公开课几何概型教案
几何概型教案(绝对经典)
§12.3 几何概型会这样考 1.以小题形式考查与长度或面积有关的几何概型;2.和平面几何、函数、向量相结合考查几何概型,题组以中低档为主.复习备考要这样做 1.准确理解几何概型的意义,会构造度量区域;2.把握与古典概型的联系和区别,加强与数学其他知识的综合训练.1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. 2.几何概型中,事件A 的概率计算公式 P (A )=积、体积的区域长度、角度、面试验的全部结果所构成积、体积的区域长度、角度、面事件A .3.要切实理解并掌握几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性. [难点正本 疑点清源]1.几何概型的试验中,事件A 的概率P (A )只与子区域A 的几何度量(长度、角度、面积或体积)成正比,而与A 的位置和形状无关.2.求试验中几何概型的概率,关键是求得事件所占区域和整个区域Ω的几何度量,然后代入公式即可求解.3.几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果. 4.几何概型的两种类型(1)线型几何概型:当基本事件只受一个连续的变量控制时.(2)面型几何概型:当基本事件受两个连续的变量控制时,一般是把两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决.1.在区间[-1,2]上随机取一个数x ,则x ∈[0,1]的概率为________.答案 13如图,这是一个长度型的几何概型题,所求概率P =|CD ||AB |=13.2.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为________.答案 23解析 如图可设lAB=1,则由几何概型可知其整体事件是其周长3,则其概率是23.3.已知直线y =x +b ,b ∈[-2,3],则直线在y 轴上的截距大于1的概率是________.答案 254.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,则某人到达路口时看见的是红灯的概率是________.答案 25 解析 以时间的长短进行度量,故P =3075=25.题型一 与长度有关的几何概型(长度比)例1 (1)从区间[0,4]内任取一个整数x ,则x ≥3的概率为 。
教案:几何概型.docx
教案课题:3.3.1几何概型一、教学目标1、了解几何概型的概念及基木特点;熟练掌握几何概型屮概率的计算公式:会进行简单的儿何概率计算。
2、通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问3、体会数学知识与现实世畀的联系,培养逻辑推理能力。
二、教学重点与难点1、重点掌握几何概型的判断及几何概率的计算公式。
2、难点正确进行几何概型的判断及利用几何概型解题。
三、教学过程51、复习回顾:复习古典概型的特点及古典概型概率的计算公式:P=事件A包含的基本事件数/试验的基本事件总数教师强调:古典概型屮基本事件只能有有限个。
52、讲授新课3.3.1 几何概型(一)、概念及公式1、情景引入及问题提出(1)、随意抛掷一枚均匀硬币两次,求两次出现和同面的概率?(答案:P=l/2 )(2)、试验h収一根长度为3m的绳子,拉直后在任意位置剪断,问剪得两段的长度都不小lcm 的概率有多大?试验2:射箭比赛的箭靶涂有五个彩色得分环,从外向内为口色,黑色,蓝色、红色,靶心是金色。
金色靶心叫“黄心”。
奥运会的比赛靶面直径为122cm,靶心直征为12.2cim运刼员在70m外射箭。
假设射箭都射中靶面内任何一点都是等可能的。
问射中黄心的概率为多少?试验3:在1L高小麦种了里混入了一粒带麦锈病的种了,从屮随机取岀20mL,含有麦锈病种子的概率是多少?(3)、问题(1)、(2)、中的基本事件有什么特点?两事件的本质区别是什么?(4)、什么是儿何概型?它有什么特点?(5)、如何计算儿何概型的概率?有什么样的公式?(6)、古典概型和几何概型有什么区别和联系?下面是师生互动环节:师生共同分析、讨论各个问题的结果,引出几何概型的定义和几何概型概率的计算公式。
2、儿何概型定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模空为儿何概率模型,简称儿何概型。
3、儿何概型的基本特点a.试验中所有可能岀现的结果(基木事件)有无限多个;b.每个基本出现的可能性相等。
几何概型教案
几何概型教案教案内容:一、教学目标:1. 知识目标:掌握几何概念和定理,如平行线、垂直线、等腰三角形等。
2. 技能目标:能够应用几何概念解决实际问题,如计算线段长度、角度大小等。
3. 情感目标:培养学生对几何学科的兴趣,培养学生的逻辑思维和空间想象能力。
二、教学重难点:1. 重点:平行线与垂直线的概念和判定方法。
2. 难点:应用几何定理解决实际问题。
三、教学方法:1. 概念讲解法:通过教师讲解和示意图,引导学生理解几何概念和关系。
2. 问题解决法:给出实际问题,让学生通过分析和计算,应用几何知识解决问题。
