大学物理课后习题简介

合集下载

大学物理第12章课后习题

大学物理第12章课后习题

第十二章 静电场中的导体和电介质12-1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将如何变化.答:电场中通常以无穷远处的电势为零电势参考点。

导体B 离A 很远时,其电势为零。

A 带正电,所以其电场中各点的电势均为正值。

因此B 靠近A 后,处于带电体A 的电场中时,B 的电势为正,因而B 处的电势升高。

12-2 如附图所示,一导体球半径为R 1,外罩一半径为R 2的同心薄球壳,外球壳所带总电荷为Q ,而内球的电势为U 0,求此系统的电势和电场分布。

解:根据静电平衡时电荷的分布,可知电场分布呈球对称.设内球壳带电量为q 取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为r <R 1时, ()01=r E R 1<r <R 2 时,()202π4rεq r E =r >R 2 时, ()202π4rεq Q r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R 1时,20103211π4π4d d d d 2211R Q R q U R R R R rrεε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞l E l E l E l ER 1<r <R 2 时,200322π4π4d d d 22R Q rq U R R rrεε+=⋅+⋅=⋅=⎰⎰⎰∞∞l E l E l Er >R 2 时,rQ q U r03π4d ε+=⋅=⎰∞l E 3由题意得201001π4π4R Q R q U U εε+==代入电场、电势的分布得 r <R 1时,01=E ;01U U =R 1<r <R 2 时,22012012π4rR Q R rU R E ε-=;rR Q R r rU R U 201012π4)(ε--=r >R 2 时,220122013π4)(rR Q R R rU R E ε--=;rR Q R R rU R U 2012013π4)(ε--=12-3证明:对于两个无限大的平行平面带电导体板来说,(1) 相向的两面上,电荷的面密度总是大小相等而符号相反;(2) 相背的两面上,电荷的面密度总是大小相等且符号相同。

大学物理学(第三版上) 课后习题3答案详解

大学物理学(第三版上)  课后习题3答案详解

习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) (B) 02ωmRJ J+02)(ωR m J J +(C) (D) 02ωmRJ0ω[答案: (A)](2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为(A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s (a)(b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体(A )动能不变,动量改变。

(B )动量不变,动能改变。

(C )角动量不变,动量不变。

(D )角动量改变,动量改变。

(E )角动量不变,动能、动量都改变。

[答案: (E)]3.2填空题(1) 半径为30cm 的飞轮,从静止开始以0.5rad·s -2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度a τ= ,法向加速度a n = 。

0.15; 1.256[答案:](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的 守恒,原因是 。

木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的 守恒。

题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。

大学物理教程(上)课后习题答案解析

大学物理教程(上)课后习题答案解析

大学物理教程(上)课后习题答案解析物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1)质点的运动轨迹;(2)从1t s =到2t s =质点的位移的大小;(3) 2t s =时,质点的速度和加速度。

解:(1)由运动方程消去时间t 可得轨迹方程,将t =代入,有21)y =或1=(2)将1t s =和2t s =代入,有11r i =, 241r i j =+213r r r i j =-=-位移的大小231r =+= (3) 2x dxv t dt== 2(1)y dy v t dt==-22(1)v ti t j =+-2xx dv a dt ==, 2y y dv a dt==22a i j =+当2t s =时,速度和加速度分别为42/v i j m s =+ 22a i j =+ m/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量。

求(1)质点的速度;(2)速率的变化率。

解(1)质点的速度为sin cos drv R ti R t j dtωωωω==-+ (2)质点的速率为v R ω==速率的变化率为0dv dt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。

求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。

解由于 4d t dtθω== 质点在t 时刻的法向加速度n a 的大小为2216n a R Rt ω==角加速度β的大小为 24/d rad s dtωβ==77页2-15, 2-30, 2-34,2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。

大学物理课后习题全解及辅导

大学物理课后习题全解及辅导
解:(1)研究OA杆,受力分析,画受力图:
列平衡方程:
(2)研究AB(二力杆),受力如图:
可知:
(3)研究O1B杆,受力分析,画受力图:
列平衡方程:
第三章
习题3-1.求图示平面力系的合成结果,长度单位为m。
解:(1)取O点为简化中心,求平面力系的主矢:
求平面力系对O点的主矩:
(2)合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
由图知:
(2)研究铰C,受力分析,画力三角形:
由图知:
习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。
解:(1)研究滑块A,受力分析,画力三角形:
由图知:
研究AB杆(二力杆)和滑块B,受力分析,画力三角形:
(2)由力三角形得:
(3)列平衡方程:
由(2)、(3)得:
(4)求摩擦系数:
习题5-3.尖劈顶重装置如图所示,尖劈A的顶角为α,在B块上受重物Q的作用,A、B块间的摩擦系数为f(其他有滚珠处表示光滑);求:(1)顶起重物所需力P之值;(2)取支力P后能保证自锁的顶角α之值。
解:属平面汇交力系;
合力大小和方向:
习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。
解:(1)研究AB,受力分析:
画力三角形:
相似关系:
几何关系:
约束反力:
(2)研究AB,受力分析:
画力三角形:
相似关系:
几何关系:
约束反力:
习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。求撑杆BC所受的力。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。

