解题的关键,把乙的存款数看作“1”,如下图所示;元后,乙存款数所占总存款的分率也发生了变化,如图所示;或者根据甲为“1”,先求甲占总存款数的几分之几,把标准量转化为总存化,就在于拿出了12元,这12元所对应的正是总存款数的分率差,据此,=32元,甲原来的存款数是:80-32=48元;此题中,尽管标准量前后不同,中间并经过几度转化,解题过程也较复杂,但总量不变的特点一旦抓住,就会保证思维过程的条理和清晰;这是一道分量不变的应用题,科技书的增加,必然引起两种书总数的增加,也就是一个分量和总量都发生了变化,但有另一个分量始终没变,这就是文艺书的本数,抓住这个不变量,就找到了解题的突破口;当科技书增加后,文艺书仍然是504本,不过它所占两种书总数的分率却发生了变化,这是科技书的增加所引起总本数增加的结果,这时文艺书所占的分率就相应减少;720-630=90本,由于文艺书没变,这90本就是科技书后来又买进的本数;这是一道差量不变的应用题,张华年龄增加的同时,李丽的年龄也在增加,年龄之和也相应增加,张华所占两人年龄和的分率,也必然发生变化,但这个分量的差量,即张华与李丽的年龄差却始终未变;可以形成下面的解题思路;岁;这所差的8岁,对他们两人是固定不变的,当张华36岁时,李丽则是36-8=28岁;。

小学数学最常用的16种思维方法

小学数学最常用的16种思维方法

小学数学最常用的16种思维方法数学基础打得好,对将来的升学也有较大帮助。

但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。

1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

数学小学数学常用的16种思想方法

数学小学数学常用的16种思想方法

数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。

但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。

1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

数学小学数学常用的16种思想方法

数学小学数学常用的16种思想方法

数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。

但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。

1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

小学数学课堂中渗透的数学思想方法8篇

小学数学课堂中渗透的数学思想方法8篇

小学数学课堂中渗透的数学思想方法8篇第1篇示例:小学数学课堂中渗透的数学思想方法数学是一门理性思维和逻辑推理的学科,而数学思想方法是指在解决数学问题时所采用的思考方式和方法。