3. 合作学习法:鼓励学生进行小组合作,通过互相讨论和合作完成练习和问题解答。
四、教学过程:1. 导入:通过展示一幅几何图形,引导学生观察并思考,提问如下:a. 你能发现图中有哪些几何形状?b. 是否能找到两条平行线?找出它们的特点。
c. 是否能找到两条垂直线?找出它们的特点。
2. 概念讲解:a. 平行线的定义和判定方法:通过教师讲解和示意图,引导学生理解平行线的概念和判定方法。
b. 垂直线的定义和判定方法:通过教师讲解和示意图,引导学生理解垂直线的概念和判定方法。
c. 其他几何概念和定理的讲解:根据教材内容,讲解其他几何概念和定理,如等腰三角形、直角三角形等。
3. 练习与实践:a. 给出一些练习题,让学生运用所学的几何知识计算线段长度、角度大小等。
b. 给出一些实际问题,让学生应用几何知识解决问题,培养学生的应用能力和解决问题的能力。
4. 总结与归纳:通过学生讨论和总结,归纳几何概念和定理的要点,并与学生一起整理笔记,形成学习资料。
五、教学评价:通过课堂练习和问题解答,评价学生对几何概念和定理的理解和应用能力。
六、拓展延伸:推荐学生参阅几何学方面的相关书籍或网站,拓宽他们的几何知识。
七、教学反思:对本节课的教学进行回顾和反思,总结教学中的不足之处,并提出改进措施。
高中数学《几何概型》教案
高中数学《几何概型》教案一、教学目标1、建立几何概型的概念,了解点、线、面、几何体的基本概念。
2、学习古希腊的几何概型理论,理解“公理化”证明的基本方法。
3、掌握平面几何的基本定理,如欧氏几何五大公设、垂线、角平分线定理等。
4、培养学生思维的逻辑性,进一步提高分析解决问题的能力,以及形象思维的能力和几何思维的能力。
二、教学重点和难点1、平面几何的基本定理。
2、学习古希腊几何学的公理化方法,认识并应用公理、定义、定理、证明等,进一步提高学生的推理思维。
三、教学方法1、理论结合实践,通过练习掌握平面几何的基本定理,培养学生的推导思维。
2、利用黑板画图辅助教学,加强学生的形象思维。
3、倡导学生积极参与课堂讨论,相互分享探讨问题,提高学习效果。
四、教学内容与步骤第一节、几何概念的复习1、点、线、面、几何体的基本概念。
2、点、线、面的分类。
3、几何图形的构造方法。
4、几何问题的解决方法。
第二节、平面几何基本定理1、欧氏几何五大公设的理解和应用。
2、角平分线的定理及其应用。
3、垂线定理及其应用。
4、圆的性质与应用。
5、全等三角形的性质。
第三节、公理化证明的基本方法1、公理与定义的概念及其作用。
2、定理的定义和证明方法。
3、数学证明思路的讲解。
4、实例分析与案例练习。
五、教学手段黑板,笔,直尺,量角器,地球仪等。
六、教学评价1、通过课堂练习加深对平面几何的了解和掌握。
2、通过提高几何思维的能力和推理逻辑的能力,进一步提高学生的数学水平和思维能力。
3、根据课堂互动、单词测试和综合评定等方式,对学生的学习情况进行评价。
数学3-几何概型优秀教案
几何概型优秀教案(第1课时)
一、教学任务分析:
1、通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概
型的区别。
2、通过学生玩转盘游戏、教师分析得出几何概型概率计算公式。
3、通过例题教学,使学生能掌握几何概型概率计算公式的应用,并理解均
匀分布的概念。
二、教学重点与难点: 重点:(1)几何概型概率计算公式及应用。
(2)如何利用几何概型,把问题转化为各种几何概型问题。
难点:正确判断几何概型并求出概率。
三、教学基本流程:
四、教学情境设计:
几点说明:
(1)本节课通过学生玩转盘游戏、猜想甲获胜的概率,从而引起学生学习的兴趣,进一步区分几何概型与古典概型的不同特点。
(2)例题材1为与长度有关的几何概型题目,课堂上补充有关面积、体积的几何概型问题。
(3)通过例题、习题进一小步说明如何利用几何概型,把问题转化为各种几何概型问题。
高中数学几何概型教案
高中数学几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握几何概型的基本性质和特点。
2. 培养学生运用几何概型解决实际问题的能力。
3. 通过对几何概型的学习,提高学生的逻辑思维能力和空间想象能力。
二、教学内容1. 几何概型的定义与特点2. 几何概型的分类3. 几何概型的概率计算方法4. 几何概型在实际问题中的应用三、教学重点与难点1. 重点:几何概型的概念、特点和概率计算方法。
2. 难点:几何概型在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究几何概型的相关知识。
2. 利用多媒体课件,辅助教学,增强学生对几何概型的空间想象力。
3. 结合实际例子,让学生感受几何概型在生活中的应用。
五、教学过程1. 导入新课:通过一个简单的抽奖活动,引导学生思考抽奖活动的概率问题,从而引入几何概型的概念。
2. 自主学习:让学生阅读教材,理解几何概型的定义与特点。
3. 课堂讲解:讲解几何概型的分类和概率计算方法。
4. 课堂练习:让学生完成一些有关几何概型的练习题,巩固所学知识。
5. 应用拓展:结合实际例子,让学生运用几何概型解决实际问题。
六、教学评价1. 评价学生对几何概型的概念、特点和概率计算方法的掌握程度。
2. 评价学生运用几何概型解决实际问题的能力。