(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。

解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。

(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理上册-课后习题答案全解

大学物理上册-课后习题答案全解

第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13= 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23= 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述资料求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2+ 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= (m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = (m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = (s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02= 2a s ,可得上升的最大高度为:h 1 = v y 02/2g = (m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = (m).根据自由落体运动公式s = gt 2/2,得下落的时间为:= (s). 因此人飞越的时间为:t = t 1 + t 2 = (s).人飞越的水平速度为;v x 0 = v 0cos θ = (m·s -1), 所以矿坑的宽度为:x = v x 0t = (m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = (m·s -1),落地速度为:v = (v x 2 + v y 2)1/2 = (m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程图,解得:.这里y = -70m,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t= (s).由此可以求解其它问题.1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v/d t = -kv2,k为常数.(1)试证在关闭发动机后,船在t时刻的速度大小为;(2)试证在时间t内,船行驶的距离为.[证明](1)分离变数得,故,可得:.(2)公式可化为,由于v = d x/d t,所以:积分.因此.证毕.[讨论]当力是速度的函数时,即f = f(v),根据牛顿第二定律得f = ma.由于a = d2x/d t2,而 d x/d t = v,a = d v/d t,分离变数得方程:,解方程即可求解.在本题中,k已经包括了质点的质量.如果阻力与速度反向、大小与船速的n次方成正比,则d v/d t = -kv n.(1)如果n = 1,则得,积分得ln v = -kt + C.当t = 0时,v = v0,所以C = ln v0,因此ln v/v0 = -kt,得速度为:v = v0e-kt.而d v = v0e-kt d t,积分得:.当t = 0时,x = 0,所以C` = v0/k,因此.(2)如果n≠1,则得,积分得.当t = 0时,v = v0,所以,因此.如果n = 2,就是本题的结果.如果n≠2,可得,读者不妨自证.1.5 一质点沿半径为的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t3.求:(1)t = 2s时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值?(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?[解答](1)角速度为ω = dθ/d t = 12t2= 48(rad·s-1),法向加速度为a n= rω2= (m·s-2);角加速度为β = dω/d t = 24t= 48(rad·s-2),切向加速度为a t= rβ = (m·s-2).(2)总加速度为a = (a t2 + a n2)1/2,当a t = a/2时,有4a t2 = a t2 + a n2,即.由此得,即,解得.所以 =(rad).(3)当a t = a n时,可得rβ= rω2,即: 24t = (12t2)2,解得:t = (1/6)1/3 = (s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α.运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s). 将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 内下降的距离h = .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于,所以a t = 2h /Δt 2 = (m·s -2).物体下降3s 末的速度为v = a t t = (m·s -1),这也是边缘的线速度,因此法向加速度为= (m·s -2).1.8 一升降机以加速度·s -2上升,当上升速度为·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距.计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= (s).算得h 2 = ,即螺帽相对于升降机外固定柱子的下降距离为.[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为; (3)如果气流的速度向北,证明来回飞行的总时间为. [证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v .(2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u ,所以飞行时间为 .(3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作向量三角形,其中沿AB 方向的速度大小为,所以飞行时间为. 证毕.图A B AB v v + uv - u A Bv u u vv1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕.方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度运动,的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为x = v 0t ,.将t = x/v 0,代入后一方程得质点的轨道方程为,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一品质m = 2kg的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = ,静摩擦因素为μs = .求:(1)今以水平力拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = (N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = (N), 这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = (N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为图1h lα图 mf =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = (N).因此要将板从物体下面抽出,至少需要的力.2.3 如图所示:已知F = 4N ,m 1 = ,m 2 = ,两物体与水平面的的摩擦因素匀为.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮品质均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 = (m·s -2),绳对它的拉力为= (N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 ,即:. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2, 因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动; (2)小车以加速度沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度(b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g ); 绳子张力等于摆所受的拉力 :.(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力,合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的向量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ是mb cos φ,邻边是mg + mb sin φ,由此可得: , 12图 2 图 (2)因此角度为; 而张力为 .(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =的小球,拴在长度l =的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大? (3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向. 小球的运动方程为,其中s 表示弧长.由于s = Rθ = lθ,所以速度为 , 因此 , 即 v d v = -gl sin θd θ, (1) 取积分 , 得 ,解得:= (m·s -1). 由于:, 所以T B = 2mg = (N). (2)由(1)式积分得 ,当 θ = 60º时,v C = 0,所以C = -lg /2, 因此速度为.切向加速度为a t = g sin θ;法向加速度为 .由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为= (m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = (N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为,s 表示弧长.由于,所以,图图因此v d v = g cosθd s= g d h,h表示石下落的高度.积分得,当h = 0时,v = 0,所以C = 0,因此速率为.2.8质量为m的物体,最初静止于x0,在力(k为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k(1/x– 1/x0)/m]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程利用v = d x/d t,可得,因此方程变为,积分得.利用初始条件,当x = x0时,v = 0,所以C = -k/x0,因此,即.证毕.[讨论]此题中,力是位置的函数:f = f(x),利用变换可得方程:mv d v = f(x)d x,积分即可求解.如果f(x) = -k/x n,则得.(1)当n = 1时,可得利用初始条件x = x0时,v = 0,所以C = ln x0,因此,即.(2)如果n≠1,可得.利用初始条件x = x0时,v = 0,所以,因此,即.当n = 2时,即证明了本题的结果.2.9一质量为m的小球以速率v0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k.求:(1)小球速率随时间的变化关系v(t);(2)小球上升到最大高度所花的时间T.[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程,分离变数得,积分得.当t = 0时,v = v0,所以,因此,小球速率随时间的变化关系为.(2)当小球运动到最高点时v = 0,所需要的时间为.[讨论](1)如果还要求位置与时间的关系,可用如下步骤:由于v = d x/d t,所以,即,积分得,当t = 0时,x = 0,所以,因此 .(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为 ,用同样的步骤可以解得小球速率随时间的变化关系为.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m = mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因子为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得, 即 : .积分得:.当t = 0时,v = v 0,所以, 因此 .解得 .由于 , 积分得,当t = 0时,x = x 0,所以C = 0,因此.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ.根据向心力公式得F = mg tg θ = mω2R sin θ,可得,解得 .(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t ,积分得冲量为 , 方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt , 设小球的品质为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,图小球获得的冲量为I = p 2 – p 1 = -mωA ,可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义得:, 由此可作向量三角形,可得:.因此向心力给予小球的的冲量大小为= (N·s). [注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力 F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得,,合冲量为,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为,求球受到的平均冲力?[解答]球上升初速度为= 14(m·s -1),其速度的增量为= (m·s -1).棒给球冲量为I = m Δv = (N·s),对球的作用力为(不计重力):F = I/t = (N). 2.15 如图所示,三个物体A 、B 、C ,每个品质都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2). 根据运动学公式:s = v 0t + at 2/2, 可得B 拉C 之前的运动时间;= (s).此时B 的速度大小为:v = at = 2(m·s -1).v x Δv v y物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`,因此C 开始运动的速度为:v` = 2v /3 = (m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作向量三角形,列方程得, 所以 v` = v /cos45° = .2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的品质为m ,它与路面的滑动摩擦因子为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移的大小为d s = R d θ.重力的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为,积分得重力所做的功为. 摩擦力的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为,积分得摩擦力所做的功为.要使雪橇缓慢地匀速移动,雪橇受的重力、摩擦力和马的拉力就是平衡力,即 , 或者 . 拉力的功元为:, 拉力所做的功为.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一品质为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因子;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2,末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得: .图由于W = ΔE ,可得滑动摩擦因子为.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g ,根据公式v t 2 – v o 2= 2a t s ,可得质点运动的弧长为,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。

江西理工大学大学物理(下)习题册及答案详解

江西理工大学大学物理(下)习题册及答案详解

班级_____________ 学号___________姓名________________ 简谐振动1. 一质点作谐振动, 振动方程为X=6COS (8πt+π/5) cm, 则t=2秒时的周相为:π5116, 质点第一次回到平衡位置所需要的时间为:s 0375.0.2. 一弹簧振子振动周期为T 0, 若将弹簧剪去一半, 则此弹簧振子振动周期T 和原有周期T 0之间的关系是:022T T =.3. 如图为以余弦函数表示的谐振动的振动曲线, 则其初周相φ=3π-,P 时刻的周相为:0.4. 一个沿X 轴作谐振动的弹簧振子, 振幅为A , 周期为T , 其振动方程用余弦函数表示, 如果在t=0时, 质点的状态分别是:(A) X 0=-A; (B) 过平衡位置向正向运动;(C) 过X=A/2 处向负向运动; (D) 过A x 22-= 处向正向运动.2 1 0 P t(s) X(m)试求出相应的初周相之值, 并写出振动方程.)2cos()(ππ+=t TA x A ; )22cos()(ππ-=t T A x B)32cos()(ππ+=t T A x C ; )452cos()(ππ+=t T A x D5.一质量为0.2kg 的质点作谐振动,其运动议程为:X=0.60 COS(5t -π/2)(SI)。

求(1)质点的初速度;(2)质点在正向最大的位移一半处所受的力。

解(1))5sin(00.32π--==t dtdxv 10.00.3,0-==s m v t(2)x x dtdv a 2520-=-==ω 22.5.7,30.0--===s m a m x AN ma F 5.1-==班级_____________ 学号___________姓名________________简谐振动的合成1. 两个不同的轻质弹簧分别挂上质量相同的物体1和2, 若它们的振幅之比A 2 /A 1=2, 周期之比T 2 / T 1=2, 则它们的总振动能量之比E 2 / E 1 是( A )(A) 1 (B) 1/4 (C) 4/1 (D) 2/11)()(;)(2222221122112=⋅==A A T T E E T A m E π2.有两个同方向的谐振动分别为X 1=4COS(3t+π/4)cm ,X 2 =3COS(3t -3π/4)cm, 则合振动的振幅为:cm A 1=, 初周相为:4πφ=. 3. 一质点同时参与两个同方向, 同频率的谐振动, 已知其中一个分振动的方程为X 1=4COS3t cm, 其合振动的方程为分振动的振幅为A 2 =cm 44. 动方程分别为X 1=A COS(ωt+π/3), X 2 =A COS (ωt+5π/3), X 3 =A COS(ω程为:)6cos(3πω+=t A x5. 频率为v 1和v 2的两个音叉同时振动时,可以听到拍音,可以听到拍音,若v 1>v 2,则拍的频率是(B )(A)v 1+v 2 (B)v 1-v 2 (C)(v 1+v 2)/2 (D)(v 1-v 2)/26.有两个同方向,同频率的谐振动,其合成振动的振幅为0.20m ,周相与第一振动周相差为π/6。

