地球物理测井

合集下载

《地球物理测井方法》第4章 侧向测井

《地球物理测井方法》第4章  侧向测井


Rt I 0
4L
ln
2L0 r0
Rt
4L
ln 2L0
U A0 I0
r0
K 4L
ln 2(L0 / r0 )
12
四、接地电阻 rg 及视电阻率Ra
rg U AON I0 主电流流经路径的等效电阻
Ra

K U A0 N I0
Ra Krg K (rm ri rt rs )
线电极可分成无限多个小的电流元dI(点电极)
8
设坐标原点在电极系中 点,Z轴与电极轴线重合
设电极全长2L0,主电极长 2L,电极半径r0,且r0<<L0
设整个电极流出电流I, 主电流I0,电流均匀分布 在线电极上,电流密度为:
j I0 2L
9
RI
d在意U线一电点极M(上x任,R取tyd,一I z电)流处元产d生ξ的,电U它位在为介:质4中任r
29
探测特性
深度记录点:A0 中点 分辨率:深0.632m,浅0.437m 探测深度:深1.1m,浅的0.35m
探测深度:深七比深三深
分辨率:三侧向比七侧向高
深浅三侧向分辨率相同,深浅七侧向分辨率不同
五、曲线特点(自学)
六、应用:同三侧向
30
三侧向测井
深三侧向
浅三侧向
七侧向测井
深七侧向电极系
B2(A' 2)A2M
' 2
M2
A0
M1
M
' 1
A1 A1' (B1)
34
二、测量原理(恒功率测量)
用ΔUM1M2调节I0 使 ΔUM1M2=0
测I0和UM1
用VA2-VA1的差值调节IS, 使I0UM1=选定功率

地球物理测井

地球物理测井

地球物理测井发展四个阶段
一、模拟记录阶段 从测井诞生到60年代末,都使用模拟记录测 井仪器,用灵敏度高的检流计测量回路电流得到 探测系统测量端间的电位差变化,反映地层物理 参数(电阻率、声波速度等)随深度的变化,记 录在照相纸或胶片上,模拟记录的特点是采集的 数据量小,传输速率低。使用的主要测井方法有 声速(纵波)测井、感应测井和普通电阻率测井, 配之以井径测井、自然电位测井和自然伽马测井 等。
二、数字测井阶段
自60年代来,测井仪器从模拟记录过渡到数字记录。 这是测井技术发展的要求,测井方法的增多,特别是地 层倾角测量的出现和声波变密度测井都要求高速采集地 下信号,此外,某些测井方法要求在井场作一些校正、 补偿和简单的计算,如中子测井计算中子孔隙度、密度 测井进行脊肋校正等。 数字测井仪器增加了用数字磁带机进行数字记录 ,提高了测量精度,增加了可靠性,且便于将测井资料 输入计算机进行处理,与之相应的测井方法是有深、中 、浅探测的电阻率测井,一般是双感应 — 球形聚焦测井 或双侧向 — 微球聚焦测井,三孔隙度测井,即声速测井 、中子孔隙度测井、补偿密度测井;再加上井径测井、 自然伽马测井和自然电位测井,称为常规的“九条曲线 ”测井。
一般由地层和泥浆之间电化学作用和动电学作用产生的。
1、扩散—吸附电位:
纯砂岩 纯泥岩 -11.6 mV/18 C 59.1 mV /18 C
吸附电位
泥岩 -
+
砂岩
2、过滤电位(一般可忽略): 泥浆柱与地层之间存在压差时,液体发 生过滤作用产生的。
+ 扩散电位
泥岩
+ + + — — — — — + + +
6地球物理测井部分

地球物理测井密度测井及岩性密度测井

地球物理测井密度测井及岩性密度测井

.Z
.(
NA A
. )
σ=σe.ne
因此可得到物质的康普顿吸收系数与其体 密度之间的关系:
地球物理测井.放射性测井
若将伽马射线的能量限制在0.2~1.02MeV范围内,则可 使物质对伽玛射线的吸收系数以康普顿散射吸收系数为主。 这种情况下,一定强度的伽玛射线穿过厚度为L的物质后, 由于物质对散射的吸收而造成的射线强度衰减具有以下规律:
吸收系数:单位长度物质对伽马射线的吸收概率
分别以t、σ、τ表示电子对效应、康普顿效应、光电 效应的吸收系数,则物质对伽马射线的的总吸收系数为 三种吸收系数之和,即:
=t+σ+τ
地球物理测井.放射性测井
二、伽马射线的吸收
具有一定能量,一定强度的伽马射线穿过厚度为L的物 质后,由于物质对射线的吸收而造成射线强度衰减。其衰 减遵循伽马射线强度衰减规律:
地球物理测井.放射性测井
(2)讨论泥饼对记数率的影响:
L



