八年级数学 一次函数与方程、不等式综合专题复习讲义

合集下载

人教版 八年级下册数学 同步复习 第14讲 一次函数与方程(组)、不等式 讲义

人教版 八年级下册数学 同步复习 第14讲  一次函数与方程(组)、不等式   讲义

课程标准1. 能用函数观点看一次方程(组),能用辨证的观点认识一次函数与一次方程的区别与联系.2.能用函数的观点认识一次函数、一次方程(组)与一元一次不等式之间的联系,能直观地用图形(在平面直角坐标系中)来表示方程(或方程组)的解及不等式的解,建立数形结合的思想及转化的思想. 3.能运用一次函数的性质解决简单的不等式问题及实际问题.知识点01 一次函数与一元一次方程的关系一次函数y kx b =+(k ≠0,b 为常数),当函数y =0时,就得到了一元一次方程0kx b +=,此时自变量x 的值就是方程kx b +=0的解.所以解一元一次方程就可以转化为:当某一个一次函数的值为0时,求相应的自变量的值.从图象上看,这相当于已知直线y kx b =+(k ≠0,b 为常数),确定它与x 轴交点的横坐标的值. 注意:(1)求一次函数与x 轴的交点,令y=0,解出x 即为与x 轴交点的横坐标;(2)一次函数y kx b =+(k ≠0,b 为常数)是一个关于x 和y 的二元一次方程,这个方程有无数组解,但若已知x 的值(或y 的值),即可求出y 的值(或x 的值);(3)若一次函数y kx b =+,满足等式mk b n += 或0mk b n +-=,则函数必过点(m,n );同理,若一次函数图像上有个点(m ,n ),则二元一次方程有一组解为x my n =⎧⎨=⎩;知识点02 一次函数与二元一次方程组每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标. 注意:(1)两个一次函数图象的交点与二元一次方程组的解的联系是:在同一直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点一定是相应的两个一次函数的图象的交点.如一次函数学生/课程 年级 8年级 学科 数学 授课教师日期时段核心内容一次函数与方程(组)、不等式 (第14讲)24y x =-+与31322y x =-图象的交点为(3,-2),则32x y =⎧⎨=-⎩就是二元一次方程组2431322y x y x =-+⎧⎪⎨=-⎪⎩的解.(2)当二元一次方程组无解时,相应的两个一次函数在直角坐标系中的直线就没有交点,则两个一次函数的直线就平行.反过来,当两个一次函数直线平行时,相应的二元一次方程组就无解.如二元一次方程组3531x y x y -=⎧⎨-=-⎩无解,则一次函数35y x =-与31y x =+的图象就平行,反之也成立.(3)当二元一次方程组有无数组解时,则相应的两个一次函数在直角坐标系中的直线重合,反之也成立.知识点03 方程组解的几何意义1.方程组的解的几何意义:方程组的解对应两个函数的图象的交点坐标.2.根据坐标系中两个函数图象的位置关系,可以看出对应的方程组的解情况: 根据交点的个数,看出方程组的解的个数;根据交点的坐标,求出(或近似估计出)方程组的解.3.对于一个复杂方程组,特别是变化不定的方程组,用图象法可以很容易观察出它的解的个数.知识点04 一次函数与一元一次不等式由于任何一个一元一次不等式都可以转化为ax b +>0或ax b +<0或ax b +≥0或ax b +≤0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数y ax b =+的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围. 注意:(1)求关于x 的一元一次不等式ax b +>0(a ≠0)的解集,从“数”的角度看,就是x 为何值时,函数y ax b =+的值大于0.从“形”的角度看,确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围. (2)常见的解集:0(0)y kx b >+>或0(0)y kx b ≥+≥或0(0)y kx b <+<或0(0)y kx b ≤+≤或x m >x m ≥x m <x m ≤2x >2x ≥ 2x < 2x ≤2x <-2x ≤- 2x >- 2x ≥-4x <4x ≤ 4x > 4x ≥无论求0(0)y kx b >+>或还是0(0)y kx b <+<或,都应首先求出一次函数与x 轴交点的横坐标(即令y=0),再根据题目要求,确定x 的取值范围: ①y >0时,取x 轴上方图像自变量的范围; ②y <0时,取x 轴下方图像自变量的范围;知识点05 一元一次方程与一元一次不等式我们已经学过,利用不等式的性质可以解得一个一元一次不等式的解集,这个不等式的解集的端点值就是我们把不等式中的不等号变为等号时对应方程的解. 注意:(1)不等式的解集中,端点无论取到取不到,该值都是对应方程的解;例如:一次函数y kx b =+,若0y >时,x 的取值范围是2x >,则方程0kx b +=的解为2x =,且一次函数y kx b =+过点(2,0);(2)一次函数y kx b =+,若当a x m << 时,y 的取值范围是b y n <<,则可得出一次函数过点(,),(,)(,),(,)a b m n a n m b 或;知识点06 如何确定两个不等式的大小关系ax b cx d +>+(a ≠c ,且0ac ≠)的解集⇔y ax b =+的函数值大于y cx d =+的函数值时的自变量x 取值范围⇔直线y ax b =+在直线y cx d =+的上方对应的点的横坐标范围.两个一次函数比较大小,求自变量x 的取值范围,首先要求出两一次函数的交点横坐标(列二元一次方程组),再根据图像判断。

一次函数与方程和不等式讲义(经典)

一次函数与方程和不等式讲义(经典)

一次函数与方程和不等式讲义(经典)-CAL-FENGHAI.-(YICAI)-Company One1一次函数与方程和不等式讲义函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