大学物理课后习题详解(第九章)中国石油大学

大学物理课后习题详解(第九章)中国石油大学

习 题 九9-1 一系统由图示的状态a 经acb 到达状态b ,系统吸收了320J 热量,系统对外作功126J . (1)若adb 过程系统对外作功 42J ,问有多少热量传入系统? (2)当系统由b 沿曲线ba 返回状态a ,外界对系统作功84 J ,试问系统是吸热还是放热? 热量是多少? [解] 由热力学第一定律A E Q +∆=得 A Q E -=∆ 在acb 过程中,E E E ∆=-a b J 19412632011=-=-=A Q在adb 过程中,内能变化量与acb 过程相同 因此 J 2364219422=+=+∆=A E Q 在ba 过程中J 2788419433b a 3-=--=+∆-=+-=A E A E E Q由于热量为负值,所以本过程中系统放热.9-2 2mol 氮气由温度为 300K ,压强为510013.1⨯Pa (1atm )的初态等温地压缩到 510026.2⨯Pa (2atm ).求气体放出的热量. [解] 在等温过程中气体吸收的热量等于气体对外做的功,所以J 1046.321ln30031.82ln321T ⨯-=⨯⨯⨯===p p RT A Q ν即气体放热为J 1046.33⨯.9-3 一定质量的理想气体的内能E 随体积的变化关系为E - V图上的一条过原点的直线,如图所示.试证此直线表示等压过程.[证明] 设此直线斜率为k ,则此直线方程为kV E = 又E 随温度的关系变化式为 T k T C MM E '=⋅=v m o l所以 T k kV '= 因此 C kk T V ='=(C 为恒量)又由理想气体的状态方程知,C T pV'= (C '为恒量)所以 p 为恒量,即此过程为等压过程.9-4 2mol 氧气由状态1变化到状态2所经历的过程如图所示:(1)沿l →m →2路径.(2)1→2直线.试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化.[解] (1) 在1→m →2这一过程中,做功的大小为该曲线下的面积,氧气对外做负功.()()J 1010.81010013.11050204352121⨯-=⨯⨯⨯-⨯-=--=-V V p A由气体的内能公式T C E V ν=和理想气体的状态方程RT pV ν=得pV i RR i pVRpVC RpVC E 22VV====νν对于氧气5=i ,所以其内能的变化为 ()()J 1027.11010013.15051020252543511221⨯-=⨯⨯⨯⨯-⨯⨯=-=∆-V p V p E此过程吸收的热量为 J 1037.91010.81027.1444111⨯-=⨯-⨯-=+∆=A E Q (2)在从1→2过程中,由图知氧气对外作功为()()()()J 1007.51010013.11050520212143521122⨯-=⨯⨯⨯-⨯+⨯-=-+-=-V V p p A内能的变化 J 1027.1412⨯-=∆=∆E E吸收的热量 J 1034.61007.51027.1444222⨯-=⨯-⨯-=+∆=A E Q9-5 10mol 单原子理想气体在压缩过程中外界对它作功209J ,其温度上升1K ,试求:(1)气体吸收的热量与内能的增量.(2) 此过程中气体的摩尔热容量.[解] (1) 内能的增量为 J 65.124131.82310V =⨯⨯⨯=∆=∆T C E ν气体吸收的热量 J 35.8420965.124-=-=+∆=A E Q (2) 由气体摩尔热容量知 ())K mol J 44.835.841011⋅-=-⨯=∆=TQC ν9-6 将压强为1atm ,体积为33m 101-⨯的氧气(25V R C =)从0℃加热到100℃.试分别求在等体(积)过程和等压过程中各需吸收多少热量.[解] 由理想气体状态方程 RT pV ν= 00RT V p RTpV ==ν在等容过程中吸收的热量为 J 77.9210027310110013.1252535000V V =⨯⨯⨯⨯⨯=∆=∆=-T R RT V p T C Q ν在等压过程中吸收的热量为J 88.12977.92575727V p p =⨯==∆=∆=Q T R T C Q νν9-7 已知氩气的定体(积)比热为)K kg J 314V ⋅=c ,若将氩气看作理想气体,求氩原子的质量.(定体(积)摩尔热容V mol V c M C =).[解] 由定容摩尔热容量的定义知 R R i C 232V ==因此 VVV m o l 23c Rc C M==氩原子的质量为 kg 1059.63141002.631.823232623V A Amol-⨯=⨯⨯⨯===c N RN Mm9-8 为测定气体的γ(V p C C =)值有时用下列方法:一定量的气体的初始温度、体积和压强为0T 、0V 和0p ,用一根电炉丝对它缓慢加热.两次加热的电流强度和时间相同,第一次保持体积0V 不变,而温度和压强变为1T 和1p .第二次保持压强0p 不变,而温度和体积变为2T 和1V .试证明 ()()001001p V V V p p --=γ[证明] 两次加热气体吸收的热量相同,等容过程吸收的热量为()01V 1T T C Q -=ν 等压过程吸收的热量为 ()02p 2T T C Q -=ν 由 21Q Q =可得 ()()02p 01V T T C T T C -=-νν所以 0201Vp T T T T C C --==γ由理想气体状态方程 000RT V p ν= 101RT V p ν= 210RT V p ν= 因此 00101V R p p T T ν-=- 00102p RV V T T ν-=-所以得到 ()()001001p V V V p p --=γ9-9 已知1mol 固体的状态方程为bp aT v v ++=0,内能apT cT E +=,式中0v 、a 、b 、c 均为常量,求该固体的p C 、V C .[解] 由热力学第一定律可得 V p E A E Q d d d d d +=+= (1) 由已知条件可得 p b T a V d d d += (2) T ap p aT T c E d d d d ++= (3)将(2)、(3)代入(1)得 ()p b T a p T ap p aT T c Q d d d d d d ++++= (4) 在等压过程中,0d =p所以 ()T ap c Q d 2d += 因此 ap c TQ C 2d d p +==在等容过程中 0d =V代入(2)式得 0d d =+p b T a 因此 T ba p d d -=代入(4)式得Tb T a apc T b a b T a p T ap T b a aT T c Qd d d d d d d 2⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-+++⎪⎭⎫ ⎝⎛-+= 所以 bT a ap c TQ C 2V d d -+==9-10 已知范德瓦尔斯气体的内能0V E Va T C E +-=.其中V C 、a 、0E 为常数,试证明其绝热过程方程为()常数=-VC R b V T[证明] 范德瓦尔斯气体的状态方程为 ()RT b V V a p =-⎪⎭⎫⎝⎛+2 (1) 又由已知条件可得 V Va T C E d d d 2V += (2)绝热过程 0d =Q ,由热力学第一定律得 V p A E d d d -=-= (3) 由(2)、(3)式可得 V p V Va T C d d d 2V -=+ (4)由 (1)式可得 2Va bV RT p --=(5)将(5)代入(4)式有 V bV RT V Va V Va T C d d d d 22V --=+整理得 V bV T RTC d 1d V --=积分得()常数=-+b V T RC ln ln V即 ()常数=-RCVT b V这就是范德瓦尔斯气体的绝热过程方程.9-11 如图所示是氮气循环过程,求:(1)一次循环气体对外作的功;(2)循环效率. [解] (1) 一次循环过程气体对外作功的大小为闭合曲线所包围的面积,由图知,其包围的面积为1()()1412V V p p S --= ()()J 100.2101015510335⨯=⨯⨯-⨯-=-该循环对外作功为正,所以 J 100.23⨯=A(2) 该循环过程中,从1→2,2→3为吸收热量过程 1→2为等容过程,吸收热量为()()112212V 125V p V p T T C Q -=-=ν()J 1025.110101511025335⨯=⨯⨯⨯-⨯⨯=-2→3为等压过程,吸收热量为 ()()223323p 227V p V p T T C Q -=-=ν()J 104.1101011051027435⨯=⨯⨯⨯-⨯⨯=-因此吸收的总热量为 J 10525.1421⨯=+=Q Q Q 该循环的效率为 %1.13%10010525.1100.243=⨯⨯⨯==Q A η9-12 一理想气体的循环过程如图所示,其中ca 为绝热过程,点 a 的状态参量为()11,V T ,点b 的状态参量为()22,V T ,理想气体的热容比为γ,求(1)气体在ab 、bc 过程中与外界是否有热交换? 数量是多少?(2)点c 的状态参量;(3)循环的效率.[解] (1) ab 过程是等温过程,系统吸收热量为121T lnV V RT A Q ν==因12V V >,故该过程是吸热过程.bc 过程是等容过程,系统吸收热量为 ()2c V V T T C Q -=ν 因 c T <2T ,故该过程是放热过程. (2) 从图上可看到 2c V V =又 ac 为绝热过程,故根据绝热方程 112111c1c T VV T VV T --⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=γγ又有 γγ11c c V p V p =得到 121211121211c -⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=γγγννV V V RT V RT V V V V p p(3) ()()[]()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⋅-=--=--=-=--12121V 12111212V 121C 2V TV ln 11ln1ln11V V V V RC V V RT T V V T C V V RT T T C Q Q γγννη9-13 图中闭合曲线为一理想气体的循环过程曲线,其中ab 、cd 为绝热线,bc 为等体(积)线,da 为等压线,试证明其效率为bc ad T T T T ---=γη1式中a T 、b T 、c T 、d T 分别为a 、b 、c 、d 各状态的温度,V p C C =γ.[证明] da 为放热过程,其放出的热量为()a d p 2T T C Q -=νbc 为吸热过程,其吸收的热量为 ()b c V 1T T C Q -=ν 所以其效率为 ()()bc ad b c V a d p 12111T T T T T T C T T C Q Q ---=---=-=γννη9-14 如图所示,AB 、DC 为绝热线,COA 是等温线. 已知系统在COA 过程中放热J 100,OAB 的面积是J 30,ODC 的面积为 J 70,试问在BOD 过程中系统是吸热还是放热?热量是多少?