3. 评价学生在课堂练习中的表现,包括解题速度和正确率。
4. 评价学生在小组讨论中的参与程度和合作能力。
七、教学资源1. 教材:高中数学几何概型相关内容。
2. 多媒体课件:用于展示几何概型的图形和实例。
3. 练习题库:用于课堂练习和课后作业。
4. 实际案例:用于引导学生将几何概型应用于实际问题。
八、教学进度安排1. 第一课时:介绍几何概型的概念和特点。
2. 第二课时:讲解几何概型的分类和概率计算方法。
3. 第三课时:课堂练习和应用拓展。
九、教学反思1. 反思教学内容是否适合学生的认知水平。
2. 反思教学方法是否有效,是否能够激发学生的兴趣和参与度。
公开课几何概型教案
公开课几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握几何概型的特征。
2. 培养学生运用几何概型解决问题的能力。
3. 提高学生对数学的兴趣,培养学生的创新思维。
二、教学内容1. 几何概型的定义及特征2. 几何概型的分类3. 几何概型的应用三、教学重点与难点1. 重点:几何概型的概念、特征及分类。
2. 难点:几何概型的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究几何概型的特征。
2. 利用案例分析法,让学生通过实例理解几何概型的应用。
3. 采用小组讨论法,培养学生合作解决问题的能力。
五、教学过程1. 导入:通过生活中的实例,引导学生思考几何概型的概念。
2. 新课导入:讲解几何概型的定义、特征及分类。
3. 案例分析:分析具体实例,让学生理解几何概型的应用。
4. 课堂练习:设计相关练习题,让学生巩固所学知识。
5. 小组讨论:分组讨论几何概型在实际问题中的应用。
6. 总结与反思:回顾本节课所学内容,让学生分享自己的收获。
7. 作业布置:布置课后练习,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对几何概型的理解和掌握程度。
2. 练习题:检查学生完成练习题的情况,评估学生对几何概型的应用能力。
3. 小组讨论:观察学生在小组讨论中的表现,评估学生的合作能力和解决问题的能力。
七、教学拓展1. 引导学生思考几何概型在实际生活中的应用,提高学生的实际问题解决能力。
2. 鼓励学生参加数学竞赛或研究项目,提升学生的创新能力。
八、教学资源1. 教学PPT:提供清晰的课件,帮助学生理解几何概型的概念和应用。
2. 练习题库:提供丰富的练习题,帮助学生巩固所学知识。
3. 案例资料:提供相关案例资料,方便学生分析和学习几何概型的应用。
九、教学反馈1. 课堂反馈:课后及时与学生沟通,了解学生在课堂上的学习情况,为后续教学提供参考。
2. 作业反馈:批改学生作业,及时给予反馈,指出学生的错误,帮助学生巩固知识。
《必修三《几何概型》教案
《必修三《几何概型》教案教案:几何概型一、教学目标1.知识与技能:-了解几何概型的基本概念和相关属性;-掌握计算几何概型的可能性和概率;-能够运用几何概型解决实际问题。
2.态度与价值观:-培养学生对几何概型的兴趣和好奇心;-培养学生合作、探究和创新精神。
二、教学重点和难点1.重点:-几何概型的基本概念和相关属性;-计算几何概型的可能性和概率。
2.难点:-运用几何概型解决实际问题。
三、教学过程1.教学准备:-教师准备PPT、绘制几何概型相关图形。
2.导入与引入:-向学生提问:“大家了解什么是几何概型吗?”-学生回答后,教师进行引导,介绍几何概型的基本概念和相关属性。
3.概念讲解:-讲解几何概型的基本概念,例如:平面上点、线、面,三维空间中体等;-讲解几何概型的相关属性,例如:相似、相等等;-通过示例和图像说明几何概型的应用,如建筑设计、工程测量等。
4.练习与讨论:-让学生通过绘制几何概型图形,进行练习;-学生分组讨论几何概型的相关问题,例如:如何计算不同形状的房屋占地面积等。
5.案例分析:-教师给出一个实际生活中的案例,例如:如何计算一个无规则形状的花坛的面积;-学生利用几何概型的知识和技巧,分析并解决这个问题;-学生分组展示自己的解决过程和答案,并进行讨论。
6.解决问题与拓展:-继续给学生出一些难度适中的问题,让学生运用几何概型的知识和技巧解决;-引导学生思考如何拓展几何概型的应用领域,发现几何概型在日常生活中的其他应用。
四、课堂小结-教师对本课的教学内容和学生的表现进行总结;-检查学生对几何概型的掌握情况,回答学生提出的问题;-引导学生对几何概型的学习进行反思和思考。
五、作业布置-布置相关练习题,要求学生运用几何概型的知识和技巧解答;-要求学生写一篇小结,总结几何概型的基本概念和相关属性。
六、教学反思-分析课堂教学过程中的不足和问题;-总结有效的教学方法和策略,为下一节课的教学做好准备。
几何概型教案
几何概型教案教案标题:几何概型教案教案目标:1. 理解几何概型的概念和基本特征。
2. 掌握几何概型的分类和属性。
3. 能够应用几何概型解决实际问题。
教学重点:1. 几何概型的定义和分类。
2. 几何概型的属性和特征。
3. 几何概型在实际问题中的应用。
教学难点:1. 理解几何概型的抽象概念。
2. 掌握几何概型的分类和属性。
3. 能够将几何概型应用于实际问题的解决过程中。
教学准备:1. 教师:准备几何概型的教学材料和示例问题。
