广东省实验中学2017届高一下学期期中考试(数学)
人教版高一下学期期中考试数学试卷及答案解析(共五套)
人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。
人教版数学高三第一章解三角形单元测试精选(含答案)1
(1)求 BC 边长; (2)求 AB 边上中线 CD 的长.
【来源】北京 101 中学 2018-2019 学年下学期高一年级期中考试数学试卷
【答案】(1) 3 2 ;(2) 13 .
33.ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a 3, cos A 6 , B A ,
【答案】C
3.在 ABC 中,若 a b cb c a 3bc ,则 A ( )
A. 90
B. 60
C.135
D.150
【来源】2015-2016 学年江西省金溪一中高一下期中数学试卷(带解析)
【答案】B
4.设在 ABC 中,角 A,B,C 所对的边分别为 a,b, c , 若 b cos C c cos B a sin A ,
【答案】C
21.设 ABC 的内角 A, B,C 所对边的长分别为 a, b, c ,若 b c 2a, 3sin A 5sin B ,
则角 C =( )
A.
3 3
C.
4
2
B.
3 5
D.
6
【来源】2013 年全国普通高等学校招生统一考试文科数学(安徽卷带解析)
【答案】B
22.在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若 a2 b2 c2 tanB 3ac ,
A.3 6
B.9 6
C.3
D.6
【来源】福建省晋江市季延中学 2017-2018 学年高一下学期期末考试数学试题
【答案】A
2.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,且cc−−ba=sinCsi+nAsinB,则 B= (
)
A.π
6
广东省实验中学2017届高一下学期期末考试(数学答案PDF版)
一、选择题: 1.B 2.C 3. C 4.C 5.D 6. C 7. C 8.B 9.A 10.C 二、填空题: 13. 2 三、解答题: 17. (12 分) 14.-3. 15. 11.C 12.D
73
16.
1 —
1 233 x ,......1分 2 2 得x x 6 0 3 x 2,.........3分 解: 2x
m 2
) 2m 1
方法一、 S m 1 1 3 (2m 1) ( m 1) 因为 S m 1 4bm 所以 2 m 1 ( m 1)2 令 dm
2
d m 1 2m 2 2m 1 ,则 1 ,得 m 2,3 dm (m 1) 2 (m 1) 2
故 A B ( 1, 2) .............................10 方程 x ax b 0 的两个根为 1 和 2 ,则 a 1, b 2
2
a b 3 .......................................12 分
2 即 a2 n-an-1-4an-4an-1=0,
也即(an+an-1)(an-an-1-4)=0. ∵an>0,∴an-an-1=4, 即{an}是首项为 2,公差为 4 的等差数列, ∴an=2+(n-1)·4=4n-2. 验证得 n=1 时亦满足。----------------------------7 4 4 1 1 1 - 1 . (3)bn= = = =2 2n-1 2n+1 an·an+1 4n-24n+2 2n-12n+1 1 1 1 1 1 1 - ∴Tn=b1+b2+…+bn=21-3+3-5+…+ 2n-1 2n+1 1 1 1 1 1 = - =21- < . 2n+1 2 4n+2 2 m ∵Tn<20 对所有 n∈N*都成立, m 1 ∴20≥2,即 m≥10,故 m 的最小值是 10.......................................12
2020-2021学年广东省实验中学高一(下)期中数学试卷
2020-2021学年广东省实验中学高一(下)期中数学试卷试题数:22,总分:1501.(单选题,5分)设复数z满足z•(1+i)=2(i为虚数单位),则|z|=()A.1B. √2C.2D.32.(单选题,5分)已知向量a⃗=(3,4),b⃗⃗=(1−λ,2+λ),且a⃗⊥b⃗⃗,则λ=()A.-11B.-2C. 117D. −273.(单选题,5分)如图,平行四边形O'A'B'C'是水平放置的一个平面图形的直观图,其中O'A'=5,O'C'=2,∠A'O'C'=30°,则原图形的面积是()A.4B. 4√2C. 10√2D.64.(单选题,5分)如图,长方体ABCD-A1B1C1D1的棱所在直线与直线BA1为异面直线的条数是()A.4B.5C.6D.75.(单选题,5分)下列四个命题中正确的是()A.底面是多边形,其余各面是三角形的几何体是棱锥B.两两相交的三条直线必在同一平面内C.在空间中,四边相等的四边形是菱形D.不存在所有棱长都相等的正六棱锥6.(单选题,5分)已知P,Q是不同的点,l,m,n是不同的直线,α,β是不同的平面,则下列数学符号表示的不是基本事实(公理)的选项为()A.P∈l,Q∈l,P∈α,Q∈α⇒l⊂αB.P∈α,P∈β⇒存在唯一直线l,α∩β=l,且P∈lC.l || m,m || n⇒l || nD.m || n⇒确定一个平面γ且m⊂γ,n⊂γ7.(单选题,5分)已知三棱锥A-BCD中,CD=√2,BC=AC=BD=AD=1,则此几何体外接球的体积为()A.2πB. √2π3C. √2π6D.π⃗⃗⃗⃗⃗⃗•8.(单选题,5分)在△OAB中,OA=OB=2,AB=2√3,动点P位于直线OA上,当PA⃗⃗⃗⃗⃗⃗取得最小值时,∠PBA的正弦值为()PBA. 3√77B. 2√77C. √2114D. √2139.(多选题,5分)设z为复数,则下列命题中正确的是()A. |z|2=z•zB.z2=|z|2C.若|z|=1,则|z+i|的最小值为0D.若|z-1|=1,则0≤|z|≤210.(多选题,5分)如图,直角梯形ABCD中AB=2,CD=4,AD=2.则下列说法正确的是()A.以AD 所在直线为旋转轴,将此梯形旋转一周,所得旋转体的侧面积为 16√2πB.以CD 所在直线为旋转轴,将此梯形旋转一周,所得旋转体的体积为 32π3C.以AB 所在直线为旋转轴,将此梯形旋转一周,所得旋转体的全面积为 20π+4√2πD.以BC 所在直线为旋转轴,将此梯形旋转一周,所得旋转体的体积为 28√2π311.(多选题,5分)如图一个正四面体和一个正四棱锥的所有棱长都相等,将正四面体的一个面和正四棱锥的一个侧面紧贴重合在一起,得到一个新几何体.对于该几何体,则( )A.AF || CDB.2V 三棱锥F-ABC =V 四棱锥A-BCDEC.新几何体有7个面D.新几何体的六个顶点在同一个球面上12.(多选题,5分)在棱长为 3+√3 的正方体ABCD-A 1B 1C 1D 1中,球O 1同时与以B 为公共顶点的三个面相切,球O 2同时与以D 1为公共顶点的三个面相切,且两球相切于点E ,若球O 1,O 2的半径分别为r 1,r 2,则( )A.O 2,O 1,B ,D 1四点不共线B.r 1+r 2=3C.这两个球的体积之和的最小值是9πD.这两个球的表面积之和的最大值是18π13.(填空题,5分)设A={正方体},B={直平行六面体},C={正四棱柱},D={长方体},那么上述四个集合间正确的包含关系是___14.(填空题,5分)向量 a ⃗=(2,1) 在向量 b⃗⃗=(3,4) 方向上的投影向量的坐标为 ___ . 15.(填空题,5分)如图,在△ABC 中, BD ⃗⃗⃗⃗⃗⃗⃗=13BC ⃗⃗⃗⃗⃗⃗ ,点E 在线段AD 上移动(不含端点),若 AE ⃗⃗⃗⃗⃗⃗ =λ AB⃗⃗⃗⃗⃗⃗ +μ AC ⃗⃗⃗⃗⃗⃗ ,则 λμ =___ ,λ2-2μ的最小值是___ .16.(填空题,5分)正方体ABCD-A 1B 1C 1D 1为棱长为2,动点P ,Q分别在棱BC ,CC 1上,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,设BP=x ,CQ=y ,其中x ,y∈[0,2],下列命题正确的是___ .(写出所有正确命题的编号)① 当x=0时,S 为矩形,其面积最大为4;② 当x=y=1时,S的面积为92;③ 当x=1,y∈(1,2)时,设S与棱C1D1的交点为R,则RD1=4−4y;④ 当y=2时,以B1为顶点,S为底面的棱锥的体积为定值83.17.(问答题,10分)已知向量a⃗与b⃗⃗的夹角θ=2π3,且|a⃗ |=3,| b⃗⃗ |=2.(1)求a⃗•b⃗⃗,| a⃗ + b⃗⃗ |;(2)求向量a⃗与a⃗ + b⃗⃗的夹角的余弦值.18.(问答题,12分)(1)在△ABC中,a=1,b=2,cosC= 14,求cosA.(2)在△ABC中,已知a= 5√2,c=10,A=30°,求角B;19.(问答题,12分)已知棱长为1的正方体AC1,H、I、J、K、E、F分别相应棱的中点如图所示.(1)求证:H、I、J、K、E、F六点共面;(2)求证:BE、DF、CC1三线共点;(3)求几何体B1BE-D1DF的体积.20.(问答题,12分)已知正方体ABCD-A1B1C1D1中,P、Q分别为对角线BD、CD1上的点,且CQQD1 = BPPD= 23.(1)求证:PQ || 平面A1D1DA;(2)若R是CD上的点,当CRCD的值为多少时,能使平面PQR || 平面B1C1CB?请给出证明.21.(问答题,12分)若函数f(x)= √3 sinx+2cos2x,△ABC的角A,B,C的对边分别为a,2b,c,且f(A)=3.取最大值时,判断△ABC的形状;(1)当b+ca(2)在△ABC中,D为BC边的中点,且AD= √13,AC=2,求BC的长.22.(问答题,12分)已知向量m⃗⃗⃗=(cos2x+2√3sinx,1),n⃗⃗=(2,−a).(1)当a=0时,令f(x)=m⃗⃗⃗•n⃗⃗,求f(x)的最值;)上有6个不等的实根,求a的取值范围;(2)若关于x方程m⃗⃗⃗•n⃗⃗=0在x∈(0,5π2,求a的值.(3)当m⃗⃗⃗•n⃗⃗≥0对x∈[x1,x2]恒成立时,x2-x1的最大值为5π32020-2021学年广东省实验中学高一(下)期中数学试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)设复数z满足z•(1+i)=2(i为虚数单位),则|z|=()A.1B. √2C.2D.3【正确答案】:B【解析】:先对复数进行化简,然后结合复数的模长公式可求.【解答】:解:由题意得z= 21+i = 2(1−i)(1+i)(1−i)=1-i,则|z|= √2.故选:B.【点评】:本题主要考查了复数的四则运算及复数的几何意义,属于基础题.2.(单选题,5分)已知向量a⃗=(3,4),b⃗⃗=(1−λ,2+λ),且a⃗⊥b⃗⃗,则λ=()A.-11B.-2C. 117D. −27【正确答案】:A【解析】:利用向量垂直的性质列方程,能求出λ.【解答】:解:∵向量a⃗=(3,4),b⃗⃗=(1−λ,2+λ),且a⃗⊥b⃗⃗,∴ a⃗•b⃗⃗ =3(1-λ)+4(2+λ)=0,解得λ=-11.故选:A.【点评】:本题考查实数值的求法,考查向量垂直的性质等基础知识,考查运算求解能力等数学核心素养,是基础题.3.(单选题,5分)如图,平行四边形O'A'B'C'是水平放置的一个平面图形的直观图,其中O'A'=5,O'C'=2,∠A'O'C'=30°,则原图形的面积是()A.4B. 4√2C. 10√2D.6【正确答案】:C【解析】:求出直观图的面积,再根据原平面图形的面积与直观图的面积比为2 √2:1,计算即可.【解答】:解:平行四边形O'A'B'C'中,O'A'=5,O'C'=2,∠A'O'C'=30°,=5,所以平行四边形O′A′B′C′的面积为S′=O′A′•O′C′•sin30°=5×2× 12所以原平面图形的面积是S=2 √2S′=2 √2 ×5=10 √2.故选:C.【点评】:本题考查了平面图形的直观图与原图形的面积比为1:2 √2的应用问题,是基础题.4.(单选题,5分)如图,长方体ABCD-A1B1C1D1的棱所在直线与直线BA1为异面直线的条数是()A.4B.5C.6D.7【正确答案】:C【解析】:直接利用异面直线的定义对正方体的棱逐一判断,得到与直线BA1异面的直线,即可得到答案.【解答】:解:根据异面直线的定义可得,与直线BA1为异面直线的棱有:AD,B1C1,CD,C1D1,CC1,DD1,共6条.故选:C.【点评】:本题考查了异面直线的判断,涉及了正方体几何性质的应用,解题的关键是掌握异面直线的定义,属于基础题.5.(单选题,5分)下列四个命题中正确的是()A.底面是多边形,其余各面是三角形的几何体是棱锥B.两两相交的三条直线必在同一平面内C.在空间中,四边相等的四边形是菱形D.不存在所有棱长都相等的正六棱锥【正确答案】:D【解析】:直接利用几何图形的定义和性质判断A、B、C、D的结论.【解答】:解:对于A:底面是多边形,其余各面是三角形的几何体是棱锥与锥体的定义矛盾,故A错误;对于B:两两相交的三条直线且不相交于同一点的直线必在同一平面内,故B错误;对于C:在空间中,四边相等的四边形沿一条对角线折叠,构成四面体,故C错误;对于D:不存在所有棱长都相等的正六棱锥,由于六个等边三角形正好360°,构成一个周角,故正确;故选:D.【点评】:本题考查的知识要点:几何图形的定义和性质,主要考查学生对基础知识的理解,属于基础题.6.(单选题,5分)已知P,Q是不同的点,l,m,n是不同的直线,α,β是不同的平面,则下列数学符号表示的不是基本事实(公理)的选项为()A.P∈l,Q∈l,P∈α,Q∈α⇒l⊂αB.P∈α,P∈β⇒存在唯一直线l,α∩β=l,且P∈lC.l || m,m || n⇒l || nD.m || n⇒确定一个平面γ且m⊂γ,n⊂γ【正确答案】:D【解析】:公理是不能被证明但确实是正确的结论,是客观规律,依据公理的定义,依次求解.【解答】:解:由公理一可知:如果一条直线上的两点在一个平面内,那么这条直线在此平面内,故A选项为公理,由公理三可知:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故B选项是公理,由平行公理得:平行于同一条直线的两条直线互相平行,故C选项是公理,不同的两直线平行,确定一个平面,且两直线在平面内,为判定定理,非公理,故D选项错误.故选:D.【点评】:本题考查了对公理的判断,需要学生熟练掌握公理的定义,属于基础题.7.(单选题,5分)已知三棱锥A-BCD中,CD=√2,BC=AC=BD=AD=1,则此几何体外接球的体积为()A.2πB. √2π3C. √2π6D.π【正确答案】:B【解析】:由已知结合勾股定理证明AC⊥AD,BC⊥BD,取CD中点O,则O为该几何体外接球的球心,求出半径,代入球的体积公式求解.