制氢工艺简介精品PPT课件

合集下载

制氢工艺简介概要36页PPT

制氢工艺简介概要36页PPT

谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
制氢工艺简介概要
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,ຫໍສະໝຸດ 有真正 勇敢的 人才能 所向披 靡。

制氢工艺简介PPT课件

制氢工艺简介PPT课件

四、中温变换
原料经转化生成的产品气中含有11-12% 的CO,为了尽可能多的产氢气以节约原料消 耗和减少PSA系统进料的杂质,这就要使转 化气中的CO继续于与汽反应生成H2与CO2 。这就是变换反应,反应机理为:
CO+H2O→CO2+H2
五、变压吸附(PSA)
从中变气第四分液罐出来的气大部分为氢气约74%, 另外还含有近5%的甲烷,3%的一氧化碳和18%的二氧化 碳,其中甲烷和一氧化碳都含有很高的热值,而且一氧化 碳和二氧化碳是加氢装置的毒物,PSA单元的任务就是把 这些毒物除去,得到99.9%以上的高纯氢,而杂质气体甲烷 、一氧化碳和二氧化碳则作为PSA尾气为送至转化炉全部 做燃料。
预硫化是指在一定氢浓度下,利用硫化剂与氢 气反应生成的H2S,在一定温度下与催化剂中氧化 态的活性组分反应,生成具有高活性的金属硫化物 的过程。通常使用的硫化物为DMDS或CS2。
脱硫脱氯剂
本装置脱氯剂是以Al2O3或活性碳为载体,Na 、Ca、Zn、Cu等金属氧化物为活性组分,其脱氯 机理与脱硫机理相同,都是化学吸收型吸附剂。脱 氯剂、脱硫剂中的活性组分随化学吸附反应的进行 ,其有效活性组分会降低,最终达到在工业条件下 的饱和而使催化剂失去活性。因此催化剂需要及时 的更换,以免催化剂达到饱和硫容而失去吸附作用 后引起第二床层的硫穿透。
第五节 制氢催化剂及吸附剂
制氢装置催化剂种类繁多,分别有加氢精制催 化剂、脱硫脱氯催化剂、转化催化剂、中变催化剂 ,另外PSA区有5种吸附剂。
加氢催化剂主要活性组分为CoO及MoO3,双 功能加氢催化剂还含有NiO,而氧化态的Co、Mo、 NiO加氢活性非常低,为了达到要正常生产的目的 ,延长催化剂使用寿命及初活性的发挥,需对新鲜 催化剂进行预备硫化,使之变成具有较高活性的硫 化态的金属硫化物。

炼厂制氢工艺原理课件ppt

炼厂制氢工艺原理课件ppt

的热。


CH4+202→C02+2H20 + 1802kJ



2021/3/10
4
一、氢气的制造方法
• 在高温及水蒸汽存在下,C02及水蒸汽可与未燃 烧C02的不C多H4 ,反反应应,为得强到吸主热要反产应物。CO 及 H2 燃 烧 所 得

CH4+C02→2C0+2H2 —206kJ

CH4+H2O→CO+3H2 —247kj
2021/3/10
8
(3)轻烃水蒸汽转化法
• 合适的反应条件为:温度800~900℃,反应压力
1.5----3.0MPa,水蒸汽与原料气摩尔比2.5----
6。所得转化反应气体的组成为:甲烷3—8%(V),
一氧化碳7%-8%,二氧化碳10%-15%,氢气70
%左右,采用催化剂(一般为镍催化剂),该催化

CnHm+nC02→2nC02+1/2mH2
(2)
• CnHm+nH20→nCO+(1/2m+n) H2
(3)
• 反应(1)为强放热反应,反应(2)、 (3)为强吸热 反应。反应主要产物为CO及H2,
• 反应温度为1200—1370℃,压力为3.2----8.3MPa, 不用催化剂。1t原料加入水蒸汽量约400-----500kg。
、 氢
气 等过程。不同来源的炼厂气其组成各不相同,
的 其中氢含量也不相同。如催化重整气体中含
氢量很高,是炼油厂氢气的重要来源。
• 催化重整反应一般是以石脑油馏分为原料生 产高辛烷值汽油或生产芳烃。其化学反应中
制 造