1、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

2、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

3、正比例函数及性质一般地,形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式 y =kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零当k >0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,•直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )(3) 走向:k >0时,图像经过一、三象限;k <0时,•图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴 4、一次函数及性质一般地,形如y =kx +b (k ,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y =kx +b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y =kx +b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y =kx +b ,它可以看作由直线y =kx 平移|b |个单位长度得到.(当b >0时,向上平移;当b <0时,向下平移)(1)解析式:y =kx +b (k 、b 是常数,k ≠0 (2)必过点:(0,b )和(-kb,0)(3)走向: k >0,图象经过第一、三象限;k <0,图象经过第二、四象限 b >0,图象经过第一、二象限;b <0,图象经过第三、四象限 ⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限(4)增减性: k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小.(5)倾斜度:|k | 越大,图象越接近于y 轴;|k | 越小,图象越接近于x 轴. (6)图像的平移: 当b >0时,将直线y =kx 的图象向上平移b 个单位; (上加下减,左加右减) 当b <0时,将直线y =kx 的图象向下平移b 个单位.当b <0时,向下平移).5、直线y =k 1x +b 1与y =k 2x +b 2的位置关系(1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2 (3)两直线重合:k 1=k 2且b 1=b 2 (4)两直线垂直:k 1·k 2= –1 6、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 7、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax +b =0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y =ax +b 确定它与x 轴的交点的横坐标的值.8、一次函数与一元一次方程的关系:任何一元一次方程都可以转化为kx+b=0(k ,b 为常数,k≠0)的形式,可见一元一次方程是一次函数的一个特例,这就是说,在y=kx+b 中,当y=0时,即为一元一次方程. 9、一次函数与二元一次方程(组)的关系:(1)任何二元一次方程ax+by=c (a ,b ,c 为常数,且a≠0,b≠0)都可以化为y=-a b x+ cb的形式,所以每个二元一次方程都对应着一个一次函数;(2)从“数”的角度看,解方程组相当考虑求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从“形”的角度看,解方程组相当于确定两条相应直线的交点坐标.10、一次函数的图像与两坐标轴所围成三角形的面积一次函数y =kx +b 的图象与两条坐标轴的交点:与y 轴的交点(0,b ),与x轴的交点(kb-,0).直线(b ≠0)与两坐标轴围成的三角形面积为s =k b b k b 2212=⨯⨯ 例题讲解:探究类型之一 一次函数与一元一次方程综合【例1】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )A .2-B .2C .1-D .0【例2】 已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______.【例3】 已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程3kx b +=的解是x =______.类似性问题1、把直线y=-x+3向上平移m 个单位后,与直线y=2x+4的交点在第一象限,则m 的取值范围是( ) <m<7 <m<4 >1 <4探究类型之二 一次函数与一元一次不等式【例4】 已知一次函数25y x =-+.(1)画出它的图象;(2)求出当32x =时,y 的值;(3)求出当3y =-时,x 的值;(4)观察图象,求出当x 为何值时,0y >,0y =,0y <【例5】 当自变量x 满足什么条件时,函数41y x =-+的图象在:(1)x 轴上方;(2)y 轴左侧; (3)第一象限.(2)已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( ) A .5x >B .12x <C .6x <-D .6x >-【例6】 已知一次函数23y x =-+(1)当x 取何值时,函数y 的值在1-与2之间变化(2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少类似性问题1、 如图,函数1y =|x |,2y =13x+43,当1y >2y 时,x 的取值范围是( )A. x <-1B. -1<x <2C. x <-1或x >2D. x >22、 如图,直线y=kx+b 交坐标轴于A (-3,0),B (0,5)两点,则不等式-kx -b <0的解集为( ) A. x >-3 B. x <-3 C. x >3 D. x <33、如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点 P (1,m ),则不等式组mx >kx+b >mx -2的解集是________.探究类型之三 一次函数、方程(组)、不等式(组)与几何等知识的综合例3、已知一次函数y=kx+b 的图象经过点(-1,-5),且与函数y=12x+1的图象相交于点A (83,a ).(1)求a 的值;(2)求不等式组0<kx+b <12x+1的正整数解;(3)若函数y=kx+b图象与x轴的交点是B,函数y=12x+1的图象与y轴的交点是C,求四边形ABOC的面积.例4、如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y 轴以每秒1个单位的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求直线l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.类似性问题1.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一国营出租车公司签订月租车合同.设汽车每月行驶x(cm),应付给个体车主的月费用为y1元,•应付给汽车出租公司的月费用为y2元,y1,y2分别与x之间的函数关系的图像(两条射线)如图所示,观察图像回答下列问题:(1)每月行驶的路程在什么范围内,租出租公司的车合算(2)每月行驶的路程等于多少时,租两家车的费用相同(3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家车合算2.某学校计划购买若干台电脑,•现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收费,其余每台优惠25%,那么甲商场的收费y1(元)与所买电脑台数x之间的关系式是________.乙商场的优惠条件是:每台优惠20%,那么乙商场的收费y2(元)与所买电脑台数x之间的关系式是_________.(1)什么情况下到甲商场购买更优惠(2)什么情况下到乙商场购买更优惠(3)什么情况下两家商场的收费相同探究应用拓展性训练1.(与现实生活联系的应用题)某单位要制作一批宣传材料.甲公司提出:每份材料收费20元,另收3000元设计费;乙公司提出:每份材料收费30元,不收设计费.问:让哪家公司制作这批宣传比较合算2.(学科内综合题)下图表示学校浴室淋浴器水箱中的水量y(L)•与进水时间x(min)的函数关系.(1)求y与x之间的函数关系式.(2)进水多少分钟后,水箱中的水量超过100L3.小明准备将平时的零用钱节约一些储存起来,他已存有50元,从现在起每个月存12元.(1)试写出小明的存款数与从现在开始的月份数之间的函数关系式.(2)小明的同学小丽以前没有存过零用钱,听到小明在存零用钱,•表示从现在起每个月存18元,争取超过小明.请你在同一平面直角坐标系中分别画出小明和小丽存款数和月份数的函数关系的图像.半年以后小丽的存款数是多少能否超过小明•至少几个月后小丽的存款数超过小明4.(探究题)某企业急需一辆汽车,但无资金购买,公司经理决定租一辆汽车,•使用期限为一个月.甲汽车出租公司的出租条件为每千米的租车费为1.2元,•乙汽车出租公司的条件是每月须支付司机800元的工资,另外每千米的租车费为1元,设在这一个月中汽车行驶x(km),租用甲公司的费用为y1(元),租用乙公司的费用为y2(元).(1)试分别写出y 1,y 2与x 之间的函数关系式.(2)当汽车行驶路程为多少千米时,租用乙公司的汽车合算一次函数与方程和不等式 课后练习1:一次函数y =kx +b 的图象如图所示,则方程kx +b =0的解为( )A .x =2B .y =2C .x =1-D .y =1-2:一次函数y =ax +b 的图象如图所示,则不等式ax +b >0的解集是( ) A .x <2 B .x >2 C .x <1 D .x >13:已知一次函数y =ax +b 的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式a (x 1)b >0的解集为( ) A .x <1 B .x >1 C .x >1 D .x <14:如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax by kx=+=⎧⎨⎩的解是 .5:如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .121x y x y -=-=⎧⎨⎩B .121x y x y -=--=-⎧⎨⎩C .121x y x y -=--=⎧⎨⎩D .121x y x y -=-=-⎧⎨⎩6:(1)已知关于x 的方程mx +n =0的解是x =-2,那么,直线y =mx +n 与x 轴的交点坐标是 .(2)如图,在平面直角坐标系中,直线AB :y =kx +b 与直线OA :y =mx 相交于点A (1,2),则关于x 的不等式kx +b <mx 的解是 .(3)如图,直线l 1和l 2的交点坐标为( ) A .(4,2) B .(2,-4) C .(-4,2) D .(3,1)7:(1)已知方程2x +1=-x +4的解是x =1,那么,直线y =2x +1与直线y =-x +4的交点坐标是 __ __ .(2)在平面直角坐标系中,直线y =kx +1关于直线x =1对称的直线l 刚好经过点(3,2),则不等式3x >kx +1的解集是__ __ . (3)如图,直线l 1、l 2交于点A ,试求点A 的坐标.8:已知一次函数y1=kx+b和正比例函数y2=1x的图象交于点A(2,m),又一2次函数y1=kx+b的图象过点B(1,4).(1)求一次函数的解析式;(2)根据图象写出y1>y2的取值范围.9:如图,已知一次函数的图象经过点A(1,0)、B(0,2).(1)求一次函数的关系式;(2)设线段AB的垂直平分线交x轴于点C,求点C的坐标.10:如图,已知直线y=kx+b经过点A(1,4),B(0,2),与x轴交于点C,经过点D(1,0)的直线DE平行于OA,并与直线AB交于点E.(1)求直线AB的解析式;(2)求直线DE的解析式;(3)求△EDC的面积.11:随着人们节能环保意识的增强,绿色交通工具越来越受到人们的青睐,电动摩托成为人们首选的交通工具,某商场计划用不超过140000元购进A、B两种不同品牌的电动摩托40辆,预计这批电动摩托全部销售后可获得不少于品牌价格A品牌电动摩托B品牌电动摩托进价(元/辆)40003000售价(元/辆)50003500设该商场计划进A品牌电动摩托x辆,两种品牌电动摩托全部销售后可获利润y元.(1)写出y与x之间的函数关系式;(2)该商场购进A品牌电动摩托多少辆时获利最大,最大利润是多少。