【解答】:解:如图,由CD=√2,BC=AC=BD=AD=1,可得AC2+AD2=CD2,BC2+BD2=CD2,则AC⊥AD,BC⊥BD,取CD中点O,则OA=OC=OD=OB,∴O为该几何体外接球的球心,则半径为12CD=√22.∴此几何体外接球的体积为43π × (√22)3= √2π3.故选:B .【点评】:本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,考查运算求解能力,是基础题.8.(单选题,5分)在△OAB 中,OA=OB=2, AB =2√3 ,动点P 位于直线OA 上,当 PA⃗⃗⃗⃗⃗⃗•PB ⃗⃗⃗⃗⃗⃗ 取得最小值时,∠PBA 的正弦值为( )A.3√77 B. 2√77C. √2114D. √213 【正确答案】:C【解析】:建立平面直角坐标系,写出坐标表示出 PA⃗⃗⃗⃗⃗⃗ • PB ⃗⃗⃗⃗⃗⃗ ,利用二次函数求出有最小值时P 的坐标,再利用向量的夹角公式即可求出.【解答】:解:建立如图平面直角坐标系,则A (- √3 ,0),B ( √3 ,0),O (0,1),设P (x ,y ), 直线AO 的方程为y= √33 x+1,∵ PA⃗⃗⃗⃗⃗⃗ • PB ⃗⃗⃗⃗⃗⃗ =(- √3 -x ,-y )•( √3 -x ,-y )=x 2+y 2-3 =x 2+ (√33x +1)2 -3= 43 x 2+ 2√33 x-2= 43 (x +√34)2 - 94 , ∴当x=- √34 时, PA ⃗⃗⃗⃗⃗⃗ • PB ⃗⃗⃗⃗⃗⃗ 有最小值,此时P (- √34 , 34), ∴ BP ⃗⃗⃗⃗⃗⃗ =(- 5√34 , 34), BA ⃗⃗⃗⃗⃗⃗ =(-2 √3 ,0), ∴cos∠PBA= BP ⃗⃗⃗⃗⃗⃗•BA ⃗⃗⃗⃗⃗⃗|BP ⃗⃗⃗⃗⃗⃗|•|BA ⃗⃗⃗⃗⃗⃗| = 1522√3•√8416 = 5√714 , ∵∠PBA∈(0,π),∴sin∠PBA= √1−2528 = √2114 .故选:C.【点评】:本题考查向量的数量积、夹角公式等知识,考查运算求解能力,属于中档题.9.(多选题,5分)设z为复数,则下列命题中正确的是()A. |z|2=z•zB.z2=|z|2C.若|z|=1,则|z+i|的最小值为0D.若|z-1|=1,则0≤|z|≤2【正确答案】:ACD【解析】:直接利用复数的运算,复数的模,共轭,圆的方程,圆与圆的位置关系的应用判断A、B、C、D的结论.【解答】:解:由于z为复数,设z=a+bi(a,b∈R),对于A:|z|2=a2+b2= z•z,故A正确;对于B:z2=(a+bi)2=a2+2abi-b2,|z|2=a2+b2,故B错误;对于C:由于a2+b2=1,所以|z+i|=√a2+(b+1)2∈[0,2],故C正确;对于D:若|z-1|=1,即(a-1)2+b2=1,所以0=1−1≤√(a−0)2+(b−0)2≤1+1=2,故D正确;故选:ACD.【点评】:本题考查的知识要点:复数的运算,复数的模,共轭,圆的方程,圆与圆的位置关系,主要考查学生的运算能力和数学思维能力,属于基础题.10.(多选题,5分)如图,直角梯形ABCD中AB=2,CD=4,AD=2.则下列说法正确的是()A.以AD所在直线为旋转轴,将此梯形旋转一周,所得旋转体的侧面积为16√2πB.以CD所在直线为旋转轴,将此梯形旋转一周,所得旋转体的体积为32π3C.以AB所在直线为旋转轴,将此梯形旋转一周,所得旋转体的全面积为20π+4√2πD.以BC所在直线为旋转轴,将此梯形旋转一周,所得旋转体的体积为28√2π3【正确答案】:CD【解析】:旋直接利用切割法的应用分别利用体积和表面积公式的应用的应用求出圆锥和圆台的体积和表面积.【解答】:解:直角梯形ABCD中AB=2,CD=4,AD=2.则对于A:S侧=π(2+4)×2√2=12√2π,故A错误;对于B:V= V圆柱−V圆锥=π•22•4−13×π•22•2 = 40π3,故B正确;对于C:以AB所在直线为旋转轴,将此梯形旋转一周,所得旋转体的全面积为相当于一个圆柱挖去一个圆锥,如图所示:构成的表面积为4π+2•π•2•4+π•2√2•2 == 20π+4√2π,故C正确;对于D:以BC所在直线为旋转轴,将此梯形旋转一周,相当于一个圆锥的体积和一个圆台的体积的和切去一个小圆锥的体积,如图所示:即:13•π•(2√2)2•2√2+13•[π•(√2)2+√π(√2)2•π•(2√2)2+π•(2√2)2]×√2−13•π•(√2)2•√2=28√2π3.故D正确;故选:CD.【点评】:本题考查的知识要点:旋转体的体积公式,切割法,圆锥和圆台的体积公式,主要考查学生的运算能力和数学思维能力,属于中档题.11.(多选题,5分)如图一个正四面体和一个正四棱锥的所有棱长都相等,将正四面体的一个面和正四棱锥的一个侧面紧贴重合在一起,得到一个新几何体.对于该几何体,则()A.AF || CDB.2V三棱锥F-ABC=V四棱锥A-BCDEC.新几何体有7个面D.新几何体的六个顶点在同一个球面上【正确答案】:AB【解析】:根据空间直线和平面位置关系分别进行判断即可.【解答】:解:取BC的中点G,DE的中点H,连接FG,AH,GH,则FG⊥BC,BC⊥GH,AH⊥DE,则BC⊥平面FGH,DE⊥平面AGH,∵BC || DE,∴平面FGH与平面AGH重合,即AHGF为平面四边形,∵AF=CD=GH,∴四边形AHGF为平行四边形,∴AF || CD,故A正确,由于BE || CD,∴BE || 平面ADCF,∵V四棱锥A-BCDE=2V四棱锥A-BCD=2V四棱锥B-ACD,V四棱锥B-ACD=V四棱锥B-ACF=V三棱锥F-ABC,∴2V三棱锥F-ABC=V四棱锥A-BCDE,故B正确,由于平面ACF与平面ACD重合,平面ABF与平面ABE重合,∴该几何体有5个面,故C错误,由于该几何体为斜三棱柱,故不存在外接球,故D错误,故选:AB.【点评】:本题主要考查与空间立体几何有个的命题的真假判断,涉及空间直线位置关系,空间体积的判断,涉及知识点较多,综合性较强,属于中档题.12.(多选题,5分)在棱长为3+√3的正方体ABCD-A1B1C1D1中,球O1同时与以B为公共顶点的三个面相切,球O2同时与以D1为公共顶点的三个面相切,且两球相切于点E,若球O1,O2的半径分别为r1,r2,则()A.O2,O1,B,D1四点不共线B.r1+r2=3C.这两个球的体积之和的最小值是9πD.这两个球的表面积之和的最大值是18π【正确答案】:BC【解析】:由球与正方体的对称性判断A;画出过正方体对角面的截面图,由对角线长度相等求得r1+r2判断B;写出两球的体积与表面积之和,利用基本不等式求最值判断C与D.【解答】:解:由对称性作过正方体对角面的截面图如下,可得O2,O1,B,D1四点共线,故A错误;由题意可得O1B=√3r1,O2D1=√3r2,则(√3+1)r1+(√3+1)r2=BD1= √3 ×(3+ √3),从而r1+r2=3,故B正确;这两个球的体积之和为:43π(r13+r23)= 43π(r1+r2)(r12−r1r2+r22),∵r1+r2=3,∴(r1+r2)(r12−r1r2+r22)=3(9-3r1r2)≥3[9-3× (r1+r22)2]= 274,即43π(r13+r23)≥9π,当且仅当r1=r2= 32时等号成立,故C正确;这两个球的表面积之和S=4π(r12+r22)≥4π• (r1+r2)22=18π,当且仅当r1=r2= 32时等号成立,故D错误故选:BC.【点评】:本题主要考查了正方体的结构及其特征,球的表面积及体积公式,考查了空间想象能力与计算能力,属于中档题.13.(填空题,5分)设A={正方体},B={直平行六面体},C={正四棱柱},D={长方体},那么上述四个集合间正确的包含关系是___【正确答案】:[1]A⊆C⊆D⊆B.【解析】:根据正方体、直平行六面体、正四棱柱、长方体的定义以及结构特征进行分析判断即可.【解答】:解:在这4种图象中,包含元素最多的是直平行六面体,其次是长方体,最小的是正方体,其次是正四棱柱,故A⊆C⊆D⊆B.故答案为:A⊆C⊆D⊆B.【点评】:本题考查了四棱柱的结构特征的理解和应用,同时考查了集合之间关系的判断及应用,属于基础题.14.(填空题,5分)向量a⃗=(2,1)在向量b⃗⃗=(3,4)方向上的投影向量的坐标为 ___ .【正确答案】:[1](65,85)【解析】:求出向量a⃗,b⃗⃗的数量积和向量b的模,再由向量a⃗在向量b⃗⃗方向上的投影为a⃗⃗•b⃗⃗|b⃗⃗|,设向量a⃗在向量b⃗⃗方向上的投影向量m⃗⃗⃗ =(x,y),x>0,y>0,由m⃗⃗⃗与b⃗⃗共线,可得y=4x3,又x2+y2=22,解得x,y的值,即可得解.【解答】:解:因为a⃗=(2,1),b⃗⃗=(3,4),则 a⃗⃗⃗⃗• b⃗⃗ =2×3+1×4=10,| b⃗⃗ |= √32+42 =5,则向量a⃗在向量b⃗⃗方向上的投影为a⃗⃗•b⃗⃗|b⃗⃗| = 105=2,设向量a⃗在向量b⃗⃗方向上的投影向量m⃗⃗⃗ =(x,y),x>0,y>0,由于m⃗⃗⃗与b⃗⃗共线,可得 x3=y4,即y= 4x3,又x2+y2=22,解得x= 65,y= 85,所以向量a⃗=(2,1)在向量b⃗⃗=(3,4)方向上的投影向量的坐标为(65,85).故答案为:( 65 , 85 ).【点评】:本题考查平面向量的数量积的坐标表示和向量的模的公式,考查向量的投影定义,考查运算能力,属于中档题.15.(填空题,5分)如图,在△ABC 中, BD ⃗⃗⃗⃗⃗⃗⃗=13BC ⃗⃗⃗⃗⃗⃗ ,点E 在线段AD 上移动(不含端点),若 AE ⃗⃗⃗⃗⃗⃗ =λ AB ⃗⃗⃗⃗⃗⃗ +μ AC ⃗⃗⃗⃗⃗⃗ ,则 λμ =___ ,λ2-2μ的最小值是___ .【正确答案】:[1]2; [2] −14【解析】:由已知结合向量的线性表示及共线定理可以 AB ⃗⃗⃗⃗⃗⃗ , AC⃗⃗⃗⃗⃗⃗ 表示 AE ⃗⃗⃗⃗⃗⃗ ,然后结合平面向量基本定理可求 λμ,结合二次函数的性质可求λ2-2μ的最小值.【解答】:解:因为 BD⃗⃗⃗⃗⃗⃗⃗=13BC ⃗⃗⃗⃗⃗⃗ , 所以 AD ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗ = 13 ( AC ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗ ),所以 AD ⃗⃗⃗⃗⃗⃗ = 13AC ⃗⃗⃗⃗⃗⃗+23AB ⃗⃗⃗⃗⃗⃗ , 因为E 在线段AD 上移动(不含端点), 所以 AE ⃗⃗⃗⃗⃗⃗ = xAD ⃗⃗⃗⃗⃗⃗ = x3AC ⃗⃗⃗⃗⃗⃗+2x3AB ⃗⃗⃗⃗⃗⃗ ,(0<x <1), 所以λ= 2x3 ,μ= x3 , λμ =2, λ2-2μ=4x 29−2x 3, 根据二次函数的性质知,当x= 34时取得最小值- 14. 故答案为:2,- 14 .【点评】:本题主要考查了向量的线性表示及平面向量基本定理,还考查了二次函数性质的应用,属于中档题.16.(填空题,5分)正方体ABCD-A 1B 1C 1D 1为棱长为2,动点P ,Q 分别在棱BC ,CC 1上,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,设BP=x ,CQ=y ,其中x ,y∈[0,2],下列命题正确的是___ .(写出所有正确命题的编号) ① 当x=0时,S 为矩形,其面积最大为4; ② 当x=y=1时,S 的面积为 92 ;③ 当x=1,y∈(1,2)时,设S与棱C1D1的交点为R,则RD1=4−4y;④ 当y=2时,以B1为顶点,S为底面的棱锥的体积为定值83.【正确答案】:[1] ② ③ ④【解析】:由题意可知当x,y变化时,S为不同的图形,故可根据题意逐一判断即可.【解答】:解:当x=0时,点P与点B重合,∴AB⊥PQ,此时S为矩形,当点Q与点C1重合时,S的面积最大,S= 2×2√2 = 4√2.故① 错误;当x=1,y=1时,PQ为△BCC1的中位线,PQ || BC1,∵BC1 || AD1,∴AD1 || PQ,∴S为等腰梯形APQD1,过P作PE⊥AD1于E,PQ= √2,AD1=2 √2,∴ AE=√22,AP= √5,∴ PE=3√22,∴S梯形APQD1=12×3√2×3√22= 92,故② 正确;由图可设S与DD1交于点F,可得D1F || CC1,△C1QR∽△D1FR,C1RD1R =C1QFD1∵CQ=y,则C1Q=2-y,∴ RD1=4−4y,故③ 正确;当y=2时,以B1为定点,S为底面的棱锥为B1-APC1H,V B1−APC1H =2V P−B1C1H=2×13×12×2 × 2×2=83,故④ 正确;故答案为:② ③ ④ .【点评】:本题考查了立体几何的截面面积的相关知识点,以及棱锥体积公式.17.(问答题,10分)已知向量a⃗与b⃗⃗的夹角θ=2π3,且| a⃗ |=3,| b⃗⃗ |=2.(1)求a⃗•b⃗⃗,| a⃗ + b⃗⃗ |;(2)求向量a⃗与a⃗ + b⃗⃗的夹角的余弦值.【正确答案】:【解析】:(1)由已知结合向量数量积的定义及性质即可直接求解; (2)结合向量夹角公式即可直接求解.【解答】:解:(1) a ⃗•b ⃗⃗ =| a ⃗ || b ⃗⃗ |cos 2π3 =3× 2×(−12) =-3, | a ⃗+b ⃗⃗ |= √(a ⃗+b ⃗⃗)2= √a ⃗2+b ⃗⃗2+2a ⃗•b ⃗⃗ = √9+4−6 = √7 , (2)设向量 a ⃗ 与 a ⃗ + b ⃗⃗ 的夹角θ, 则cosθ= a ⃗⃗•(a ⃗⃗+b ⃗⃗)|a ⃗⃗||a ⃗⃗+b⃗⃗| = 3×√7 = 2√77 .【点评】:本题主要考查了向量数量的性质的综合应用,属于基础试题. 18.(问答题,12分)(1)在△ABC 中,a=1,b=2,cosC= 14,求cosA . (2)在△ABC 中,已知a= 5√2 ,c=10,A=30°,求角B ;【正确答案】:【解析】:(1)由已知结合余弦定理可求c ,然后结合余弦定理可求; (2)由正弦定理可求sinC ,进而求出C ,结合三角形内角和求出B .【解答】:解:(1)由余弦定理得c 2=a 2+b 2-2abcosC=1+4-2× 1×2×14 =4, 解得c=2, 再由余弦定理得cosA= b 2+c 2−a 22bc = 4+4−12×2×2 = 78 ;(2)由正弦定理得 asinA =csinC , 所以sinC= 10×125√2= √22 , 因为C 为三角形内角, 所以C=45°或C=135°, 当C=45°时,B=105°,C=135°时,B=15°.【点评】:本题主要考查了正弦定理,余弦定理在求解三角形中的应用,属于中档题.19.(问答题,12分)已知棱长为1的正方体AC1,H、I、J、K、E、F分别相应棱的中点如图所示.(1)求证:H、I、J、K、E、F六点共面;(2)求证:BE、DF、CC1三线共点;(3)求几何体B1BE-D1DF的体积.