2. 学生:准备纸张、铅笔、直尺和量角器等几何工具。
教学过程:引入活动:1. 教师可以通过展示一些几何概型的图片或实物,引发学生对几何概型的兴趣和好奇心。
2. 教师可以提出一个实际问题,例如:“如何设计一个最节省材料的房屋平面图?”引导学生思考几何概型在解决问题中的应用。
知识讲解:1. 教师简要介绍几何概型的定义和基本特征,例如:几何概型是由一组基本几何图形组成的抽象图形。
2. 教师详细介绍几何概型的分类和属性,例如:点、线、面、体等不同维度的几何概型,以及它们的性质和特征。
示例演练:1. 教师通过示例问题,引导学生运用几何概型解决实际问题。
例如:“如何确定一个三角形的面积?”2. 学生根据所学的几何概型知识,使用直尺和量角器等工具,计算并解决示例问题。
拓展应用:1. 学生分组或个人完成几个类似的实际问题,运用几何概型解决,并向全班展示解决过程和结果。
2. 教师和其他学生对解决过程和结果进行评价和讨论,提出改进和优化的建议。
总结回顾:1. 教师对本节课的内容进行总结和回顾,强调几何概型的重要性和应用价值。
2. 学生对本节课所学的几何概型知识进行复习和巩固。
教学延伸:1. 学生可以进一步研究不同几何概型的性质和特征,拓展应用领域。
2. 学生可以参与几何概型的实际设计和建模活动,提高实践能力。
教学评估:1. 教师可以通过观察学生的课堂表现和问题解决能力,评估他们对几何概型的理解和掌握程度。
公开课几何概型教案
公开课几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握其基本性质和判定方法。
2. 培养学生运用几何概型解决实际问题的能力。
3. 提高学生对概率论的兴趣,培养学生的逻辑思维和抽象思维能力。
二、教学内容1. 几何概型的定义和基本性质2. 几何概型的判定方法3. 几何概型在实际问题中的应用三、教学重点与难点1. 教学重点:几何概型的定义、基本性质和判定方法。
2. 教学难点:几何概型的判定方法及其在实际问题中的应用。
四、教学方法与手段1. 教学方法:讲解法、案例分析法、讨论法。
2. 教学手段:黑板、PPT、教学案例。
五、教学过程1. 导入新课:通过一个简单的实例,引导学生思考几何概型的概念。
2. 讲解几何概型的定义和基本性质:结合实例,讲解几何概型的概念,引导学生理解其基本性质。
3. 讲解几何概型的判定方法:引导学生掌握几何概型的判定方法,并通过实例进行分析。
4. 应用案例分析:让学生运用几何概型解决实际问题,巩固所学知识。
5. 课堂小结:总结本节课的主要内容,强调几何概型在实际问题中的应用。
6. 课后作业:布置相关练习题,巩固所学知识。
六、教学拓展1. 对比几何概型和古典概型的区别和联系,让学生更好地理解两种概率模型。
2. 引入更复杂的多维几何概型,让学生了解几何概型的推广形式。
七、课堂互动1. 提问环节:在学习过程中,鼓励学生提问,及时解答学生心中的疑问。
2. 小组讨论:在学习几何概型的判定方法时,让学生分小组进行讨论,分享各自的解题思路。
八、教学评价1. 课后作业:通过布置相关练习题,检验学生对几何概型的理解和掌握程度。
2. 课堂表现:观察学生在课堂上的参与程度、提问和回答问题的表现,评价学生的学习效果。
九、教学反思1. 反思教学内容:根据学生的反馈,调整和优化教学内容,使其更符合学生的学习需求。
2. 反思教学方法:根据学生的参与情况和学习效果,调整教学方法,提高教学效果。
十、教学资源1. 教学PPT:制作精美的PPT,辅助讲解和展示几何概型的相关知识和案例。
《几何概型》教案完美版
《几何概型》教案完美版《几何概型》教案教学目标(1)了解几何概型的概念及基本特点;(2)熟练掌握几何概型中概率的计算公式;(3)会进行简单的几何概率计算.教学重点,难点(1)掌握几何概型中概率的计算公式;(2)会进行简单的几何概率计算.教学过程一.问题情境1.情境:试验1.取一根长度为3m 的绳子,拉直后在任意位置剪断.试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫"黄心".奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm .运动员在70m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.2.问题:对于试验1剪得两段的长都不小于1m 的概率有多大?试验2射中黄心的概率为多少?二.学生活动经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的"等可能性",但是显然不能用古典概型的方法求解.考虑第一个问题,如图 3 3 1 ,记"剪得两段的长都不小于1m "为事件A .把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的13,于是事件A 发生的概率1( )3P A .图3 3 1第二个问题,如图3 3 2 ,记"射中黄心"为事件B ,由于中靶心随机地落在面积为2 __cm 的大圆内,而当中靶点落在面积为 2 2112.24cm 的黄心内时,事件 B 发生,于是事件 B 发生的概率__.24( ) 0.__P B.图 3 3 2三.建构数学1.