工程流体水力学第四章习题答案

合集下载

流体力学第四章习题答案

流体力学第四章习题答案

第四章习题答案选择题(单选题)4.1等直径水管,A-A 为过流断面,B-B 为水平面,1、2、3、4为面上各点,各点的流动参数有以下关系:(c )(a )1p =2p ;(b )3p =4p ;(c )1z +1p g ρ=2z +2p g ρ;(d )3z +3p g ρ=4z +4pgρ。

4.2伯努利方程中z +p g ρ+22v gα表示:(a )(a )单位重量流体具有的机械能;(b )单位质量流体具有的机械能;(c )单位体积流体具有的机械能;(d )通过过流断面流体的总机械能。

4.3水平放置的渐扩管,如忽略水头损失,断面形心点的压强,有以下关系:(c )p p 2(a )1p >2p ;(b )1p =2p ;(c )1p <2p ;(d )不定。

4.4黏性流体总水头线沿程的变化是:(a ) (a )沿程下降;(b )沿程上升;(c )保持水平;(d )前三种情况都有可能。

4.5黏性流体测压管水头线的沿程变化是:(d ) (a )沿程下降;(b )沿程上升;(c )保持水平;(d )前三种情况都有可能。

4.6平面流动具有流函数的条件是:(d )无黏性流体;(b )无旋流动;(c )具有速度势;(d )满足连续性。

4.7一变直径的管段AB ,直径A d =0.2m ,B d =0.4m ,高差h ∆=1.5m ,今测得A p =302/m kN ,B p =402/m kN , B 处断面平均流速B v =1.5s m /.。

试判断水在管中的流动方向。

解: 以过A 的水平面为基准面,则A 、B 点单位重量断面平均总机械能为:42323010 1.0 1.50.40 4.89210009.80729.8070.2A A A A A p v H z g g αρ⨯⨯⎛⎫=++=++⨯= ⎪⨯⨯⎝⎭(m )2324010 1.0 1.51.5 5.69210009.80729.807B B B B B p v H z g g αρ⨯⨯=++=++=⨯⨯(m )∴水流从B 点向A 点流动。

工程流体水力学第四章习题答案

工程流体水力学第四章习题答案

第四章 理想流体动力学和平面势流答案4-1 设有一理想流体的恒定有压管流,如图所示。

已知管径1212d d =,212d D =,过流断面1-1处压强p 1>大气压强p a 。

试按大致比例定性绘出过流断面1-1、2-2间的总水头线和测压管水头线。

解:总水头线、测压管水头线,分别如图中实线、虚线所示。

4-2 设用一附有液体压差计的皮托管测定某风管中的空气流速,如图所示。

已知压差计的读数h =150mmH 2O ,空气的密度ρa =1.20kg/m 3,水的密度ρ =1000kg/m 3。

若不计能量损失,即皮托管校正系数c =1,试求空气流速u 0。

解:由伯努利方程得2002s a a p u p g g gρρ+= 00a 2()s p p u g gρ-=(1) 式中s p 为驻点压强。

由压差计得 0s p gh p ρ+=0s p p gh ρ-= (2)联立解(1)(2)两式得0a a 10002229.80.15m/s 49.5m/s 1.2gh h u gg g ρρρρ===⨯⨯⨯= 4-3 设用一装有液体(密度ρs =820kg/m 3)的压差计测定宽渠道水流中A 点和B 点的流速,如图所示。

已知h 1 =1m ,h 2 =0.6m ,不计能量损失,试求A 点流速u A 和B 点流速u B 。

水的密度ρ =1000kg/m 3。

解:(1)1229.81m/s 4.427m/s A u gh ==⨯⨯= (2)由伯努利方程可得22A AA u p h g gρ+= (1)22B BB u p h g gρ+= (2)式中A h 、A p 和B h 、B p 分别为A 点和B 点处的水深和驻点压强。

由(1)、(2)式可得2222A B A BA B p p u u h h g g gρ-=+-- (3) 由压差计得,22ρρρρ--++=A A s B B p gh gh gh gh p ,所以220.82A BA B p p h h h h gρ-=+-- (4) 由(3)式、(4)式得2222 4.427(10.82)0.6(10.82)0.8922229.8B A u u h g g =--=--=⨯ 29.80.892m/s 4.18m/s B u =⨯⨯=。

水力学答案——精选推荐

水力学答案——精选推荐

第四章 思考题:4-1:N-S 方程的物理意义是什么?适用条件是什么?物理意义:N-S 方程的精确解虽然不多,但能揭示实际液体流动的本质特征,同时也作为检验和校核其他近似方程的依据,探讨复杂问题和新的理论问题的参考点和出发点。

适用条件:不可压缩均质实际液体流动。

4-2 何为有势流?有势流与有旋流有何区别?答:从静止开始的理想液体的运动是有势流. 有势流无自身旋转,不存在使其运动的力矩.4—3 有势流的特点是什么?研究平面势流有何意义?有势流是无旋流,旋转角速度为零。

研究平面势流可以简化水力学模型,使问题变得简单且于实际问题相符,通过研究平面势流可以为我们分析复杂的水力学问题。

4-4.流速势函数存在的充分必要条件是流动无旋,即xu y u yx∂∂=∂∂时存在势函数,存在势函数时无旋。

流函数存在的充分必要条件是平面不可压缩液体的连续性方程,即就是0=∂∂+∂∂yu x u yx存在流函数。

4—5何为流网,其特征是什么?绘制流网的原理是什么 ?流网:等势线(流速势函数的等值线)和流线(流函数的等值线)相互正交所形成的网格 流网特征:(1)流网是正交网格(2)流网中的每一网格边长之比,等于流速势函数与流函数增值之比。