【正确答案】:【解析】:(1)连接C1D,AB1,推导出FJ || KH,设两线确定的平面为α,则点F,J,K,H∈α,在平面ADD1A1内延长JI交直线A1A于P点,推导出AP=DJ=12AA1,在平面ABB1A1内延长KH交直线A1A与Q点,推导出AQ=12AA1,由此能证明H、I、J、K、E、F 共面.(2)设BE∩DF=O,则O∈平面DC1,O∈平面BC1,由此能证明BE、DF、CC1三线共点;(3)由S△C1EF =18,S△CBD=12,求出V棱台C1EF−CBD=13(S△C1EF+S△CBD+√S△C1EF⋅S△CBD)⋅|CC1|=724,由此能求出几何体B1BE-D1DF的体积.【解答】:(1)证明:连接C1D,AB1,由已知FJ || C1D,KH || AB1,又C1D || AB1,∴FJ || KH,设两线确定的平面为α,即点F,J,K,H∈α,在平面ADD1A1内延长JI交直线A1A于P点,由△API与△DJI全等,可得AP=DJ=12AA1,在平面ABB1A1内延长KH交直线A1A与Q点,同理可得AQ=12AA1,∴P,Q重合,∴P∈α,∴I∈α同理可证E∈α,综上H、I、J、K、E、F共面.(2)证明:设BE∩DF=O,则O∈平面DC1,O∈平面BC1,∵平面DC1∩平面BC1=CC1,∴O∈CC1,∴BE、DF、CC1三线共点;(3)解:∵ S△C1EF =18,S△CBD=12,∴ V棱台C1EF−CBD =13(S△C1EF+S△CBD+√S△C1EF⋅S△CBD)⋅|CC1|=13×(18+12+14)=724,∴ V几何体B1BE−D1DF =12−724=524.【点评】:本题考查六点共面、三线共点的证明,考查几何体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力、推理论证能力等数学核心素养,是中档题.20.(问答题,12分)已知正方体ABCD-A1B1C1D1中,P、Q分别为对角线BD、CD1上的点,且CQQD1 = BPPD= 23.(1)求证:PQ || 平面A1D1DA;(2)若R是CD上的点,当CRCD的值为多少时,能使平面PQR ||平面B1C1CB?请给出证明.【正确答案】:【解析】:(1)连接CP,并延长与DA的延长线交于M点,由三角形的相似和线面平行的判定定理,即可得证;(2)当CRCD =25时,能使平面PQR || 平面B l C l BC.由平行线的判定和性质,以及线面平行和面面平行的判定定理,即可得到结论.【解答】:(1)证明:连接CP,并延长与DA的延长线交于M点,因为四边形ABCD为正方形,所以BC || AD,故△PBC∽△PDM,所以CPPM =BPPD=23,又因为CQQD1=BPPD=23,所以CQQD1=CPPM=23,所以PQ || MD1.又MD1⊂平面A1D1DA,PQ⊄平面A1D1DA,故PQ || 平面A1D1DA.(2)当CRCD =25时,能使平面PQR || 平面B l C l CB.证明:因为CRCD =25,即有CRRD=23,故CQQD1=CRRD=23,所以QR || DD1.又∵DD1 || CC1,∴QR || CC1,又CC1⊂平面B l C l CB,QR⊄平面B l C l CB,所以QR || 平面B l C l CB,由CRRD =23=BPPD,得PR || BC,BC⊂平面B l C l CB,PR⊄平面B l C l CB,所以PR || 平面B l C l CB,又PR∩RQ=R,所以平面PQR || 平面B l C l CB.【点评】:本题考查线面平行和面面平行的判定定理,以及平行线的性质和三角形相似的性质,考查转化思想和运算能力,属于中档题.21.(问答题,12分)若函数f(x)= √3 sinx+2cos2x2,△A BC的角A,B,C的对边分别为a,b,c,且f(A)=3.(1)当b+ca取最大值时,判断△ABC的形状;(2)在△ABC中,D为BC边的中点,且AD= √13,AC=2,求BC的长.【正确答案】:【解析】:利用三角恒等变换化简f(x),由f(A)=3,可求得A的大小,(1)利用正弦定理以及三角恒等变换可求得b+ca取最大值时B的大小,即可求解△ABC的形状;(2)取AB边的中点E,连接DE,在△ADE中,利用余弦定理可求解AE,从而可得AB,在△ABC中,利用余弦定理即可求解BC.【解答】:解:因为f(x)= √3 sinx+2cos2x2 = √3 sinx+cosx+1=2sin(x+ π6)+1,所以f(A)=2sin(A+ π6)+1=3,即sin(A+ π6)=1,因为0<A<π,所以π6<A+ π6<7π6,所以A+ π6= π2,A= π3.(1)由正弦定理可得b+ca = sinB+sinCsinA= sinB+sin(2π3−B)√32=2sin(B+ π6),因为0<B<2π3,所以π6<B+ π6<5π6,所以当B= π3时,b+ca取得最大值,此时C= π3,所以A=B=C,所以△ABC是等边三角形.(2)解:取AB边的中点E,连接DE,则DE || AC,且DE= 12 AC=1,∠AED= 2π3,在△ADE中,由余弦定理得AD2=AE2+DE2-2AE•DE•cos 2π3=13,解得AE=3,AB=6,在△ABC中,由余弦定理可得BC2=AB2+AC2-2AB•AC•cosA=36+4-2×6×2× 12=28,所以BC=2 √7.【点评】:本题主要考查三角恒等变换,正、余弦定理在解三角形中的应用,考查转化思想与运算求解能力,属于中档题.22.(问答题,12分)已知向量m⃗⃗⃗=(cos2x+2√3sinx,1),n⃗⃗=(2,−a).(1)当a=0时,令f(x)=m⃗⃗⃗•n⃗⃗,求f(x)的最值;(2)若关于x方程m⃗⃗⃗•n⃗⃗=0在x∈(0,5π2)上有6个不等的实根,求a的取值范围;(3)当m⃗⃗⃗•n⃗⃗≥0对x∈[x1,x2]恒成立时,x2-x1的最大值为5π3,求a的值.【正确答案】:【解析】:(1)利用向量的数量积以及两角和与差的三角函数,转化求解幂函数的最值即可.(2)由 m ⃗⃗⃗⋅n ⃗⃗=0 , −4sin 2x +4√3sinx +2−a =0 令t=sinx , ℎ(t )=−4t 2+4√3t +2−a 结合函数的零点,转化求解a 的范围即可.(3)通过 m ⃗⃗⃗⋅n ⃗⃗≥0 ,推出 √3−√5−a ≤2sinx ≤√3+√5−a ,然后分类讨论推出a 的范围,转化求解即可.【解答】:解:(1)∵a=0, f (x )=m ⃗⃗⃗⋅n ⃗⃗=2cos2x +4√3sinx =2(1−2sin 2x )+4√3sinx =−4(sinx −√32)2 +5, 又|sinx|≤1,∴当sinx=-1时, f (x )min =−2−4√3 ;当 sinx =√32 时,f (x )max =5. (2)由 m ⃗⃗⃗⋅n ⃗⃗=0 , −4sin 2x +4√3sinx +2−a =0令t=sinx , ℎ(t )=−4t 2+4√3t +2−a由题意,结合函数t=sinx 在 x ∈(0,5π2) 上的图像可知: ℎ(t )=−4t 2+4√3t +2−a 在t∈(0,1)上有两个零点,∴Δ>0,16×3+16(2-a )>0,并且h (1)=-4+4 √3 +2-a <0,h (0)=2-a <0,解得 4√3−2<a <5 ,(3)∵ m ⃗⃗⃗⋅n ⃗⃗≥0 ,即: 4sin 2x −2+a −4√3sinx ≤0 ,即 (2sinx −√3)2≤5−a ,则5-a≥0,得a≤5,得 √3−√5−a ≤2sinx ≤√3+√5−a ,∵对x∈[x 1,x 2]恒成立时,x 2-x 1的最大值为 5π3 ,∴当 √3+√5−a >2 时,不妨 2sin (π2−12×5π3)=−√3=√3−√5−a ,得 2√3=√5−a ,得a=-7,当 √3−√5−a <−2 时,不妨 2sin (3π2−12×5π3)=√3=√3+√5−2 ,得 √5−a =0 ,得a=5,此时√3−√5−a<−2不成立,舍去,综上a=-7.【点评】:本题考查向量的数量积的应用,两角和与差的三角函数,函数的最值的求法,考查分析问题解决问题的能力,是难题.。
广东省湛江第一中学2017年新高一实验班招生面试数学试卷(解析版)
2017年湛江第一中学高一试验班招生面试试题数学试卷说明:1.本试卷分选择题和非选择题,满分100分。
考试用时90分钟。
2.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和准考证号、试室号、座位号填写在答题卡上。
3.答题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目的指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
一.选择题(共8小题每小题3分,共24分)1.方程43||||x x x x-=的实根的个数为( )A .1B .2C .3D .42.已知a ,b ,c 满足235a b c c a ==-+,求52a b b c -+的值为( ) A .1B .13C .1-3D .123.如图,在ABC ∆中.90ACB ∠=︒,15ABC ∠=︒,1BC =,则(AC = )A.2+B.2C .0.3D4.作抛物线A 关于x 轴对称的抛物线B ,再将抛物线B 向左平移2个单位,向上平移1个单位,得到的抛物线C 的函数解析式是22(1)1y x =+-,则抛物线A 所对应的函数表达式是( )A .22(3)2y x =-+-B .22(3)2y x =-++C .22(1)2y x =---D .22(1)2y x =--+5.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为( )A .B .C .D .6.“微信抢红包”自,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为9元,被随机分配为1.49元,1.31元,2.19元,3.40元,0.61元,共5份,供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是( ) A .25B .12C .34D .567.如图,AB 为⊙O 的一固定直径,它把⊙O 分成上,下两个半圆,自上半圆上一点C 作弦CD AB ⊥,OCD ∠的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点(P )A .到CD 的距离保持不变B .位置不变C .等分BD̂ D .随C 点移动而移动8.已知实数,,a b c 满足,2b c a abc +=-=,则||||||a b c ++的最小值为( ) A .2 B .3C .4D .5第3页(/共4页) 第4页/(共30页)知人善教 培养品质 引发成长动力第Ⅱ卷(非选择题)二.填空题(共8小题,每小题3分,共24分)9.若[]x 表示不超过x的最大整数,0A =,则[]A = . 10.设[]x 表示不超过实数x 的最大整数.若实数a满足42a a -+=,则[a ]=___. 11.已知有理数x ,y ,z1()2x y z =++,那么2()x yz -的值为 .12.如图,△ABC 的面积为2,点D 、E 分别在边AB 、AC 上,,AD AE x y AB AC ==,且12y x -=,则△BDE 的面积最大值是 .13.分解因式2226773x xy y x y --+++= .14.下列各图形中的小正方形是按照一定规律排列的,根据图形所揭示的规律我们可以发现:第1个图形有1个小正方形,第2个图形有3个小正方形,第3个图形有6个小正方形,第4个图形有10个小正方形⋯,按照这样的规律,则第15个图形有 ________个小正方形.15.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”:乙说:“我没有作案,是丙偷的”:丙说:“甲、乙两人中有一人是小偷”:丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是 .16.如图,已知圆O 的面积为3π,AB 为直径,弧AC 的度数为80︒,弧BD 的度数为20︒,点P 为直径AB 上任一点,则PC PD +的最小值为 .三.解答题(共5小题,17~20每题满分10分,21题满分12分) 17.若实数a 、b 满足112a b a b+=-. (1) 求22aba b -的值;(2) 求证:2(1)2a b-=.B18.如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A作圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=BD=4求线段CF的长第7页(/共4页) 第8页/(共30页)知人善教 培养品质 引发成长动力19.已知ABC ∆的两边AB 、AC 的长是关于x 的一元二次方程22(23)320x k x k k -++++=的两个实根,第三边BC 的长是5.(1)当2k =时,ABC ∆是什么特殊的三角形?(2)当k 为何值时,ABC ∆是等腰三角形?并求出周长.20.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0). (1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标; (3)动点P 在x 轴上移动,当PAE ∆是直角三角形时,求点P 的坐标.21.已知二次函数2123y x x =--.(1)结合函数1y 的图象,确定当x 取什么值时,10y >,10y =,10y <;(2)根据(1)的结论,确定函数2111(||)2y y y =-关于x 的解析式;(3)若一次函数(0)y kx b k =+≠的图象与函数2y 的图象交于三个不同的点,试确定实数k 与b 应满足的条件?2017年湛江第一中学高一试验班招生面试试题数学试卷参考答案说明:1.本试卷分选择题和非选择题,满分100分。
广东省广东实验中学2022-2023学年高三下学期第三次阶段考试数学试题
广东实验中学2023届高三级第三次阶段考试数学本试卷分选择题和非选择题两部分,共5页,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号填写在答题卷上。
2.选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将答题卷收回。
第一部分选择题(共60分)一、单选题(本大题共8小题,共40分。