在小学数学课堂中,教师们不仅要传授孩子们数学知识,更要引导他们掌握正确的数学思想方法,培养他们的数学思维能力。

下面就让我们一起看看小学数学课堂中渗透的数学思想方法。

数学课堂中的“因果关系”思想方法。

在解决数学问题时,孩子们需要认真分析问题,找出各个要素之间的因果关系,并利用这种因果关系来解决问题。

当解决一个简单的加法问题时,孩子们需要明确两个数加在一起就是和,这是一个明确的因果关系。

而在解决更复杂的问题时,孩子们需要通过逻辑推理找出各种因果关系,这样才能快速有效地解决问题。

数学课堂中的“归纳与推理”思想方法。

在数学学习中,归纳与推理是非常重要的思维方法。

孩子们通过观察问题的特点和规律,总结出一般性的规律,然后利用这些规律进行推理和解决问题。

在解决数列问题时,孩子们可以通过观察数列的前几项,找出规律,然后用这个规律来推断后面的项。

这种方法不仅可以提高孩子们的数学思维能力,还可以培养他们的逻辑思维能力。

数学课堂中的“抽象思维”方法。

数学是一门抽象的学科,孩子们需要通过抽象思维来理解和掌握数学知识。

在数学课堂上,教师们通常会通过具体的实例来引导孩子们学习抽象的数学概念。

在教授平行线的概念时,教师们可以通过画图和实际生活中的例子来帮助孩子们理解平行线的性质和应用。

数学课堂中的“综合思考”方法。

数学是一门综合性学科,各个概念和方法之间都有着千丝万缕的联系。

孩子们在解决数学问题时需要综合考虑各种因素,避免片面化和孤立化的思考。

通过综合思考,孩子们可以更全面地理解和解决问题,提高解决问题的效率和准确度。

第2篇示例:在小学数学课堂中,教师不仅仅是传授知识的角色,更是引导学生探索数学世界的向导。

虽然小学阶段的数学知识相对简单,但是其中的数学思想和方法却是贯穿始终,为学生日后的学习奠定了坚实的基础。

小学生的数学思维训练方法

小学生的数学思维训练方法

小学生的数学思维训练方法数学是一门重要的学科,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。

在小学阶段,通过科学合理的数学思维训练方法,可以帮助学生建立扎实的数学基础并提高他们的数学思维能力和解决问题的能力。

本文将介绍一些适合小学生的数学思维训练方法。

一、启发性教学法启发性教学法是培养学生数学思维的一种重要方法。

教师在教学中引导学生思考,通过提出问题、让学生自主探索和解决问题,激发学生的思维活跃度。

例如,在学习几何的过程中,教师可以让学生通过观察,发现几何图形之间的关系,推导出一些规律。

这样的教学方法可以激发学生的兴趣,培养他们的观察力和逻辑思维能力。

二、情境教学法情境教学法是一种将数学问题与实际生活情境相结合的教学方法。

通过将数学问题置于实际背景中,引导学生主动运用数学知识解决问题。

例如,在学习数值大小比较的过程中,教师可以设计一些与学生生活相关的情境,让学生根据情境中的需求和条件进行数值的比较,提高他们的应用能力。

三、思维导图法思维导图法是一种将概念和知识进行整理和归类的方法,适合培养学生的数学思维能力。

通过使用思维导图,学生可以将复杂的数学概念和知识进行组织和梳理,帮助他们更加清晰地理解和记忆。

例如,在学习数学公式的过程中,学生可以使用思维导图将不同的公式归类,将公式与具体的应用场景联系起来,提高他们的理解和运用能力。

四、游戏化学习法游戏化学习法是一种将游戏元素应用于数学教学中的方法,适合培养学生的数学思维能力。

通过将数学教学内容转化为游戏形式,激发学生参与的积极性和主动性。

例如,在学习数学运算的过程中,可以设计一些有趣的数学游戏,让学生在游戏中进行数学运算,提高他们的计算速度和准确性。

五、解决实际问题的方法培养学生解决实际问题的能力是数学思维训练的重要目标之一。

教师可以引导学生将数学知识应用到实际问题中,培养他们解决实际问题的能力。

例如,在学习面积和周长时,可以引导学生测量实际物体的大小、计算实际物体的周长等,让学生将抽象的数学概念与实际问题相结合,提高他们的应用能力。

培养小学一年级学生数学思维的八大方法

培养小学一年级学生数学思维的八大方法

培养小学一年级学生数学思维的八大方法数学思维是培养学生逻辑思维、创造力和问题解决能力的关键。

在小学一年级阶段,培养学生对数学的兴趣和基础思维能力至关重要。

在本文中,我们将介绍八种方法来培养小学一年级学生的数学思维。

一、游戏法通过游戏的方式进行数学教学是培养学生数学思维的有效方法之一。

小学一年级的学生对游戏通常充满了热情和好奇心。

教师可以设计一些寓教于乐的数学游戏,如数学谜题、拼图、数学猜谜等。

通过这些游戏,学生可以在轻松愉快的氛围中掌握数学概念和技巧。

二、实践方法小学一年级的学生更喜欢实际操作而不是抽象的概念。

教师可以设计一些实践活动来帮助学生理解数学的实际运用。

例如,在生活中找寻各种数学形状,通过示例和实例引导学生认识到数学在日常生活中的应用。