(3)流网中的每个网格均为曲线正方形 原理:自由表面是一条流线,而等势线垂直于流线。

根据入流断面何处流断面的已知条件来确定断面上 流线的位置。

4-6.利用流网可以进行哪些水力计算?如何计算?解:可以计算速度和压强。

计算如下:流场中任意相邻之间的单宽流量∆q 是一常数。

在流场中任取1、2两点,设流速为,,两端面处流线间距为∆m1,∆。

则∆q=∆m1=∆,在流网中,各点处网格的∆m 值可以直接量出来,根据上式就可以得出速度的相对变化关系。

如果流畅中某点速度已知,就可以其他各点的速度。

流畅中的压强分布,可应用能量方程求得。

z1++=++当两点位置高度z1和为已知,速度,u2已通过流亡求出时,则两点的压强差为-=-+-如果流畅中某一点压强已知,则其他个点压强均可求得4.7利用流网计算平面势流的依据是什么?(参考4.6的解释)4-8流网的形状与哪些因素有关?网格的疏密取决于什么因素?答:流网由等势线和流线构成,流网的形状与流函数φ(x,y)和流速势函数ψ(x,y)有关;由∆q=∆ψ=常数,∆q=u1∆m1=常数,得两条流线的间距愈大,则速度愈小,若间距愈小,则速度愈大。

流体力学第四章习题答案

流体力学第四章习题答案

第四章习题答案选择题(单选题)4、1等直径水管,A-A 为过流断面,B-B 为水平面,1、2、3、4为面上各点,各点的流动参数有以下关系:(c)(a)1p =2p ;(b)3p =4p ;(c)1z +1p g ρ=2z +2p g ρ;(d)3z +3p g ρ=4z +4pgρ。

4、2伯努利方程中z +p g ρ+22v gα表示:(a)(a)单位重量流体具有的机械能;(b)单位质量流体具有的机械能;(c)单位体积流体具有的机械能;(d)通过过流断面流体的总机械能。

4、3水平放置的渐扩管,如忽略水头损失,断面形心点的压强,有以下关系:(c)p p 2(a)1p >2p ;(b)1p =2p ;(c)1p <2p ;(d)不定。

4、4黏性流体总水头线沿程的变化就是:(a)(a)沿程下降;(b)沿程上升;(c)保持水平;(d)前三种情况都有可能。

4、5黏性流体测压管水头线的沿程变化就是:(d)(a)沿程下降;(b)沿程上升;(c)保持水平;(d)前三种情况都有可能。

4、6平面流动具有流函数的条件就是:(d)无黏性流体;(b)无旋流动;(c)具有速度势;(d)满足连续性。

4、7一变直径的管段AB ,直径A d =0、2m,B d =0、4m,高差h ∆=1、5m,今测得A p =302/m kN ,B p =402/m kN , B 处断面平均流速B v =1、5s m /、。

试判断水在管中的流动方向。

解: 以过A 的水平面为基准面,则A 、B 点单位重量断面平均总机械能为:42323010 1.0 1.50.40 4.89210009.80729.8070.2A A A A A p v H z g g αρ⨯⨯⎛⎫=++=++⨯= ⎪⨯⨯⎝⎭(m)2324010 1.0 1.51.5 5.69210009.80729.807B B B B B p v H z g g αρ⨯⨯=++=++=⨯⨯(m)∴水流从B 点向A 点流动。

工程流体力学第4、第6章 习题解答

工程流体力学第4、第6章 习题解答

第四章 习题解答4-1 用直径为100mm 的管道输送流量为10kg/s 的水,如水温为5℃,试确定管内水的流态。

如用这管道输送同样质量流量的石油,已知石油密度为3/850m kg =ρ运动粘滞系数为s cm /14.12,试确定石油的流态。

解:水温为5℃时,其密度为3/1000m kg =ρ,运动粘滞系数为s m /10519.126−×=γ因此,水在管道中流动的体积流量为: s m mkg skg Q /01.0/1000/1033== 流速为:s m mm sm A Q /27.11000100(14.341/01.023=××==υ雷诺数为:83863/10519.11000100/27.1Re 26=××=−sm mms m 为紊流 当输送石油时: s m mkg s kg Q /012.0/850/1033== 流速为:s m mm sm A Q /5.1)1000100(14.341/012.023=××==υ雷诺数为:1316/1014.11000100/5.1Re 24=××=−sm mms m 为层流 4-2 一圆形风道,管径为300mm ,输送的空气温度为20℃,求气流保持层流时的最大流量。

若输送的空气量为200kg/h ,气流是层流还是紊流?解:空气温度为20℃时,运动粘滞系数s m /107.1526-×=γ,根据题意有:6107.1510003002000−××=mm υ 解方程得:s m /105.0=υ气体流量为: s m s m mm Q /0074.0/105.01000300(14.34132=×××=质量流量为:h kg s kg m kg s m Q /29/0081.0/093.1/0074.033==×= 若输送的空气量为200kg/h ,因此,空气在管道中流动的体积流量为:s m m kg hkg Q /051.03600/093.1/20033=×= 流速为:s m mm sm A Q /72.0)1000300(14.341/051.023=××==υ雷诺数为:13758/107.151000300/72.0Re 26=××=−sm mms m 为紊流 4-3 断面为矩形的排水沟,沟底宽为20cm ,水深为15cm ,流速为0.15m/s ,水温为15℃。