S

1 AL 1 ABL ) BS )
(ln
NL
BL )

AL AS
(ln
NS
BS )
b (a )L
显然,地层的真密度等于长源距测得的视密 度加上一个校正值。
其他部分和自然伽马基本相同
地球物理测井.放射性测井
伽马源的选择
我们知道,伽马射线与物质的相互作用主要有三种, 而只有康普顿效应才与地层的密度成正比关系。因此密度 测井的原理和技术手段首先要保证被探测的伽马射线的强 度主要反应伽马光子在地层中的康普顿效应。
因此密度测井选用Cs137为伽马源,它发射能量为 0.661MeV。这就排除了形成电子对的可能。如果将记录伽 马射线的阈值定为0.1,即只记录那些能量较高的一次散射 或多次散射伽马射线,这就避免了光电吸收的影响。

地球物理测#(第三章)中子测井

地球物理测#(第三章)中子测井

中子测井的优缺点分析
优点
能够测量地层的孔隙度、含油饱 和度等参数,不受地层水矿化度 影响,测量精度较高。
缺点
对地层岩性敏感度较低,不适用 于所有地层,且对放射性同位素 源依赖较大。
03
中子测井的实际应用
油气勘探中的中子测井
确定地层孔隙度
中子测井通过测量地层中热中子的衰 减程度,可以推算出地层的孔隙度, 进而评估油气储量。
智能化和自动化
利用人工智能和机器学习技术,实现中子测井数据的自动解释和异常 检测。
中子测井与其他地球物理方法的结合
与电阻率测井结合
利用中子测井和电阻率测井的互补性,提高对地层性质的识别精 度。
与地震勘探结合
将中子测井与地震勘探数据相结合,提高对地下构造和油气藏的探 测精度。
与磁力勘探结合
利用中子测井与磁力勘探的联合测量,实现对地层和油气藏的全方 位探测。
中子源的选择与使用
放射性同位素源
常用的有镅-241和铯-137等,具有稳定、安全、 寿命长的特点,但需定期更换。
加速器源
能够产生高能中子,适用于深井和复杂地层,但 设备成本和维护成本较高。
混合源
结合同位素源和加速器源的特点,具有较好的综 合性能。
中子探测器的设计与选择
01
02
03
探测器材料
常用有锗、硅等半导体材 料,要求具有高灵敏度、 低噪音和稳定性。
识别油气层
确定地层岩性
中子测井通过测量地层中热中子的速 度和扩散系数,可以推断地层的岩性 和矿物组成,进而评估油气勘探的潜 力。
中子测井能够检测到地层中的油气层, 通过测量地层中氢的含量和分布,判 断油气层的存在和分布情况。
煤田勘探中的中子测井

地球物理测井整理版

地球物理测井整理版

地球物理测井整理版
地球物理测井,运用物理学的原理和方法,使用专门的仪器设备,沿钻井(钻孔)剖面测量岩石的物性参数,包括电阻率,声波速度,岩石密度,射线俘获及发射能力等参数。

根据这些参数,了解井下地质学信息及资源赋存状态。

工程人员根据对这些信息的研究,发现并评价资源(包括石油、天然气、煤、金属、非金属、地热、地下水等资源)的储量和赋存状态。

在此基础上,制定各种资源的合理有效的开发方案。

也就是说,地球物理测井是包括油气藏、煤、水资源、金属及非金属等各种资源勘探开发极其重要的技术手段。

甚至在城市的市政规划中地基勘测、高速铁路建设及地铁建设中也发挥着重要的作用。

岩石和矿物有不同的物理特性,如导电特性、声波特性、放射性等。

这些特性统称为岩石和矿物的物理性质。

在地球物理勘探中相应地建立了许多种测井方法,如电法测井、声波测井、放射性测井和气测井等。

应用范围
确定井剖面的岩石性质,评价油(气)、水层,发现煤、金属、放射性等矿藏,并确定其埋藏深度及有效厚度;测量计算储量所需要的各种地质参数,如岩性成分、孔隙度、饱和度、渗透率煤田储量计算参数等;确定地层倾角、岩层走向和方位,以及钻孔倾角和方位角,
研究沉积环境等;检查井下技术情况,如检查固井质量和套管破裂情况等;发现和研究地下水源(淡地层水)。