三、问题解决培养学生解决问题的能力是数学思维的核心。

教师可以提供一系列的问题,鼓励学生寻找解决问题的方法和策略。

通过训练解决问题的能力,学生将逐渐提升他们的逻辑思考能力和创造力。

四、思维导图思维导图是一种可以帮助学生整理思路和思考问题的工具。

教师可以通过思维导图的方式来呈现数学概念和思维过程,帮助学生理清思路,并培养他们的逻辑思维能力。

五、拓展学习除了课堂上的学习,教师可以组织学生参加一些数学拓展活动,如数学竞赛、数学游园活动等。

这些活动不仅可以激发学生的兴趣,还能够培养他们的问题解决能力和团队合作精神。

六、多媒体教学在数字化时代,多媒体教学已成为教育的常态。

教师可以利用多种多媒体资源,如动画、视频等,来呈现数学概念和实例。

通过视觉和听觉的刺激,学生可以更加深入的理解和记忆数学知识。

七、配合家长家庭是培养学生数学思维的重要环节。

教师可以与家长沟通合作,共同培养学生的数学思维。

教师可以向家长提供一些数学游戏、练习题和家庭作业,引导家长与孩子一起进行数学学习,增强孩子的数学兴趣和积极性。

八、激励与奖励激励和奖励是培养学生兴趣和动力的有效手段。

教师可以设立一些小奖励和激励机制,如奖励表扬、星星或徽章制度等,来激励学生的学习和思考。

小学数学八大思维方法

小学数学八大思维方法

小学数学八大思维方法第一大思维方法是整体观念,即从整体上看待问题。

这种思维方法强调整体的认识,通过将整体划分为不同的部分,从而更好地理解问题所涉及的内容。

例如,当解决一个几何问题时,可以将图形分解为多个几何形状,然后分别分析和解决。

第三大思维方法是抽象思维,它要求孩子将具体的问题抽象成一般的形式,并对其进行分析。

例如,当解决一个代数问题时,可以将其抽象为一个方程,然后利用解方程的方法求解。

抽象思维可以帮助孩子深入理解数学概念和规律。

第四大思维方法是逻辑思维,即根据已知条件进行推理和演绎。

逻辑思维可以帮助孩子正确地分析问题和提炼问题的本质。

例如,当解决一个逻辑问题时,需要根据已知条件推断出结论。

第五大思维方法是归纳思维,即从具体的例子中总结出一般性的规律。

对于一些数列或者模式问题,可以通过观察和归纳的方法找到规律。

归纳思维可以帮助孩子发现数学问题中的重要性质和规律。

第六大思维方法是推理思维,它要求孩子在给定的条件下进行合理的推理和解答。

推理思维可以帮助孩子从已知条件中推断出未知的信息,并运用这些信息解决问题。

例如,当解决一个几何证明题时,需要根据已知条件推理出结论。

第七大思维方法是创造思维,即帮助孩子形成灵活的思维方式,鼓励他们尝试新的方法和思路解决问题。

创造思维可以培养孩子的创造力和独立思考能力。

例如,当解决一个数学难题时,需要孩子从不同的角度考虑和思考。

第八大思维方法是策略思维,即帮助孩子形成有效的解题策略。

策略思维可以帮助孩子在解决问题时更加高效和自信。

例如,当解决一个长难题时,可以通过分步解决,简化问题,运用已有的数学知识等策略。

这八大思维方法对于小学数学的学习非常重要。

它们可以培养孩子的逻辑思维、分析问题的能力、掌握解题技巧等。

通过灵活运用这些思维方法,孩子可以更好地理解和应用数学知识,并在解决问题中展现出更高的成就。

提高数学思维的八种数学方法小学数学思维锻炼方法

提高数学思维的八种数学方法小学数学思维锻炼方法

提高数学思维的八种数学方法小学数学思维锻炼方法在小学数学教学中,为培养学生的思维能力,许多专家、教师著文论述其经验,值得借鉴。

小编整理了提高数学思维的八种数学方法小学数学思维锻炼方法,欢迎参考借鉴。

提高数学思维的八种数学方法1转化方法转化,既是一种方法,也是一种思维。

转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、更清晰。

2逻辑方法逻辑是一切思考的基础。

逻辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。

逻辑思维,在解决逻辑推理问题时使用广泛。

3逆向方法逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。

敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。

4对应方法对应思维是在数量关系之间(包括量差、量倍、量率)建立一种直接联系的思维方法。

比较常见的是一般对应(如两个量或多个量的和差倍之间的对应关系)和量率对应。

5创新方法创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,提得出与众不同的解决方案。

可分为差异性、探索式、优化式及否定性四种。

6系统方法系统思维也叫整体思维,系统思维法是指在解题时对具体题目所涉及到的知识点有一个系统的认识,即拿到题目先分析、判断属于什么知识点,然后回忆这类问题分为哪几种类型,以及对应的解决方法。