制氢课件PPT

制氢课件PPT

表一 下吸式气化炉实验结果(体积百分含量) H2 O2 CH4 CO CO2 C2H4 C2H6 24.0 0.4 4.4 37.9 32.6 0.6 0.1
2021/3/10
12
• 从表1可见,气化产物中,有相当一部分 是CO。因此在生物质气化中,为了提高氢 气产出量,需在气化介质中加入水蒸气。通 常认为,在蒸汽流态化条件下发生下述反应:
质在气化介质中如:空气、纯氧、水蒸气或 这三者的混合物中加热至700度以上,将生 物质分解为合成气。生物质气化的主要产物 为H2、CO2、CO、CH4,混合气的成分组 成比因气化温度、压力、气化停留时间以及 催化剂的不同而不同:气化反应器的选择也 是决定混合气组成的一个主要因素。
2021/3/10
摘自文献生物质废弃物制氢技术
2021/3/10
10
• 综合分析上述三种气化炉可知,下吸式气 化炉在提高产品气的氢气含量方面具有其 优越性,但其结构复杂,可操作性差,因 而如何改进下吸式气化炉的物料流动性, 提高其气化稳定性是下吸式气化炉需要研 究的。
2021/3/10
11
• 1.2 水蒸气气化、合成气催化变换
表1是在图2所示的下吸式气化炉条件下,以混 合木块为气化原料,气化介质为空气,燃烧区 温度为840度时气化产物的组成。
生物质 气化反应 空气、水蒸气
变换反应
合成气净化 氢气 图2
摘自文献生物质废弃物制氢技术
3
• 生产工艺流程简介 • ⑴甲醇裂解制氢工艺流程框图
脱盐水系统
甲醇
汽化塔
导热油炉系统 轻柴油
反应器
PSA尾气
冷凝、洗涤、气液分离 变压吸附 储罐
用户
冷凝分离液
2021/3/10

《制氢技术简介》课件

《制氢技术简介》课件

制氢技术的优势
1 环保
燃烧氢气时无二氧化碳排放,对环境友好。
2 节能
可以利用再生能源制氢,提高能源利用效率。
3 替代石油
制氢技术应用广泛,可替代石油等化石燃料,减少对有限资源的依赖。
制氢技术简介
本课件将介绍制氢技术的原理、种类、应用和优势。通过化学或物理手段, 制氢技术可以将水分子中的氢离子与电子分离,形成氢气。
什么是制氢技术
制氢技术利用化学或物理手段将水分子中的氢离子(质子)与电子分离,形 成氢气。它是一种重要的能源转化方式,具有广泛的应用前景化石燃料重整法和生物法等。
2 物理分离法
包括氢渗透膜法、原子吸附法和离子膜抽提法等。
制氢技术的应用
燃料电池
将氢气和氧气反应产生电能,作为清洁能源应 用于交通和能源领域。
合成氨生产
利用制氢技术作为合成氨生产的重要步骤。
氢化制氢
利用氢气与有机物反应制备高纯度的氢化物。
汽车燃料
氢气作为汽车燃料,零排放,成为未来发展的 方向。