地球物理测#(第三章)核测井GR测井

地球物理测#(第三章)核测井GR测井

Wi—为第i个能量窗的计数率 Ai、Bi、Ci—用刻度井得到的第 I能量窗的刻度系数 :统计因子 Th、U、K:表示钍、铀、钾的含量
地球物理测井—放射性测井
自然伽马能谱测井(NGS)
输出的测井曲线:SGR (GR总计数率) THOR钍含量 URAN铀含量 POTA钾含量
地球物理测井—放射性测井 三、NGS曲线应用
自然伽马能谱测井(NGS)
自然伽马能谱测井的地质依据,是U、Th, K在矿物和 岩石中的分布规律与岩石的矿物成分、成岩环境和地下 水活动有关。 一般说来,普通粘土岩中钾和钍含量高,而铀的含量 较低(相对于钾和钍)。据 Belk-nap, W. B. 等人由 200 块不同种类的粘土岩取得的分析数据,粘土岩中放射性
钾系的特征谱:1.46Mev
钍系的特征谱:2.62Mev
铀系的特征谱:1.76Mev
P128
在特征能量峰处的伽马射线的强度最大
地球物理测井—放射性测井
自然伽马能谱测井(NGS)
二、NGS的测井原理
核心部分是:多道分析器。 能够测量分析伽马射线的能谱 将能谱分为五个能级窗 两个低能窗、三个道能窗 W1:0.15-0.5 Mev W2:0.5-1.1Mev W3:1.32-1.575Mev (钾窗) W4:1.65-2.39Mev (铀窗) W5:2.475-2.765Mev(钍窗)
自然伽马测井
砂泥岩剖面(骨架不含放射性矿物)
随着泥质含量的增加, GR值增加。 泥岩-高值;砂岩-低值
GR 泥 岩 砂 岩
碳酸盐岩剖面相同
泥 岩
H
砂 岩
地球物理测井—放射性测井
地球物理测井—放射性测井
给定岩性剖面,请定性的画出GR曲线。 GR 泥灰岩 灰岩 泥岩

地球物理测井

地球物理测井

地球物理测井第一节:概述地球物理测井的分类:分为电法测井和非电法测井两种。

1、电法测井:a:视电阻率、b:微电极、c:自然电位、d:微球型聚焦、e:感应测井。

2、非电法测井:a:声速测井、b:自然伽玛测井、c:中子测井、d:密度测井,e:井径、f:井斜、g:井温、h:地层倾角(HDT)、I:地层压力(RFT)、j:垂直地震测井(VSP)第二节:电法测井一、视电阻率曲线:测井时将电极系放入井下,在上提过程中测量记录一条△Vmn(电位差)随井深变化的曲线,称为视电阻率曲线。

梯度电极系:成对电极间的距离小于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。

电位电极系:成对电极间的距离大于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。

底部梯度电极系在高阻层测井曲线的形状特点如下:(1)对着高阻层视电阻率升高,但曲线不对称于地层中点,高阻层顶界面、底界面分别在极小值、极大值的1/2mn处。

(2)对于厚层、地层中部附近曲线出现平直或变化平缓,随地层减薄平直段缩短直至消失,该处视电阻率值接近地层真电阻率。

(3)对于薄层,在高阻层底界面以下一个电极处,在视电阻率曲线上出现一个“假极大”,极小也比原层上移。

视电阻率曲线的应用:1、划分岩层界面:利用底部梯度电极系视电阻率曲线划分岩层界面的原理是高阻层顶界面(底界面)位于视电阻率曲线极小值(极大值以下1/2MN处。

2、判断岩性:在砂泥岩剖面中,当地层水含盐浓度不是很大时,砂岩电阻率大于泥岩的电阻率,粉砂岩泥质砂岩、砂质泥岩介于它们之间。

但视电阻率曲线无法区分灰岩和拉拉扯扯云岩,它们的电阻都非常大。

3、地层对比和定性判断油水层:对于同一储层,如果0.45m底部梯度幅度高于4m底部梯度梯度测井曲线幅度该层可能为水层,反之则为水层。

二:微电极测井微电极测井:利用特制的短电极系帖附井壁,测量井壁附近的岩层电阻率的一种测井方法叫微电极测井。

微电极测井曲线的应用:1、详细划分地层:地层界面一般在曲线的转折点或半幅点2、划分渗透层,判断岩性:微电极曲线在渗层上显示正幅度差,数值中等,地层渗透率越好,二者的幅度差越大,因此可以根据微电极曲线的幅度差判断地层的渗透性好坏。