八年级数学一次 函数与方程不等式 专题讲义

八年级数学一次 函数与方程不等式 专题讲义
二、能力点评
1.解决图形问题,要正确进行点的坐标与线段长度之间的相互转化,会根据函数解析式求直线与坐标轴交点坐标,会运用待定系数法求解析式,会用割补法计算图形面积,会根据已知条件列方程组求解。
2.数形结合,方程思想,化归思想等思想方法的应用。
1.直线y=3x+9与x轴的交点是()。
A.(0,-3)B.(-3,0)C.(0,3)D.(0,-3)
15.已知直线y=x-2与y=-x+2相交于点(2,0),则不等式x-2≥-x+2的解集是________。
16.直线y=-3x-3与x轴的交点坐标是________,则不等式-3x+9>12的解集是________。
17.已知关于x的不等式kx-2>0(k≠0)的解集是x>-3,则直线y=-kx+2与x轴的交点是__________。
变式:1..若直线 与直线 ( 为常数)的交点在第四象限,则整数 的值为( )
A. B. C. D.
2.如图所示的是函数 与 的图象,
求方程组 的解关于原点对称的点的坐标是.
例3:如图是关于 的函数 的图象,则不等式 的解集在数轴上可表示为( )
变式:1.直线y=x-1上的点在x轴上方时对应的自变量的范围是()
付款金额(元)a7.51012b
购买量(千克)11.522.53
(1)指出付款金额和购买量哪个变量是函数的自变量x,并写出表中a、b的值;
(2)求出当x>2时,y关于x的函数解析式;
(3)甲农户将8.8元钱全部用于购买该玉米种子,乙农户购买了4165克该玉米种子,分别计算他们的购买量和付款金额.
(2015山东济宁,18,7分)
教学内容
1、同步学校知识理解

八年级数学培优——一次函数与方程、不等式

八年级数学培优——一次函数与方程、不等式

第9讲一次函数与方程、不等式考点·方法·破译1.一次函数与一元一次方程的关系:任何一元一次方程都可以转化成kx +b =0(k 、b 为常数,k ≠0)的形式,可见一元一次方程是一次函数的一个特例.即在y =kx +b 中,当y =0时则为一元一次方程.2.一次函数与二元一次方程(组)的关系:⑴任何二元一次方程ax +by =c (a 、b 、c 为常数,且a ≠0,b ≠0)都可以化为y =a cx b b-+的形式,因而每个二元一次方程都对应一个一次函数;⑵从“数”的角度看,解方程组相当于求两个函数的函数值相等时自变量的取值,以及这个函数值是什么;从“形”的角度看,解方程组相当于确定两个函数图像交点的坐标.3.一次函数与一元一次不等式的关系:由于任何一元一次不等式都可以转化成ax +b >0或ax +b <0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看成是当一次函数的函数值大于或小于0时,求相应自变量的取值范围.经典·考题·赏析【例1】直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为()A .x >-1B .x <-1C .x <-2D .无【变式题组】01.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象与例题相同,则关于x 的不等式k 2x >k 1x +b 的解集为________.第2题图 第3题图 第3题图02.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③当x <3时,y 1<y 2中,正确的个数是() A .0 B .1 C .2 D .303.如图,已知一次函数y =2x +b 和y =ax -3的图象交于点P (-2,-5),则根据图象可得不等式2x +b >ax -3的解集是________. 04.如图,直线y =kx +b 经过A (2,1),B (-1,-2)两点,则不等式12x >kx +b >-2的解集为_________.【例2】若直线l1:y=x-2与直线l2:y=3-mx在同一平面直角坐标系的交点在第一象限,求m的取值范围.【变式题组】01.如果直线y=kx+3与y=3x-2b的交点在x轴上,当k=2时,b等于()A.9 B.-3 C.32-D.94-02.若直线122y x=-与直线14y x a=-+相交于x轴上一点,则直线14y x a=-+不经过()A.第四象限B.第三象限C.第二象限D.第一象限03.两条直线y1=ax+b,y2=cx+5,学生甲解出它们的交点坐标为(3,-2),学生乙因抄错了c而解出它们的交点坐标为(34,14),则这两条直线的解析式为____________.04.已知直线y=3x和y=2x+k的交点在第三象限,则k的取值范围是________.【例3】在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点,设k为整数,当直线y=x-2与y=kx+k的交点为整点时,k的取值可以取()A.4个B.5个C.6个D.7个【变式题组】01.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px-2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有() A.12对B.6对C.5对D.3对02.直线l:y=px(p是不等于0的整数)与直线y=x+10的交点恰好是整点(横坐标和纵坐标都是整数),那么满足条件的直线l有()A.6条B.7条C.8条D.无数条03.点A、B分别在一次函数y=x,y=8x的图像上,其横坐标分别是a、b(a>0,b>0).若直线AB为一次函数y=kx+m的图象,则当ba是整数时,求满足条件的整数k的值.【例4】已知x、y、z都为非负数,满足x+y-z=1,x+2y+3z=4,记ω=3x+2y+z.求ω的最大值与最小值.【变式题组】01.已知x满足不等式:31752233x xx-+--≥,|x-3|-|x+2|的最大值为p,最小值为q,则pq的值是()A.6 B.5 C.-5 D.-1 02.已知非负数a、b、c满足条件:3a+2b+c=4,2a+b+3c=5.设S=5a+4b+7c的最大值为m,最小值为n,则n-m=________.03.若x+y+z=30,3x+y-z=50,x、y、z均为非负数,则M=5x+4y+2z的取值范围是()A.100≤M≤110 B.110≤M≤120 C.120≤M≤130 D.130≤M≤140【例5】已知直线l 1经过点(2,5)和(-1,-1)两点,与x 轴的交点是点A ,将直线y =-6x +5的图象向上平移4个单位后得到l 2,l 2与l 1的交点是点C ,l 2与x 轴的交点是点B ,求△ABC 的面积.【变式题组】01.已知一次函数y =ax +b 与y =bx +a 的图象相交于A (m ,4),且这两个函数的图象分别与y 轴交于B 、C 两点(B 上C 下),△ABC 的面积为1,求这两个一次函数的解析式.02.如图,直线OC 、BC 的函数关系式为y =x 与y =-2x +6.点P (t ,0)是线段OB 上一动点,过P 作直线l 与x 轴垂直. ⑴求点C 坐标;⑵设△BOC 中位于直线l 左侧部分面积为S ,求S 与t⑶当t 为何值时,直线l 平分△COB 面积.第2题图演练巩固·反馈提高01.已知一次函数y =32x +m ,和y =12-x +n 的图象交点A (-2,0),且与y 轴分别交于B 、C 两点,那么△ABC 的面积是() A .2 B .3 C .4D .602.已知关于x 的不等式ax +1>0(a ≠0)的解集是x <1,则直线y =ax +1与x 轴的交点是()A .(0,1)B .(-1,0)C .(0,-1)D .(1,0)第3题图 第6题图03.如图,直线y =kx +b 与x 轴交于点A (-4,0),则y >0时,x 的取值范围是()A .x >-4B .x >0C .x <-4D .x <004.直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为()A .4B .-4C .2D .-205.直线y =kx +b 与坐标轴的两个交点分别为A (2,0)和B (0,-3).则不等式kx +b +3≥0的解集为() A .x ≥0 B .x ≤0 C .x ≥2 D .x ≤206.如图是在同一坐标系内作出的一次函数y 1、y 2的图象l 1、l 2,设y 1=k 1x +b 1,y 2=k 2x +b 2,则方程组111222y k x b y k x b ⎧⎨⎩=+,=+的解是()A .22x y =-⎧⎨=⎩B .23x y =-⎧⎨=⎩C .33x y =-⎧⎨=⎩D .34x y =-⎧⎨=⎩07.若直线y =ax +7经过一次函数y =4-3x 和y =2x -1的交点,则a =_________.08.已知一次函数y =2x +a 与y =-x +b 的图象都经过A (-2,0),且与y 轴分别交于B 、C 两点,则S △ABC =_________.09.已知直线y =2x +b 和y =3bx -4相交于点(5,a ),则a =___________. 10.已知函数y =-x +m 与y =mx -4的图象交点在x 轴的负半轴上,则m 的值为__________. 11.直线y =-2x -1与直线y =3x +m 相交于第三象限内一点,则m 的取值范围是___________.12.若直线122a y x =-+与直线31544y x =-+的交点在第一象限,且a 为整数,则a =_________.13.直线l 1经过点(2,3)和(-1,-3),直线l 2与l 1交于点(-2,a ),且与y 轴的交点的纵坐标为7.⑴求直线l 2、l 1的解析式;⑵求l 2、l 1与x 轴围成的三角形的面积; ⑶x 取何值时l 1的函数值大于l 2的函数值?14.如图,直线l 1的解析式为y =-3x +3,l 1与x 轴交于点D ,直线l 2经过点A (4,0),B (3,32).⑴求直线l 2的解析式; ⑵求S △ADC ;⑶在直线l 2上存在异于点C 的另一点P ,使得S △ADP =S △ADC ,求P 点坐标.第14题图15.已知一次函数图象过点(4,1)和点(-2,4).求函数的关系式并画出图象.⑴当x 为何值时,y <0,y =0,y >0? ⑵当-1<x ≤4时,求y 的取值范围; ⑶当-1≤y <4时,求x 的取值范围.16.某医药研究所开发了一种新药,在实验药效时发现,如果成人按规定剂量服用,那么服药后2h 时血液中含药量最高,达每毫升6μg (1μg =10-3mg ),接着就逐步衰减,10h 后血液中含药量为每毫升3μg ,每毫升血液中含药量y (μg )随时间x (h )的变化如图所示,当成人按规定剂量服药后,⑴分别求x ≤2和x ≥2时,y 与x 之间的函数关系式; ⑵如果每毫升血液中含药量在4μg 或4μg 以上时,治疗疾病才是有效的,那么这个有效时间是多长?第16题图l 2。