制氢工艺简介课件

制氢工艺简介课件
优点:煤炭资源丰富,在我国一次能源结构中一直占有举足 轻重的地位;洁净煤气化技术的兴起。
缺点:效率较低、污染严重,需对污染物进行处理,增加成本。
4.电解水制氢
理论分解电压1.23V,每1Kg氢电耗为 32.9 KWh 。实际为~46.8KWh。 机理:正极: 2OH- H2O + ½ O2 + 2e φ = 0.401V
二、荒煤气预处理及压缩部分
脱氨脱水后的荒煤气进入荒煤气分液罐 (V2101)进行分液,含油污水排至污水总 管出装置。由于煤气中携带一部焦油、萘 等杂质进行,吸附分离,分离后的气相进 入荒煤气压缩机入口缓冲罐(V2102)进行 稳压、分液,罐顶出来的荒煤气进入荒煤 气压缩机,荒煤气压缩机共5台,其中三台 往复压缩机、两台离心压缩机,并联使用, 经荒煤气压缩机加压后,荒煤气压力升至 1.35 Mpa(G)进入变换部分。
美元/1kg浓缩铀,能量巨大,聚变能可用几亿年。
制氢技术简介
1
化石燃料制氢
2
电解水制氢
3
生物制氢
4
光催化制氢
1甲烷重整(Steam Methane Reformation,SMR )
优点:气体燃料重整制氢中最为经济合理的。 缺点:反应需吸收大量的热,能耗高;
反应速度慢,制氢能力低,需建大规模装置,投资 高。
神木锦界天元化工有限公司
一、高效集成脱氨脱水
来自焦化装置的0.3MPa(G)荒煤气含有一定量的氨,全部进入氨水 洗塔(T2001)进行洗氨。由塔顶喷淋下来的水洗涤气体中的氨,从 氨水洗塔顶出来的气体进入脱水塔(V2002)除去煤气中的小液滴。 从水洗塔底抽出的洗氨水一部分循环进入氨水洗塔中部进行重复吸收, 浓缩氨浓度,另一部分洗氨水送至焦化进行污水焚烧。

《制氢学习》课件

《制氢学习》课件

3 化石燃料重整法
利用化石燃料进行重整反应产生氢气。
4 生物制氢法
利用微生物或酶的作用产生氢气。
制氢的应用
加氢制氢
将氢气与其他物质反应,如加 氢裂解重油。
催化制氢
利用催化剂加速制氢反应速率, 提高氢气产量。
燃料电池等领域中的 应用
介绍燃料电池、氢能源汽车等 领域中氢气的应用。
制氢的发展前景
1
国内外制氢的现状和发展趋势
分析国内外制氢技术的现状和未来发展趋势。
2
制氢技术的市场前景及产业化
探讨制氢技术在市场上的潜力和产业化的可能性。
3
结语
总结制氢技术的应用前景,并展望未来制氢技术的发展。
《制氢学习》PPT课件
# 制氢学习
制氢的概述
制氢的意义和现状
探索制氢技术的重要性及全球现状,解决能源和环境问题。
制氢的分类和原理
介绍制氢方法的分类和基本原理,如热分解法、电解法等。
制氢的方法
1 热分解法
通过高温加热将物质分解产生氢气,适用于 可性材料。
2 电解法
利用电流将水分解成氢气和氧气,是最常用 的制氢方法。

天然气制氢简介演示

天然气制氢简介演示

THANKS
谢谢您的观看
甲醇生产
甲醇是重要的化工原料, 也是燃料添加剂,天然气 制氢可用于甲醇的生产。
石油工业
在石油工业中,天然气制 氢可用于石油加工和裂化 等过程,提高石油产品的 质量和产量。
氢能源汽车
燃料电池汽车
氢燃料电池汽车是未来可持续交 通的重要组成部分,天然气制氢 可以为燃料电池汽车提供清洁的 能源。
混合动力汽车
将天然气经过净化处理,除去 其中的硫、氯等杂质,得到纯
净的甲烷气体。
反应
将纯净的甲烷气体与水蒸气在 催化剂的作用下进行反应,生
成氢气和二氧化碳。
产物分离
通过一系列的物理和化学方法 ,将生成的氢气和二氧化碳进 行分离,得到高纯度的氢气。
氢气压缩
将得到的氢气进行压缩,以便 于储存和运输。
02
天然气制氢的技术
天然气制氢的原理
天然气的主要成分是甲烷(CH4), 在一定条件下,甲烷与水蒸气反应生 成氢气和二氧化碳,反应方程式为: CH4 + (x+1)H2O → H2 + CO2 + xH2O。
反应过程中需要使用催化剂来加速反 应,同时需要控制反应温度和压力。
天然气制氢的工艺流程
01
02
03
04
原料准备
天然气制氢简介演示
汇气制氢的技术 • 天然气制氢的应用 • 天然气制氢的挑战与前景 • 天然气制氢的案例分析
01
天然气制氢概述
天然气制氢的定义
• 天然气制氢:是指利用天然气为原料,通过化学反应将天 然气中的主要成分甲烷转化为氢气的过程。
资源消耗
大规模的天然气制氢需要大量的水资 源和土地资源,对环境产生一定压力 。