地球物理测井、生产测井简介

地球物理测井、生产测井简介

密度、声波等等),然后利用这些物理参数和地质信息(泥质
含量、孔隙度、饱和度、渗透率等等)之间应有的关系,采用 特定的方法把测井信息加工转换成地质 信息,从而研究地下 岩石物理性质与渗流特性,寻找和评价油气及其它矿藏资源。
测井的起源及发展历程 测井起源于法国,1927年法国人斯仑贝谢兄弟发明了电
测井,开始在欧洲用于勘探煤和气。中国使用电测井勘探石
地球物理测井、生产测井简介
前言
地球物理测井是应用地球物理学的一个分
支,简称测井。它是在勘探和开发石油、天然 气、煤、金属矿等地下矿藏过程中,利用各种 仪器测量井下地层的各种物理参数和井眼的技 术状况,以解决地质和工程问题的一门学科。
• 测井的基本原理
测井是用多种专门仪器放入钻开的井内,沿着井身测量钻井 地质剖面上地层的各种物理参数(电阻率、自然电位、中子、
测井资料的采集-下井仪器
下井仪器主体是探测器,还有电子线路、机 械部件及钢外壳。探测器将地层的物理性质
转换成电信号。
测井资料的采集-地面记录仪
地面记录仪是在地面给井下仪器供电,对井下
仪器实行测量控制,接受和处理井下仪器传来的测 量信号,并将测量信号转换成测井物理参数加以记 录。 多线记录仪
数字磁带测井仪
油和天然气,始于1939年12月,奠基人是原中国科学院院士、
著名地球物理学家翁文波教授,测的第一口是四川巴县石油
沟油矿1号井。
60多年来,中国测井仪器经历了四次更新换代,第一 代-半自动测井仪;第二代-全自动测井仪;第三代-
数字测井仪;第四代-数控测井仪。海洋测井一直走在
中国测井的前列,已经完成了第四代测井仪器的转化工 作。目前,中国正在研制或者引进第五代测井仪器-成 像测井仪,将作为21世纪更新换代的新产品!

地球物理测井

地球物理测井

1.地球物理测井定义:是地球物理学的一个分支, 简称测井。

指在勘探和开采石油、天然气等地下矿藏的过程中,利用物理学的基本原理,采用先进的仪器设备,探测井壁介质的物理特性参数(电/声/放射性质),评价储集层的岩性、物性(孔隙性、渗透性)、电性、含油性(四性关系)。

2.资料解释步骤:(1)划分储集层,确定岩性; (2)计算储集层参数: 泥值含量、孔隙度、饱和度有效厚度、渗透率等(3)确定油水层(4)其他应用3.地球物理测井的作用:1、划分地层; 2、准确得到地层深度; 3、计算孔隙度、饱和度、渗透率等地层参数; 4、确定油水层; 5、地层对比; 6、工程应用; 7、油层动态监测.4.储集层:石油和天然气储藏在地下具有连通的孔隙、裂缝或孔洞的岩石中。