在每小题列出的选项中,选出符合题目的一项)1.已知集合}121|{≥-=x x A ,}2|1||{<-=x x B ,则=B A ()A .]3,2[B .)3,2[C .)3,2(D .]3,2(2.若复数z 满足0642=+-z z ,则z =()A .i 22±B .i32±C .i 22±-D .i32±-3.经过直线12+=x y 上的点作圆03422=+-+x y x 的切线,则切线长的最小值为()A .2B .3C .1D .54.设*N a ∈,且27<a ,且)28)(27(a a --…)34(a -等于()A .827aA -B .aaA --2734C .734aA -D .834-A 5.以等边三角形ABC 为底的两个正三棱锥P -ABC 和Q-ABC 内接于同一个球,并且正三棱锥P-ABC 的侧面与底面ABC 所成的角为45°,记正三棱锥P -ABC 和正三棱锥Q-ABC 的体积分别为V 1和V 2,则=21V V ()A .1B .21C .31D .416.根据《民用建筑工程室内环境污染控制标准》,文化娱乐场所室内甲醛浓度小于等于0.1mg /m 3为安全范围,已知某新建文化娱乐场所施工过程中使用了甲醛喷剂,处于良好的通风环境下时,竣工1周后室内甲醛浓度为6.25mg /m 3,3周后室内甲醛浓度为1mg /m 3,且室内甲醛浓度p (t )(单位:mg /m 3)与竣工后保持良好通风的时间*)(N t t ∈(单位:周)近似满足函数关系式bat et +=)(ρ,则该文化娱乐场所竣工后的甲醛浓度若要达到安全开放标准,至少需要放置的时间为()A .5周B .6周C .7周D .8周7.设函数⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<<-+-<≤=01,1(,10)(x x m xx mx x f ),,14)()(--=x x f x g ,若函数g (x )在区间(-1,1)上有且仅有一个零点,则实数m 的取值范围是()A .)41[}1{∞+- B .),41[]1,(+∞--∞ C .)51[}1{∞+- D .)151(}1{,-8.己知βα,均为锐角,且βαβαsin sin )cos(=+,则tan a 的最大值是()A .52B .42C .2D .4二、多选题(本大题共4小题,共20分。
广东省实验中学2011-2012学年高一下学期模块考试题数学
广东实验中学2011—2012学年(下)高一级模块考试数 学本试卷分基础检测与能力检测两部分,共4页.满分为150分。
考试用时120分钟.第一部分 基础检测(共100分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{}n a 为等比数列,16991=⋅a a ,则8020a a ⋅=( )A .16B .16-C .4D .4- 2.在ABC ∆中,4=a ,24=b ,︒=30A ,则B 的值为( )A.︒45B.︒135C. ︒45或︒135D. 不存在 3.已知向量)1,3(-=a ,)cos ,(sin x x b =,其中R x ∈,函数b a x f ⋅=)(的最大值为( )A. 2-B. 13+C. 3D. 24.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .275.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若C b a cos 2=,则ABC ∆的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .锐角三角形6.已知54sin =α,παπ<<2,则2tan α的值为( )A. 21-B. 2-C. 2D.217.数列)23()1(,,10,7,4,1----n n的前n 项和为n S ,则=+2011S S ( )A .16-B .30C .28D .148.tan 20tan 4020tan 40++的值是( )A .33 B .3 C .1 D .3-9.在数列{}n a 中,11=a ,)1(11-=--n n a a n n ,则n a =( )A .n12-B .n11-C .n1 D .112--n10.对于非零向量b a ,,下列运算中正确的有( )个.①00,0===⋅b a b a 或则 ②()()c b a c b a ⋅⋅=⋅⋅③⋅=④b a c b c a =⋅=⋅则,A .3个B .2个C .1个D .0个二、填空题:本大题共4小题,每小题5分,共20分.11.已知数列{}n a 为等差数列,且115=a ,58=a ,则=n a _____________. 11.已知21cos sin =+αα,则cos 4α=________.13.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边. 若bc c b a ++=222,3=a ,则ABC ∆的外接圆半径等于_____________.14.等差数列与等比数列之间是存在某种结构的类比关系的,例如从定义看,或者从通项公式看,都可以发现这种类比的原则. 按照此思想,请把下面等差数列的性质,类比到等比数列,写出相应的性质:若{}n a 为等差数列,)(,n m b a a a n m <==,则公差mn a b d --=;若}{n b 是各项均为正数..的等比数列,)(,n m b b a b n m <==,则公比=q _________________.三、解答题:本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分9分)设1e ,2e 是两个相互垂直....的单位..向量,且212e e a +=,12b e e λ=-(1)若a b ⊥,求λ的值;(2)当0=λ时,求b a ,夹角的余弦值.16.(本题满分12分)已知等比数列{}n a 的前n 项和为n S ,273=S ,2636=S ,(1)求等比数列{}n a 的通项公式; (2)令n n a n b 2log616+-=,证明数列{}n b 为等差数列;(3)对(2)中的数列{}n b ,前n 项和为n T ,求使n T 最小时的n 的值.17.(本题满分9分)已知31tan -=α,),2(ππα∈.(1)化简ααα2cos 1cos 2sin 2+-,并求值.(2)若),2(ππβ∈,且1312)cos(-=+βα,求)sin(βα+及βcos 的值.第二部分 能力检测(共50分)四、填空题:本大题共2小题,每小题5分,共10分.18.若数列{}n a 满足11=a ,且n n n a a 241+=+,则通项=n a ________________. 19.课本介绍过平面向量数量积运算的几何意义:b a ⋅等于a与b 在a><b a ,的乘积.运用几何意义,有时能得到更巧妙的解题思路. 例如:边长为1的正六边形ABCDEF 中,点P 是正六边形内的一点(含边界),则AB AP ⋅的取值范围是_____________.五、解答题:本大题共3小题,共40分.解答应写出文字说明、证明过程或演算步骤. 20.(本题满分12分)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且3π=A .(1)若1=a ,面积43=∆ABC S ,求b+c 的值;(2)求)3sin(C cb a -⋅-π的值(注意,此问只能使用题干的条件,不能用(1)问的条件).21.(本题满分14分)设数列{}n b 的前n 项和为n S ,且22n n b S =-. (1)求数列{}n b 的通项公式; (2)若n n b n c ⋅=2,n T 为数列{}n c 的前n 项和. 求n T ;(3)是否存在自然数m ,使得442m T m n <<-对一切*N n ∈恒成立?若存在,求出m 的值;若不存在,说明理由.22.(本题满分14分)将一块圆心角为3π半径为a 的扇形铁片截成一块矩形,如图,有两种裁法:让矩形一边在扇形的一半径OA 上(图1)或让矩形一边与弦AB 平行(图2) (1)在图1中,设矩形一边PM 的长为x ,试把矩形PQRM 的面积表示成关于x 的函数; (2)在图2中,设∠AOM =θ,试把矩形PQRM 的面积表示成关于θ的函数; (3)已知按图1的方案截得的矩形面积最大为263a ,那么请问哪种裁法能得到最大面积的矩形?说明理由.图2图1ROOARM广东实验中学2011—2012学年高一级模块考试数学 参考答案第一部分 基础检测(共100分)一、选择题:本大题共10小题,每小题5分,共50分1、已知{}n a 为等比数列,16991=⋅a a ,则8020a a ⋅=( A )A .16B .16-C .4D .4-2、在ABC ∆中,4=a ,24=b ,︒=30A ,则B 的值为( C )A.︒45B.︒135C. ︒45或︒135D. 不存在 3、已知向量)1,3(-=a ,)cos ,(sin x x b =,其中R x ∈,函数b a x f ⋅=)(的最大值为( D )A. 2-B. 13+C. 3D. 24、设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( B ) A .63 B .45 C .36 D .275、在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若C b a cos 2=,则ABC ∆的形状是( A )A .等腰三角形B .等边三角形C .直角三角形D .锐角三角形6、已知54sin =α,παπ<<2,则2tan α的值为( C )A. 21-B. 2-C. 2D.217、数列)23()1(,,10,7,4,1----n n 的前n 项和为n S ,则=+2011S S ( D ) A .16- B .30 C .28 D .148、tan 20tan 4020tan 40++的值是( B )A .33 B .3 C .1 D .3-9、在数列{}n a 中,11=a ,)1(11-=--n n a a n n ,则n a =( A )A .n12-B .n11-C .n1 D .112--n10、对于非零向量b a ,,下列运算中正确的有( D )个. ①00,0===⋅b a b a 或则 ②()()c b a c b a ⋅⋅=⋅⋅= ④b a c b c a =⋅=⋅则,A .3个B .2个C .1个D .0个二、填空题:本大题共4小题,每小题5分,共20分.11、已知数列{}n a 为等差数列,且115=a ,58=a ,则=n a _____________. 212+-n 11、已知21cos sin =+αα,则cos 4α=________. 81-13、在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边. 若bc c b a ++=222,3=a ,则ABC ∆的外接圆半径等于_____________. 114、等差数列与等比数列之间是存在某种结构的类比关系的,例如从定义看,或者从通项公式看,都可以发现这种类比的原则. 按照此思想,请把下面等差数列的性质,类比到等比数列,写出相应的性质:若{}n a 为等差数列,)(,n m b a a a n m <==,则公差mn a b d --=;若}{n b 是各项均为正.数.的等比数列,)(,n m b b a b n m <==,则公比=q _________________. mn ab -三、解答题:本大题共3小题,共30分.15、(本题满分9分)设1e ,2e 是两个相互垂直....的单位..向量,且212e e a +=,12b e e λ=-(1)若a b ⊥,求λ的值;(2)当0=λ时,求b a ,夹角的余弦值.解:(1) a b ⊥,0=⋅∴b a ,即0)()2(2121=-⋅+e e e e λ ……1分 化简得0)21(2222121=--+e e e e λλ ……2分又1e ,2e 是两个相互垂直的单位向量,∴12221==e e ,021=e e ……3分02=-∴λ,2λ=. ……4分(2)当0=λ时,1b e eλ=-22)2(21121==⋅+=⋅e e e e b a ……5分544)2(2221212212=+⋅+=+==e e e e e e a,5=∴ ……7分55252,cos ==>=<∴b a ……9分16、(本题满分12分)已知等比数列{}n a 的前n 项和为n S ,273=S ,2636=S ,(1)求等比数列{}n a 的通项公式; (2)令n n a n b 2log616+-=,证明数列{}n b 为等差数列;(3)对(2)中的数列{}n b ,前n 项和为n T ,求使n T 最小时的n 的值. 解:(1)362S S ≠ ,1≠∴q ⎪⎪⎩⎪⎪⎨⎧=--=--∴2631)1(271)1(6131q q a qq a ,……2分 两式子相除得 913=+q ,2=∴q ……3分 代入解得211=a ,……4分2112--=⋅=∴n n n qa a . ……5分(2)6372log616log 616222-=+-=+-=-n n a n b n n n ……6分763763)1(71=+--+=-+n n b b n n ,{}n b ∴为等差数列. ……8分(3)方法一:令⎩⎨⎧≥≤+001n n b b ,得⎩⎨⎧≥-≤-05670637n n , ……10分解得98≤≤n ,……11分 ∴当8=n 或9=n 时,前n 项和为n T 最小. ……12分方法二:561-=b ,n n n n b b n T n n 2119272)1197(2)(21-=-=+= ……10分对称轴方程为5.8217==n ,……11分 ∴当8=n 或9=n 时,前n 项和为n T 最小. ……12分17、(本题满分9分)已知31tan -=α,),2(ππα∈.(1)化简ααα2cos 1cos 2sin 2+-,并求值.(2)若),2(ππβ∈,且1312)cos(-=+βα,求)sin(βα+及βcos 的值.解:(1)6521tan cos 2cos cos sin 22cos 1cos 2sin 222-=-=-=+-αααααααα ……2分 6521tan cos 2cos cos sin 2s 222-=-=-=ααααααα……3分 (2)),2(ππα∈ ,),2(ππβ∈,)2,(ππβα∈+∴ 又1312)cos(-=+βα,)23,(ππβα∈+∴135)(cos 1)sin(2-=+--=+∴βαβα ……5分由31tan -=α,),2(ππα∈,得1010sin =α,10103cos -=α ……6分])cos[(cos αβαβ-+= ……7分αβααβαsin )sin(cos )cos(+++= 13010311010135)10103)(1312(=⋅---= ……9分第二部分 能力检测(共50分)四、选择题:本大题共2小题,每小题5分,共10分.18、若数列{}n a 满足11=a ,且nn n a a 241+=+,则通项=n a ________________.11222---=n n n a19、课本介绍过平面向量数量积运算的几何意义:b a ⋅等于a的长度与b 在a方向上的投影><b a ,cos 的乘积. 运用几何意义,有时能得到更巧妙的解题思路. 例如:边长为1的正六边形ABCDEF 中,点P 是正六边形内的一点(含边界),则AB AP ⋅的取值范围是_____________.