《生物质制氢技术》课件

《生物质制氢技术》课件
宣传推广
加强对生物质制氢技术的宣传和推广,提高社会认知度和接受度 ,促进技术的普及和应用。
技术创新与突破
研发支持
加大对生物质制氢技术研发的投入,鼓励科研机构和企业进行技 术创新,提高技术水平和竞争力。
技术交流与合作
加强国际间的技术交流与合作,引进先进技术,推动技术进步和产 业升级。
人才培养
重视人才培养,加强生物质制氢领域的人才队伍建设,为技术创新 提供人才支撑。
降低成本是生物质制氢技术推广 应用的关键,需要加强副产物的 资源化利用和降低能耗等方面的 研究。
开发新型生物质资源是解决生物 质资源多样化问题的有效途径, 可以探索利用木质纤维素等新型 生物质资源进行制氢。
04
生物质制氢的环保与经济性 分析
环保性分析
减少温室气体排放
01
生物质制氢过程中产生的二氧化碳与生物质生长过程中吸收的
生物质来源
生物质主要来源于农业废弃物、林业废弃物、畜禽粪便、城 市垃圾和废水等。
生物质转化
生物质通过热解、气化、发酵等过程转化为氢气和其他有用 物质。
生物质气化制氢
原理
生物质在高温条件下,经过气化反应将有机物转化为合成气,其中含有氢气、 一氧化碳、二氧化碳等。
工艺流程
生物质经过干燥、粉碎后,进入气化炉进行气化反应,生成的气体经过冷却、 净化后得到氢气。
二氧化碳达到平衡,从而减少温室气体排放。
废弃物资源化利用
02
生物质废弃物如农业废弃物、林业废弃物等可用于制氢,实现
废弃物的资源化利用,降低环境污染。
替代化石燃料
03
生物质制氢可以替代传统的化石燃料,减少对化石燃料的依赖
,降低空气污染和碳排放。
经济性分析