这些具有连通的孔隙、既能储存油、气、水,又能让油气水在岩石孔隙中流动的岩层称为储集层。

5.描述储油层最基本的参数主要有孔隙度f、渗透率K、含油饱和度So、泥质含量Vsh。

6.储集层必须具备两个条件☆:孔隙性(孔隙、洞穴、裂缝),渗透性7.储集层的厚度:顶底界面的厚度即为储集层的厚度。

8.有效厚度:总厚度扣除不合标准的夹层(如泥质夹层或致密夹层)剩下的厚度。

9.高侵: 侵入带电阻率Ri大于原状地层电阻率Rt低侵: 侵入带电阻率Ri小于原状地层电阻率Rt一般Rmf>Rw时,发生泥浆高侵;Rmf<Rw时,泥浆低侵。

故:水层(Rmf>Rw)经常发生高侵现象,油层(Rmf<Rw)经常发生低侵现象。

10.泥浆滤液:在一定压差下,进入到井壁地层孔隙内的液体。

11.地层水:地层孔隙内的水。

12,矿化度:溶液的盐浓度,常用百万分之一(ppm)表示。

13.离子扩散:当不同浓度的溶液在一起时存在是浓度达到平衡的自然趋势,即高浓度溶液中的离子要向低浓度溶液一方迁移的过程。

14.自然电位:在井中未通电的情况下(自然电场),放在井中的电极M与位于地面的电极N 之间存在的电位差。

地球物理测井_名词解释

地球物理测井_名词解释

相对渗透率Kro:是指岩石的有效渗透率与绝对渗透率的比值,其值在0~1之间。

通常用Kro,Krg,Krw分别表示油,气,水的相对渗透率。

视电阻率:因为地层是非均匀介质,所以,进行电阻率测量时,电极系周围各部分介质的电阻率对测量结果都有贡献,测出的不是岩石的真电阻率,将这种在综合条件影响下测量的岩石电阻率称为视电阻率。

周波跳跃:在疏松地层或含气地层中,由于声波能量的急剧衰减,以致接收器接受波列的首波不能触发记录,而往往是后续波触发接收器,从而造成声波时差的急剧增大,这种现象称为周波跳跃。

康普顿效应:当伽马光子的能量较核外束缚电子的结合能大的多且为中等数值时,它与原子核外轨道电子相互作用时可视为弹性碰撞,能量一部分转交给电子,使电子以与伽马光子的初始运动方向成角的方向射出,形成康普顿电子,而损失了部分能量的伽马光子则朝着与其初始运动成角的方向散射,这种效应称为康普顿效应。

声波时差:声波传播单位距离所用的时间。

绝对渗透率:当岩石孔隙中只有一种流体时,描述流体通过岩石能力的参数。

增阻侵入(泥浆高侵):地层电阻率较低,侵入带电阻率Ri大于原状地层电阻率Rt的现象。

地层压力:又称地层孔隙压力,指作用在岩石孔隙内流体(油,气,水)上的压力。

视地层水电阻率Rwa:是指地层电阻率Rt与其地层因素F的比值,用符号Rwa表示,即Rwa=Rt/F。

含油气孔隙度Sh:岩石含油气体积占有效孔隙体积的百分数,用Sh表示,且Sw+Sh=1。

有效孔隙度:是指具有储集性质的有效孔隙体积占岩石体积的百分数。

缝洞孔隙度:是指有效缝洞体积占岩石体积的百分数。

储集层有效厚度:是指在目前经济技术条件下,能够产出工业性油气流的储集层实际厚度,即符合油气层标准的储集层厚度扣出不符合标准的夹层(如泥岩或致密层)剩下的地层厚度。

裂隙孔隙度:单位体积岩石中裂缝体积所占的百分数。

残余油饱和度Sor:当前开发技术,经济条件下无法开采出的油气占有效孔隙体积的百分数。

地球物理测井全书要点总结

地球物理测井全书要点总结

1,地球物理测井定义☆:是地球物理学的一个分支, 简称测井(Well logging)。

指在勘探和开采石油、天然气等地下矿藏的过程中,利用物理学的基本原理,采用先进的仪器设备,探测井壁介质的物理特性参数(电/声/放射性质),评价储集层的岩性、物性(孔隙性、渗透性)、电性、含油性(四性关系)。

采油前后,测井工作分为两部分☆:1、裸眼井测井(open hole ) 也称勘探井测井,在钻井之后,采油之前。

目的:寻找石油在地层中埋藏深度。

俗称找油层。

2、套管井测井(cased hole)也称生产测井(production log),在采油时进行。

目的:石油开采过程中,地层中的剩余油开采。

2, 采集-测井方法分类(裸眼井)按照物理响应特征分为☆:1、电测井方法:自然电位测井普通电阻率测井、侧向测井感应测井、电磁波测井2、放射性测井:自然伽马测井密度测井、中子测井、中子寿命测井3、声波测井:声波速度测井声波幅度测井、声波全波测井4、其它测井:生产测井地层倾角测井、气测井、特殊测井3,地球物理测井的作用主要有以下几点☆:1、划分地层;2、准确得到地层深度;3、计算孔隙度、饱和度、渗透率等地层参数;4、确定油水层;5、地层对比;6、工程应用;7、油层动态监测.储集层:凡具有一定的连通孔隙,能使液体储存,并在其中渗滤的岩层,称为储集层。