⎥⎦⎤⎢⎣⎡-23,21五、解答题:本大题共3小题,共40分.解答应写出文字说明、证明过程或演算步骤.20、(本题满分12分)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且3π=A .(1)若1=a ,面积43=∆ABC S ,求b+c 的值;(2)求)3sin(C cb a -⋅-π的值(注意,此问只能使用题干的条件,不能用(1)问的条件).解:(1)4343sin 21====∆bc A bc S ABC ,……1分 1=∴bc ……2分由余弦定理212cos 2122222-+=-+==c b bcac b A ……4分得222=+c b ……5分42)(222=++=+bc c b c b ,2=+∴c b ……6分(2)由正弦定理知)3sin(sin sin sin )3sin(C CB AC cb a -⋅-=-⋅-ππ……8分CC C sin )32sin()3sin(23---=ππ……10分23)3sin()3sin(23sin 21cos 23)3sin(23=--=--=C C CC C πππ ……12分21、(本题满分14分)设数列{}n b 的前n 项和为n S ,且22n n b S =-. (1)求数列{}n b 的通项公式; (2)若n n b n c ⋅=2,n T 为数列{}n c 的前n 项和. 求n T ;(3)是否存在自然数m ,使得442m T m n <<-对一切*N n ∈恒成立?若存在,求出m的值;若不存在,说明理由.解:(1)由22n n b S =-,令1n =,则1122b S =-,又11S b =,所以123b =. ……1分当2≥n 时,由22n n b S =-, ……2分 可得n n n n n b S S b b 2)(211-=--=---. 即113n n b b -=. ……3分所以{}n b 是以123b =为首项,31为公比的等比数列,于是nn b 312⋅=. ……4分(2)nn n n b n c 32=⋅= ……5分∴nn n T 313133123132⋅++⋅+⋅+=1323131)1(31231131+⋅+⋅-++⋅+⋅=n nn n n T ……6分∴132313131313132+⋅-++++=n nn n T . ……7分1331121+-⎪⎭⎫ ⎝⎛-=n n n, ……8分从而nn n T 3143243⋅+-=.(写成nnn n T 32314343⋅-⋅-=也可) ……9分(3)=-+n n T T 103111>+=++n n n c ,故{}n T 单调递增 3111==≥∴c T T n ,又433143243<⋅+-=nn n T ,4331<≤∴n T ……11分要442m T m n <<-恒成立,则⎪⎪⎩⎪⎪⎨⎧<-≤3142443m m , ……12分 解得3103<≤m ,……13分 又*N m ∈,故3=m . ……14分22、(本题满分14分)将一块圆心角为3π半径为a 的扇形铁片截成一块矩形,如图,有两种裁法:让矩形一边在扇形的一半径OA 上(图1)或让矩形一边与弦AB 平行(图2)(1)在图1中,设矩形一边PM 的长为x ,试把矩形PQRM 的面积表示成关于x 的函数; (2)在图2中,设∠AOM =θ,试把矩形PQRM 的面积表示成关于θ的函数; (3)已知按图1的方案截得的矩形面积最大为263a ,那么请问哪种裁法能得到最大面积的矩形?说明理由. 解:(1)PM=QR=x ,在RT △QRO 中,OR=3x在RT △PMO 中,OM=22x a -∴RM=OM-OR=22xa -33x -……2分22233x xa x RM PM S --=⋅=∴,)23,0(a x ∈ ……3分(2)∠MRA =21×3π=6π,∠MRO =65π,图2图1ROOARM在△OMR 中,由正弦定理,得:θsin RM =65sinπa ,即RM = 2a ·sin θ, ……6分又)6sin(θπ-OR=65sinπa ,∴OR = 2a ·sin(6π-θ), ……8分又正△ORQ 中,QR=OR=2a ·sin(6π-θ)∴矩形的MPQR 的面积为S = MR·PQ = 4a 2·sin θ·sin(6π-θ) )3,0(πθ∈ ……9分(3)对于(2)中的函数)sin 23cos sin 21(4)sin 23cos 21(sin 4222θθθθθθ-=-=a a S]23)32[sin(2)]2cos 1(432sin 41[422-+=--=πθθθa a ……11分当232ππθ=+,即12πθ=时,2max )32(a S -= ……13分2)32(a -263a <,故按图1的方案能得到最大面积的矩形. ……14分。
广东省广东实验中学2017-2018学年高一数学上学期期中试题(含答案)
广东省广东实验中学2017-2018学年上学期高一期中考试数学试卷本试卷共4页.满分为150分。
考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答卷上,并用2B 铅笔填涂学号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设},1|{<=a a A 则( )A .A ⊆0B .A ∈}0{C .A ⊆}0{D .A ∈∅2. 已知集合A 到B 的映射12:2+=→x y x f ,那么集合B 中3在A 中对应的原象是( )A .0B .1C .1-D .1± 3. 下列四个函数中,在),0(+∞上是增函数的是( )A .x x f 23)(-=B .x x x f 3)(2-= C .11)(+-=x x f D .||)(x x f -= 4. 设函数⎪⎪⎩⎪⎪⎨⎧>=<=0),(0,00,)21()(x x g x x x f x,且)(x f 为奇函数,则=)2(g ( )A .41 B .41- C .4 D .4- 5. 函数xx x f 2)(2-=的零点个数为( )A .0B .1C .2D .3 6. 已知点)2,22(在幂函数f (x )的图象上,则f (x )是( ) A .奇函数 B .偶函数 C .定义域内的减函数 D .定义域内的增函数7. 方程5lg 1)1lg(lg -=-+x x 的根是( )A .1-B .2C .21或D .21或- 8. 已知2)1(x x f =-,则)(x f 的解析式为( )A .12)(2++=x x x fB .12)(2+-=x x x fC .12)(2-+=x x x fD .12)(2--=x x x f 9. 已知342=a ,524=b ,31=c ,则( )A .c a b <<B .c b a <<C .a c b <<D .b a c << 10. 设)(x f 为偶函数,且在)0,(-∞上是减函数,0)1(=-f ,则不等式0)(>x xf 的解集为( )A .)1,0()0,1( -B .),1()1,(+∞--∞C .),1()0,1(+∞-D .)1,0()1,( --∞11. 某学生离家去学校,由于怕迟到,所以一开始就匀速跑步,等跑累了再匀速走余下的路程. 在下图中纵轴表示离学校的距离d ,横轴表示出发后的时间t ,则下图中的四个图形中较符合该学生走法的是( )A. B. C. D.12. 已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0 D .正负都有可能 二、填空题:本大题共4小题,每小题5分,共20分. 13. 若函数ax x x f -+=21)(2的定义域为R ,则a 的取值范围为14. )(x f 是定义在R 上的奇函数,0>x 时1)(2++=x x x f ,则当0<x 时,)(x f =15. 已知⎩⎨⎧≥<--=1,log 1,4)6()(x x x a x a x f a 是R 上的增函数,则a 的取值范围是16. 已知函数mx x g x m x m x f =+-+⋅=)(,41)2()(2,若对于任意实数x ,)(x f 与)(x g 的值至少有一个为正数,则实数m 的取值范围是__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分10分)设全集U R =,集合2{60}A x x x =-->,集合21{1}3x B xx -=>+. (1)求集合A 与B ; (2)求A B 、()U C A B ⋃.18. (本小题满分10分)计算:(1)8log 3)22()416()271(410322131+-++---π;(2)已知),10(,41<<=+-x xx 求212122--+-xx x x .19. (本小题满分12分) 已知函数21121)(-+=x x f (1) 判断函数)(x f 的奇偶性并证明; (2) 解关于t 的不等式0)1()(2<--+t t f t f .20. (本小题满分12分)设不等式211222(log )3log 10x x -+≤的解集为M ,求当x ∈M 时函数22()(log )(log )28x xf x =的最大、最小值.21. (本小题满分12分)某公司生产一种产品的固定成本为5.0万元,但每生产100件需要增加投入25.0万元,市场对此产品的需求量为500件,销售收入为函数)50(25)(2≤≤-=x x x x R ,其中x 是年产量(单位:百件)。
广东省实验中学2023-2024学年高二下学期期中考试数学试题
广东省实验中学2023-2024学年高二下学期期中考试数 学本试卷共5页,满分150分,考试用时120分钟。
注意事项:1.开考前,考生务必用黑色字迹的钢笔或签字笔将自己的校名、姓名、班级、考号等相关信息填写在答题卡指定区域内。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知是关于复数的方程的一根,则A .5B .6C .7D .82.,若共面,则实数为A .1B .2C .3D .43.展开式中的常数项为A .B .C .D .4.若,则A .B .C .D .5.从0、1、2、3、4、5、6、7、8、9这10个数中任取5个不同的数,则这5个不同的数的中位数为5的概率为12i +z ()20,z mz n m n R -+=∈m n +=()()()1,1,2,0,1,1,3,5,a b c k =-=-=- ,,a b ck 622x x ⎛-⎫ ⎪⎝⎭1560160-240tan 24tan 04παα⎛⎫++= ⎪⎝⎭sin 2α=45-25-2545A .B .C .D .6.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是A .B .C .D .7.已知双曲线的左、右焦点分别为,,过的直线分别交双曲线左、右两支于、两点,点在轴上,,平分,则双曲线的离心率为AB .CD8.函数在定义域上处处可导,其导函数为.已知,,且当时,.若,,,则A .B .C .D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分.9.数列2,0,2,0,的通项公式可以是A .B .C .D .10.为响应政府部门疫情防控号召,某校安排甲、乙、丙、丁四名志愿者奔赴海珠、白云、番禺三个区参加防控工作,则下列说法正确的是A .不同的安排方法共有64种B .若恰有一个区无人去,则不同的安排方法共有42种C .若甲必须去海珠,且每个区均有人去,则不同的安排方法共有12种D .若甲、乙两人都不能去海珠,且每个区均有人去,则不同的安排方法共有14种121321521721()2222:10,0x y C a b a b-=>>1F 2F 1F A B C x 24CB F A =2BF 1F BC ∠C ()f x R ()f x '()()1f x f x =-()10f =12x >()()021f x f x x '->-()ln 2a f =2ln 5b f ⎛⎫= ⎪⎝⎭52c f ⎛⎫= ⎪⎝⎭a b c <<b c a <<a c b <<b a c<<⋯()111n n a +=-+()11nn a =-+2sin2n n a π=1122n na a a +=⎧⎨=-⎩11.如图,在中,,,,过中点的直线与线段交于点.将沿直线翻折至,且点在平面内的射影在线段上,连接交于点,是直线上异于的任意一点,则A .点的轨迹的长度为B .C .D .直线与平面所成角的余弦值的最小值为三、填空题:本小题共3小题,每小题5分,共15分.12.已知圆和圆,则两圆公共弦所在直线的方程为 .13.在中,,,则面积的最大值为 .14.用表示不超过的最大整数,例如,,.已知数列满足,,则 .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知,.(1)当时,求的图像在处的切线方程;(2)若当时,,求的取值范围.16.(15分)在中,内角,,所对的边分别为,,,且.(1)证明:;ABC ∆2B π∠=AB =1BC =AC M l AB N AMN ∆l A MN '∆A 'BCMN H BC AH l O D l OO 6πA DH A OH ''∠≤∠A DH A DC''∠≥∠A O 'BCMN 13221:4C x y +=222:402C x y x y +-=+ABC ∆1BC =2AC AB =ABC ∆[]x x []33=[]1.21=[]1.32-=-{}n a 11a =2112n n n a a a +=+202412202412222a a a a a a ⎡⎤++⋯+=⎢⎥+++⎣⎦()ln f x ax x =-a R ∈2a =()f x ()()1,1f []1,x e ∈()0f x >a ABC ∆A B C a b c 22cos cos 1b cb B Cc +=2c ab =(2)若外接圆的面积为,且,求的面积.17.(15分)已知各项均不为0的数列的前项和为,且,;,数列的前项和为.(1)求的通项公式;(2)求;(3)若对于任意,成立,求实数的取值范围.18.(17分)已知椭圆的离心率为,且过点.直线与椭圆相切于点(在第一象限),直线与椭圆相交于两点,为坐标原点.(1)求椭圆的方程;(2)设直线的斜率为,求证:为定值;(3)求面积的最大值.19.(17分)拉格朗日中值定理是微积分学的基本定理之一,它与导数和函数的零点有关,其表达如下:若函数在区间连续,在区间上可导,则存在,使得,我们将称为函数在上的“中值点”.已知函数,,.(1)求在上的中值点的个数;(2)若对于区间内任意两个不相等的实数,都有成立,求实数的取值范围.ABC ∆π2224si 2n a C b -=ABC ∆{}n a n n S 11a =114n n n a a S ++=2n nn ab ={}n b n n T {}n a n T *n N ∈822n n T λ-⋅+≥λ()2222:10x y C a b a b +=>>)y kx m =+C P P 1y kx =-C ,A B O C OP 0k 0k k ⋅PAB ∆()f x [],a b (),a b ()0,x a b ∈()()()0f b f a f x b a-'=-0x ()f x [],a b ()x f x e =()21g x x tx =-+()()()F x f x g x =-()F x ()0,1()0,112,x x ()()()()1212f x f x g x g x ->-t(3)当且时,证明:.0t >1t ≠1ln 22ln 2ln t t t--≥-。