第十章生物质制氢最全PPT

第十章生物质制氢最全PPT

2、发酵产氢途径
发酵产氢过程实际上时生物氧化的一种方 式,由一系列的酶、辅酶和电子传递中间 体共同参与完成。微生物发酵产氢的途径 有两种:
① 丙酮酸脱羧产氢,在丙酮酸脱羧形成乙酰 的过程中,脱下的氢经铁氧还原蛋白的传 递作用形成氢分子;
② 辅酶I的氧化与还原平衡调节产氢。
(1)丙酮酸脱羧产氢
• 第一种是丙酮酸首先在丙酮酸脱氢酶的作 用下脱羧,形成TPP-E的复合物,将电子转 移给还原态的铁氧还蛋白,然后在氢酶的 作用下被重新氧化成氧化态的铁氧还蛋白, 产生分子氢;
(三)其他产氢机理-产氢产乙酸细菌的产氢作用
产氢产乙酸细菌将产酸发酵第一阶段产酸 的乙酸、丁酸、戊酸、乳酸和乙醇等进一 步转化为乙酸,同时释放分子氢。
第二节 主要的生物制氢技术及其发展现状
根据转化利用方法的不同,可将生物制氢 分为: ➢生物(微生物)制氢 ➢热化学转化制氢
一、生物(微生物)制氢
• 第二种是通过甲酸裂解的途径产氢,丙酮 酸脱羧后形成的甲酸以及厌氧环境中CO2和 H+生成的甲酸,通过铁氧还蛋白和氢酶作 用分解为CO2和H2。
(2)辅酶I的氧化与还原平衡调节产氢
在碳水化合物发酵过程中,经EMP途径产生 (9)氢能适应储运及各种应用环境的不同要求。
生物制氢的现象在100多年前已被发现。 产氢产乙酸细菌将产酸发酵第一阶段产酸的乙酸、丁酸、戊酸、乳酸和乙醇等进一步转化为乙酸,同时释放分子氢。
的还原型辅酶I通过与丙酸、丁酸、乙酸和 终产物中氢气组成达95%以上;
(1)所有元素中,氢重量最轻。 (4)混合细菌发酵产氢过程中彼此之间的抑制、发酵末端产物对细菌的反馈抑制等。
乳酸等发酵过程相耦联经氧化为氧化型辅 光合微生物制氢是指利用光合细菌或微藻将太阳能转化为氢能。

制氢工艺技术PPT课件

制氢工艺技术PPT课件

-
17
-
15
低变催化剂
低变催化剂主要组分为Cu0,添加Zn0、Al203,、Cr203等。 催化剂毒物主要是硫、氯,水、氨也有影响。硫主要来自 原料气,它会与催化剂活性表面的铜晶粒发生化学吸附和 反应而影响活性。研究表明,氯比硫的毒害严重,氯离子 来自蒸汽和原料气,对低变催化剂的毒害是与Cu、Zn0生 成了Cu7Cl4(OH)10(H2O)、ZnCl2·4Zn(OH)2等组成的低熔 点而有挥发性的表面化合物,使Zn0失去间隔体作用,铜 微晶迅速长大,破坏了催化剂的结构,使活性大大下降。 加之生成的氯化物易溶于水,在湿气条件下,氯化物会沿 床层迁移,毒害更多催化剂。凝聚水和氨可以使催化剂中 铜微晶生成铜氨络合物,使催化剂中毒和侵蚀
-
14பைடு நூலகம்
中温变换催化剂
中变催化剂化学组分为Fe2O3、Cr203、K2O, 使用时被还原为有活性的Fe3O4,催化剂
毒物为硫、磷、硅等。但中变催化剂受毒 物影响较小,如原料气硫含量达到0.1%时 才使Fe3O4转变为FeS,使活性稍有下降, 为新剂的70%~80%。工艺蒸汽中含杂质
过多时会与原料气组分反应,使催化剂结 皮而降低活性
-
5
氢气的化学性质
氢能与很多物质进行化学反应,在进行化学反 应形成化合物时其价键具有特征。氢原子失去 其ls电子就成为H+离子,实际上就是氢原子核 或质子。质子的半径比氢原子的半径要小许多 倍,使质子有相对很强的正电场。因此它总是 同别的原子或分子结合在一起形成新的物质。 如加氢反应就是将氢气加到各种化合物上的反 应。如甲烷化反应:
-
16
甲烷化催化剂
催化剂的主要化学组分为Ni0、Al203,使用时还原为金 属镍。主要毒物为硫、砷、钒、碳酸钾和羰基镍等。对 于甲烷化催化剂,硫是永久性毒物,这是因为操作温度 较低,活性镍一旦与硫化氢生成Ni2S3后,即使除去H2S, 也无法被氢气再还原为活性状态。研究表明,甲烷化催 化剂中吸硫达到0.15%~0.2%时活性丧失50%,若达到 0.5%则活性全部丧失。希望进甲烷化催化剂的原料气中 硫含量越低越好,一般要小于0.1ppm。甲烷化工序设在 脱碳之后,各种脱碳液带入均会造成不同的毒害。砷是 永久性毒物,催化剂中砷含量达到0.1%时便严重失活。 甲烷化催化剂在150℃以下操作时,活性镍与一氧化碳 会反应生成羰基镍Ni(CO)4,这是对人剧毒的挥发物, 还造成催化剂中镍的流失,严重降低活性。因此,在床 层降温至150℃以下时不能再通工艺气,应改用氮、氢 气氛