描述储油层最基本的参数主要有孔隙度φ、渗透率K、含油饱和度So、泥质含量Vsh必须具备两个条件☆:孔隙性(孔隙、洞穴、裂缝),渗透性(孔隙连通成渗滤通道).按岩性:碎屑岩储集层(砂岩)、碳酸岩储集层(白云岩、石灰岩)、特殊岩性储集层。

按孔隙空间结构:孔隙型储集层、裂缝型储集层和洞穴型储集层碎屑岩储集层特点:孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。

碳酸岩储集层特点,1,储集空间复杂:a,有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等,b,次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等)2,物性变化大:横向纵向都变化大碳酸盐储集层分类:孔隙型裂缝型洞穴型复合型好的储层应该是孔隙型或复合型岩石孔隙度: 单位体积内岩石孔隙空间占岩石总体积的百分数(%),反映岩石孔隙发育程度含水饱和度(Sw):含水孔隙体积占总孔隙体积的百分数含油(气)饱和度:含油(气)孔隙体积占总孔隙体积的百分数当孔隙中只含油和水时:Sw+So=1当孔隙中含油气水三相时: Sw+So+Sg=1束缚水饱和度Swb:不能被油气取代的地层水叫束缚水。

地球物理测井

地球物理测井

1、测井系列:根据井的地质和地球条件及测井设备情况结合对测井资料定性定量解释需要,为完成预定的地质任务而选择的一套适用的综合测井方法。

2、含水孔隙度:代表地层含水孔隙体积占岩石体积的百分数,称为含水孔隙度。

由于含水孔隙度使用深探测电阻率计算,有时也称为电阻率孔隙度。

4、有效渗透率:当有两种或两种以上的流体通过岩石时,对其中的一种流体测得的渗透率。

5、标准测井:在一个地区,,选择几种有效的测井方法进行地层对比,对全井段进行该套测井项目的测井,深度比例为1:500,横向比例与综合测井相同。

6、冲洗带:泥浆滤液侵入后,井壁附近地层中的流体(水或油气)被驱走,即靠近井壁的环状地层中的孔隙被泥浆滤液“冲洗”,这部分地层中孔隙流体主要是泥浆滤液,还有残余水和残余油气,这一部分地层叫冲洗带。

7、视电阻率:实际测井中,地层介质是非均匀的,且有井的存在,井内有泥浆,地层有侵入带,并且地层厚度有限,因此普通电极系测得的电阻率除了主要反映原状地层电阻率外,还受上述各种因素的影响,测得的电阻率是反映地层电阻率相对大小的电阻率叫视电阻率。

9、滑行波:当声波以临界角入射到泥浆和地层界面时,产生沿界面在地层一侧传播的折射波。

10、吸水指数:小层单位注水压差下的吸水量。

11.声波时差:滑行波在地层中传播一米的时间。

12.高侵剖面:由于泥浆滤液侵入地层,当侵入带电阻率大于原状地层电阻率时,形成了高侵剖面。

13.光电效应:伽马射线穿过物质时,与构成物质的原子中的电子相碰撞,伽马量子将其能量交给电子,使电子脱离原子而运动,伽马量子本身则整个被吸收。

所释放出来的电子称为光电子,这种效应则叫光电效应。

14.弹性散射:弹性散射是指中子和原子核发生碰撞前后中子和被碰撞的原子核系统总动能是守恒的,中子所损失的能量形成被碰撞的原子核的动能,而中子动能减少,速度降低并发生散射。