几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.2.几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等.3.几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件"该点落在其内部一个区域 d 内"为事件 A ,则事件 A 发生的概率( )dP AD的测度的测度.说明:(1)D 的测度不为0 ;(2)其中"测度"的意义依D 确定,当D分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积.(3)区域为"开区域";(4)区域 D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关.四.数学运用1.例题例1.取一个边长为2a 的正方形及其内切圆(如图 3 3 3 ),随机向正方形内丢一粒豆子,求豆子落入圆内的概率.("测度"为面积)分析:由于是随机丢豆子,故可认为豆子落入正方形内任一点的机会都是均等的,于是豆子落入圆中的概率应等于圆面积与正方形面积的比.解:记"豆子落入圆内"为事件 A ,则22( )4 4aP Aa 圆面积正方形面积.答:豆子落入圆内的概率为4.图3 3 3例2.在1L 高产小麦种子中混入了一粒带锈病的种子,从中随机取出10mL ,含有麦锈病种子的概率是多少?("测度"为体积)分析:病种子在这1L 种子中的分布可以看做是随机的,取得的10mL 种子可视作区域d ,所有种子可视为区域D .解:取出10mL 麦种,其中"含有病种子"这一事件记为 A ,则10 1( )1000 100P A 取出种子的体积所有种子的体积.答:含有麦锈病种子的概率为1100.例3.在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率.("测度"为长度)分析:点M 随机地落在线段AB 上,故线段AB 为区域D .当点M 位于图3 3 5 中线段“AC 内时,AM AC ,故线段"AC 即为区域 d .解:在AB 上截取"AC AC .于是"( ) ( ) P AM AC P AM AC"ACAB ACAB22.答:AM 小于AC 的概率为22.图3 3 52.练习课本第103 页练习1,2,3五.回顾小结:1.几何概型的概念及基本特点2.几何概型中概率的计算公式六.课外作业:课本第103 页习题3.3第1,2,3,4题风,没有衣裳;时间,没有居所;它们是拥有全世界的两个穷人生活不只眼前的苟且,还有诗和远方的田野。
高中数学几何概型教案
高中数学几何概型教案
教学重点:掌握概型相关概念和性质,能够熟练运用概型解决几何问题。
教学难点:灵活运用概型解决实际问题,结合实际情境进行概型应用。
教学方法:讲授、举例、演示、讨论。
教学资源:教材、黑板、彩色粉笔、计算器。
教学过程:
一、导入(5分钟)
引导学生回顾前一节课的内容,概述几何相关知识,并提出问题引起学生思考。
二、讲解概型概念和性质(15分钟)
1. 讲解概型的定义和基本性质。
2. 举例说明不同类型的概型,引导学生思考。
3. 解释概型在数学中的应用,并讨论实例。
三、练习与讨论(20分钟)
1. 给学生发放练习题,让学生自主练习。
2. 学生互相讨论解题思路,分享解题方法。
3. 收集学生答案,讨论解题过程和答案。
解决学生疑惑。
四、实践运用(10分钟)
1. 提供实际问题,让学生结合几何知识和概型解决问题。
2. 学生在小组中合作,共同讨论解决方案。
3. 学生上台汇报解题过程和答案。
五、总结和作业布置(5分钟)
1. 总结本节课的内容,强调要点。
2. 布置相关练习作业,鼓励学生多练习、巩固知识。
教后反思:本节课主要通过讲解、练习和实践运用,使学生对几何概型有了更深入的理解,并能够运用概型解决实际问题。
在实践运用环节,让学生在小组中合作,培养了学生的团
队合作能力和解决问题的能力。
待下次课程中再次引导学生灵活运用概型解决实际问题。
高中数学《几何概型》教案、教学设计
高中数学《几何概型》教案、教学设计
一、教学目标
【知识与技能】
理解几何概型的特点,掌握几何概型的概率计算公式,并能应用公式解决实际问题。
【过程与方法】
经历归纳几何概型的特点以及推导几何概型的概率计算公式的过程,提升抽象概括能力与逻辑推理能力。
【情感、态度与价值观】
体会数学与生活的联系,养成良好的数学思维习惯。
二、教学重难点
【重点】几何概型的特点以及概率计算公式。
【难点】几何概型特点的归纳以及概率计算公式的推导。
三、教学过程
(一)导入新课
回顾古典概型。
出示问题情境:往一方格中投一个石子。
请学生思考石子可能落在哪里,如何求概率。
在学生明确事件所有的可能结果是无限个,无法用古典概型求解的情况下,说明今天这节课将解决这样的问题。
引出课题。
(二)讲解新知
出示问题情境:如图有两个转盘,甲乙两人玩转盘游戏,规定当指针指向
区域时,甲获胜,否则乙获胜。
请学生在两种情况下分别求出甲获胜的概率是多少。
(四)小结作业
小结:今天有什么收获?回顾几何概型的特点以及概率计算公式。
作业:从几何概型的角度思考,是否概率为0的事件都是不可能事件,概率为1的事件都是必然事件?