流体力学第四章答案(DOC)

流体力学第四章答案(DOC)

第四章习题简答4-2 管径cm d 5=,管长m L 6=的水平管中有比重为0.9油液流动,水银差压计读数为cm h 2.14=,三分钟内流出的油液重量为N 5000。

管中作层流流动,求油液的运动粘度ν。

解: 管内平均流速为s m d Q v /604.1)4/05.0/(180/)9.09800/(5000)4//(22=⨯⨯==ππ 园管沿程损失h f 为γ(h 水银γ/油)1-=0.142(13.6/0.9-1)=2.004m园管沿程损失h f 可以用达西公式表示: g v d l h f 22λ=,对层流, Re /64=λ, 有fgdh lv 264Re 2=, 但νvd =Re , 从而lv h gd f 6422=ν, 代入已知量, 可得到s m /10597.124-⨯=ν题 4-2 图4-4 为了确定圆管内径,在管内通过s cm /013.02=ν的水,实测流量为s cm /353,长m 15管段上的水头损失为cm 2水柱。

试求此圆管的内径。

解:422222212842642642642Re 64gd lQ d d g lQ gd lv g v d l vd g v d l h f πνπννν=⎪⎭⎫ ⎝⎛==== m gd lQ d 0194.002.08.9210013.0351********4=⨯⨯⨯⨯⨯⨯==∴-ππν 4-6 比重85.0s m /10125.024-⨯=ν的油在粗糙度mm 04.0=∆的无缝钢管中流动,管径cm d 30=,流量s m Q /1.03=, 求沿程阻力系数λ。

解: 当78)(98.26∆d >Re>4000时,使用光滑管紊流区公式:237.0Re221.00032.0+=λ。

园管平均速度s m d q v /4147.1)4//(2==π, 流动的33953Re ==νvd , : 723908)(98.2678=∆d , 从而02185.0Re /221.00032.0237.=+=o λ4-8 输油管的直径mm d 150=,流量h m Q /3.163=,油的运动黏度s cm /2.02=ν,试求每公里长的沿程水头损失。

[工程流体力学(水力学)]1-4章习题解答

[工程流体力学(水力学)]1-4章习题解答

第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。

试求m h 5.0=时渠底(y =0)处的切应力。

[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。

[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。

[解]第二章 流体静力学2-1.一密闭盛水容器如图所示,U 形测压计液面高于容器内液面h=1.5m ,求容器液面的相对压强。

流体力学第4章课后习题答案

流体力学第4章课后习题答案

第一章习题答案选择题(单选题)1.1 按连续介质的概念,流体质点是指:(d )(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。

1.2 作用于流体的质量力包括:(c )(a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。

1.3 单位质量力的国际单位是:(d )(a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。

1.4 与牛顿内摩擦定律直接有关的因素是:(b )(a )剪应力和压强;(b )剪应力和剪应变率;(c )剪应力和剪应变;(d )剪应力和流速。

1.5 水的动力黏度μ随温度的升高:(b )(a )增大;(b )减小;(c )不变;(d )不定。

1.6 流体运动黏度ν的国际单位是:(a )(a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ⋅。

1.7 无黏性流体的特征是:(c )(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p=ρ。

1.8 当水的压强增加1个大气压时,水的密度增大约为:(a )(a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。

1.9 水的密度为10003kg/m ,2L 水的质量和重量是多少? 解: 10000.0022m V ρ==⨯=(kg )29.80719.614G mg ==⨯=(N )答:2L 水的质量是2 kg ,重量是19.614N 。

1.10 体积为0.53m 的油料,重量为4410N ,试求该油料的密度是多少? 解: 44109.807899.3580.5m G g V V ρ====(kg/m 3) 答:该油料的密度是899.358 kg/m 3。