所以弹性散射的过程是中子减小能量降低速度的过程。

15.视地层水电阻率:地层电阻率和地层因素的比值。

地球物理测井方法与原理

地球物理测井方法与原理

地球物理测井方法与原理地球物理测井是一种对地下储层进行测量、分析和评价的方法。

通过测井工具的下井进行物理量的测定,可以获取地下储层的岩性、地层厚度、孔隙度、渗透率等信息,对油气田勘探开发及油层工程有着重要的意义。

本文将介绍地球物理测井的基本原理和常用方法。

一、测井原理地球物理测井的基本原理是利用测井工具发射相应的能量,将能量通过地层传播后,接收到的反射波或散射波作为信息来获取地下储层的特性。

根据测井工具使用的能量类型和测量的物理量,可将地球物理测井方法分为以下几类。

1. 电测井方法电测井方法是利用测井仪器对地层中的电阻率进行测量,以反映岩层的含油、含水性质。

常用的电测井方法有直流电阻率测井、交流电阻率测井和自然电位测井等。

2. 声测井方法声测井方法是利用声波在地下储层中的传播特性,推断出地层的弹性参数和岩性。

主要包括测井声波、声波速度测井、声阻抗测井和共振测井等。

3. 密度测井方法密度测井方法是通过测量地下储层中的密度,来推断岩层的孔隙度、饱和度等。

常见的密度测井方法有伽马射线测井、中子测井和密度测井等。

4. 核磁共振测井方法核磁共振测井方法是利用核磁共振现象对地下储层进行测量,推断岩层的孔隙度、饱和度和渗透率。

核磁共振测井方法在近年来逐渐兴起,具有高分辨率、无辐射等优点。

二、常用测井方法1. 伽马射线测井伽马射线测井是通过测量地下储层中伽马射线的强度,来判断岩石的密度和放射性元素的含量。

根据伽马射线的特性,可以获得地层的层位、岩性和饱和度等信息。

2. 电阻率测井电阻率测井是通过测量地层中的电阻率,来判断岩石的导电性质和饱和度。

不同的岩石具有不同的电阻率特性,通过电阻率测井可以判断地层的岩性变化和油气的分布情况。

3. 声波速度测井声波速度测井是通过测量地层中声波的传播速度,来判断岩石的弹性参数和孔隙度。

声波在不同岩石中的传播速度不同,通过声波速度测井可以获得地层的岩性、渗透率和孔隙度等信息。

4. 中子测井中子测井是通过测量地层中中子的散射和吸收情况,来推断岩石的孔隙度和饱和度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、普通电阻率测井
在井中测量被钻孔穿过的矿、岩层的电阻率,并根据电 阻率的差异,来划分钻孔地质剖面,研究和解决井下的一些 地质问题的测井方法。
普通电阻率测井又称视电阻率测井,它是使用最早、应用 较广的电阻率测井方法 。
1、测量原理
A——供电电极 B——供电回路电极 M、N——测量电极
供电回路
测量回路
电源 B
检流计
A
电极矩
M
o
N
井下介质电阻率的测定
当电极B位于无穷远处时,距供电电极A一定 距离的测量电极M、N两点是的电位差为:
IR 1 1
U MN
UM
UN