广东省实验中学2013-2014学年下学期高一年级期中考试数学试卷
广东省实验中学2013-2014学年下学期高一年级期中考试数学试卷本试卷分基础检测与能力检测两部分,共4页.满分为150分。
考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答卷上,并用2B 铅笔填涂学号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.第一部分 基础检测(共100分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知1cos ,(370,520),2ααα=∈︒︒则等于 ( ) A .390︒ B .420︒ C .450︒ D .480︒ 2. 直线xtan057=-y π的倾斜角是 ( )A .52π B .-52π C .57π D .53π 3. 在平行四边形ABCD 中,BC CD BA -+等于 ( )A .BCB .DAC .ABD .AC 4. 已知向量(1,3)a =,(1,0)b =-,则|2|a b +=( )A .1B C .2D .45. cos15︒的值是( )A 6. 已知||5,||3,12,a b a b ==⋅=-且则向量a 在向量b 上的投影等于( )A .4-B .4C .125- D .1257. 把函数()sin(2)3f x x π=-+的图像向右平移3π个单位可以得到函数()g x 的图像,则()4g π等于( )A .2-.2C .1-D .1 8. 在四边形 ABCD 中,AB → =DC → ,且AC → ·BD →= 0,则四边形 ABCD 是( )A 矩形B 菱形C 直角梯形D 等腰梯形9. 已知函数()()212fx x x cos cos =-⋅,x ∈R ,则()f x 是( )A .最小正周期为2π的奇函数 B .最小正周期为π的奇函数 C .最小正周期为2π的偶函数 D .最小正周期为π的偶函数 10. 已知函数14sin()929y A x x x ππωφ=+==在同一个周期内当时取最大值,当时取最小值12-,则该函数的解析式为() A .2sin()36x y π=-B .1sin(3)26y x π=+ C .1sin(3)26y x π=- D .1sin()236x y π=--二、填空题:本大题共4小题,每小题5分,共20分.11. 已知一个扇形周长为4,面积为1,则其中心角等于 (弧度)12. 已知向量a ,b 夹角为60°,且||a =1,|2|a b -=||b =__________. 13. 已知sin cos sin()2sin(),2sin cos πααπαααα+-=-+=-则14. 已知向量,a b 满足||1,||2a b ==,()a b a -⊥, 向量a 与b 的夹角为________.三、解答题:本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤. 15. (本小题满分10分) 已知函数()2sin f x =63x ππ⎛⎫+⎪⎝⎭(05)x ≤≤,点A 、B 分别是函数()y f x =图像上的最高点和最低点. (1)求点A 、B 的坐标以及OA ·OB 的值;(2)没点A 、B 分别在角α、β的终边上,求tan (2αβ-)的值.16. (本小题满分10分)已知点),0,0(O (2,3),(5,4),(7,10),()A B C AP AB AC R λλ=+∈若 1) 是否存在λ,使得点P 在第一、三象限的角平分线上? 2) 是否存在λ,使得四边形OBPA 为平行四边形? (若存在,则求出λ的值,若不存在,请说明理由。
广东省深圳大学附属实验中学2023-2024学年高一上学期期中考试数学试卷
深大实验2023-2024学年度第一学期
高一期中考试(数学)试卷
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息.
2.请将答案正确填写在答题卡上.
第I卷(选择题)
一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多
第II卷(非选择题)
三、填空题:本题共4小题,每小题5分,共20分.
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
21.如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3AB =米,2AD =米.
(1)设DN 的长为()0x x >米,试用x 表示矩形AMPN 的面积;
(2)当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值.
22.函数()f x 对任意实数,x y 恒有()()()f x f y f x y =+-,且当0x >时,()0f x <.(1)判断()f x 的奇偶性;
(2)求证:()f x 是R 上的减函数;
(3)若R a ∈,解关于x 的不等式()()()
()22
2f ax f x f x f ax ++<-.
参考答案:
7.C
【分析】利用一次函数与二次函数的单调性,结合分段函数的性质得到关于从而得解.
【详解】因为函数()f x ⎧=⎨⎩
大小,注意分类讨论思想的应用.。
广东省实验中学2023-2024学年高二下学期期中考试数学试题数学答案
广东省实验中学2023-2024学年高二下学期期中考试数学 参考答案与评分标准【选择题、填空题答案】【部分试题解析】7.【解析】如图,因为,所以,且,即.又平分,所以(内错角),所以,因为,所以,,所以,,所以,在中,由余弦定理有,即,所以,8.【解析】记,,则.24CB F A =2//CB F A 114F B F A =13AB F A =2BF 1F BC∠1222F BF F BC BF A ∠=∠=∠213F A AB F A ==212F A F A a -=1F A a =23F A AB a ==14F B a =22F B a =2121cos 23F B F BF AB ∠==12BF F ∆222121212122cos F F F B F B F B F B F BF =+-⋅∠()()()222214424224233c a a a a a =+-⋅⋅⋅=222113c e a ==e ==()g x =12x >()0g x '==>从而在上单调递增,且当时,故;当时,故,此时单调递增.所以,,因为,所以,即,综上,.11.【解析】依题意,将沿直线翻折至,连接,由翻折的性质可知,关于所沿轴对称的两点连线被该轴垂直平分,故,又在平面内的射影在线段上,所以平面,平面,所以,,平面,平面,所以平面.平面,平面,平面,,,,,且即为二面角的平面角.图1图2对于选项,恒成立,故的轨迹为以为直径的圆弧夹在内的部分,易知其长度为,故正确;对于选项,即为二面角的平面角,故由二面角最大可知,故正确;()g x1,2⎛⎫+∞⎪⎝⎭112x<<()()10g x g<=()0f x<1x>()()10g x g>=()0f x>()(f xg x=()ln20a f=<25ln1ln52b f f⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭5511ln22<+<()55011ln22f f f⎛⎫⎛⎫=<+<⎪ ⎪⎝⎭⎝⎭0b c<<a b c<<AMN∆l AMN∆AA'AA MN'⊥A'BCMN H BCA H'⊥BCMN MN⊂BCMN A H MN'⊥AA AH A'='AA'⊂A AH'AH⊂A AH'MN⊥A AH'AO⊂A AH'A O'⊂AAH A H'⊂A AH'AO MN⊥A O MN'⊥A H MN'⊥90AOM∴∠=︒A OH∠'A MN B'--A MN AO⊥O AM ABC∆1236ππ⨯=CB A OH∠'A MN B'--A DH A OH∠'∠'…B对于选项,由题意可知,为与平面所成的线面角,故由线面角最小可知,故错误;对于选项,如图2所示,设,在中,,,在中,,所以,设直线与平面所成角为,则,当且仅当时取等号,故正确.14.【解析】,,,即,又,则,,,且,,,,,即.15.【解析】解:(1)当时,,,,(2分),,(4分)所以的图像在处的切线方程为,即.(6分)(2)法一:,,(7分)当时,,在上单调递减,,不合题意;(9分)C A DH ∠'A D 'BCMN A DH A DC ∠'∠'…A D (,32AMN ππθ∠=∈AOM ∆90AOM ∠=︒ sin sin AO AM θθ∴==ABH ∆,2cos AB B AH BAH π∠===∠sin OH AH AO θ=-=-A O 'BCMN αcos 11113OH AO α==-=--= (523212)πππθθ-=⇒=D 11a = 2112n n n a a a +=+∴()1111222n n n n n a a a a a +==-++11112n n n a a a +=-+1222n n n a a a =-++22024121212202420411120242222222a a a a a a a a a ⎛⎫++⋯+=-++⋯+ ⎪++++++⎝⎭ 122320242025202520251111112202422024220222a a a a a a a a ⎛⎫=--+-+⋯+-=-+=+ ⎪⎝⎭2112n n n n a a a a +=+> 232a =32128a =>∴20252a >()20250,12a ∈∴2025202220222a ⎡⎤+=⎢⎥⎣⎦2022204241122022222a a a a a a ⎡⎤++⋯+=⎢⎥+++⎣⎦2a =()2ln f x x x =-0x >()12f x x'=-()12f =()11f '=()f x ()()1,1f 21y x -=-1y x =+[]1,x e ∈()11ax f x a x x-'=-=1a e≤()0f x '≤()f x []1,e ()10f e ae =-≤当时,,在上单调递增,,符合题意;(10分)当时,,在上,单调递减,在上,单调递增,在处取得极小值,,符合题意;(12分)综上所述,实数的取值范围是.(13分)法二:因为,所以等价于,.(8分)设,,则,所以在上单调递增,(11分)在处取得最大值,所以实数的取值范围是.(13分)16.【解析】(1)证:法一:因为,所以有,由正弦定理可得,即,因为,所以,所以有,再由正弦定理可得.(4分)法二:将余弦定理代入,可得,即,整理得.(4分)(2)解:由题意知外接圆的半径,由正弦定理得,所以.(6分)由(1)知,所以,即,因为,,所以,.(9分)由余弦定理得,(11分)所以.(13分)所以(15分)1a ≥()0f x '≥()f x []1,e ()()10f x f a ≥=>11a e <<11e a<<11,a ⎛⎫ ⎪⎝⎭()0f x '<()f x 1,e a ⎛⎫⎪⎝⎭()0f x '>()f x ()f x 1x a =()f x ≥11ln 0f a a ⎛⎫=+> ⎪⎝⎭a 1,e ⎛⎫+∞ ⎪⎝⎭0x >()0f x >ln xa x>[]1,x e ∈()ln x g x x =[]1,x e ∈()21ln 0xg x x -'=≥()g x []1,e ()g x x e =()max 1g g e e ==a 1,e ⎛⎫+∞ ⎪⎝⎭22cos cos 1b b B C c c+=22cos cos bc B b C c +=()sin cos sin cos sin b C B B C c C +=()sin sin b B C c C +=B C A π+=-()sin sin B C A +=sin sin b A c C =2c ab =22cos cos 1b c b B C c +=22222222122b a c b b a b c c ac c ab+-+-⋅+⋅=()222222212b a c b a b c ac⋅+-++-=2c ab =1R =2sin 2sin c R C C ==2222a b c -=2c ab =2220a ab b --=()()20a b a b -+=0a >0b >2a b =222c ab b ==2222222423cos 244a b c b b b C ab b +-+-===sin C =2sin c C ==31sin 244abc c S ab C ====17.【解析】解:(1)当时,,,.(1分)当时,,(2分)因为,所以,,(3分)故的奇数项和偶数项分别成公差为的等差数列,当为奇数时,;当为偶数时,.所以对,.(5分)(2)法一:,(6分),,(7分),(8分)所以.(9分)法二:,(7分)所以.(9分)(3)由(2)的结论,原不等式等价于,等价于,.(10分)记,则,(12分)当时,当时,故当时取得最大值,(14分)所以实数的取值范围是.(15分)1n =12114a a S +=2114a +=23a =2n ≥1114n nn n n n n a a a a a S S +---=-=0n a ≠114n n a a +--=2n ≥{}n a 4n 11212n n a a d n -=+=-n 22212n n a a d n -=+=-*n N ∈21n a n =-2122n n n na nb -==21321...222nn n T -=+++12311321 (2222)n n n T +-=+++123111111111222211213121221...12222222222212n n n n n n n n n n T -++-+⎛⎫- ⎪---⎛⎫⎛⎫⎝⎭-=++++-=+-=-- ⎪ ⎪⎝⎭⎝⎭-21212333222n nnn n n T --+=--=-12121232222n n n nn n a n n n b --++===-213557212323...31222222n n nn n n n T -+++⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭8232232n nn λ-+⋅+≥-828231223222nn n n n n λ--+---≥=*n N ∀∈282232n n n n c ---=11262822522322n n n n n n n n c c ++-------=-()()1126262254223672=22n n n n n n n n ++-------+-=1,2,3n =10n n c c +->4n ≥10n n c c +-<4n =n c 45c =λ[)5,+∞18.