7类比方法类比思维是指根据事物之间某些相似性质,将陌生的、不熟悉的问题与熟悉问题或其他事物进行比较,发现知识的共性,找到其本质,从而解决问题的思维方法。

8形象方法形象思维,主要是指人们在认识世界的过程中,对事物表象进行取舍时形成的,是指用直观形象的表象,解决问题的思维方法。

小学数学思维方法

小学数学思维方法

小学数学思维方法
小学数学思维方法包括以下几点:
1. 理解基础概念:小学数学的基础是数的概念和数的运算。

学生要通过具体的实例和图形来理解数的大小、相等和序,以及加法、减法等基本运算的含义。

2. 培养逻辑思维:小学数学需要学生进行逻辑推理和问题解决。

培养学生的逻辑思维能力可以通过解决数学问题、分析数学模式和寻找规律等方式进行。

3. 发现数学规律:数学中有很多规律和模式,学生需要通过观察和思考来发现这些规律,然后运用到解决问题中。

教师可以通过给学生一些有趣的数学问题和游戏来激发他们的发现和探索精神。

4. 灵活运用数学方法:小学数学不仅仅是机械地运算数字,还涉及到实际问题的抽象和应用。

学生需要学会根据问题的特点选择合适的数学方法,例如列方程、制表格、绘图等。

5. 创造性思维:培养学生的创造性思维能力对于数学的学习和问题解决非常重要。

教师可以给学生提供一些开放性的数学问题,鼓励他们运用已学知识进行思考和尝试,培养发散思维的能力。

总之,小学数学思维方法的培养应该注重基础概念的理解、逻辑思维的培养、数
学规律的发现和创造性思维的培养。

通过培养学生的数学思维方法,可以提高他们的解决问题的能力和对数学的兴趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学八大思维方法目录一、逆向思维方法二、对应思维方法三、假设思维方法四、转化思维方法五、消元思维方法六、发散思维方法七、联想思维方法八、量不变思维方法一、逆向思维方法小学教材中的题目,多数是按照条件出现的先后顺序进行顺向思维的。

逆向思维是不依据题目内条件出现的先后顺序,而是从反方向(或从结果)出发而进行逆转推理的一种思维方式。

逆向思维与顺向思维是训练的最主要形式,也是思维形式上的一对矛盾,正确地进行逆向思维,对开拓应用题的解题思路,促进思维的灵活性,都会收到积极的效果,解:这是一道典型的“还原法”问题,如果用顺向思维的方法,将难以解答。

正确的解题思路就是用逆向思维的方法,从最后的结果出发,一步步地向前逆推,在逆向推理的过程中,对原来题目的算法进行逆向运算,即:加变减,减变加,乘变除,除变乘。

列式计算为:此题如果按照顺向思维来考虑,要根据归一的思路,先找出磨1吨面粉序是一致的。

如果从逆向思维的角度来分析,可以形成另外两种解法:①不着眼于先求1吨面粉需要多少吨小麦,而着眼于1吨小麦可磨多少列式计算为:由此,可得出下列算式:答:(同上)掌握逆向思维的方法,遇到问题可以进行正、反两个方面的思考,在开拓思路的同时,也促进了逻辑思维能力的发展。

二、对应思维方法对应思维是一种重要的数学思维,也是现代数学思想的主要内容之一。

对应思维包含一般对应和量率对应等内容,一般对应是从一一对应开始的。

例1 小红有7个三角,小明有5个三角,小红比小明多几个三角?这里的虚线表示的就是一一对应,即:同样多的5个三角,而没有虚线的2个,正是小红比小明多的三角。

一般对应随着知识的扩展,也表现在以下的问题上。

这是一道求平均数的应用题,要求出每小时生产化肥多少吨,必须先求出上、下午共生产化肥多少吨以及上、下午共工作多少小时。

这里的共生产化肥的吨数与共工作的小时数是相对应的,否则求出的结果就不是题目中所要求的解。

在简单应用题中,培养与建立对应思维,这是解决较复杂应用题的基础。

这是因为在较复杂的应用题里,间接条件较多,在推导过程中,利用对应思维所求出的数,虽然不一定是题目的最后结果,但往往是解题的关键所在。

这在分数乘、除法应用题中,这种思维突出地表现在实际数量与分率(或倍数)的对应关系上,正确的解题方法的形成,就建立在清晰、明确的量率对应的基础上。

这是一道“已知一个数几分之几是多少,求这个数”的分数除法应用题,题中只有20本这唯一具体的“量”,解题的关键是要找这个“量”所对应的“率”。

如图:的“率差”,找出“量”所对应的“率”,是解答这类题的唯一思考途径,按照对应的思路,即可列式求出结果。

答:书架上原有书240本。

如果没有量率对应的思维方法,用20除以而得的不是所对应的率,必然导致错误的计算结果。

因此,培养并建立对应的思维方法,是解答分数乘除法应用题一把宝贵的钥匙。

三、假设思维方法这是数学中经常使用的一种推测性的思维方法。

这种思维方法在解答应用题的实践中,具有较大的实用性,因为有些应用题用直接推理和逆转推理都不能寻找出解答途径时,就可以将题目中两个或两个以上的未知条件,假设成相等的数量,或者将一个未知条件假设成已知条件,从而使题目中隐蔽或复杂的数量关系,趋于明朗化和简单化,这是假设思维方法的一个突出特点。