初二数学-一次函数、方程(组)及不等式的综合应用

初二数学-一次函数、方程(组)及不等式的综合应用

不等式在实际问题中的应用
方案优选问题 在多种方案中选择最优方案,可以通过建立和解决不等式来比较各种方案的优劣。 最大值最小值问题 在生产、生活中,经常需要求某个量的最大值或最小值,可以通过建立不等式来解决。 经济问题 在经济学中,价格、成本、利润等变量之间存在不等关系,可以通过建立和解决不等式来分析经济问题。
建立实际问题与数学模型的联系
实际问题的数学建模与解决
通过分析实际问题,将问题转化为数学模型,如线性方程、不等式或函数表达式。
利用数学知识和方法求解数学模型,得出实际问题的解决方案。
实际问题的数学解决方案
将数学解决方案应用到实际问题中,验证其可行性和有效性。
实际问题的应用与验证
综合应用题的解题思路与技巧
方程组在实际问题中的应用
在经济学中,方程组被用来描述和解决各种问题,如供需关系、成本和收益等。
经济问题
在解决物理问题时,经常需要建立和解决方程组,例如在力学、电磁学和热力学等领域。
物理问题
在航天工程中,需要建立复杂的方程组来描述和解决飞行器的轨道、速度和加速度等问题。
航天工程
PART THREE
初二数学-一次函数、方程(组)及不等式的综合应用
答辩学生:XXX 指导老师:XXX
Contents
目 录
目录
绪论
研究 方法
PART ONE
一次函数的应用
3.1关键技术 3.2技术难点 3.3案例分析
一次函数的定义与性质
一次函数是形如$y=kx+b$的函数,其中$k$和$b$是常数,且$k neq 0$。 一次函数的图像是一条直线,其斜率为$k$,截距为$b$。 一次函数的性质包括单调性、奇偶性等,这些性质在解决实际问题中具有重要意义。

八上 一次函数与方程组、不等式 知识点+例题+练习 (非常好 分类全面)

八上 一次函数与方程组、不等式 知识点+例题+练习 (非常好 分类全面)

例1 从2014年起,中国的鞋号已“变脸”,新的国家标准要求鞋号用毫米数标注.据了解大多数市民还不了解此新标准,小明对新旧鞋号的标注变化进行了对比研究,发现新标准鞋子毫米数y与旧鞋号x之间存在着一次函数关系,并得到相关数据如下:旧鞋号 x 36 38 40新标准毫米数y230 240 250(1)请你帮助小明根据上述数据归纳出新标准毫米数与旧鞋号标注之间的换算关系式,并用一句简明的数学语言来表示;(2)如果小明的爸爸穿的一双42号凉鞋坏了,准备买一双同样尺寸的新凉鞋,那么应买一双多少毫米数的新凉鞋?例2 某种拖拉机的油箱可储油40L,加满油并开始工作后,•油箱中的余油量y(L)与工作时间x(h)之间为一次函数关系,如图所示.(1)求y与x的函数解析式.(2)一箱油可供拖位机工作几小时?知识点2 图像法解决实际问题注:读图时一定要明确横纵坐标表示的量所代表的意义。

例3 某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求yl 与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案.二、典型例题题型1 运用一次函数的关系解决生活中的实际问题例 1 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数表达式;(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度;(3)若桌面上有若干个饭碗,整齐叠放成一摞,已测得它的高度为37.5cm,你能求出此时有多少个饭碗吗?题型2利用图表信息解决实际问题例2 某厂家生产两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A种购物袋x个,每天共获利y元.(1)求y与x的函数关系式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?题型3 建立一次函数模型解决实际问题例3 某下岗职工购进一批苹果到农贸市场零售,已知买出的苹果数量x(kg)与收入y(元)的关系如下表:在平面直角坐标系中描点,观察点的分布情况,探求收入y(元)与买出数量x(kg)之间的函数关系式。

人教版八年级下册数学《一次函数与方程、不等式》一次函数教学说课复习课件

人教版八年级下册数学《一次函数与方程、不等式》一次函数教学说课复习课件

新知探究
例4: 某商店销售10台A型和20台B型电脑的利润为4000元 ,
销售20台A型和10台B型电脑的利润为3500元 .
(1) 求每台A型电脑和B型电脑的销售利润 ;
解:(1) 设每台A型电脑的销售利润为a元 , 每台B型电脑的销售利润为b元 ,
则有:
10a 20b=4000, 20a+10b=3500.
-1 -10 1 2 3 4 x
(3) x 取哪些值时, y<0 ?
-2
(2.5 , 0)
x < 2.5 时 , y < 0 ;
-3
(4) x 取哪些值时 , y>3 ?
-4
x>4时, y>3;
-5
能否将上述 “关于函数值的问题”
-6
改为 “关于x 的不等式的问题” ?
新知探究
将“一次函数值的问题”改为“一次不等式的问题”
再过几秒它的速度为17米/秒 ?
解法3:速度y(单位:米/秒)是时间x(单位:秒)的函数 : y=2x+5 .
y
由右图可以看出当y =17时 , x=6 .
y=2x+5
17
5
-2.5
06
x
知识归纳
从数的角度看 : 求ax+b=0(a≠0)的解 转 化
x为何值时 , y=ax+b的值为0?
从形的角度看:求ax+b=0(a≠0)的解 转 化
再过几秒它的速度为17米/秒 ?
解法2:速度y(单位:米/秒)是时间x(单位:秒)的函数 : y=2x+5 .
由2x+5=17得 , 2x-12=0 ,
由右图看出直线y=2x-12与x轴 的交点为(6 , 0) , 得x=6 .