【解析】(1)解:因为,所以,,又因为椭圆过点,所以,解得,所以,,椭圆.(3分)(2)证:联立得,(4分),设,则,.(6分)所以,所以.(7分)(是关键步骤,用点差法或直接使用切线公式不给分,阅卷时要注意学生是否“骗分”.)(3)解:在(2)中令,则可得,,设,则有,,(8分)从而,,(10分)点到直线的距离(11分)由(2)知,且由题意知,,所以.(12分)(13分)法一:设,,则,当时,,单调递增;当时,,单调递减,所以在处取得极大值,(15分)e =a =2222b a c c =-=C)222112c c+=22c =24a =22b =22:142x y C +=2224y kx mx y =+⎧⎨+=⎩()()222214240k x kmx m +++-=()228420k m ∆=+-=()00,P x y 02221km x k =-+0221my k =+00012y k x k ==-012k k ⋅=-0∆=1m =-()2221420k x kx +--=()2841k ∆=+()()1122,,,A x y B x y 122421k x x k +=+122221x x k =-+()()()()22212121222841421k x x x x x x k+-=+-=+2AB x =-=P AB d 22422m k =+>0k <0m >m >12PABS AB d ∆=⋅=()()()3411x x f x x-+=x >()()()25212x x f x x+-'=-)x ∈()0f x '>()f x ()2,x ∈+∞()0f x '<()f x ()f x 2x =()27216f =故当且仅当,即,时,(答其一即可,未声明扣1分).(17分)法二:,(15分)当且仅当,即,,时,(未声明扣1分).(17分)19.【解析】(1)解:,.(1分)因为,,所以,即,.(2分)令,则,在上,,单调递减;在上,,单调递增,(3分)因为,,,所以在上存在唯一零点,在上无零点,(4分)即在上存在唯一解,所以在上的中值点有且仅有1个.(5分)(2)解:不妨设,则,故有,即,即,因为上式对任意都成立,所以函数和在上均单调递增,等价于,,,(8分),当时,,单调递减;2m =k =)P PAB S ∆PABS ∆=≤=()311m m -=+2m =k =)P PAB S ∆()21x F x e x tx =-+-()2x F x e x t '=-+()00F =()12F e t =+-()()()010210F F F x e t -'==+--0022x e x e -=-()00,1x ∈()22x h x e x e =--+()2x h x e '=-()0,ln 2()0h x '<()h x ()ln 2,1()0h x '>()h x ()ln 222ln 220h e =--+<()030h e =->()10h =()h x ()0,ln 2()ln 2,10022x e x e -=-()0,1()F x ()0,112x x >()()12f x f x >()()()()1212f x f x g x g x ->-()()()()()()211212f x f x g x g x f x f x -<-<-()()()()()()()()11221222f x g x f x g x f x g x f x g x ⎧+>+⎪⎨->-⎪⎩()120,1,x x ∈()()()F x f x g x =-()()()G x f x g x =+()0,1()20x F x e x t '=-+≥()20x G x e x t '=+-≥()0,1x ∀∈()2x F x e ''=-()0,ln 2x ∈()0F x ''<()F x '当时,,单调递增.所以,从而.(10分),在上单调递增,所以,从而.(11分)综上所述,实数的取值范围是.(12分)(3)证:,,,(13分)由拉格朗日中值定理知,在或上总存在,使得,即.(15分)由(2)知,所以,所以.(17分)【注】此问也可直接求导证明,或者令转而证明,但都会遇到或处无定义的情况,需要谨慎讨论,可用洛必达法则求得极限;当然也可去分母再作差构造函数证明,此时需要分类讨论不等号方向;还可进一步利用“对数单向狗,指数找朋友”作变形构造,但都相对繁琐.阅卷时此类解法也可酌情给分.()ln 2,1x ∈()0F x ''>()F x ''()()ln 222ln 20F x F t ''≥=-+≥2ln 22t ≥-()20x G x e ''=+>()G x '()0,1()()010G x G t ''>=-≥1t ≤t []2ln 22,1-()2ln ln ln 1F t t t t t =-+-()00F =()2x F x e x t '=-+()()0,ln 1t t >()()ln ,001t t <<0x ()()()0ln 0ln 0F t F F x t -'=-0012ln ln x t e x t t--=-()122ln 22x p x x e =-≤-00222ln 2x e x -≥-1ln 22ln 2ln t t t--≥-ln 0x t =≠122ln 2x e x x--≥-1t =0x =。
广东省实验中学2022-2023学年高三上学期第一次阶段考试 数学 Word版含答案
【答案】ABD
【10题答案】
【答案】BCD
【11题答案】
【答案】ACD
【12题答案】
【答案】AC
三、填空题(本大题共4小题,每小题5分,共20分)
【13题答案】
【答案】
【14题答案】
【答案】
【15题答案】
【答案】
【16题答案】
【答案】①. ②.
四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)
A.200天B.210天C.220天D.230天
4.记 ,则()
A. B.
C. D.
5.设正项等比数列 的前 项和为 ,若 ,则 ()
A.2B.3C.4D.5
6.已知函数 ,给出四个函数①|f(x)|,②f(-x),③f(|x|),④-f(-x),又给出四个函数的大致图象,则正确的匹配方案是()
A.甲-②,乙-③,丙-④,丁-①B.甲-②,乙-④,丙-①,丁-③
【22题答案】
【答案】(1)
(2)
15.设函数 的图象与 的图象有公共点,且在公共点处的切线重合,则实数b的最大值为______.
16.牛顿选代法又称牛顿—拉夫逊方法,它是牛顿在 世纪提出 一种在实数集上近似求解方程根的一种方法.具体步骤如下:设 是函数 的一个零点,任意选取 作为 的初始近似值,过点 作曲线 的切线 ,设 与 轴交点的横坐标为 ,并称 为 的 次近似值;过点 作曲线 的切线 ,设 与 轴交点的横坐标为 ,称 为 的 次近似值.一般的,过点 作曲线 的切线 ,记 与 轴交点的横坐标为 ,并称 为 的 次近似值.设 的零点为 ,取 ,则 的 次近似值为_____;设 , 数列 的前 项积为 .若任意 恒成立,则整数 的最小值为_____.
高一下学期期中考试数学试题
2022年下学期长沙市实验中学高一期中测试数学试题高 班 姓名 记分一、 选择题〔此题共10小题,每题5分,共50分,每题有且仅有一个答案正确〕 1.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 〔 〕)(A A B )(B B A )(C B C A C U U )(D B C A C U U2.以下四个图像中,是函数图像的是 〔 〕A 、〔1〕B 、〔1〕、〔3〕、〔4〕C 、〔1〕、〔2〕、〔3〕D 、〔3〕、〔4〕 3.设函数()(21)f x a x b =-+是R 上的减函数,那么有 〔 〕 A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 4 . 如果集合A={x |ax 2+2x +1=0}中只有一个元素,那么a 的值是 〔 〕(A)0 (B)0 或1 (C)1 (D)不能确定 5.函数()则,x x x x x f ⎩⎨⎧>+-≤+=1,31,1()=]2[f f 〔 〕A.3 B,2 C.1 D.06.下面各组函数中为相同函数的是 〔 〕(A)1)(,)1()(2-=-=x x g x x f ( B)11)(,1)(2-+=-=x x x g x x f(C)22)1()(,)1()(-=-=x x g x x f (D)21)(,21)(22+-=+-=x x x g x x x f7.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,那么实数a 的取值范围是〔 〕 A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5〔1〕〔2〕〔3〕〔4〕8.函数y=(21)2x +1+2,(x<0)的反函数为〔 〕 〔A 〕y=-)2(1log )2(21>--x x 〔B 〕)2(1log )2(21>--x x〔C 〕y=-)252(1log )2(21<<--x x 〔D 〕y=-)252(1log )2(21<<--x x9.计算机本钱不断降低,假设每隔3年计算机价格降低1/3,现在价格为8100元的计算机,那么9年后价格可降为〔 〕A. 2400元B. 900元 C. 300元 D. 3600元 10.某企业近几年的年产值如图,那么年增长率最高的是〔 〕〔年增长率=年增长值/年产值〕 A 〕97年 B 〕98年C 〕99年D 〕00年二、填空题:〔本大题共5小题,每题5分,共25分,把答案填在做题卡相应位置上.〕11、 集合M={a |a-56∈N,且a ∈Z},用列举法表示集合M=_ 12、()⎩⎨⎧>-≤+=,0,2,0,12x x x x x f 假设()10=x f ,那么 x= .13、化指数式N a x= 为对数式,那么=x . 14、函数x2y =与函数x--2y =的图像关于 对称15、函数)5lg()(-=x x f 的定义域是三、解做题:( 本大题共6小题,共75分,解容许写出文字说明,证实过程或演算步骤.)16、(此题总分值12分)求值:;2lg 5lg 100lg 20lg 5lg 50lg 2lg -+ 0099989796(年)2004006008001000(万元)17.〔本小题总分值12分〕A ={1,2,x 2-5x +9},B ={3,x 2+ax +a },如果A ={1,2,3},2 ∈B,求实数a 的值.18.〔本小题总分值13分〕M={x| -2≤x ≤5}, N={x| a+1≤x ≤2a -1}. 〔Ⅰ〕假设M ⊆N,求实数a 的取值范围; 〔Ⅱ〕假设M ⊇N,求实数a 的取值范围.19、〔此题总分值12分〕求函数()51422-+-=x x x f 的定义域. 解:20、〔此题总分值13分〕函数()[],5,3,21∈-+=x xx x f 〔1〕判断函数的单调性,并证实; 〔2〕求函数和最大值和最小值. 解:21、〔此题总分值13分〕如图,底角为450的等腰梯形ABCD,底边BC 的长为7,腰长为 22 ,当一条平行于AB 的直线L 从左至右移动时,直线L 把梯形分成两局部,令BF=x,致图象.解:C2022年下学期长沙市实验中学高一期中测试参 考 答 案一、1、C ;2、B; 3、D ;4、B ;5、B ;6、D ; 7、A; 8、D; 9、C;10、 B ;二、11.{4,3,2,-1},12. -3. 13.N x a log =;14.y 轴;15.}{5/>x x 三、16、 (此题总分值12分)解:原式=2lg 5lg 2)54lg(5lg )225(lg 2lg -⨯+⨯ =2lg 5lg 2)5lg 2lg 2(5lg )2lg 5lg 2(2lg -+++ =2lg 5lg 2)5(lg 5lg 2lg 2)2(lg 5lg 2lg 222-+++ =1)10(lg )5lg 2(lg 22==+17. 解:由A ={1,2,x 2-5x +9}={1,2,3},知x 2-5x +9=3,解得x =2或x =3, 又2 ∈B,那么x 2+ax +a =2,当x =2时,a =32-,当x =3时,a =47-. 故a =32-或47-. 18. 解:〔Ⅰ〕由于M ⊆N,那么21521211a a a a -≥+⎧⎪≤-⎨⎪-≥+⎩,解得a ∈Φ.〔Ⅱ〕①当N=Φ时,即a +1>2a -1,有a <2;②当N ≠Φ,那么21521211a a a a -≤+⎧⎪≥-⎨⎪-≥+⎩,解得2≤a ≤3,综合①②得a 的取值范围为a ≤3.19、.{}5,,52,25,5<<≤-≤<--<x x x x x 或或或20、.〔1〕略;〔2〕最大值为-2,最小值为-4.21、 〔1〕()⎪⎩⎪⎨⎧≤<--≤<=73,4710,30,22x x x x y〔2〕图形如右。
广东省广州市广东实验中学越秀学校2023-2024学年高二下学期期中考试数学试题