四、板书设计。
公开课几何概型教案
几何概型一、教学目标:1、知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;2、过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。
二、重点与难点:1、几何概型的概念、公式及应用;2、几何概率模型中基本事件的确定,几何“度量”的选择;将实际问题转化为几何概型.三、教学过程复习回顾同学们,咱们前面学习了古典概型,现在回顾一下古典概型的特点及求概率的公式?特点:(1)试验中所有可能出现的基本事件只有有限个(有限性);(2)每个基本事件出现的可能性相等(等可能性).(一)问题引入(1)若x的取值是区间[1,4]中的整数,任取一个x的值,求“取得值不小于2”的概率。
(古典概型)(2)若x的取值是区间[1,4]中的实数,任取一个x的值,求“取得值不小于2”的概率。
(几何概型)自主探究试验1、取一根长度为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1米的概率有多大?试验2、取一个长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,那么豆子落入圆内的概率有多大?试验3、一只蜜蜂在一个棱长为60cm的正方体笼子里飞,那么蜜蜂距笼边大于10cm的概率有多大?试验1试验2试验3提炼概括一个基本事件取到线段AB上某一点豆子落在正方形(2a×2a)内某一点取正方体笼子内某一点在对应的整个图形上取一点(随机地)所有基本事件形成的集合线段AB(除两端外)正方形(24a)面正方体笼子(棱长60)体积对应的所有点形成一个可度量的区域D随机事件A对应的集合线段CD 内切圆(2aπ)面正方体笼子内小正方体(棱长40)体积区域D内的某个指定区域d随机事件A发生的概率()P A=圆的面积正方形的面积2244aaππ==33408()6027P A()AP A构成事件的区域全部结果构成的区域1、几何概型的概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.古典概型几何概型所有的试验结果有限个(n个)无限个每个试验结果的发生等可能等可能概率的计算P(A)=m/n?3、几何概型的概率计算公式:(三)解决问题,提升能力1.取一个长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆心的概率。
几何概型教案
几何概型教案教案题目:几何图形的认知与分类教案目标:1. 学生能够通过观察和分析认识常见的几何图形;2. 学生能够根据不同的属性对几何图形进行分类。
教学内容与步骤:一、引入(5分钟)1. 教师出示一个由不同几何图形组成的图片,引导学生观察并交流其中的图形;2. 教师询问学生有关几何图形的知识,并呈现以下问题:有哪些常见的几何图形?你能够描述这些图形的特征吗?二、认知几何图形(20分钟)1. 教师出示一个正方形,询问学生对它的认知。
引导学生发现正方形有四条相等边,四个直角;2. 教师出示一个三角形,询问学生对它的认知。
引导学生发现三角形有三条边,三个顶点;3. 教师出示一个圆形,询问学生对它的认知。
引导学生发现圆形的边界是一个圆周,没有边和顶点;4. 教师出示其他常见的几何图形,引导学生认知并描述它们的特征。
三、几何图形分类(20分钟)1. 教师出示一个正方形、一个三角形和一个圆形,并询问学生如何对它们进行分类;2. 引导学生发现正方形和三角形都有边和顶点,可以归为“多边形”一类,而圆形没有边和顶点,可以归为“曲线图形”一类;3. 教师给出更多几何图形供学生分类,让学生描述分类的原则。
四、巩固与拓展(15分钟)1. 教师出示一些复杂的几何图形,并让学生对它们进行认知和分类;2. 学生自主观察和描述几何图形的特征,并进行分类;3. 教师提问:你发现了哪些与你之前认知的几何图形不同的特殊几何图形?它们有什么特点?五、小结与反思(10分钟)1. 教师对本课所学内容进行小结,并提问关于几何图形的总结性问题;2. 学生进行思考和回答,教师进行总结并给予肯定或指导;3. 学生进行自我反思,思考本课所学内容的运用和不足之处。
教学资源:1. 各种几何图形的图片或实物;2. 教学课件和黑板;3. 学生练习册或作业本。
教学评价:1. 学生在观察和认知几何图形时的参与度;2. 学生对几何图形分类的准确性和合理性;3. 学生在巩固与拓展环节中对几何图形特征的发现和描述能力;4. 学生在小结与反思环节中的思考和回答的质量。
《几何概型》教学设计
几何概型教学设计一、教学目标1.了解几何形状及其特点;2.掌握几何图形的基本名称;3.学会使用几何工具进行几何图形绘制和测量;4.培养学生的几何思维和空间想象能力。