八年级数学一次函数与方程、不等式综合专题复习讲义

八年级数学一次函数与方程、不等式综合专题复习讲义

【巩固】已知一次函数 y 2 x 3 ( 1)当 x 取何值时,函数 y 的值在 1 与 2 之间变化 ? ( 2)当 x 从 2 到 3 变化时,函数 y 的最小值和最大值各是多少 ?
一次函数与方程、不等式综合专题复习讲义 中考要求
板块
一次 函数
A 级要求
理解正比例函数;能结合具 体情境了解一次函数的意
义,会画一次函数的图象; 理解一次函数的性质
考试要求
B 级要求
会根据已知条件确定一次函数的解析式;会 根据一次函数的解析式求其图象与坐标轴的 交点坐标;能根据一次函数的图象求二元一 次方程组的近似解
A. x 4
B. x 0
C. x 4
D. x 0

y
-4 O
x
【巩固】一次函数 y kx b 的图象如图所示,当 y 0 时, x 的取值范围是(
A. x 0
B. x 0
C. x 2
D. x 2

y 3
O
2
x
【例 6】 已知一次函数经过点( 1, -2)和点( -1, 3),求这个一次函数的解析式,并求: ( 1)当 x 2 时, y 的值; ( 2) x 为何值时, y 0 ? ( 3)当 2 x 1时, y 的值范围; ( 4)当 2 y 1 时, x 的值范围.
b
b
b
,直线 y kx b 交 x 轴于 ( ,0) ,
k
k
k
二、一次函数与一元一次不等式的关系
任何一元一次不等式都可以转化为 ax b 0 或 ax b 0 ( a、b 为常数, a 0 )的形式,所以解一元一
次不等式可以看作:当一次函数值大(小)于
0 时,求自变量相应的取值范围。

初二一次函数讲义

初二一次函数讲义

初二一次函数讲义一、函数1.定义(1)在变化过程中有两个变量;(2)一个变量的数值随着另一个变量的数值的变化而发生变化;(3)自变量的每一个确定值,函数有且只有一个值与之对应,即单值对应。

2. 自变量的取值范围(1)整式时,自变量取全体实数;(2)分式时,自变量使分母不为零;(3)有偶次根式时,自变量必须使被开方数是非负数;(4)实际问题中,要使实际问题有意义;(5)在有些函数关系式中,自变量的取值范围应是其公共解。

二、一次函数(——正比例函数)1. 定义(1)函数为一次函数?其解析式可化为y =kx +b (k , b 为常数,k ≠0)的形式。

(2)一次函数y =kx +b 结构特征:k ≠0;自变量x 次数为1;常数b 可为任意实数。

(3)一般情况下,一次函数中自变量的取值范围是全体实数。

(4)若k =0,则y =b (b 为常数),这样的函数叫做常函数,它不是一次函数;若b =0,则y=kx (k 为常数),这样的函数叫做正比例函数。

2. 图像一次函数的图像是一条直线,确定两点,便能确定其图像。

3. 性质(1)增减性:k >0时,y 随着x 的增大而增大;k1. 求出下列函数中自变量x 的取值范围1y =y =x +1(3)y = (4)y =2 (1)(2)-52x -12.m已知y =(m -2) x2-3+3,当m 为何值时,y 是x 的一次函数?3. 已知一次函数y =(m +2) x +(1-m ) ,若y 随x 的增大而减小,且该函数图象与x 轴的交点在原点右侧,求m 的取值范围。

4. 若正比例函数y =(1-2m)x 的图象经过点A(x1,y 1) 和点B(x2,y 2) ,当x 1y2,则求m 的取值范围。

5.y =-2x +3与x 轴交于点A ,直线y =x -3与x 轴交于点B ,且两直线直线的交点为点C, 求△ABC 的面积。

6. 已知正比例函数y=k1x 的图像与一次函数y=k2x-9的图像交于点P (3,-6)。

八年级数学一次函数专题讲义

八年级数学一次函数专题讲义

一次函数专题讲义题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________; 4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。

题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y ; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点(,)A A A x y1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;2、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;3、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;4、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________. 题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k常函数。

初二一次函数复习讲义

初二一次函数复习讲义

一、教学目标:1、教学重点:一次函数的图像、性质及简单应用。

2、教学难点:①.一次函数的实际应用。

②.数形结合的灵活运用。

二、知识清单考点一:形如y=kx+b(k、b为常数,k≠0)的函数式叫做一次函数;考点二:①一次函数图像是一条直线,②函数图像的画法:列表→描点→连线.考点三:函数的表达方式:①解析式法;②列表法;③图像法;考点四:正比例函数:形如y=kx(k为常数,k≠0)的函数式叫做正比例函数;|k|的值越大,直线y轴越近;|k|的值越小,直线离y轴越远。

注意:正比例函数是特殊的一次函数。

考点五:正比例函数的性质:考点六:图像的平移:①函数y=kx+b 可以看成由y=kx 上下平移|b|单位之后得到,若b >0,则代表向上平移b 单位,若b <0,则代表向下平移b 单位;②函数y=k(x+h)可以看成由y=kx 左右平移|h|单位之后得到,若h >0,则代表向左平移b 单位,若h <0,则代表向右平移h 单位; 简单记为:上加下减,左加右减。

易混淆点:不知是整个函数式加减移动单位还是x 加减移动单位。

注意:直线y=k 1x+b (k 1≠0) 与y=k 2x+b 2 (k 2≠0)的位置关系 (1)两直线平行⇔k 1=k 2且b 1≠b 2; (2)两直线相交⇔k 1≠k 2; (3)两直线重合⇔k 1=k 2且b 1=b 2; (4)两直线垂直⇔k 1k 2=-1;考点七:待定系数法先设出函数解析式,再根据条件解出函数中未知数的系数,从而得出函数解析式的方法,叫做待定系数法。

考点八:分段函数:在定义域内,对于自变量x 的不同取值区间,有不同的对应法则,这样的函数叫做分段函数。

比如:⎩⎨⎧≥+≤=5525<03x x x x y考点九:一、一次函数与一元一次方程的关系:直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。

求直线y b kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b k =-,直线y b kx =+交x 轴于(,0)b k -,b k-就是直线y b kx =+与x 轴交点的横坐标。

人教版八年级下册 第十九章一次函数 第22讲 一次函数与方程、不等式 讲义(无答案)

人教版八年级下册 第十九章一次函数 第22讲 一次函数与方程、不等式 讲义(无答案)

初中八年级数学下册第22讲:一次函数与方程、不等式一:知识点讲解知识点一:一次函数与一元一次方程➢ 一次函数与一元一次方程的关系:由于任何一元一次方程可以转化为0=+b ax (a ,b 为常数,0≠a )的形式,所以解一元一次方程可以转化为——当某个一次函数的函数值为0时,求自变量的值✧ 方程()00≠=+a b ax 的解⇔函数()0≠+=a b ax y 中,0=y 时对应的x 的值 ✧ 方程()00≠=+a b ax 的解⇔函数()0≠+=a b ax y 的图象与x 轴交点的横坐标 ➢ 利用一次函数的图象解一元一次方程的步骤:1. 转化:将一元一次方程转化为 一次函数2. 画图象:画出一次函数的图象3. 找交点:找出一次函数的图象与x 轴交点的横坐标,即为一元一次方程解 举例:运用函数图象解方程6342+=+x x解:原方程变形得02=+x ,在直角坐标系内画出函数2+=x y 的图象,如下图,观察得图象与x 轴的交点坐标为(-2, 0),所以原方程的解为2-=x例1:画出函数12-=x y 的图象,并利用图象求方程021=-x 的解知识点二:一次函数与一元一次不等式一次函数与一元一次不等式:将一元一次不等式转化为0>+b ax (或0<+b ax )(a 、b 为常数,0≠a )的形式,则解一元一次不等式可以看作:当一次函数的函数值大于0(或小于0)时,求自变量x 的取值范围,也可以把一次函数b ax y +=的图象在x 轴上方(或下方)的点所对应的x 的取值集看作不等式0>+b ax (或0<+b ax )的解集举例:如下图所示是一次函数22--=x y 的图象,从图中可以看出,当1-<x 时,函数值大于0,所以不等式022>--x 的解集是1-<x ;同理,不等式022<--x 的解集是1->x例2:用画函数图象的方法解不等式1223->+x x知识点三:一次函数与二元一次方程(组)一次函数与二元一次方程(组)的关系:1. 由于任意一个二元一次方程都可以转化为()0≠+=k b kx y 的形式,所以每个二元一次方程都对应一个一次函数,于是也对应一条直线,反之亦然。