[解] 因COA 是等温线,COA 过程中J 100CA CA -==Q A 又因AB 、DC 为绝热线,AB AB A E -=∆ DC DC A E -=∆ OAB 过程系统作负功,ODC 过程系统作正功,整个循环过程系统作功 3070CA DC BD AB -=+++A A A ABOD 过程中系统吸热A C BD DC AB BD BD 140140E E E E E E A Q -+=∆+∆+∆+=∆+=由于COA 是等温过程,过程中系统内能变化为零,即 0A C =-E E 因此BOD 过程中系统吸热 J 140=Q9-15 一制冷机进行如图所示的循环过程,其中ab 、cd 分别是温度为1T 、2T 的等温线,bc 、da 为等压过程,设工作物质为理想气体.证明这制冷机制冷系数为:12121ln22p p i T T T ++-=ω[证明] ab 为等温过程,吸收热量为12111lnp p RT A Q ν==cd 为等温过程,其放出的热量大小为12222lnp p RT A Q ν==bc 为等压过程,吸收的热量为 ()12p 3T T C Q -=ν da 为等压过程,放出的热量大小为 ()12p 4T T C Q -=ν所以致冷系数 ()()12121314231ln22p p i T T T Q Q Q Q Q Q Q Q Q AQ ++-=+-++=-==吸放吸吸ω9-16 mol 1单原子理想气体,初态压强为1p ,体积为1V ,经等温膨胀使体积增加一倍,然后保持压强不变,使其压缩到原来的体积,最后保持体积不变,使其回到初态. (1)试在V p -图上画出过程曲线;(2)求在整个过程中内能的改变,系统对外作的净功、从外界吸收的净热量以及循环效率.[解] (1) 过程曲线(2) 系统经过循环又回到初态,所以其内能改变量0=∆E a →b 为等温过程,系统对外作正功2ln ln11121V p V V RT A ==νa2p 1p 2V 1V OVb →c 为等压过程,系统对外作负功,其数值大小为()()122111222V V V V p V V p A -=-=过程中总功 ()1112211112119.02ln V p V V V V p V p A A A =--=-=系统从外界吸收的净热量 1119.0V p A Q == a →b 过程吸热为 2ln 1111V p A Q ==c →a 过程中吸收的热量为 ()c a V 2T T C Q -=ν()V p V V V p p V p p 112111121432323=⎪⎪⎭⎫ ⎝⎛-=-=所以 %2.13432ln 19.011111121=+=+=V p V p V p Q Q A η9-17 一可逆卡诺热机低温热源的温度为27℃,热机效率为 40%,它的高温热源的温度是多少? 今欲将热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加多少度?[解] 可逆卡诺循环的效率为121T T -=η所以 K 5004.01300121=-=-=ηT T若 %50='η,则 K 6005.01300121=-='-='ηT T所以 K 10050060011=-=-'=∆T T T9-18 有一卡诺热机,用29kg 空气为工作物质,高温热源和低温热源的温度分别为C 27o 和C 73-o ,求此热机的效率.若在等温膨胀过程中工作物质的体积增大到2.718倍,则此热机每一循环所作的功是多少?[解] 此热机的效率为 %3.333002001112=-=-=T T η在等温膨胀过程中,吸收的热量为J 1049.2718.2ln 30031.8291029ln631211⨯=⨯⨯⨯⨯==V V RT Q ν又 1Q A =η所以 J 103.81049.231561⨯=⨯⨯==Q A η9-19 在高温热源为127℃、低温热源为27℃之间工作的卡诺热机,一次循环对外作净功为8000J ,今维持低温热源温度不变,提高高温热源的温度,使其一次循环对外做功10000J ,若两次循环该热机都工作在相同的两条绝热线之间,试求: (1)后一卡诺循环的效率.(2)后一卡诺循环的高温热源的温度.[解] (1) 设前一卡诺循环从高温热源吸收热量为1Q ,则有11Q A =η又 414003001112=-=-=T T η所以 J 320004800011=⨯==ηA Q 后一卡诺循环从高温热源吸收热量为J 34000800010000320001211=-+=-+='A A Q Q所以第二个卡诺循环的效率为 %4.29%100340001000012=⨯='='Q A η(2) 第二个卡诺循环的高温热源温度为 K 425294.01300121=-='-='ηT T9-20 一台家用冰箱,放在气温为300K 的房间内,做一盘C 13-o 的冰需从冷冻室取走J 1009.25⨯的热量.设冰箱为理想卡诺制冷机. (1)求做一盘冰所需要的功;(2)若此冰箱能以s J 1009.22⨯的速率取走热量,求所要求的电功率是多少瓦? (3)做一盘冰需时若干?[解] (1) 致冷系数为 2122T T T A Q -==ω因此 ()()J 1022.32602603001009.2452212⨯=-⨯⨯=-=T T T Q A(2) 取走制一盘冰的热量所需要的时间为 s 101009.21009.2325=⨯⨯=t所以电功率为 W 2.32101022.334=⨯==tA P(3) 做一盘冰所需要的时间为 s 103.9-21 绝热容器中间有一无摩擦、绝热的可动活塞,如图所示,活塞两侧各有mol ν的理想气体,5.1=γ,其初态均为0p 、0V 、0T .现将一通电线圈置入左侧气体中,对气体缓慢加热,左侧气体吸热膨胀推动活塞向右移,使右侧气体压强增加为0375.3p ,求; (1)左侧气体作了多少功?(2)右侧气体的终态温度是多少?(3)左侧气体的终态温度是多少? (4)左侧气体吸收了多少热量?[解] (1) 右侧气体所发生的过程为绝热过程.它对外所做的功的负值就是左侧气体所作的功.所以左侧气体作功为 12200---='-=γV p V p A A又对右侧气体: γγγ202200375.3V p V p V p == 因此 γ102375.3V V =所以 000000122001375.3375.31V p V p V p V p V p A =--=---=γγγ(2) 对右侧气体,由绝热方程知 ()γγγγ----=210010375.3T p T p得到 00325.1375.3T T T ===(3) 左侧气体末态体积为 γ1002001375.32V V V V V V -=-+=得到 00000010011125.525.212375.3375.312375.3T T T V p V V p RV p T =⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫⎝⎛-==γν(4) 左侧气体吸收热量()()0000V 01V 1125.5V p T T C A T T C A E Q +-=+-=+∆=νν由 000RT V p ν= 知 RV p T ν000=又由 5.1VV Vp =+==C R C C C γ, 得到 R C 2V =所以 00000015.925.42V p V p RV p R Q =+⨯⨯⨯=νν9-22 如图所示,在刚性绝热容器中有一可无摩擦移动而且不漏气的导热隔板,将容器分为A 、B 两部分,各盛有1mol 的He 气和2O 气.初态He 、2O 的温度各为K 300A =T ,K 600B =T ;压强均为atm 1.求:(1)整个系统达到平衡时的温度T 、压强p (氧气可视为刚性理想气体); (2)He气和2O 气各自熵的变化,系统的熵变.[解] (1) 因中间是导热隔板,过程中两部分气体热量变化和作功的数值都相等,所以内能变化量的数值也相等,且由于初温度不同而末温度相同所以一正一负.因此 ()()T T C T T C '-=-'B VB B A VA A νν解得 K 5.487536005300325232523BA VBVA BVB A VA =+⨯+⨯=++=++='RR RT RT C C T C T C T因平衡时温度、压强都相等,且都是1mol ,所以体积也相等.()A B A A B B B A AA BA B A45021212p RT T p R p RT p RT V V V V =+=⎪⎪⎭⎫ ⎝⎛+=+='='νν 根据理想气体状态方程得到压强为atm 08.114505.478450A =⨯=⋅'=''='p T V T R p ν(2) He 气熵变⎰⎰⎰⎰''+=+==∆T T V V VVR TTC TVp E TQ S AAAd d d d d A VA A He He He ννK J 42.93002600300ln31.83005.487ln31.8232lnln23ABA A=⨯+⨯+⨯⨯=++'=T T T R T T R氧气熵变⎰⎰⎰⎰''+=+==∆T T V V VVR TTC TVp E TQ S BBB222d d d d d B VB B O O O ννK J 70.66002600300ln31.86005.487ln31.8252lnln25-=⨯+⨯+⨯⨯=++'=BBA BT T T R T T R系统的熵变 K J 72.270.642.92O He =-=∆+∆=∆S S S9-23 已知在0℃1mol 的冰溶化为0℃的水需要吸收热量 6000 J ,求: (1)在0℃条件下这些冰化为水时的熵变;(2)0℃时这些水的微观状态数与冰的微观状态数的比. [解] (1) 温度不变时,熵变为 K J 0.222736000d 1d 0====∆⎰⎰Q T TQ S(2) 根据玻尔兹曼熵公式 冰冰Ω=ln k S 水水Ω=ln k S冰水冰水冰水ΩΩ=Ω-Ω=-=∆lnln ln k k k S S S根据(1)结果,得2423106.11038.10.22⨯⨯∆===ΩΩ-ee ekS 冰水9-24 把2mol 的氧从40℃冷却到0℃,若(1)等体(积)冷却;(2)等压冷却.分别求其熵变是多少?[解] 在等容压缩过程中 T C Q d d V ν= 因此 K J 68.5313273ln252d d d 273313VV -=⨯====∆⎰⎰⎰R TT C TTC TQ S νν在等压冷却过程中, T C Q d d p ν=K J 95.7313273ln272d d d 273313pp -=⨯====∆⎰⎰⎰R TT C TTC TQ S νν9-25 取1mol 理想气体,按如图所示的两种过程由状态A 到达状态C . (1)由A 经等温过程到达状态 C ;(2)由A 经等体(积)过程到达状态B ,再经等压过程到达状态C . 按上述两种过程计算该系统的熵变A C S S -.已知A C 2V V =,A C 21p p =.[解] (1) 根据理想气体状态方程得 RV p RV p T A A AA A ==ν因此等温过程中熵变为⎰⎰⎰⎰====∆V VRTT T Vp T QTQS C Ad 1d d d AAAν2ln lnd AC AA CAR V V R VV T RT V V ===⎰(2) A →C 与A →B →C 两过程初末状态相同,熵是状态函数,只与初末位置有关,因此两过程熵变相同等于2ln R .或:根据理想气体状态方程得 A A BB B 211V p RRV p T ⋅==νA →B →C 过程熵变等于A →B 等容过程和B →C 等压过程中熵变的和⎰⎰⎰⎰+=+=+=∆CBB ACBB ATTC TTC TQ TQ S S S d d d d p V 21νν2ln 2ln 2ln p V R C C =+-=。