二、教学重点难点1.教学重点:几何图形的基本名称和绘制;2.教学难点:几何工具的使用和几何空间想象能力。
三、教学内容及方法1.教学内容:几何图形的基本名称、绘制和测量;2.教学方法:(1)讲解法:通过讲解几何图形的基本特点、名称和相关知识点,帮助学生了解几何图形的基础知识。
(2)演示法:演示几何图形的绘制和操作方式,引导学生正确使用几何工具,提高学生的操作技能。
(3)实践法:引导学生进行几何图形的绘制和测量实践,通过实践巩固学生的知识点和技能。
四、教学步骤1.引入:呈现几何图形的相关图片和实际应用场景,引导学生关注几何图形的形状、特点和重要性。
2.讲解:讲解几何图形的基本特点、名称和相关知识点,包括正方形、矩形、三角形、圆形等。
3.演示:通过几何工具演示各种几何图形的绘制和测量方法,引导学生正确使用几何工具,提高学生的操作技能。
4.实践:组织学生进行几何图形的绘制和测量实践,通过实践巩固学生的知识点和技能,并且培养学生的几何思维和空间想象能力。
五、教具准备1.黑板或白板;2.彩色粉笔或白板笔;3.几何工具箱(直尺、圆规、量角器、三角板等);4.课件或PPT。
六、板书设计几何图形名称正方形四边相等,四角均为直角的四边形矩形对边相等,四角均为直角的四边形三角形三边相等或两边角度相同的三边形圆形平面内一个点到一条确定的直线的距离为定值的点的集合七、课后练习与反思1.给学生布置几何图形的相关练习,巩固学生的知识点和技能。
2.回顾本节课的教学过程,总结教学经验和教学不足,不断完善和提高教学质量。
八、教学心得通过本次几何概型教学设计,我深刻认识到有效的教学设计不仅能够提高教学效率和质量,同时也能够培养学生的创新能力和实践能力,帮助学生更好地适应和应对未来的挑战。
《几何概型》教学设计
《几何概型》教学设计课题:几何概型教学目标:1.理解几何概型的定义和性质;2.掌握计算几何概型的方法;3.培养几何思维和解决几何问题的能力。
教学内容:1.几何概型的概念和性质;2.几何概型的计算方法;3.几何概型在实际中的应用。
教学重点:1.理解几何概型的定义和性质;2.掌握计算几何概型的方法。
教学难点:1.培养几何思维和解决几何问题的能力;2.几何概型在实际中的应用。
教学方法:1.归纳法;2.实例分析法;3.案例研究法。
教学准备:1.教学PPT;2.教学实例;3.相关教学素材。
教学过程:Step 1 引入问题通过观察教学实例,引入几何概型的问题。
例如:小明有一条3cm长的线段,他将这条线段随机地折叠,折叠了3次后,折痕上共有几个点?引导学生思考如何解决这个问题。
Step 2 引入几何概型的定义和性质通过引入问题,引出几何概型的定义和性质。
几何概型是指在平面上的一些点、线、面排列组合形成的图形。
几何概型具有以下性质:1.几何概型中的图形是由点、线、面等几何基本元素组成的;2.几何概型中的图形可以是二维或三维的;3.几何概型可以通过折叠、叠加等操作得到不同形状。
Step 3 计算几何概型的方法介绍几何概型的计算方法,包括:1.枚举法:通过列举可能的排列组合情况,计算几何概型的数量;2.排列组合法:应用排列组合原理,计算几何概型的数量;3.尺规作图法:利用尺规作图的方法,画出对应的几何概型。
通过具体例子展示以上方法的应用,让学生在实践中理解和掌握。
Step 4 几何概型在实际中的应用介绍几何概型在实际中的应用,如折纸艺术、拼贴艺术等。
通过图片或实际操作展示相关作品,激发学生对几何概型的兴趣,并引导学生思考如何利用几何概型创作出更多有创意的作品。
Step 5 实例分析选择一个实际问题,让学生应用所学的几何概型知识解决问题。
例如:一个布料厂家要生产由12个正方形拼接而成的壁挂,要求壁挂的形状是尽量规则的,设计师该如何安排正方形的排列组合?通过分析问题,引导学生利用几何概型的知识进行解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何概型
一、教学目标:
1、知识与技能:
(1)正确理解几何概型的概念;
(2)掌握几何概型的概率公式:
(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;
2、过程与方法:
(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;
'
(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:
本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。
二、重点与难点:
1、几何概型的概念、公式及应用;
2、几何概率模型中基本事件的确定,几何“度量”的选择;将实际问题转化为几何概型.