初中数学八年级下册一次函数与方程、不等式

初中数学八年级下册一次函数与方程、不等式

19.2.3 一次函数与方程、不等式教学目标:1.掌握一次函数与方程、不等式的关系;(重点)2.综合应用一次函数与方程、不等式的关系解决问题.(难点)教学过程: 一、情境导入1.下面三个方程有什么共同点和不同点?你能进行解释吗?(1)2x +1=3;(2)2x +1=0;(3)2x +1=-1.能从函数的角度解这三个方程吗?2.下面三个不等式有什么共同点和不同点?你能从函数的角度对这三个不等式进行解释吗?(1)3x +2>2;(2)3x +2<0;(3)3x +2<-1.二、合作探究探究点一:一次函数与一元一次方程一次函数y =kx +b (k ,b 为常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx +b =0的解为( )A .x =-1B .x =2C .x =0D .x =3解析:∵y =kx +b 经过点(2,3)、(0,1),∴⎩⎨⎧b =1,2k +b =3,解得⎩⎨⎧b =1,k =1,∴一次函数解析式为y =x +1.令x +1=0,解得x =-1.故选A.方法总结:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y =kx +b ,确定它与x 轴的交点的横坐标的值.探究点二:一次函数与一元一次不等式对照图象,请回答下列问题: (1)当x 取何值时,2x -5=-x +1?(2)当x 取何值时,2x -5>-x +1?(3)当x 取何值时,2x -5<-x +1?解析:(1)直线y =2x -5与直线y =-x +1的交点横坐标的值即为方程2x -5=-x +1的解;(2)直线y =2x -5在直线y =-x +1上方的部分对应的x 的取值范围即为不等式2x -5>-x +1的解集;(3)直线y =2x -5在直线y =-x +1下方的部分对应的x 的取值范围即为不等式2x -5<-x +1的解集.解:(1)由图象可知,直线y =2x -5与直线y =-x +1的交点的横坐标是2,所以当x 取2时,2x -5=-x +1;(2)由图象可知,当x >2时,直线y =2x -5落在直线y =-x +1的上方,即2x -5>-x +1;(3)由图象可知,当x <2时,直线y =2x -5落在直线y =-x +1的下方,即2x -5<-x +1.方法总结:从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.探究点三:一次函数与二元一次方程(组)直角坐标系中有两条直线:y=35x +95,y =-32x +6,它们的交点为P ,第一条直线交x 轴于点A ,第二条直线交x 轴于点B .(1)求A 、B 两点的坐标; (2)用图象法解方程组⎩⎨⎧5y -3x =9,3x +2y =12; (3)求△PAB 的面积.解析:(1)分别令y =0,求出x 的值即可得到点A 、B 的坐标;(2)建立平面直角坐标系,然后作出两直线,交点坐标即为方程组的解;(3)求出AB 的长,再利用三角形的面积公式列式计算即可得解.解:(1)令y =0,则35x +95=0,解得x =-3,所以点A 的坐标为(-3,0).令-32x +6=0,解得x =4,所以点B 的坐标为(4,0);(2)如图所示,方程组的解是⎩⎨⎧x =2,y =3;(3)AB =4-(-3)=4+3=7,S △PAB=12×7×3=212. 方法总结:本题考查了二元一次方程(组)与一次函数的关系:两个方程的解的对应点分别在两条直线上,所以作出两个二元一次方程所对应的两条直线,求出交点,则交点的坐标同时满足两个方程,即为方程组的解.探究点四:运用一次函数与方程、不等式解决实际问题某销售公司推销一种产品,设x (单位:件)是推销产品的数量,y (单位:元)是付给推销员的月报酬.公司付给推销员的月报酬的两种方案如图所示,推销员可以任选一种与公司签订合同,看图解答下列问题:(1)求每种付酬方案y 关于x 的函数表达式;(2)当选择方案一所得报酬高于选择方案二所得报酬时,求x 的取值范围.解析:(1)由图已知两点,可根据待定系数法列方程组,求出函数关系式;(2)列出方程得出两直线的相交点的坐标,即可得选择方案一所得报酬高于选择方案二所得报酬时x 的取值范围.解:(1)设方案一的解析式为y =kx ,把(40,1600)代入解析式,可得k =40,∴方案一y 关于x 的解析式为y =40x ;设方案二的解析式为y =ax +b ,把(40,1400)和(0,600)代入解析式,可得⎩⎨⎧b =600,40a +b =1400,解得⎩⎨⎧a =20,b =600,∴方案二y 关于x 的解析式为y =20x +600;(2)根据两直线相交可得40x =20x +600,解得x =30,故两直线交点的横坐标为30.当x >30时,选择方案一所得报酬高于选择方案二所得报酬.方法总结:解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.三、板书设计1.一次函数与一元一次方程的关系2.一次函数与一元一次不等式的关系3.用图象法求二元一次方程组的解 4.应用一次函数与方程、不等式解决实际问题教学反思在教学的过程中,学生是教学的主体,所以发挥学生的主动性相当的重要.本节课是在一次函数的基础上教学的,是对学生学习的又一次综合与扩展.课堂教学充分体现了新课标的教学理念:教师为主导、学生为主体,把课堂还给学生.。

人教版八年级下册数学 第19章《一次函数》讲义 第21讲 一次函数与方程不等式的应用

人教版八年级下册数学 第19章《一次函数》讲义 第21讲  一次函数与方程不等式的应用

第21讲 一次函数与方程不等式的应用直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。

求直线y b kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b k=-,直线y b kx =+交x 轴于(,0)b k -,b k -就是直线y b kx =+与x 轴交点的横坐标。

解一元一次方程0ax b +=⇐⇒当0y =时,求一次函数y ax b =+的x 值 〔数的角度〕0ax b +=⇐⇒一次函数y ax b =+图象与x 轴的交点坐标 〔形的角度〕任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大〔小〕于0时,求自变量相应的取值范围。

解一元一次不等式0kx b +>⇐⇒即一次函数y kx b =+在x 轴上方的局部图象所对应的x 值解一元一次不等式0kx b +<⇐⇒即一次函数y kx b =+在x 轴下方的局部图象所对应的x 值〔1〕、以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bc x b a +-的图象一样。

〔2〕、二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b c x b a +-和y=2222b c x b a +-的图象交点。

〔3〕、一次函数的解析式y b k 0kx =+≠()本身就是一个二元一次方程,直线y b k 0kx =+≠()上有无数个点,每个点的横纵坐标都满足二元一次方程y b k 0kx =+≠(),因此二元一次方程的解也就有无数个。

第二局部 考点精讲精练考点1、一元一次方程与一次函数的关系例1、假设方程x-3=0的解也是直线y=〔4k+1〕x -15与x 轴的交点的横坐标,那么k 的值为〔 〕A 、-1B 、0C 、1D 、±1例2、方程kx+b=0的解是x=3,那么函数y=kx+b 的图象可能是〔 〕A 、B 、C 、D 、例3、一次函数y x a =-+与y x b =+的图象相交于点()8m ,,那么a b +=______. 例4、画出函数y=2x+1的图象,利用图象求:〔1〕方程2x+1=0的根;〔2〕不等式2x+1≥0的解;〔3〕求图象与坐标轴的两个交点之间的间隔 。