大学物理课后知识题目解析(上下册全)武汉大学出版社知识题3详解

大学物理课后知识题目解析(上下册全)武汉大学出版社知识题3详解

3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.02ωmRJ J+ B. 02)(ωR m J J + C.02ωmRJD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。

若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断.题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]v v mmωOORA. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。

答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。

大学物理课后习题解答习题

大学物理课后习题解答习题
详细描述
通过解析力学习题,学生可以加深对力的理解,掌握力的 合成与分解的方法,以及运用牛顿运动定律解决实际问题。
举例
一质量为m的物体在几个共点力作用下处于平衡状态,若 撤去一个向东的恒力F,物体将产生向西的加速度,大小 为a。要求出其他所有力的合力大小及方向。
电磁学习题解析
总结词
理解电场、磁场的基本性质,掌 握电磁感应定律等。
详细描述
掌握牛顿运动定律的基本概念,理解力和加速度的关系,能够应用牛顿运动定律解决直线运动和曲线 运动的问题。了解动量守恒定律和角动量守恒定律,掌握它们在碰撞、抛体运动等场景中的应用。
力学基础
总结词
理解万有引力定律和天体运动的基本规 律。
VS
详细描述
掌握万有引力定律的基本概念,理解天体 之间的相互作用力,能够应用万有引力定 律解决天体运动的问题。了解开普勒三定 律,掌握行星、卫星等天体的运动规律。
注重解题方法
在解题时,要掌握多种解题方法,学会灵活运用。同时, 要注意解题的规范性和准确性,培养良好的解题习惯。
持续学习与提高
大学物理是一门不断发展的学科,新的理论和技术不断涌 现。要保持持续学习的态度,关注学科前沿动态,不断提 升自己的学术水平和综合素质。
THANKS FOR WATCHING
感谢您的观看
阻器、电容器、电感器等基本元件的特性和应用。
光学基础
总结词
理解光的干涉、衍射和偏振现象及其在现代光学 技术中的应用。
总结词
理解光电效应和光的量子性在光学技术中的应用 。
详细描述
掌握光的干涉、衍射和偏振的基本原理,理解干 涉条纹的形成和分布,能够应用这些原理解决光 学问题。了解光学仪器的基本原理和应用,如透 镜、棱镜等。