三、教学过程
复习回顾
、
同学们,咱们前面学习了古典概型,现在回顾一下古典概型的特点及求概率的公式
特点:(1)试验中所有可能出现的基本事件只有有限个(有限性);
(2)每个基本事件出现的可能性相等(等可能性).
(一)问题引入
(1)若x的取值是区间[1,4]中的整数,任取一个x的值,求“取得值不小于2”的概率。
(古典概型)
~
(2)若x的取值是区间[1,4]中的实数,任取一个x的值,求“取得值不小于2”的概率。
(几何概型)
自主探究
试验1、取一根长度为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1米的概率有多大
试验2、取一个长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,那么豆子落入圆内的概率有多大
试验3、一只蜜蜂在一个棱长为60cm的正方体笼子里飞,那么蜜蜂距笼边大
于10cm的概率有多大
.
试验1试验2试验3提炼概括
一个基本
事件…
取到线段AB上
某一点
豆子落在正方形(2a
×2a)内某一点
取正方体笼子内某
一点
在对应的整个图形上取一点
(随机地)
所有基本
事件形成的集合线段AB(除两端
外)
正方形(2
4a)面
正方体笼子(棱长
60)体积
《
对应的所有点形成一个可度
量的区域D
随机事件
A对应的集合线段CD内切圆(2a
π)面
正方体笼子内小正
方体(棱长40)体
积
区域D内的某个指定区域d
随机事件A发生的
概率?()
P A=
圆的面积
正方形的面积
2
2
44
a
a
ππ
==
3
3
408
()
6027
P A()A
P A
构成事件的区域
全部结果构成的区域
1、几何概型的概念:
]
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
古典概型几何概型
所有的试验结果有限个(n个)无限个
`
每个试验结果的发生
等可能等可能
概率的计算P(A)=m/n
3、几何概型的概率计算公式:
(三)解决问题,提升能力
<
1.取一个长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆心的概率。
解析:p=0
如果随机事件所在区域是一个单点,则它出现的概率为0,但它不是不可能事;如果随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件。
2.在等腰RtΔABC中,∠C为直角顶点.
(1)在线段AB上任取一点P,求使得AP<AC的概率。
(2)在∠ACB内作射线CP,交线段AB于点P,求使得AP<AC的概率。
解析:(1)在线段AB上找一点M,使得AM=AC.
记“AP<AC”为事件A,设AC=BC=X,在线段AB上任取一点P,
所有基本事件构成的区域长度为:
事件A构成的区域长度为:AM=AC=X
∴()
2 P A==
答:AP<AC
的概率为
2。
(2)解: 在线段AB上找一点M,使得AM=AC,则
18045
67.5 ACM=
2
︒︒
︒
=
∠
-
记“AP<AC”为事件A.在∠ACB内作射线CP,…
所有基本事件构成的区域角度为:∠ACB=90◦
事件A构成的区域角度为:
18045
67.5 ACM=
2
︒︒
︒
=
∠
-
∴
67.5
AC
3
M=
904
∠=
答:AP<AC的概率为
3
4。
此例首先让学生独立思考,然后教师再画龙点睛的分析并求解.
B
C
A
B
C
A
解完此例题后归纳求解几何概型问题的步骤:
1判断该概率模型是不是几何概型.
2如果是,注意几何度量的选择.
3把实际问题中的度量关系转化成长度、面积、体积等形式.
4根据几何概型计算公式求出概率.
(四)课堂训练
1.在区间(0,10)内的所有实数中随机取一个实数a,则这个实数a>7的概率为. .
2.在1万平方千米的海域中有40平方千米的大陆架储藏着石油,如果在海域中任意点钻探,钻到油层面的概率.
3.在1000mL的水中有一个草履虫,现从中任取出2mL水样放到显微镜下观察,发现草履虫的概率.
(五)课堂小结(学生小结)
1、学到了什么
2、掌握了哪些方法
3、应该注意些什么问题
(六)作业
p142 习题3.3 A组1、2、3
(七)课后思考
约会问题:小明和小雪约了星期天下午在体育场见面,由于最近在修路,可能会堵车,小明说他大概4:00—5:00会到,小雪说她可5:00—6:00到,他们约定先到的等半小时如果另一个还没来就可以先走了,假设他们在自己估计时间内到达的可能性相等,问他们两个能相遇的概率有多大?。