1.11 某液体的动力黏度为0.005Pa s ⋅,其密度为8503/kg m ,试求其运动黏度。

流体力学第四章参考答案

流体力学第四章参考答案

流体力学第四章参考答案流体力学是研究流体运动和力学性质的学科,它在工程学、物理学和地球科学等领域中具有重要的应用价值。

第四章是流体力学中的一个重要章节,主要讨论了流体的运动方程和流体的动力学性质。

在本文中,将对流体力学第四章的参考答案进行详细的论述和解释。

首先,我们来讨论流体的运动方程。

流体的运动方程是描述流体运动的基本方程,它包括连续性方程、动量方程和能量方程。

连续性方程描述了流体的质量守恒,即单位时间内通过某一截面的质量流量等于该截面内质量的减少量。

动量方程描述了流体的动量守恒,即单位时间内通过某一截面的动量流量等于该截面内动量的减少量。

能量方程描述了流体的能量守恒,即单位时间内通过某一截面的能量流量等于该截面内能量的减少量。

其次,我们来讨论流体的动力学性质。

流体的动力学性质包括粘性、密度、压力和速度等。

粘性是流体的一种性质,它描述了流体内部分子之间的摩擦力。

密度是流体的另一种性质,它描述了单位体积内的质量。

压力是流体的一种性质,它描述了单位面积上受到的力的大小。

速度是流体的运动状态,它描述了单位时间内流体通过某一截面的体积。

在解答流体力学问题时,我们需要根据具体情况选择合适的运动方程和动力学性质。

首先,我们可以根据问题中给出的条件和要求选择适当的运动方程。

例如,如果问题中要求求解流体的速度分布,则我们可以选择动量方程。

其次,我们可以根据问题中给出的条件和要求选择适当的动力学性质。

例如,如果问题中给出了流体的密度和压力分布,则我们可以选择密度和压力作为动力学性质。

在解答流体力学问题时,我们还需要运用一些基本的解题方法和技巧。

首先,我们可以利用物理规律和数学方法建立数学模型。

例如,我们可以利用连续性方程、动量方程和能量方程建立流体的运动方程。

其次,我们可以利用数学工具和计算方法求解数学模型。

例如,我们可以利用微积分和偏微分方程求解流体的运动方程。

最后,我们可以利用实验和观测数据验证数学模型和解题结果。

工程流体力学课后习题答案

工程流体力学课后习题答案

第1章绪论【1-1】500cm3的某种液体,在天平上称得其质量为0.453kg,试求其密度和相对密度。

【解】液体的密度相对密度【1-2】体积为5m3的水,在温度不变的条件下,当压强从98000Pa增加到4.9×105Pa时,体积减少1L。

求水的压缩系数和弹性系数。

【解】由压缩系数公式Pa-【1-3】温度为20℃,流量为60m3/h的水流入加热器,如果水的体积膨胀系数βt=0.00055K-1,问加热到80℃后从加热器中流出时的体积流量变为多少?【解】根据膨胀系数Vdt则1【1-4】用200升汽油桶装相对密度0.70的汽油。

罐装时液面上压强为98000Pa。

封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa。

若汽油的膨胀系数为0.0006K-1,弹性系数为13.72×106Pa,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少?【解】(1)由pdVP1可得,由于压力改变而减少的体积为VdpE由于温度变化而增加的体积,可由1dVtVdT得(2)因为t,相比之下可以忽略由压力变化引起的体积改变,则由得【1-5】图中表示浮在油面上的平板,其水平运动速度为u=1m/s,油品的粘度μ=0.9807Pa·s,求作单位面积上的阻力。

【解】根据牛顿内摩擦定律dudy习题1-5图δ=10mm,用在平板则习题1-6图【1-6】已知半径为R圆管中的流速分布为r2式中c为常数。

试求管中的切应力τ与r的关系。

【解】根据牛顿3第2章流体静力学【2-1】容器中装有水和空气,求A、B、C和D各点的表压力?【解】空气各点压力相同,与空气接触的液面压力即为空气的压力,另外相互连通的同种液体同一高度压力相同,即等压面【2-2】如图所示的U形管中装有水银与水,试求:(1)A、C两点的绝对压力及表压力各为多少?(2)求A、B两点的高度差h?【解】由p a题2-2图,,得(1)+1(2)选取U形管中水银的最低液面为等压面,则得wH题2-3图w13.6【2-3】在一密闭容器内装有水及油,密度分别为ρw及ρo,油层高度为h1,容器底部装有水银液柱压力计,读数为R,水银面与液面的高度差为h2,试导出容器上方空间的压力p与读数R的关系式。

[工程流体力学(水力学)]1-4章习题解答

[工程流体力学(水力学)]1-4章习题解答

第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。

试求m h 5.0=时渠底(y =0)处的切应力。

[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。

[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。

[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。

工程流体力学第四章自测题答案

工程流体力学第四章自测题答案

所以
a1=-1, b1 =-1, c1 =-1
1
π1 =
μ ρVD
对于 Π2 项:
[ M 0 L0T 0 ] = [ L][ ML−3 ] a2 [ LT −1 ]b2 [ L]c2
对于
M:0=a2 L: 0=1-3a2+b2+c2 T: 0=-b2
所以
a2=0, b2 =0, c2 =-1
Δ D 对于 Π3 项:
V1 + V3 2
② h j2 所以,
V + V3 ⎞ ⎛ ⎛ V1 + V3 ⎞ − V3 ⎟ ⎜V1 − 1 ⎟ ⎜ (V1 − V3 )2 2 ⎠ 2 ⎝ ⎝ ⎠ + = = 2g 2g 4g
2
2
h j2 h j1
=
1 2
即分两次扩大最多可减少一半损失。
4-5.
如图所示,水在压强作用下从密封的下水箱沿竖直管道流入上水箱中,已知 h=
解:① 求 V2 一次扩大的: h j1 =
(V1 − V3 )2
2g
两次扩大的: h j 2 =
(V1 − V2 )2 (V2 − V3 )2
2g + 2g
当 V1、V3 确定时,产生的最小阻力的值 V2 由下式求出:
3
dh j 2 dV2 ∴ V2 =
=
1 [− 2(V1 − V2 ) + 2(V2 − V3 )] = 0 2g
第 4 章 流动阻力和水头损失
4-1. 在圆管层流中, 沿壁面的切应力 τ0 与管径 d、 流速 V 及粘性系数 µ 有关,
用量纲分析法导出此关系的一般表达式。 解:n=4,应用雷利法,假设变量之间可能的关系为一简单的指数方程:

流体力学第四章答案剖析

流体力学第四章答案剖析

第四章习题简答4-2 管径cm d 5=,管长m L 6=的水平管中有比重为0.9油液流动,水银差压计读数为cm h 2.14=,三分钟内流出的油液重量为N 5000。

管中作层流流动,求油液的运动粘度ν。

解: 管内平均流速为s m d Q v /604.1)4/05.0/(180/)9.09800/(5000)4//(22=⨯⨯==ππ 园管沿程损失h f 为γ(h 水银γ/油)1-=0.142(13.6/0.9-1)=2.004m园管沿程损失h f 可以用达西公式表示: g v d l h f 22λ=,对层流, Re /64=λ, 有fgdh lv 264Re 2=, 但νvd =Re , 从而lv h gd f 6422=ν, 代入已知量, 可得到s m /10597.124-⨯=ν题 4-2 图4-4 为了确定圆管内径,在管内通过s cm /013.02=ν的水,实测流量为s cm /353,长m 15管段上的水头损失为cm 2水柱。