大学物理课后习题及答案(2)

大学物理课后习题及答案(2)

习 题 十 三13-1 求各图中点P 处磁感应强度的大小和方向。

[解] (a) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此aI B πμ401=对于导线2:πθθ==21,因此02=BaIB B B πμ4021p =+= 方向垂直纸面向外。

(b) 因为长直导线对空间任一点产生的磁感应强度为:()210cos cos 4θθπμ-=aIB 对于导线1:01=θ,22πθ=,因此r I a I B πμπμ44001==,方向垂直纸面向内。

对于导线2:21πθ=,πθ=2,因此rI a I B πμπμ44002==,方向垂直纸面向内。

半圆形导线在P 点产生的磁场方向也是垂直纸面向内,大小为半径相同、电流相同的圆形导线在圆心处产生的磁感应强度的一半,即rIr I B 4221003μμ==,方向垂直纸面向内。

所以,rIr I r I r I r I B B B B 4244400000321p μπμμπμπμ+=++=++=(c) P 点到三角形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产生的磁感应强度的方向都是垂直纸面向内,大小都是()aI d IB πμπμ23150cos 30cos 400000=-=故P 点总的磁感应强度大小为aIB B πμ29300== 方向垂直纸面向内。

13-2 有一螺线管长L =20cm ,半径r =2.0cm ,导线中通有强度为I =5.0A 的电流,若在螺线管轴线中点处产生的磁感应强度B =310166-⨯.T 的磁场,问该螺线管每单位长度应多少匝?[解] 已知载流螺线管轴线上场强公式为()120cos cos 2θθμ-=nIB由图知: 10410cos 2=θ,10410cos 1-=θ,所以,⎪⎪⎭⎫ ⎝⎛⨯=10410220nI B μ, 所以,匝=1000101040IBn μ=13-3 若输电线在地面上空25m 处,通以电流31081⨯.A 。

(完整版)大学物理,课后习题,答案

(完整版)大学物理,课后习题,答案

第十七章 振 动1、 一物体作简谐振动,振动方程为 )cos(A x 4t πω+=。

求 4Tt =(T 为周期)时刻物体的加速度。

解:由振动加速度定义得)4 cos(222πωω+-==t A dtx d a代入4Tt =22422)442cos(ωππωA A a T t =+-==求得4Tt =时物体的加速度为222ωA 。

2、 一质点沿x轴作简谐振动,振动方程为)cos(x ππ312t 2104+⨯=-(SI )。

求:从t=0时刻起,到质点位置在x=-2cm 处,且向x轴正方向运动的最短时间间隔?解:用旋转矢量图求解,如图所示t=0时刻,质点的振动状态为:3sin 08.0)3 2sin(204.002.0)30cos(04.0)3 2cos(04.000<-=+⨯-===+=+=ππππππππt dt dx v mt x可见,t=0时质点在cm x 2=处,向x 轴负方向运动。

设t 时刻质点第一次达到cm x 2-=处,且向x 轴正方向运动0>v 。

则:πϕ=∆min5.02min===∆ππωπt (s )3、一物体作简谐振动,其速度最大值sm v m 2103-⨯=,其振幅 m A 2102-⨯=。

若t=0时,物体位于平衡位置且向x轴的负方向运动.求: (1)振动周期T ;(2)加速度的最大值m a ; (3)振动方程的数值式。

解:设物体的振动方程为) cos(ϕω+=t A x则)cos( )sin( 2ϕωωϕωω+-=+-=t A a t A v(1) 由, ωA v m =及sm v m 2103-⨯= 得物体的振动周期:πππωπ341031022 2222=⨯⨯⨯===--m v A T (s ) (2) 加速度最大值:)(105.4102)103(2222222s m A v A a m m ---⨯=⨯⨯===ω (3) 由t=o 时,0 , 0<=v x 得)0sin( 02.00)0cos(02.000<+⨯-==+=ϕωϕv x解之得:2πϕ=质点的振动方程为:)223cos(02.0π+=t x m4、两个物体作同方向、同频率、同振幅的简谐振动。

大学物理课后答案详解

大学物理课后答案详解

大学物理课后答案详解第一章:力学1.1 牛顿定律的三种形式第一种形式:惯性定律牛顿的第一定律,也被称为惯性定律。

它的表述为:一个物体如果没有外力作用,将保持静止或匀速直线运动的状态。

这意味着在没有外力作用时,物体的加速度为零,速度保持不变。

这个定律的重要性在于它说明了运动的惯性特性。

举个例子,当我们在车上紧急刹车时,我们的身体会有向前的惯性,因为车突然减速,而我们的身体仍保持原来的运动状态。

第二种形式:动量定律牛顿的第二定律,也被称为动量定律。

它的表述为:一个物体的加速度正比于作用在它上面的合外力,反比于物体的质量。

通过数学表达式可以得到 F = ma,其中 F表示物体所受合外力的大小,m表示物体的质量,a表示加速度。

这个定律说明了力是一种导致物体加速度变化的物理量。

第三种形式:作用与反作用定律牛顿的第三定律,也被称为作用与反作用定律。

它的表述为:如果物体A对物体B施加了一个力,那么物体B对物体A也会施加一个大小相等、方向相反的力。

这一个定律解释了为什么当我们敲击桌子时,手感到疼痛,因为我们的手会受到桌子的反作用力。

同样地,当我们踢足球时,脚球会受到我们脚的力的影响而向前踢出。

1.2 动力学动力学是力学的一个重要分支,它研究的是物体在受力作用下的运动规律。

其中最常见的运动学参数有位移、速度和加速度。

1.2.1 位移位移是一个矢量量,它表示物体从初始位置到最终位置的改变。

位移的大小等于物体在运动过程中实际移动的距离。

位移的方向由初始位置和最终位置的连线所决定。

1.2.2 速度速度是一个矢量量,它表示物体单位时间内移动的位移。

速度的大小等于单位时间内移动的位移,而速度的方向由位移的方向和时间的方向所决定。

1.2.3 加速度加速度是一个矢量量,它表示单位时间内速度的变化量。

加速度的大小等于单位时间内速度的改变量,而加速度的方向由速度的方向和时间的方向所决定。

1.3 弹力和重力1.3.1 弹力弹力是一种垂直于两个物体接触面的力,它是由于两个物体之间的接触而产生的。

大学物理课后习题答案(全册)

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案习题11-1. 已知质点位矢随时间变化函数形式为)ωtsin ωt(cos j i R r其中为常量.求:(1)质点轨道;(2)速度和速率。

解:1)由)ωtsin ωt(cos j i R r知t cos R x ωtsin R yω消去t 可得轨道方程222Ryx2)jr vt Rcos sin ωωt ωR ωdtd iRωt ωR ωt ωR ωv2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j ir )t 23(t 42,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0t到1t 秒的位移;(3)0t 和1t 秒两时刻的速度。

解:1)由j ir)t 23(t 42可知2t 4x t23y消去t 得轨道方程为:2)3y(x2)jir v 2t 8dtd jij i v r 24)dt2t 8(dt101Δ3)jv 2(0)jiv 28(1)1-3. 已知质点位矢随时间变化的函数形式为j ir t t 22,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:1)ji r v2t 2dtd iv a2dtd 2)212212)1t(2]4)t 2[(v1tt 2dtdv a 2t22221nta aat 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121att v y (1)图 1-420221gttv h y (2)21y y (3)解之2d tg a 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td dr ,td dv ,tv d d .解:(1)t v x 0式(1)2gt21hy 式(2)jir )gt 21-h (t v (t)20(2)联立式(1)、式(2)得22v 2gx hy (3)ji r gt -v td d 0而落地所用时间gh 2t所以j i r 2gh -v t d d 0jv g td d 2202y2x)gt (vvvv 211222222[()](2)g ghg t dv dtvgt vgh 1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。