广东省广州市广东实验中学越秀学校2023-2024学年高二下学期期中考试数学试题一、单选题1.在等差数列{}n a 中,3712a a +=,则72S S -的值是( ) A .12B .18C .24D .302.已知函数 ()y f x =的导函数 ()f x '的图象如图所示,那么对于函数 ()y f x =,下列说法正确的是( )A .在 (),1∞--上单调递增B .在 ()1,∞+上单调递减C .在 1x =处取得最大值D .在 2x =处取得极大值3.已知离散型随机变量X 的分布列(1,2,3,4,5)5k P X ak k ⎛⎫=== ⎪⎝⎭,则13105P X ⎛⎫<<= ⎪⎝⎭( )A .1B .23 C .15D .134.已知等比数列{}n a 的各项互不相等,且14a ,312a ,23a 成等差数列,则2021202320202022a a a a -=-( ) A .1 B .2 C .3 D .45.老师有6本不同的课外书要分给甲、乙、丙三人,其中甲分得2本,乙、丙每人至少分得一本,则不同的分法有( ) A .248种B .168种C .360种D .210种6.()62132x x x ⎛⎫-- ⎪⎝⎭的展开式中常数项为( )A .120B .120-C .180D .180-7.若函数()e x f x a x =-恰有2个零点,则实数a 的取值范围是( )A .10,e ⎛⎫ ⎪⎝⎭B .(0,1)C .1,e ⎛⎫-∞ ⎪⎝⎭D .(,0)-∞8.已知数列{}n a 的前n 项和为n S 且2n n na =,若(1)n nn S a a +>-对任意*N n ∈恒成立,则实数a 的取值范围是( ) A . (,1)(2,)-∞-⋃+∞B .(1,2)-C .3(1,)2-D . 3(,1)(,)2-∞-+∞U二、多选题9.甲,乙,丙,丁,戊五人并排站成一排,下列说法正确的是( ) A .如果甲,乙必须相邻且乙在甲的右边,那么不同的排法有24种 B .最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种 C .甲乙不相邻的排法种数为82种D .甲乙丙按从左到右的顺序排列的排法有20种10.定义“等方差数列”:如果一个数列从第二项起,每一项的平方与它的前一项的平方的差都等于同一个常数,那么这个数列就叫做等方差数列,这个常数叫做该数列的方公差.设数列{}n a 是由正数组成的等方差数列,且方公差为2,135a =,则( )A .数列11n n a a +⎧⎫⎨⎬+⎩⎭的前60项和60S =B .数列11nn a a +⎧⎫⎨⎬+⎩⎭的前60项和605S =C .数列{}2n a 的通项公式是221n a n =-D .数列{}2n a 的通项公式是221n a n =+11.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1000件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为()R x 万元,且()22110.8,010,301081000,103x x R x x x x ⎧-<≤⎪⎪=⎨⎪->⎪⎩当该公司在这一品牌服装的生产中所获得的年利润最大时,则有( )A .年产量为9000件B .年产量为10000件C .年利润最大值为38万元D .年利润最大值为38.6万元三、填空题12.已知数列{}n a 满足11a =,且对任意*n ∈N ,有()11nn n a a n +=+-⋅,则22a =.13.设抛掷一枚骰子的点数为随机变量X .14.已知定义在()0,∞+上的函数()f x 满足()()0xf x f x '-<,且()22f =,则()e e 0x xf ->的解集是.四、解答题15.已知函数()21ex x af x -+=在点()()1,1f 处的切线与直线420240x y ++=垂直.(1)求a 的值;(2)求()f x 的单调区间和极值.16.(1)若423401234(2x a a x a x a x a x =++++,求1234a a a a +++的值;(2)在22nx ⎫⎪⎭的展开式中,二项式系数最大的项只有第五项,①求n 的值;②若第k 项是有理项,求k 的取值集合; ③求系数最大的项.17.已知数列{}n a 的前n 项和为n S ,满足22n n S a =-. (1)求{}n a 的通项公式;(2)删去数列{}n a 的第3i 项(其中1,2,3,i =⋅⋅⋅),将剩余的项按从小到大的顺序排成新数列{}n b ,设{}n b 的前n 项和为n T ,请写出{}n b 的前6项,并求出6T 和2n T .18.为建设“书香校园”,学校图书馆对所有学生开放图书借阅,可借阅的图书分为“期刊杂志”与“文献书籍”两类.已知该校小明同学的图书借阅规律如下:第一次随机选择一类图书借阅,若前一次选择借阅“期刊杂志”,则下次也选择借阅“期刊杂志”的概率为13,若前一次选择借阅“文献书籍”,则下次选择借阅“期刊杂志”的概率为35.(1)设小明同学在两次借阅过程中借阅“期刊杂志”的次数为X ,求X 的分布列与数学期望; (2)若小明同学第二次借阅“文献书籍”,试分析他第一次借哪类图书的可能性更大,并说明理由.19.已知函数()ln ()af x x x a x=+∈R 在1x =处取得极值.(1)求(e)f 的值;(2)设()322111()2()2x P x m x x f x x x+=--+(其中m ∈R ),讨论函数()P x 的单调性;(3)若对[1,3]x ∀∈,都有2164()ln 11nx x f x x n x x +--+-≤-+,求n 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
省实验中学2017届高一下学期期中考试数 学本试卷共4页.满分为150分,考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的和考生号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,只交回答题卡.(注:以下黑体字母均表示向量)一、选择题:本大题12小题,每小题5分,满分60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量a=(4,-2),向量b=(x ,5),且a∥b,那么x 等于( ).A .10B .5C .-25 D .-102.若cos >0,sin <0,则角的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知扇形的圆心角为π弧度,半径为2,则扇形的面积是( ) A .πB .C .2πD .π4.已知向量13BA ,2=⎛⎫⎪ ⎝⎭,31BC ,2=⎛⎫ ⎪⎪⎝⎭,则∠ABC= ( )A .30°B .45°C .60°D .120°5.若向量,,满足条件++=,||=||=||=1,则△P 1P 2P 3的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .不能确定6.若11tan ,tan(),32ααβ=+=则tan β=( )A .17 B . 16 C . 57D . 567.函数2πsin 24log y x ⎛⎫=+ ⎪⎝⎭的单调递减.区间为( ) A .πππ4k k k ⎛⎤-+∈ ⎥⎝⎦Z ,, B .π3πππ,88k k k ⎡⎫++∈⎪⎢⎣⎭Z ,C .3ππππ88k k k ⎛⎤-++∈ ⎥⎝⎦Z ,, D .ππππ88k k k ⎛⎤-++∈ ⎥⎝⎦Z ,, 8. 对任意向量a ,b ,下列关系式中不恒成立的是 ( )A .|a ·b |≤|a ||b |B .|a-b |≤||a |-|b ||C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 29.若向量a ,b 的夹角为150°,|a |=,|b |=4,则|2a +b |=( ) A .2B .3C .4D .5 10.设a=cos6°-sin6°,b=2sin13°.cos13°,c=,则有( ) A .c<b<aB .a<b<cC .a<c<bD .b<c<a11.已知函数f(x)=3sin(ω>0)和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同,若x∈,则f(x)的取值围是( )A .[-3,3]B .C .D .12.定义区间[]21,x x 长度为12x x -,(12x x >),已知函数)0,(,1)()(f 22≠∈-+=a R a xa x a a x 的定义域与值域都是[]n ,m ,则区间[]n ,m 取最大长度时a 的值为( )A .332 B .1 或-3, C .-1. D .3D CBFA二、填空题:本大题共4小题,每小题5分,共20分.的取值范围是,则的夹角为与且满足(已知平面向量||120b ,1||)0,0a ,.130a a a b b b a-=≠≠ .14.函数y =A sin (ωx +φ) (ω>0,|φ|<π2,x ∈R )的部分图象如图所示,则函数表达式为 .15.函数f(x)=sin2x+sinxcosx+1的最小正周期是 ,单调递减区间是 .16.如图所示,在ABC ∆中,12AD AB =,F 在线段CD 上,设AB a =,AC b =,AF xa yb =+,则22x y +的最小值为 .三.解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知0<<2π,sin =54. (1)求tan 的值; (2)求cos 2+sin(+2π)的值. 18.(12分)已知1=a ,3=b ,(1) 若a ,b 的夹角为6π,求b a -;(2) 求b a +及b a ⋅的取值围; (3) 若21)2()3(=+⋅-b a b a ,求a 与b 的夹角θ. 19.(12分)已知函数f (x )=sin (π-ωx )cos ωx +cos 2ωx (ω>0)的最小正周期为π. (1) 求ω的值;(2) 将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g(x )的图象,求函数g (x )在区间[0,π16]上的最小值.20.(12分)如图,矩形ABCD 的长AD=2,宽AB=1,A ,D 两点分别在x 轴,y 轴的正半轴上移动,B ,C 两点在第一象限.求OB 2的最大值.21.(12分)已知向量m =,n =,设函数f(x)=m ·n .(1) 求函数f(x)的解析式.(2) 求函数f(x),x∈[-π,π]的单调递增区间.(3) 设函数h(x)=f(x)-k(k∈R)在区间[-π,π]上的零点的个数为a ,试探求a 的值及对应的k的取值围.22.(12分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆060141222=+--+y x y x M :及其上一点A(2,4).(1) 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x=6上,求圆N 的标准方程. (2) 设平行于OA 的直线l 与圆M 相交于B,C 两点,且BC=OA,求直线l 的方程. (3) 设点T(t,0)满足:存在圆M 上的两点P 和Q,使得+TA T Q =P T ,数t 的取值围.数学参考答案一、选择题(5*12=60分)1.D2.D3.D4.A5.C6.A7.B8.B9.A 10.C 11.D 12.D二、填空题(4*5=20分)13.⎥⎦⎤ ⎝⎛3320, 14.y =-4sin ⎝ ⎛⎭⎪⎪⎫π8x +π4 15.π;]87,83[ππππk k ++,k∈Z 16.51三、解答题(70分)17.(10分)(1)因为0<<2π,sin =54, 故cos =53,所以tan =34. -------5分(2)cos 2+sin(2π+)=1-2sin 2 +cos =-2532+53=258.-----------5分18.(12分)解:(1)∵a ,b 的夹角为6π, ∴ b a ⋅=|a |•|b |•cos 6π=23, ……1分∴|a -b |2=(a -b )2 ……2分=a 2+b 2 -2b a ⋅=1+3-3=1, ……3分 1=-b a ……4分(2b a b a b a +≤+≤]13,13[+-∈+b a ……6分b a b a ≤]3,0[∈⋅b a ……7分(3)21)2()3(=+⋅-b a b a ,2135222=-⋅-∴b b a a .……8分又|a |=1,|b |=3,23-=⋅∴.……9分1cos 2a b a b θ∴==-·23-. ……10分 ],0[πθ∈ ……没有此说明扣1分65πθ=∴. ……12分19.(12分) 解:(1)因为f (x )=sin (π-ωx )cos ωx +cos 2ωx ,所以f (x )=sin ωx cos ωx +1+cos 2ωx 2=12sin 2ωx +12cos 2ωx +12=22sin ⎝⎛⎭⎪⎫2ωx +π4+12. 由于ω>0,依题意得2π2ω=π,所以ω=1.-------------------4(2)由(1)知f (x )=22sin ⎝⎛⎭⎪⎫2x +π4+12,所以g (x )=f (2x )=22sin ⎝⎛⎭⎪⎫4x +π4+12.当0≤x ≤π16时,π4≤4x +π4≤π2,所以22≤sin ⎝⎛⎭⎪⎫4x +π4≤1.因此1≤g (x )≤1+22.故g (x )在区间⎣⎢⎡⎦⎥⎤0,π16上的最小值为1.-----------------------620.(12分)解:过点B 作BH⊥OA,垂足为H. 设∠OAD=θ,则∠BAH=-θ,--------------------------2OA=2cos θ,--------------------------------------------------3BH=sin=cos θ, ---------------------------------------4AH=cos =sin θ,-----------------------------------------5所以B(2cosθ+sinθ,cosθ),---------------------------7OB 2=(2cosθ+sinθ)2+cos 2θ=7+6cos 2θ+2sin2θ=7+4sin.------------------------------9由0<θ<,知<2θ+<,所以当θ=时,OB 2取得最大值7+4.---------------------------------------1221.(12分) 解:(1)f(x)=m ·n =4sin xcos x+2cosx=2sinx+2cosx=4sin.----3(2)由(1),知f(x)=4sin,x∈[-π,π],所以x+∈,由-≤x+≤,解得-≤x≤,所以函数f(x)的单调递增区间为.------------------------------7(3)当x∈[-π,π]时,函数h(x)=f(x)-k 的零点讨论如下:当k>4或k<-4时,h(x)无零点,a=0;----------------------------------8 当k=4或k=-4时,h(x)有一个零点,a=1;-------------------------------10 当-4<k<-2或-2<k<4时,h(x)有两个零点,a=2;---------------------------11 当k=-2时,h(x)有三个零点,a=3.--------------------------------------1222.(12分)解:(1)设点N(6,n),因为与x 轴相切,则圆N 为(x-6)2+(y-n)2=n 2,n>0,又圆N 与圆M 外切,圆M:(x-6)2+(y-7)2=25,则|7-n|=|n|+5,解得n=1,即圆N 的标准方程为(x-6)2+(y-1)2=1.--------------------------------------------4 (2)由题意得OA=25OA =2,设l:y=2x+b, 则圆心M 到直线l 的距离d=127b5b =55-++,则225d -()25b 255+-5,即⇒b=5或b=-15,即l:y=2x+5或y=2x-15.------------8(3)因为+TA T Q =P T ,所以=-TA TQ TP PQ =,=TA PQ ⇒=TA PQ ,(TA t =-根据|PQ |≤10,即⇒t∈[2所以t 的取值围为对于任意t∈[2-2欲使=TA PQ ,此时|TA |≤10,只需要作直线TA 的平行线,使圆心到直线的距离为2TA ,必然与圆交于P,Q 两点,此时=TA PQ ,即=TA PQ ,因此对于任意t ∈[2-2均满足题意,综上t∈[2。