数学讲义初二下 -一次函数全章复习与巩固(基础)知识讲解

数学讲义初二下 -一次函数全章复习与巩固(基础)知识讲解

一次函数全章复习与巩固(基础)【学习目标】 1.了解常量、变量和函数的概念,了解函数的三种表示方法(列表法、解析式法和图象法),能利用图象数形结合地分析简单的函数关系.2.理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题.3.通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的再认识. 4. 通过讨论选择最佳方案的问题,提高综合运用所学函数知识分析和解决实际问题的能力. 【知识网络】要点一、函数的相关概念 一般地,在一个变化过程中. 如果有两个变量 x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是x 的函数.y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值. 函数的表示方法有三种:解析式法,列表法,图象法. 要点二、一次函数的相关概念一次函数的一般形式为y kx b =+,其中k 、b 是常数,k ≠0.特别地,当b =0时,一次函数y kx b =+即y kx =(k ≠0),是正比例函数.要点三、一次函数的图象及性质 1、函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 要点诠释:直线y kx b =+可以看作由直线y kx =平移|b |个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).说明通过平移,函数y kx b =+与函数y kx =的图象之间可以相互转化.2、一次函数性质及图象特征掌握一次函数的图象及性质(对比正比例函数的图象和性质)要点诠释:理解k 、b 对一次函数y kx b =+的图象和性质的影响:(1)k 决定直线y kx b =+从左向右的趋势(及倾斜角α的大小——倾斜程度),b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.(2)两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定:12k k ≠⇔1l 与2l 相交;12k k =,且12b b ≠⇔1l 与2l 平行;12k k =,且12b b =⇔1l 与2l 重合;(3)直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线x a =、直线y b =不是一次函数的图象. 要点四、用函数的观点看方程、方程组、不等式 方程(组)、不等式问题 函 数 问 题从“数”的角度看从“形”的角度看求关于x 、y 的一元一次方程ax b +=0(a ≠0)的解x 为何值时,函数y ax b =+的值为0?确定直线y ax b =+与x 轴(即直线y =0)交点的横坐标求关于x 、y 的二元一次方程组1122=+⎧⎨=+⎩,.y a x b y a x b 的解.x 为何值时,函数11y a x b =+与函数22y a x b =+的值相等? 确定直线11y a x b =+与直线22y a x b =+的交点的坐标求关于x 的一元一次不等式ax b +>0(a ≠0)的解集x 为何值时,函数y ax b =+的值大于0?确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围类型一、函数的概念【高清课堂396533 一次函数复习 例1 】1、下列说法正确的是:( )A.变量,x y 满足23x y +=,则y 是x 的函数;B.变量,x y 满足x y =||,则y 是x 的函数;C.变量,x y 满足x y =2,则y 是x 的函数; D.变量,x y 满足221y x -=,则y 是x 的函数.【答案】A ;【解析】B 、C 、D 三个选项,对于一个确定的x 的值,都有两个y 值和它对应,不满足单值对应的条件,所以不是函数.【总结升华】理解函数的概念,关键是函数与自变量之间是单值对应关系,自变量的值确定后,函数值是唯一确定的. 举一反三:【变式】如图的四个图象中,不表示某一函数图象的是( )【答案】B ;2、求函数的自变量的取值范围.【思路点拨】要使函数有意义,需或解这个不等式组即可.【答案与解析】 解:要使函数有意义,则x 要符合:2101x x -≥- 即:或解方程组得自变量取值是或.【总结升华】自变量的取值范围是使函数有意义的x 的集合. 举一反三:【变式】求出下列函数中自变量x 的取值范围(1)01x y x =+(2)|2|23-+=x x y(3)2332y x x =-+-【答案】解:(1)要使01x y x =+有意义,需010x x ≠⎧⎨+≠⎩,解得x ≠0且x ≠-1;(2)要使|2|23-+=x x y 有意义,需32020x x +≥⎧⎨-≠⎩,解得223x x ≥-≠且;(3)要使2332y x x =-+-有意义,需230320x x -≥⎧⎨-≥⎩,解得32x =.类型二、一次函数的解析式3、已知y 与2x -成正比例关系,且其图象过点(3,3),试确定y 与x 的函数关系,并画出其图象.【思路点拨】y 与2x -成正比例关系,即(2)y k x =-,将点(3,3)代入求得函数关系式. 【答案与解析】解:设(2)y k x =-,由于图象过点(3,3)知3k =,故3(2)36y x x =-=-. 其图象为过点(2,0)与(0,-6)的一条直线(如图所示).【总结升华】y 与x 成正比例满足关系式y kx =,y 与x -2成正比例满足关系式(2)y k x =-,注意区别.举一反三:【变式】直线y kx b =+平行于直线21y x =-,且与x 轴交于点(2,0),求这条直线的解析式. 【答案】解:∵直线y kx b =+平行于直线21y x =- ∴2k =∵与x 轴交于点(2,0) ∴①将k =2代入①,得4b =-∴此直线解析式为24y x =-. 类型三、一次函数的图象和性质4、已知正比例函数y kx =(k ≠0)的函数值y 随x 的增大而减小,则一次函数y x k =+的图象大致是图中的( ).【答案】B ;【解析】∵y 随x 的增大而减小,∴ k <0.∵y x k =+中x 的系数为1>0,k <0, ∴经过一、三、四象限,故选B . 【总结升华】本题综合考查正比例函数和一次函数图象和性质,k >0时,函数值随自变量x 的增大而增大. 举一反三:【变式】 已知正比例函数()21y m x =-的图象上两点A(1x , 1y ), B(2x ,2y ),当 12x x <时, 有12y y >, 那么m 的取值范围是( ) A . 12m <B .12m >C . 2m <D .0m > 【答案】 A ;提示:由题意y 随着x 的增大而减小,所以210m -<,选A 答案.类型四、一次函数与方程(组)、不等式5、(2016春•鄂托克旗期末)如图,直线y=﹣2x 与直线y=kx +b 相交于点A (a ,2),并且直线y=kx +b 经过x 轴上点B (2,0) (1)求直线y=kx +b 的解析式.(2)求两条直线与y 轴围成的三角形面积. (3)直接写出不等式(k +2)x +b ≥0的解集.【思路点拨】(1)首先确定点A 的坐标,然后利用点B 的坐标利用待定系数法确定直线的解析式即可;(2)首先根据直线AB 的解析式确定直线AB 与y 轴的交点坐标,从而利用三角形的面积公式求得三角形的面积;(3)将不等式变形后结合函数的图象确定不等式的解集即可. 【答案与解析】 解:(1)把A (a ,2)代入y=﹣2x 中,得﹣2a=2, ∴a=﹣1,∴A (﹣1,2)把A (﹣1,2),B (2,0)代入y=kx +b 中得,∴k=﹣,b=,∴一次函数的解析式是y=﹣x +;(2)设直线AB与Y轴交于点C,则C(0,)∴S△BOC=××1=;(3)不等式(k+2)x+b≥0可以变形为kx+b≥﹣2x,结合图象得到解集为:x≥﹣1.【总结升华】本题考查了一次函数与一元一次不等式的知识,解题的关键是能够根据题意确定直线的解析式,然后结合图象直接写出不等式的解集.举一反三:【变式】(2015•武汉校级模拟)已知一次函数y=kx+b的图象经过点(3,5)与(﹣4,﹣9).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+b≤5的解集.【答案】解:∵一次函数y=kx+b的图象经过点点(3,5)与(﹣4,﹣9),∴,解得∴函数解析式为:y=2x﹣1;(2)∵k=2>0,∴y随x的增大而增大,把y=5代入y=2x﹣1解得,x=3,∴当x≤3时,函数y≤5,故不等式kx+b≤5的解集为x≤3.类型五、一次函数的应用6、(2015•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?【答案与解析】解:(1)设每吨水的政府补贴优惠价为a元,市场调节价为b元.根据题意得,解得:.答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)∵当0≤x≤12时,y=x;当x>12时,y=12+(x﹣12)×2.5=2.5x﹣18,∴所求函数关系式为:y=.(3)∵x =26>12,∴把x=26代入y=2.5x ﹣18,得:y=2.5×26﹣18=47(元). 答:小英家三月份应交水费47元.【总结升华】本题考查了一次函数的应用,题目还考查了二元一次方程组的解法,特别是在求一次函数的解析式时,此函数是一个分段函数,同时应注意自变量的取值范围. 举一反三:【变式】一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以0.20元的价格返回报社,在一个月内(以30天计算),有20天每天可卖出100份,其余10天,每天可卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为,每月所获得的利润为.(1)写出与之间的函数关系式,并指出自变量的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?【答案】 解:(1).类型六、一次函数综合7、如图所示,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过A 、B 两点,直线1l 、2l 交于点C . (1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求△ADC 的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接写出点P 的坐标.【答案与解析】解: (1)由33y x =-+,当y =0,得33x -+=0,得x =l .∴ D(1,0).(2)设直线2l 的解析表达式为y kx b =+,由图象知,4x =,0y =;3x =,32y =-. 将这两组值代入,得方程组40,33.2k b k b +=⎧⎪⎨+=-⎪⎩解得3,26.k b ⎧=⎪⎨⎪=-⎩∴ 直线2l 的解析表达式为362y x =-. (3)∵ 点C 是直线1l 与2l 的交点,于是有33,36.2y x y x =-+⎧⎪⎨=-⎪⎩ 解得2,3.x y =⎧⎨=-⎩ ∴ C(2,-3).∴ △ADC 的AD 边上的高为3. ∵ OD =1,OA =4, ∴ AD =3. ∴ ADC 193|3|22S =⨯⨯-=△. (4)P(6,3).【总结升华】这是一道一次函数图象与性质的综合应用问题,求直线的函数解析式,一般运用待定系数法,但运用过程中,又要具体问题具体分析;求底边在坐标轴上三角形的面积的关键是探求该三角形的高.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与方程、不等式综合专题复习讲义
一、一次函数与一元一次方程的关系
直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。