4
( AM

) AN
解上式得 : 4 AM AN UMN K UMN
MN
I
I
K是与各电极之间距离有关的系数,称为电极系 系数。A、M、N组成电极系电极之间的距离是固 定的,因此电极系系数K是一个常数。
1)岩矿石的岩性; 2)岩石孔隙中地层水性质; 3)岩石的孔隙度以及孔隙结构; 4)孔隙中流体性质及其含量; 5)岩石中泥质成分(泥质含量影响岩石的导电性)。
1)岩矿石的岩性
岩石是由矿物和孔隙中流体以及胶结物组成,大多数沉积岩,当 其不含导电流体时,由造岩矿物组成的岩石骨架几乎是不导电的。 许多沉积岩之所以能导电,则是因为它们在地下不同程度的具有 一定的孔隙,在其中充填了一定数量的盐水溶液造成的。于是, 电流通过孔隙水流过岩石,岩石因此具有了一定的导电性。
本章主要内容:
(1)普通电阻率测井 (2)侧向测井 (3)电化学测井
石墨、无烟煤等电阻率很低
主要岩矿石电阻率及其变化范围
ρ沉<ρ变<ρ火
沉积岩:10~10²Ω·m
火成岩:10²~10 6 Ω·m 变质岩:介于两者之间
变质岩
火成岩
沉积岩
各种矿物与岩石的电阻率差异由其导电性质不同决定的。
2、岩石电阻率的影响因素
方法种类多(系列化)
基本方法有电、声、放射性测井三种 特殊方法(电缆地层测试、地层倾角、成像、核磁共振测井)
分辨率高(相对地面地震而言)
仪器综合化、记录数字化、操作程控化、解释自动化
多解性。
3、测井技术能做什么---煤田
1)、计划分钻孔地质剖面,确定岩性; 2)、确定煤层厚度、深度及其结构; 3)、计算煤质指标; 4)、研究钻孔产状; 5)、地层对比; 6)、提供地温资料; 7)、放射性矿床及其它伴生矿床资料; 8)、提供与采煤有关的工程力学资料等。
2)岩石孔隙中地层水性质
组成沉积岩石的固体颗粒部分称为岩石骨架,这部分导电 能力很差,几乎不导电,因此沉积岩石的导电能力主要取 决于地层水的电阻率。地层水的离子导电性与离子数目和 运动速度有关。
3)岩石的孔隙度以及孔隙结构
在地层水电阻率一定时,岩石孔隙度越大,饱含的地层水 数量越多,岩石的导电能力增强,于是岩石电阻率降低; 孔隙度小,则岩石导电能力差,岩石电阻率高。
4、煤田测井的现状与发展
队伍:各省、矿务局、地质队均建立测井队伍。 水平:在世界占一席之地。 仪器:大公司、小公司、引进全面开花。
1、测井仪器的小型分、组合化、数字化、图像化; 2、测井方法多样化; 3、精度增加; 4、全部采用计算机。
第二章 电法测井
1、电测井概念:以研究钻孔剖面岩石的电学性质(导 电性和化学活动性)为基础的一系列测井方法。
地球物理测井
1、 什么是地球物理测井
在钻孔中进行的各种地球物理勘探方法的总称;
又称为钻井地球物理、矿场地球物理、油矿地 球物理等,简称为“测井”。
测井资料由测井仪器获得。
测井仪器由三大部分组成:
(1)井下仪器,用来接收 (或探测)周围介质中有 关的信号;
(2)测井电缆,主要用来提 放井下仪器,确定井下仪 器所处的深度,负责地面 仪器及设备与井下仪器的 通讯;
通过以上对岩石电阻率的分析,可以看出影
响岩石电阻率的因素是非常复杂的。但是,一定 条件下的岩石,其电阻率应是一个恒定的数值, 而且有一定的规律可循。比如在一个地区,同一 个时代、同一种岩性的岩石,其电阻率一般是相 近的。因此,只要掌握了各种岩石的电阻率特征, 便可根据由测井测得的电阻率值来划分钻井的地 质剖面,解决有关地质问题。
(3)地面仪器,主要用来对 测量信号进行处就 可以获得井剖面各个 地层相应的地球物理 参数,即随深度而变 化的地球物理参数称 为测井曲线或测井数 据或图象,所有的测 井曲线和测井数据统 称为测井资料。
测井曲线或图象 也称为模拟记录, 记录介质为胶片或 感光纸。
4)孔隙中流体性质及其含量
岩性相同的含油气岩石电阻率比含水岩石大,岩石含油 气越多,岩石的电阻率就越高。
5)岩石中泥质成分
通常,泥质含量(单位体积岩石中所含泥质的体积)越高, 岩石的电阻率越低。
泥质含量越高,说明泥质颗粒数量多,表面吸附的离子 数也多,在外电场的作用下,就会有大量的离子移动而形成 较强的电流,岩石的电阻率随之降低。
冲洗带:靠近井壁的部分,
岩石孔隙受到泥浆滤液的强烈 冲洗,地层中原有的流体几乎 全部被泥浆滤液所替换。
电磁性:视电阻率统、称感电应测、井微电极、侧向、微侧向、 微球聚焦、电流、接地电阻,磁化率、
弹性:声电地速磁震、波测声测井幅井等统、等称声声波波电测视井、声波全波三测列大井、基方本法 核性(放射性):自然伽马、伽马—伽马、密度、
中子—伽马统、称中放子射—性中测子井、中子—活化、 碳氧比测井等 其他:井径、井温、井斜、地层倾角、气测、 重力测井等
测井数据也称 为数字记录,记录 介质为磁盘,软盘, 光碟等。
测井可分为两个大的阶段: 第一个为测井资料的获取阶段(即
通常所说的“测井”)
第二个为测井资料解释阶段(即通 常所说的“测井解释”)
2、 地球物理测井的分类和特点
测井分类 I
按物性 基础不 同划分
电化学性:自然电位、人工电位(激发极化)、 电极电位等
2、 地球物理测井的分类和特点
测井分类 II
按应用 领域不 同划分
石油天然气测井技术 煤田测井技术 金属与非金属测井技术 水文、工程与环境测井技术
(简称水工环测井技术或水工环测井)
煤层气测井技术
环境与煤层气为后发展起来的
2、 地球物理测井的分类和特点
测井特点
间接地、有条件的测量方法。
相关文档
最新文档