试求此圆管的内径。

解:422222212842642642642Re 64gd lQ d d g lQ gd lv g v d l vd g v d l h f πνπννν=⎪⎭⎫ ⎝⎛==== m gd lQ d 0194.002.08.9210013.0351********4=⨯⨯⨯⨯⨯⨯==∴-ππν 4-6 比重85.0s m /10125.024-⨯=ν的油在粗糙度mm 04.0=∆的无缝钢管中流动,管径cm d 30=,流量s m Q /1.03=, 求沿程阻力系数λ。

解: 当78)(98.26∆d >Re>4000时,使用光滑管紊流区公式:237.0Re221.00032.0+=λ。

园管平均速度s m d q v /4147.1)4//(2==π, 流动的33953Re ==νvd , : 723908)(98.2678=∆d , 从而02185.0Re /221.00032.0237.=+=o λ4-8 输油管的直径mm d 150=,流量h m Q /3.163=,油的运动黏度s cm /2.02=ν,试求每公里长的沿程水头损失。

[工程流体力学(水力学)]1-4章习题解答

[工程流体力学(水力学)]1-4章习题解答

第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 那么增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少〔百分数〕? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。

试求m h 5.0=时渠底〔y =0〕处的切应力。

[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 〔见图示〕,求油的粘度。

[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yuATmgddsinμθ==001.0145.04.062.22sin8.95sin⨯⨯⨯⨯==δθμuAmgsPa1047.0⋅=μ1-5.液体中流速沿y方向分布如图示三种情况,试根据牛顿内摩擦定律yuddμτ=,定性绘出切应力沿y 方向的分布图。

[解]1-6.为导线外表红绝缘,将导线从充满绝缘涂料的模具中拉过。

导线直径0.9mm,长度20mm,涂料的粘度μ=0.02Pa.s。

工程流体力学课后习题答案4-7章

工程流体力学课后习题答案4-7章

第四章 流体动力学【4-1】直径d =100mm 的虹吸管,位置如图所示。

求流量和2、3点的压力(不计水头损失)。

【解】列1、4点所在断面的伯努利方程,以过4点的水平面为基准面。

24500 0029.8v ++=++⨯得 4 =9.9 m/s v 2234 3.140.19.90.078 m /s 44π==⨯⨯=Q d v列1、2点所在断面的伯努利方程,以过1点的水平面为基准面222000 02p v g gρ++=++ (v 2=v 4)得 2242210009.9 4.910Pa 22ρ⨯=-=-=-⨯v p列1、3点所在断面的伯努利方程,以过1点的水平面为基准面233000 22p v g gρ++=++ (v 3=v 4)得 2439.9298001000 6.8610Pa 2=-⨯-⨯=-⨯p【4-2】一个倒置的U 形测压管,上部为相对密度0.8的油,用来测定水管中点的速度。

若读数△h =200mm ,求管中流速u =?【解】选取如图所示1-1、2-2断面列伯努利方程,以水管轴线为基准线212 0 002w w p p u g g gρρ++=++其中:p 1和p 2分别为1-1、2-2断面轴线上的压力。

设U 形测压管中油的最低液面到轴线的距离为x ,选取U 形测压管中油的最高液面为等压面,则12()w o w p gx g h p g x h ρρρ--∆=-+∆题 4-1图21()w o p p g h ρρ-=-∆则0.885m/s u ===【4-3】图示为一文丘里管和压力计,试推导体积流量和压力计读数之间的关系式。

当z 1=z 2时,ρ=1000kg/m 3,ρH =13.6×103kg/m 3,d 1=500mm ,d 2=50mm ,H =0.4m ,流量系数α=0.9时,求Q =? 【解】列1-1、2-2断面的伯努利方程、以过1-1断面中心点的水平线为基准线。

[工程流体力学(水力学)]1-4章习题解答

[工程流体力学(水力学)]1-4章习题解答

2r2 z C 2g 液体不溢出,要求 zI zII 2h ,
I
h
z
II
以 r1 a, r2 b 分别代入等压面方程得:
2
gh a2 b2
max 2
gh a2 b2
a
b
a>b
2-13.如图, 600 ,上部油深h1=1.0m,下部水深h2=2.0m,油的重度 =8.0kN/m3,求:平板ab单位
x
1.5
2-6.矩形平板闸门 AB 一侧挡水。已知长 l=2m,宽 b=1m,形心点水深 hc=2m,倾角 =45 ,闸门上
缘 A 处设有转轴,忽略闸门自重及门轴摩擦力。试求开启闸门所需拉力。
[解] 作用在闸门上的总压力:
P pc A ghc A 10009.8 2 21 39200N
作用点位置:
V
[h(
h sin 45
h)
1 2
h2] 8
(
h sin 45
)2
[3
(
3 sin 45
3)
1 2
32 ]
8
(
3 sin 45
)2
1.1629m3
铅垂分力:
Fpz gV 10009.811.1629 11.41kN
合力:
Fp Fp2x Fp2z 44.1452 11.412 45.595kN
2-3.多管水银测压计用来测水箱中的表面压强。图中高程的单位为 m。试求水面的绝对压强 pabs。
[解] p0 水g(3.0 1.4) 汞g(2.5 1.4) 水g(2.5 1.2) pa 汞g(2.3 1.2) p0 1.6水g 1.1汞g 1.3水g pa 1.1汞g p0 pa 2.2汞g 2.9水g 98000 2.213.6103 9.8 2.9103 9.8 362.8kPa