当“假设”的任务完成后,就可以按照假设后的条件,依据数量的相依关系,列式计算并做相应的调整,从而求出最后的结果来。

各长多少米?解答这道题就需要假设思维方法的参予。

如果没有这种思维方法,将难以找到解题思路的突破口。

题目中有两数的“和”。

而且是直接条件,两数的“倍”不仅是间接条件,并且附加着“还”多0.4米的条件,这是一道较复杂的和倍应用题,思考这道题,必须进行如下的假设。

是直接对应的,至此,就完全转化成简单的和倍应用题。

根据题意,其倍数关系如图:答:第一块4.36米,第二块3.3米。

电线各长多少米?两个标准量的分率一旦一致,就可以用共长的米数乘以假设后的统一分率,求出假设后的分量,这个分量与实际8.6米必有一个量差,这个量差与实际的率差是相对应的。

这样就可以求出其中一根电线的长度,另一根电线的长度可通过总长度直接求出。

列式计算为:长度。

列式计算为:答:同上。

上述两种解法都是从率入手的,此题如从量入手也有两种解法,无论从率从量入手,都需要假设的思维方法作为解题的前提条件。

由此可见,掌握假设的思维方法,不仅可以增加解题的思路,在处理一些数量关系较抽象的问题时,往往又是创造性思维的萌芽。

四、转化思维方法在小学数学的应用题中,分数乘、除法应用题既是重点,又是难点。

当这类应用题的条件中,出现了两个或两个以上的不同标准量,从属于这些标准量的分率,就很难进行分析、比较以确定它们之间的关系。

运用转化的思维方法,就可以将不同的标准量统一为一个共同的标准量。

由于标准量的转化和统一,其不同标准量的分率,也就转化成统一标准量下的分率,经过转化后的数量关系,就由复杂转化为简单,由隐蔽转化为明显,为正确解题思路的形成,创造了必要的条件。

培养转化的思维方法,必须具备扎实的基础知识,对基本的数量之间的相依关系以及量率对应等关系,都能做到熟练地掌握和运用,没有这些作为基础,转化的思维方法就失去了前提。

转化的思维方法,在内容上有多种类型,在步骤上也有繁有简,现举例如下。

从题意中可知,求这批货物还剩下几分之几,必须先知道三辆车共运走全部的几分之几,全部看作标准量“1”,但条件中的标准量却有三个,“全部”、“甲车”和“乙车”,如果不把“甲车”和“乙车”这两个标准量,也统一成“全部”这个标准量,正确的思路将无法形成。

上面的转化的思维方法,都是分率在乘法上进行的,简称“率乘”。

乙两人年龄各多少岁?从题目中的条件与问题来分析,这是一道和倍应用题,但标准量却有两个(甲年龄与乙年龄),不通过转化来统一标准量,则无法确定甲乙年龄之间的倍数关系。

两人年龄和是60岁,就可以求出甲乙两人各自的年龄。

答:甲36岁,乙24岁。

如果把甲乙年龄不同的标准量,通过转化统一为乙年龄的标准量,把乙龄则是:如果根据题意画出线段图,还可以转化成另外一种思路。

倍,通过这个转化,就可以确定甲乙年龄的倍数关系。

答:甲36岁,乙24岁。

如果结合对图形中相等部分的观察,转化一下思维的角度,可以将这道较复杂的分数和倍应用题转化为按比例分配的应用题。

2,有了两人年龄的“和”,又有了两人年龄“比”的关系,按比例分配应用题的条件已经具备。

上述的四种解法,前两种运用了分率转化法,第三种运用了倍比转化法,第四种是将原题转化为按比例分配的应用题,这几种思路,在算法上大同小异,在算理上也有难有易,但都有一个明显的共同点:与转化的思维方法紧密相连。