求直线y b
kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b k =-,直线y b kx =+交x 轴于(,0)b k -,b
k
-
就是直线y b kx =+与x 轴交点的横坐标。

二、一次函数与一元一次不等式的关系
任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。

三、一次函数与二元一次方程(组)的关系
一次函数的解析式y b k 0kx =+≠()本身就是一个二元一次方程,直线y b k 0kx =+≠()上有无数个点,每个点的横纵坐标都满足二元一次方程y b k 0kx =+≠(),因此二元一次方程的解也就有无数个。

一、一次函数与一元一次方程综合
【例1】 若直线(2)6y m x =--与x 轴交于点()60,
,则m 的值为( ) A.3 B.2 C.1 D.0
【例2】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )
A .2-
B .2
C .1-
D .0
知识点睛
中考要求
例题精讲
【巩固】已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,
,则a b +=______.
二、一次函数与一元一次不等式综合
【例3】 已知一次函数25y x =-+.
(1)画出它的图象;
(2)求出当3
2
x =时,y 的值;
(3)求出当3y =-时,x 的值;
(4)观察图象,求出当x 为何值时,0y >,0y =,0y <
【例4】 当自变量x 满足什么条件时,函数23y x =-+的图象在:
(1)x 轴下方; (2)y 轴左侧; (3)第一象限.
【巩固】当自变量x 满足什么条件时,函数41y x =-+的图象在:
(1)x 轴上方; (2)y 轴左侧; (3)第一象限.
【例5】 如图,直线y kx b =+与x 轴交于点()40-,
,则0y >时,x 的取值范围是( ) A.4x >- B .0x > C.4x <- D .0x <
【巩固】一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( )
A .0x >
B .0x <
C .2x >
D .2x <
【例6】 已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:
(1)当2x =时,y 的值; (2)x 为何值时,0y <?
(3)当21x -≤≤时,y 的值范围; (4)当21y -<<时,x 的值范围.
【巩固】已知一次函数23y x =-+
(1)当x 取何值时,函数y 的值在1-与2之间变化?
(2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少?
【例7】 一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是( )
A .2x >-
B .0x >
C .2x <-
D .0x <
【巩固】如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是________.
【例8】 如图,直线y kx b =+经过()21A ,,()12B --,两点,则不等式1
22
x kx b >+>-的解集为______.
【巩固】直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式
21k x k x b >+的解集为______.
l 2
l 1
3-1
O y
x
三、一次函数与二元一次方程(组)综合
【例9】 把一个二元一次方程组中的两个方程化为一次函数画图象,所得的两条直线平行,则此方程组
( ) A.无解 B.有唯一解 C.有无数个解 D.以上都有可能
【例10】 已知直线3y x =-与22y x =+的交点为(-5,-8),则方程组30
220x y x y --=⎧⎨-+=⎩
的解是________.
【巩固】如图所示的是函数y kx b =+与y mx n =+的图象,求方程组kx b y
mx n y +=⎧⎨+=⎩
的解关于原点对称的点的
坐标是________.
【例11】 已知方程组y ax c y kx b -=⎧⎨-=⎩(a b c k ,,,为常数,0ak ≠)的解为2
3x y =-⎧⎨
=⎩
,则直线y ax c =+和直线y kx b =+的交点坐标为________.
【巩固】已知24
x y =⎧⎨=⎩,是方程组732
28x y x y -=⎧⎨+=⎩的解,那么一次函数y =________和y =________的交点是
________.
【例12】 阅读:我们知道,在数轴上,1x =表示一个点,而在平面直角坐标系中,1x =表示一条直线;
我们还知道,以二元一次方程210x y -+=的所有解为坐标的点组成的图形就是一次函数21y x =+的图象,它也是一条直线,如图①.
观察图①可以得出:直线1x =与直线21y x =+的交点P 的坐标(1,3)就是方程组1
210x x y =⎧⎨-+=⎩

解,所以这个方程组的解为1
3x y =⎧⎨=⎩

在直角坐标系中,1x ≤表示一个平面区域,即直线1x =以及它左侧的部分,如图②;
21y x ≤+也表示一个平面区域,即直线21y x =+以及它下方的部分,如图③.
(1)
y=2x+1x=1
x=1
(2)
(3)
回答下列问题.⑴在下面的直角坐标系中,用作图象的方法求出方程组1
22x y x =-⎧⎨=-+⎩的解;
2
y 1=2x+1
(4)
⑵在上面的直角坐标系中,用阴影表示220y x y ⎪
≤-+⎨⎪≥⎩
所围成的区域.
⑶如图⑷,表示阴影区域的不等式组为: .
1.
已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程
课后作业
3kx b +=的解是x =______.
2. 若解方程232x x +=-得2x =,则当x _________时直线2y x =+上的点在直线32y x =-上相应点的上方.
3.
已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( ) A .20y -<< B .40y -<< C .2y <- D .4y <-
4.
已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( )
A .5x >
B .1
2
x < C .6x <- D .6x >-
5.
一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0 B .1 C .2 D .
3
6. b 取什么整数值时,直线32y x b =++与直线2y x b =-+的交点在第二象限?
7.已知一次函数6
=-++的图象的交点坐标为A(2,0),求这两个
y kx b
=++与一次函数2
y kx b
一次函数的解析式及两直线与y轴围成的三角形的面积.。

相关文档
最新文档