水力学 第四章课后题答案

水力学 第四章课后题答案

4.7 水平突然扩大管路,如图所示,已知:直径 d1=5cm,直径d2=10cm,管中流量Q=20l/s,试 求:U形水银比压计中的压差读数Δh。
解:以管轴中心线为基准面,写1-1,2-2断面
的能量方程
p1
g
1v12
2g
p2
g
2v22
2g
hj
p1 p2 v22 v12 (v1 v2 )2
(2)经2分钟流入量水箱的水量为0.329m3。试 求弯管的局部水头损失系数ζ值。
解:流量 Q V 0.329 0.00274m3 / s
T 120
v Q 1.4m / s
A
hf
l d
v2 2g
0.6m
hj hw hf 0.629 0.6 0.029m
hj
v2 2g
2ghj v2
4.1 雷诺数的物理意义?为什么可以判别流态?说明由层流到湍流的物理过程。
答:在流体运动中惯性力对黏滞力比值的无量纲数。Re=UL/ν .其中U为速度特 征尺度,L为长度特征尺度,ν为运动学黏性系数.
P116.P118 4.2 层流有什么特点?如何判别? 答:P116,雷诺数判别 4.3 何谓粘性底层?它的厚度对沿程水头损失有何影响? 答:在湍流中,紧靠固体边界附近的地方,因脉动流速很小,由脉动流速产生 的附加切应力也很小,而流速梯度却很大,所以粘滞切应力起主导作用,其流态 基本上属于层流。因此湍流中不是整个液流都是湍流,在紧靠固体边界表面有一 层极薄的层流层存在,该层流层就叫粘性底层。
0
1
0.023
[2 lg(3.7 d )]2
求出的λ值与假设相符合
通过上述计算说明同一个管径的水管中流过不同 的流量Q,其管壁可以是光滑区,或过渡粗糙区, 也可以是粗糙区。

[工程流体力学(水力学)]1-4章习题解答

[工程流体力学(水力学)]1-4章习题解答

[⼯程流体⼒学(⽔⼒学)]1-4章习题解答[解]⽊块重量沿斜坡分⼒ F 与切⼒T 平衡时,等速下滑第⼀章绪论1-1. 20C 的⽔2.5m 3,当温度升⾄80C 时,其体积增加多少?[解]温度变化前后质量守恒,即'2V 23⼜20C 时,⽔的密度⼼=998.23kg/m 80C 时,⽔的密度=971.83kg/m 3RM3V 2 ⼆⼇=2.5679m「2则增加的体积为 V ⼆V 2 -V^ 0.0679 m 3 1-2.当空⽓温度从 0C 增加⾄20C 时,运动粘度增加15%,重度减少10%,问此时动⼒粘度」增加多少(百分数)?[解]」=期⼆(1 0.15)、.原(1 -0.1) T 原=1.035 原「原=1.035 "原-「原1.035?i 原⼀「原0.035⼙原⼙原此时动⼒粘度 J增加了 3.5%21-3 ?有⼀矩形断⾯的宽渠道,其⽔流速度分布为u =0.002 Jg (hy-0.5y )川,式中'、」分别为⽔的密度和动⼒粘度,h 为⽔深。

试求h =0.5m 时渠底(y=0)处的切应⼒。

” du r ,, [解] 0.002 : g (h -y )/」dy当 h =0.5m , y=0 时= 0.002 1000 9.807(0.5 —0)= 9.807Pa1-4.⼀底⾯积为45 x 50cm 2,⾼为1cm 的⽊块,质量为5kg ,沿涂有润滑油的斜⾯向下作等速运动,⽊块运动速度u=1m/s ,油层厚1cm ,斜坡⾓22.620 (见图⽰),求油的粘度。

dy-0.002,g(h -y)mg si nr = ^A dudymg sin ⽇5x9.8xsin 22.62P =—AU5」-0.1047Pa s沿y⽅向的分布图。

1-6 ?为导线表⾯红绝缘,将导线从充满绝缘涂料的模具中拉过。

已知导线直径的粘度J =0.02Pa. s。

若导线以速率50m/s拉过模具,试求所需牵拉⼒。

流体力学第四章答案..

流体力学第四章答案..

第四章习题简答4-2 管径cm d 5=,管长m L 6=的水平管中有比重为0.9油液流动,水银差压计读数为cm h 2.14=,三分钟内流出的油液重量为N 5000。

管中作层流流动,求油液的运动粘度ν。

解: 管内平均流速为s m d Q v /604.1)4/05.0/(180/)9.09800/(5000)4//(22=⨯⨯==ππ 园管沿程损失h f 为γ(h 水银γ/油)1-=0.142(13.6/0.9-1)=2.004m园管沿程损失h f 可以用达西公式表示:gv d l h f 22λ=,对层流, Re /64=λ, 有fgdh lv 264Re 2=, 但νvd =Re , 从而lv h gd f 6422=ν, 代入已知量, 可得到s m /10597.124-⨯=ν题 4-2 图4-4 为了确定圆管内径,在管内通过s cm /013.02=ν的水,实测流量为s cm /353,长m 15管段上的水头损失为cm 2水柱。