大学物理(机械工业出版社)上册 课后练习问题详解

大学物理(机械工业出版社)上册 课后练习问题详解

第一章 质点的运动1-1 已知质点的运动方程为:23010t t x +-=,22015t t y -=。

式中x 、y 的单位为m ,t 的单位为s。

试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向。

分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t tyy 4015d d -==v当t =0 时, v o x =-10 m ·s-1, v o y =15 m ·s-1,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==t a xx v , 2s m 40d d -⋅-==ta y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a ββ=-33°41′(或326°19′)1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。

现测得其加速度a =A-B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程。

分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t分离变量为t a d )(d =v v后再两边积分. 解选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题 v vB A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v vv 得石子速度 )1(Bte B A --=v由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度.(2) 再由)1(d d Bt e BAt y --==v 并考虑初始条件有 t e BAy tBt yd )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bte B A t B A y1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即a = - kv 2,k 为常数。

大学物理教程课后练习题含答案

大学物理教程课后练习题含答案

大学物理教程课后练习题含答案前言大学物理是培养学生科学素养的重要课程,也是许多专业必修的基础课程之一。

然而,因为课程内容的抽象性和难度,学生在学习中往往会遇到一些困难,需要反复练习来加深理解、掌握知识和技能,提高成绩。

本文收录了一些经典的大学物理教程课后练习题,希望能够对学生提供一些有益的帮助。

第一章静力学1.1 问题一绳连接两物体,下面物体沿光滑斜面滑动,假设无空气阻力,则:(1)求该物体所受的重力分力;(2)求该物体所受的斜面支持力。

1.2 答案(1)该物体所受的重力分力为 mg*sinθ,其中 m 是物体的质量,g 是重力加速度,θ是斜面倾角。

(2)该物体所受的斜面支持力为 mg*cosθ。

第二章动力学2.1 问题一个弹性碰撞的实验装置弹性碰撞实验装置其中,m1 和 m2 分别是光滑水平面上两个物体的质量,v1 和 v2 分别是它们在碰撞前的速度,v1’ 和v2’ 分别是它们在碰撞后的速度。

假设碰撞前两个物体相对距离为 L,碰撞后 m1 的速度与 x 轴正方向夹角为θ1,m2 的速度与 x 轴正方向夹角为θ2,则:(1)求碰撞前两个物体的总动量和总动能;(2)求碰撞后两个物体的速度和动能。

2.2 答案(1)碰撞前,两个物体的总动量为 m1v1 + m2v2,总动能为 (1/2)m1v1^2 + (1/2)m2v2^2。

(2)碰撞后,两个物体的速度和动能为:v1’ = [(m1-m2)v1+2m2*v2]cosθ1/(m1+m2) +[(m2+m2)v1+2m1*v1]sinθ1/(m1+m2) v2’ = [(m2-m1)v2+2m1*v1]cosθ2/(m1+m2) + [(m1+m1)v2+2m2*v2]sinθ2/(m1+m2)K1’ = (1/2)m1v1’^2, K2’ = (1/2)m2v2’^2第三章热学3.1 问题设一个物体的初温度为 T1,末温度为 T2,它的质量为 m,比热容为 c,求对该物体施加一定的热量 Q 后它的温度变化。

大学物理课后习题答案(高教版 共三册)

大学物理课后习题答案(高教版 共三册)

第九章 真空中的磁场1、一长直流导线,沿空间直角坐标oy 轴放置,电流沿y 正向。

在原点o 处取电流元I d l,则该电流元在(a,0,0)点处的磁感应强度的大小为____, 方向为 。

解:204aIdlπμ k-根据毕-萨定律:=B d 304rr l Id ⨯πμ此处,i a r j Idl l Id==, k a idl ai a j idl B d203044πμπμ-=⨯=∴2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 多少? 解:设圆的半径为R ,则圆的中心处的B 1=μ0I/2R正方形中心的B 2=μ0I ⨯(cos θ1—cos θ2)⨯4/4πR=2μ0I/πR 所以:B 1 /B 2=1.113、将同样的几根导线焊成立方体,并在其对顶角A 、B 上接上电源,则立方体框架中的电流在其中心所产生的磁感应强度等于 。

解: 0立方体框架的十二条棱边形成了六对与O 点共面且对称的截流线段。

由于对称性,每对截流线段在O 点产生的磁感应强度大小相等,方向相反,两两抵消。

因此,立方体框架中的电流在其中心所产生的磁感应强度为零。

4、一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线。

导线中通有电流I ,求图中O 点处的磁感应强度。

解:将导线分成1、2、3、4四部份,各部分在 O 点产生的磁感强度设为B 1、B 2、B 3、B 4.根据 叠加原理O 点的磁感强度为:4321B B B B B+++=∵ 1B、4B 均为0,故 32B B B +=)2(4102RI B μ=方向 ⊗ 242)sin (sin 401203RI aIB π=-π=μββμ)2/(0R I π=μ 方向 ⊗其中 2/R a =, 2/2)4/sin(sin 2=π=β2/2)4/sin(sin 1-=π-=β ∴ RIRIB π+=2800μμ)141(20π+=RI μ 方向 ⊗5、将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB段在D 处的磁感强度)221()]4/([02⋅π=b I B μBC 段在D 处的磁感强度 )221()]4/([03⋅π=b I B μ 1B、2B 、3B 方向相同,可知D 处总的B 为)223(40baI B +ππ=μ6、如图,流出纸面的电流为2I ,流进纸面的电流为I ,请写出每一个线圈中的环路公式。

大学物理刚体力学习题讲解

大学物理刚体力学习题讲解
所以lrt为恒量那么角动量imvrmlrt为恒量简单地说没有外力提供的和力矩所以动量守恒一圆盘正绕垂直于盘面的水平光滑固定轴o转动如图射来两个质量相同速度大小相同方向相反并在一条直线上的子弹子弹射入圆盘并且留在盘内则子弹射入后的瞬间圆盘的角速度70kg652275kgm1r5m如图所示一均匀细杆ab长为l质量为ma端挂在一光滑的固定水平轴上它可以在竖直平面内自由摆动
m ,r
m1
6 解:撤去外加力矩后受力分析如图所示

m1g-T = m1a
Tr=J
a=r a = m1gr / ( m1r + J / r) 代入J =
a
T
P
m1 v 0
m, r1 2 mrFra bibliotek2m1 g a= = 6.32 ms2 1 m1 m 2

v 0-at=0

t=v / a=0.095 s
设m1下降,m2 上升 m1g - T1 m1 a T2 m 2 g m 2 a T1 R T2 R I 1 2 I m3 R 2 a R
2(m1 m2 ) a 联立方程得到 g 2(m1 m2 ) m3 2(m1 m2 ) g [2(m1 m2 ) m3 ]R 4m1m2 m1m3 T1 g 2(m1 m2 ) m3 4m1m2 m2 m3 T2 g 2( m m ) m
①物体状态at=rβ (P-atm)r=Jβ ②拉力情况下Pr=Jβ
挂重物时,mg-T= ma =mRβ, TR =J, P=mg 由此解出
mgR 2 mR J
而用拉力时, mgR = Jβ`
mgR J
/
故有 β`>
3. 三个质量均为m的质点,位于边长为a的等边 三角形的三个顶点上.此系统 对通过三角形中心并垂直于三角形平面的轴的转 动惯量J0=ma2 , 对通过三角形中心且平行于其一边的轴的转动惯 量为JA=1/2ma2, 对通过三角形中心和一个顶点的轴的转动惯量为 JB=1/2ma2 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 磁场对电流的作用1、长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将如何运动?答:在圆形电流上对称取四个电流元,如图,分析四个电流元在长直导线产生的磁场中的受力方向,如图所示,则这四个电流元的合力方向向右,而对电流元积分可知,圆形电流将向右运动。