五、消元思维方法在小学数学中,消元的思维方法,也叫做消去未知数的方法。

在一些数量关系较复杂的应用题里,有时会出现由两种或两种以上物品组合关系所构成的问题,而已知条件只给了这几种物品相互混合后的数量和总值,如果按照其他的思维方法,很难找到解决问题的线索。

这就需要运用消元的思维方法,即:依据实际的需要,通过直接加、减或经过乘、除后,再间接加、减的方法,消去其中一个或一个以上未知数的方法,来求出第一个结果,然后再用第一个结果推导出第二个或第三个结果来。

运用消元的思维方法,是从求两个未知数先消去其中一个未知数开始的,然后过渡到求三个未知数,首先消去其中两个未知数。

例 1 有大小两种西红柿罐头,第一次买了2个小罐头,3个大罐头,、小罐头每个各重多少公斤?根据题目中的条件,排列如下:从条件排列中观察到:两次买罐头的总重量是不一样的,关键在于两次买的大罐头的个数不一样,如果用第二次的总重量减去第一次的总重量,所得到的量差与两次买的大罐头的个数差是直接对应的。

这样一减,实际上就消去了2个小罐头的重量,所得的结果就是(7-3)=4个大罐头的重量,据此,可以求出每个大罐头的重量,有了每个大罐头的重量,再代入原题中任何一个条件,就可以求出每个小罐头的重量。

列式计算为:例2 食堂买盐、酱、醋,第一次各买2斤,共付0.96元,第二次买4斤盐、3斤酱、2斤醋共付1.48元,第三次买5斤盐、4斤酱和2斤醋,共付1.82元,求每斤各多少元?根据第三次和第二次所买的物品数量,醋的斤数一样,两次付出钱数相减,就把醋消去了。

所得的结果就是两次盐、酱斤数差所对应的钱数。

考虑到第一次各买2斤付出0.96元,用0.96元除以2,所得的0.48元,正是各买1斤应付的钱数。

再用0.48元减去1斤盐、1斤酱的0.34元,就可求出1斤醋的价钱。

每斤醋的价钱已求出,再想办法消去盐和酱,如果先消去酱,可用:0.34元×3=1.02(元),这1.02元是3斤盐和3斤酱的价钱和,再用第二次共付的(1.48-0.14×2)=1.2(元),这1.2元是消去2斤醋的价钱,也就是4斤盐、3斤酱的价钱之和,由于1.02元里也有3斤酱的价钱,这两个数相减,即可求出每斤盐的价钱。

如果求出每斤醋的价钱后,也可以先消去盐,即用:0.34×4=1.36(元),这是4斤盐与4斤酱的价钱和。

然后按上述求出4斤盐与3斤酱的价钱和(1.2元),即可求出每斤酱的价钱。

如下式:通过以上两例说明:解答上面这类应用题,按照一般的常规思路,会感到不得其门而入。

运用消元的思维方法,就会发现解答上面这类题的规律。

由于解题步骤和分析消元的角度上,不是唯一的,因此,消元的思维方法也会促进整个思维的发散性。

小学数学中的消元思维方法与中学代数中的消元法是一致的,所不同的是小学数学中的消元没有字母,都是具体的数量。

六、发散思维方法发散的思维方法,是依据题目中的条件与条件、条件与问题的相依关系,从不同的角度去分析,从不同的途径去思考,在推理中寻求正确的答案,在比较中选择最佳思路,从而使学生的求异思维得到锻炼和发展。

求同思维是求异思维的前提,没有求同就没有真正的求异,或者说就没有真正的发散,但求异思维不是求同思维的自然发展,重要的是教师有计划、有重点地进行发散思维方法的培养。

让学生在“同中求异”和“异中求同”,使求同思维与求异思维协同配合,做到培养中的同步发展。

是一个正确答案,却是从不同角度进行发散思维的结果。

出1300公斤。

倍,小数点向右移动三位,结果是1300公斤。

上述的三种思路,其与旧知识的联系不尽相同,所以形成了不同的发散加的方法,实际上在运算中使用了乘法的分配律。

思路②是用求一个数是另一个数的几又几分之几倍的分数乘法则来进行计算的。

思路③是先将分数化成小数,然后在乘法中,根据小数点移位所引起的小数大小变化的规律,从而简便、准确、迅速地求出结果。

例2 当分数、百分数应用题学完后,可通过变直接条件为间接条件的表述,来进行发散思维方法的培养。

相关文档
最新文档