试求此圆管的内径。

解:422222212842642642642Re 64gd lQ d d g lQ gd lv g v d l vd g v d l h f πνπννν=⎪⎭⎫ ⎝⎛==== m gd lQ d 0194.002.08.9210013.0351********4=⨯⨯⨯⨯⨯⨯==∴-ππν 4-6 比重85.0,s m /10125.024-⨯=ν的油在粗糙度mm 04.0=∆的无缝钢管中流动,管径cm d 30=,流量s m Q /1.03=, 求沿程阻力系数λ。

解: 当78)(98.26∆d >Re>4000时,使用光滑管紊流区公式:237.0Re221.00032.0+=λ。

园管平均速度s m d q v /4147.1)4//(2==π, 流动的33953Re ==νvd , : 723908)(98.268=∆d , 从而02185.0Re /221.00032.0237.=+=o λ4-8 输油管的直径mm d 150=,流量h m Q /3.163=,油的运动黏度s cm /2.02=ν,试求每公里长的沿程水头损失。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章理想流体动力学和平面势流答案4-1 设有一理想流体的恒定有压管流,如图所示。

已知管径1212d d=,212d D=,过流断面1-1处压强p1>大气压强p a。

试按大致比例定性绘出过流断面1-1、2-2间的总水头线和测压管水头线。

解:总水头线、测压管水头线,分别如图中实线、虚线所示。

4-2 设用一附有液体压差计的皮托管测定某风管中的空气流速,如图所示。

已知压差计的读数h=150mmH2O,空气的密度ρa =1.20kg/m3,水的密度ρ =1000kg/m3。

若不计能量损失,即皮托管校正系数c=1,试求空气流速u0。

解:由伯努利方程得2002sa ap u pg g gρρ+=a2()sp pu ggρ-=(1)式中sp为驻点压强。

由压差计得0sp gh pρ+=sp p ghρ-=(2)联立解(1)(2)两式得a a10002229.80.15m/s49.5m/s1.2gh hu g ggρρρρ===⨯⨯⨯=4-3 设用一装有液体(密度ρs=820kg/m3)的压差计测定宽渠道水流中A点和B点的流速,如图所示。

已知h1 =1m,h2 =0.6m,不计能量损失,试求A点流速u A和B点流速u B。

水的密度ρ=1000kg/m3。

解:(1)1229.81m/s 4.427m/s A u gh ==⨯⨯= (2)由伯努利方程可得22A AA u p h g gρ+= (1)22B BB u p h g gρ+= (2)式中A h 、A p 和B h 、B p 分别为A 点和B 点处的水深和驻点压强。

由(1)、(2)式可得2222A B A BA B p p u u h h g g gρ-=+-- (3) 由压差计得,22ρρρρ--++=A A s B B p gh gh gh gh p ,所以220.82A BA B p p h h h h gρ-=+-- (4) 由(3)式、(4)式得2222 4.427(10.82)0.6(10.82)0.8922229.8B A u u h g g =--=--=⨯ 29.80.892m/s 4.18m/s B u =⨯⨯=。

4-4 设有一附有空气-水倒U 形压差计装置的皮托管,来测定管流过流断面上若干点的流速,如图所示,已知管径d =0.2m ,各测点距管壁的距离y 及其相应的压差计读数h 分别为:y =0.025m ,h =0.05m ;y =0.05m ,h =0.08m ;y =0.10m ,h =0.10m 。

皮托管校正系数c =1.0,试求各测点流速,并绘出过流断面上流速分布图。

解:因2u c gh =,所以112129.80.05m/s 0.99m/s u c gh ==⨯⨯⨯= 222129.80.08m/s 1.25m/s u c gh ==⨯⨯⨯= 332129.80.10m/s 1.40m/s u c gh ==⨯⨯⨯=过流断面上的流速分布如图所示。

4-5 已知2222,,0,x yz y xu u u x y x y -===++试求该流动的速度势函数,并检查速度势函数是否满足拉普拉斯方程。

解:(1)在习题3-19中,已判别该流动为有势流,所以存在速度势函数Φ。

2222d d d d d x y y x u x u y x y x y x y -Φ=+=+++222d d 1d()1()y x x y yy x y x x-+==++积分上式可得arctanΦ=y x(2)22222222(),()Φ∂∂-==∂∂++y xyx x x y x y 2222222222(),0()ΦΦ∂∂-∂===∂∂++∂x xy y y x y x y z 2222222200()()xy xyx y x y -+=++满足拉普拉斯方程。

4-6 已知22x y u x y -=+,22y xu x y=+,0z u =,试求该流动的流函数ψ和流线方程、迹线方程。

解:(1)在习题3-8中,已判别该流动满足连续性方程,所以存在流函数ψ。

等流函数线方程即为流线方程。

d d d 0x y u y u x ψ=-=,2222d d 0y xy x x y x y --=++2222d d 0y xy x x y x y +=++,2222d()0x y x y +=+ 积分上式可得22ln()x y C ψ=+=(2)迹线方程d d x yx yu u =, 2222d d x yy x x y x y =-++ 2222()d ()d x y x x x y y y -+=+2222d d 0y y x xx y x y +=++,2222d()0x y x y +=+ 积分上式可得22ln()x y C +=4-7 已知u x =-ky ,u y =kx ,u z =0,试求该流动的流函数ψ和流线方程、迹线方程及其形状(k 是不为零的常数)。

解:流函数和流线方程:22d d d d d [d()]2x y ku y u x ky y kx x x y ψ=-=--=-+ 积分上式可得22x y ψ=+迹线方程:d d d -0x y z ky kx == 222x y r +=,z C =由上式可知,流线为平行于Oxy 平面的同心圆族,由于恒定流的流线与流线上液体质点的迹线相重合,所以迹线亦是同心圆族,液体质点作圆周运动。