2、两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为多少?解:大圆线圈圆心处磁场大小RI B 210μ=,方向垂直于环面向内,小线圈磁矩大小222r I S I P m π==,方向垂直于环面向内,与B 的方向相同,故小线圈所受的磁力矩B P M m⨯=,其大小为03、三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值为多少?解:由aI I F πμ2210=,设导线间距离为a ,向右为正方向。

则有:aa a F πμπμπμ474312210001=⨯⨯+⨯⨯=a a a F πμπμπμ242212320002=⨯⨯-⨯⨯=所以:8724470021==aa F F πμπμI 2I 1O r RI 1 I 2 F 1 F 2 F 31 A2 A3 A Ⅰ Ⅱ Ⅲ4、有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场B中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为多少? 解:磁力矩B P M m⨯=,243a NI NIS P m ⨯== 所以:224343NIa B a NI M =⨯⨯=5、如图所示,一半径为R ,通有电流为I 的圆形回路,位于Oxy平面内,圆心为O .一带正电荷为q 的粒子,以速度v沿z 轴向上运动,当带正电荷的粒子恰好通过O 点时,作用于圆形回路上的力为多少?作用在带电粒子上的力为多少?解:粒子以速度v 运动,其产生磁场磁力线为以O 为圆心的同心圆环,磁场方向与电流方向相同,由B l Id F d⨯=,圆形回路上力为0,圆形电流在O 处产生磁场沿z 轴,作用在带电粒子上的力为0。

6、磁场中某点处的磁感强度为)SI (20.040.0j i B-=,一电子以速度j i 66100.11050.0⨯+⨯=v (SI)通过该点,则作用于该电子上的磁场力F 为多少?解:洛伦兹力k k j i B v e B v q F1461910802.04.0015.010106.1--⨯=-⨯⨯⨯-=⨯-=⨯=7、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是多少?,运动轨迹半径之比是多少? 解:qvB f =,磁场力之比212121==q q F Fzq OyxvqBmvR =,故运动轨迹半径之比211241122121=⨯=⨯=q q m m R R8、在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的多少倍?解:由磁力矩B P M m⨯=,则其最大磁力矩为ISB M =若面积和电流均增大一倍,则由上式可知M 将变为原来的4倍。

9、图为四个带电粒子在O 点沿相同方向垂直于磁感应线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是哪一条?答:由洛伦兹力公式B v q f⨯=可知,a 、b 粒子带正电,c 、d 粒子带负电;粒子运动轨道半径qBmvR =,在m 、B 相同的情况下,半径大,速度大,故动能最大的带负电粒子轨道是OC 。

10、有半导体通以电流I ,放在均匀磁场B 中,其上下表面积累电荷如图所示.试判断它们各是什么类型的半导体?解:假设粒子带正电,0>q ,由B v q f⨯=,可判断右图为p 型半导体,而左图与实际情况相反,载流子带负电,为n 型半导体。

11、如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab (电流方向由a 到b )所受磁场的作用力的大小为多少?方向如何?IIB B 是_______型,是_______型xyabO I45°45° BOBba解:在导线上取一电流元l d ,其所对的圆心角为αd ,所受的磁场力为F d,方向沿径向向外,将F d沿x 、y 方向进行分解,则αsin ⋅=dF dF x ,αcos ⋅=dF dF y ,而αIBRd dF = 所以0==⎰x x dF F ,BIR d IBR F x 2cos 4/4/==⎰-ππαα12、如图,均匀磁场中放一均匀带正电荷的圆环,其线电荷密度为λ,圆环可绕通过环心O 与环面垂直的转轴旋转.当圆环以角速度ω 转动时,圆环受到的磁力矩为多少?其方向如何? 解:圆环带电R q πλ2⋅=,当它以角速度ω旋转时,相当于圆电流,电流大小为R R T q I λωωππλ=⋅==/22。

则圆环的磁矩大小为32R R R IS P m πλωπλω=⋅==,方向垂直纸面向外。

而圆环受到的磁力矩B P M m ⨯=,大小为3R B λωπ,方向竖直向上。

13、有一根质量为m ,长为l 的直导线,放在磁感强度为 B 的均匀磁场中B的方向在水平面内,导线中电流方向如图所示,当导线所受磁力与重力平衡时,导线中电流I 为多少? 解:磁力大小IBl F m =,方向向上,当IBl mg =时,电流BlmgI =14、将一个通过电流为I 的闭合回路置于均匀磁场中,回路所围面积的法线方向与磁场方向的夹角为α .若均匀磁场通过此回路的磁通量为Φ,则回路所受力矩的大小为多少? 解:磁通量αcos ⋅=⋅=Φ⎰BS S d B Sm,回路所受的磁力矩大小为αααtan sin sin Φ=⇒==I M ISB B P M m15、有电流强度I =10A 的圆线圈,放在磁感应强度等于0.015T 的匀强磁场中,处于平衡位O Rω λBIB置。

线圈直径d =12cm ,使线圈以它的直径为轴转过角 α =π21时,外力所必需作的功A 1 = ;如果转角α=π2,外力所必需作的功 A 2 = 。

解:)(107.13J -⨯ ; 0(1))(107.1)2()(32112J B d I I I A A B -⨯==Φ=Φ-Φ-=-=π外 (2))(12Φ-'Φ-='I A 外,12Φ='Φ ,0='∴外A16、已知面积相等的载流圆线圈与载流正方形线圈的磁矩之比为2∶1,圆线圈在其中心处产生的磁感强度为B 0,那么正方形线圈(边长为a )在磁感强度为B的均匀外磁场中所受最大磁力矩为多大?解:设圆线圈半径为R ,由ππaR a R =⇒=22,载流圆线圈在其中心产生的磁感应强度0110100222μπμπμaB I aI RI B =⇒==,圆线圈磁矩S I P 11=,正方形线圈磁矩S I P 22=。

由001221212μπaB I I P P ==⇒= 所以正方形线圈在磁感强度为B的均匀外磁场中所受最大磁力矩为0322μπμπBB a B a aB SB I M =⨯==17、在边长分别为a 、b 的N 匝矩形平面线圈中流过电流I ,将线圈置于均匀外磁场B中,当线圈平面的正法向与外磁场方向间的夹角为 120°时,此线圈所受的磁力矩的大小为多少?解:NabBI B b a NI B P M m 23120sin sin =⋅⋅⋅⋅=⋅=α18、导线绕成一边长为15 cm 的正方形线框,共 100匝,当它通有I = 5 A 的电流时,线框的磁矩m P 等于多少?解:2225.1115.05100m A NIS P m ⋅=⨯⨯==19.(2709)在xOy 平面内有一圆心在O 点的圆线圈,通以顺时针绕向的电流I 1另有一无限长直导线与y 轴重合,通以电流I 2,方向向上,如图所示.求此时圆线圈所受的磁力. 解:设圆半径为R ,选一微分元d l ,它所受磁力大小为 B l I F ⋅=d d 1 由于对称性,y 轴方向的合力为零。

∴ θcos d d F F x = θθμθcos cos 2d 201R I R I π= θμd 2210π=I I∴⎰π==π20210d 2θμII F F x 210I I μ=I 1I 2 O y xd ld θ θFd。

相关文档
最新文档