4-8 已知u x =4x ,u y =-4y ,试求该流动的速度势函数和流函数,并绘出流动图形。

解:由习题3-8和3-19,可知该流动存在流函数ψ和速度势函数Φ。

4Φ∂==∂x u x x,4Φ∂==-∂y u y y 22d d d 4d 4d 2d()Φ=+=-=-x y u x u y x x y y x y积分上式可得:222()Φ=-x y4x u x y ψ∂==∂,4y u y xψ∂=-=∂ d d d 4d 4d 4d()x y u y u x x y y x xy ψ=-=+=积分上式可得 4xy ψ= 流动图形如题4-16图所示。

4-9 已知Φ=a (x 2-y 2),式中a 为实数且大于零。

试求该流动的流函数ψ。

解:2Φ∂==∂x u ax x,2Φ∂==-∂y u ay y d d d 2d 2d 2d()x y u y u x ax y ay x a xy ψ=-=+=积分上式可得 2axy ψ=4-10 已知速度势函数cos 2πΦϕρ=M,式中M 是不为零的常数。

试求该流动的流函数,并绘出流动图形。

解:21cos 2ρΦψϕρπρρϕ∂∂==-=∂∂M u ,cos 2Mψϕϕπρ∂=-∂ 对ϕ积分可得d ()cos d ()sin ()2π2πM Mf f f ψψϕρϕϕρϕρϕρρ∂=+=-+=-+∂⎰⎰ 上式对ρ取偏导数,则'2sin ()2πM f u ϕψϕρρρ∂=+=-∂ 又 2sin 2πϕΦϕρϕρ∂-=-=∂Mu 由上两式可得 '()0f ρ=,即()f ρ=常数。

因此可得sin 2πM ψϕρ=-上述流动即为偶极流。

流动图形可参照题4—10图。

4-11 已知流函数ψ =3x 2y -y 3,试判别是有势流还是有涡流。

证明任一点的流速大小仅取决于它与坐标原点的距离ρ。

解:2233,6x y u x y u xy y xψψ∂∂==-=-=-∂∂ 6,6y xu u y y y x∂∂=-=-∂∂,所以是有势流。

2222222222249()369()9x y u u u x y x y x y ρ=+=-+=+=23u ρ=,所以任一点的流速大小仅取决于它与坐标原点的距离。

题4-10图4-12 设水平面流场中的速度分布为ku uϕρ==,0uρ=,k是不为零的常数,如图所示。

试求流场中压强p的分布。

设ρ=∞,u=0处的压强为p∞;水的密度为ρF。

解:由例3-6(如题4-12图所示)知,该流体运动除原点(ρ=0)外,是有势流。

因是有势流,理想流体恒定流伯努利方程式适用于整个有势流;又因在同一水平面内,所以流场中除原点(ρ=0,u=∞)外,2F F2u ppg g gϕρρ∞+=,因此22F F222u kp p pϕρρρ∞∞=-=-。

由上式可知,压强p随半径ρ的减小而降低。

4-13 水桶中的水从桶底中心小孔流出时,常在孔口上面形成旋转流动,水面成一漏斗形,如图a所示。

流速场在平面内,如图b所示,可表示为ku uϕρ==,uρ=0,k是不为零的常数。

试求自由水面曲线的方程式。

解:该流体流动除原点(ρ=0)外,是有势流。

因是有势流,理想流体恒定流伯努利方程式适用于整个有势流,流动剖面如图所示。

当ρ∞→时,水面高程为h;另取自由表面上任意点M,对上述两点写伯努利方程,可得2222222Muu kh z z zg g gϕρ=+=+=+,222kz hgρ=-, 该式即为自由表面方程式。

4-14 直角(90)弯头中的流动,设为平面势流,如图所示。

已知弯头内、外侧壁的曲率半径r1、r2分别为0.4m和1.4m,直段中均匀来流的流速为10m/s,流体密度为1.2kg/m3。

试求弯头内外侧壁处的流速和内外侧壁的压强差。

解:由例4-6(如题4-14图所示)知弯段内的流速分布为kuϕρ=,式中k是不为零的常数。

k值可由连续性方程决定,即221121d d lnr rr rrkvb u krϕρρρ===⎰⎰10(1.40.4)7.991.4ln0.4k⨯-==外壁处流速227.99m/s 5.71m/s1.4kuϕρ===,内壁处流速117.99m/s19.98m/s0.4kuϕρ===内外壁处的压强差题4-12图题4-14图12222222F21 1.2()(19.98 5.71)N/m 219.96N/m 22p p p u u ϕϕρ∆=-=-=-= (注:外侧压强大)4-15 已知(1)0u ρ=,ku ϕρ=,k 是不为零的常数;(2)0u ρ=,2u ϕωρ=,ω为常数。

试求上述两流场中半径为ρ1和ρ2的两条流线间流量的表示式。

解:(1)ku ϕψρρ∂=-=-∂,ln ()k f ψρϕ=-+ '1()0u f ρψϕρϕρ∂===∂,1()f C ϕ= 1ln k C ψρ=-+,1212lnq k ρψψρ=-= (2)2u ϕψωρρ∂=-=-∂,221()2f ψωρϕ=-+ '1()0u f ρψϕρϕρ∂===∂,2()f C ϕ= 22212C ψωρ=-+,22221121()2q ψψωρρ=-=-4-16 直角内流动。

已知平面流动的速度势Ф=a (x 2-y 2),流函数ψ=2axy ,式中a 为实数且大于零。

相关文档
最新文档