《制氢工艺技术》课件

《制氢工艺技术》课件
《制氢工艺技术》PPT课件
目 录
• 制氢工艺技术概述 • 制氢工艺的主要类型 • 制氢工艺技术的经济性分析 • 制氢工艺技术的发展趋势与展望
01
制氢工艺技术概述
氢气的性质与用途
氢气的性质
氢气是一种轻质、易燃易爆、无色无 味的可燃气体,具有很高的热值和能 量密度。
氢气的用途
氢气是重要的工业原料,广泛应用于 化工、石油、冶金等领域,同时也是 燃料电池的主要燃料。
环境压力
传统化石能源的使用对环境造成了巨大的压力, 发展制氢技术有助于减少温室气体排放,缓解环 境压力。
产业升级
制氢技术的发展对于推动相关产业升级和转型具 有重要意义,能够带动一系列产业链的发展。
02
制氢工艺的主要类型
天然气制氢
天然气蒸汽转化制氢
将天然气与水蒸气在高温下反应,通过转化反应将天然气转 化为氢气和一氧化碳的混合气体,再通过一氧化碳变换反应 进一步制取高纯度氢气。
制氢技术的经济性评价方法
投资回收期法
通过计算投资回报率来评估技术的经济性。
净现值法
考虑资金的时间价值,通过比较不同方案的 净现值来选择最优方案。
内部收益率法
计算投资方案的内部收益率,以评估其盈利 能力。
制氢工艺技术的经济性比较与选择
1
比较不同制氢技术的成本与效益,选择经济性更 优的方案。
2
考虑环境影响,权衡经济效益与环境成本。
开发新型反应器结构
研究新型反应器结构,提高反应器的传热、 传质性能。
加强副产物的回收与利用
副产物分离与回收
研究高效的副产物分离和回收技术, 提高副产物的回收率。
副产物资源化利用
将副产物转化为有价值的资源,实现 副产物的资源化利用。

《制氢技术简介》PPT课件

《制氢技术简介》PPT课件

3. 水分解制氢
利用光化学、热化学和电化学方法制氢。然而,太阳能的收集、 高品质热能和电能的产生方法,都是首先要解决的问题。
全球年产氢: 5000亿Nm3 化石燃料制氢 占96%
合成氨:50% 石油精练:37% 甲醇合成:8%
五、制氢技术简介
1、化石燃料制氢 (1) 甲烷重整(Steam Methane (2) 天然气热解制氢
2、光电转换
Fuels CO2
O2
H2
e
a) 光伏电池
Sugar
b) 光电化学电池
c) 染料敏化光电化学电
H 2O

O2
sc
M
H2O
3、光-化学能转换
Photosynthesis Semiconductor/Liquid Junctions
太阳能 + 水 = 氢?
三、氢能经济的缘起
氢能经济的设想
Chrysler Natrium 车(2001)
2、电解水制氢 0.401V
负极: 2H2O + 2e 2OH- + H2 φ =- 理论分解电压10.2.832V8,V每1Kg氢电耗为 32.9 KWh 。实际为~
46.8KWh。
(1) 碱性水溶液电解
(2) 质子膜电解水发生器
2OH- H2O+ ½O2+2e
2H2O+2e 2OH- + H2
五、制氢技术简介
4、光催化制氢体系
半导体光 催化制氢
Z-型体系 光催化法
悬浮体系 光催化法
光电化学 体系制氢
M.Gratzel, et al, Nature, 1991, 353: 737; Nature,et al, Science, et al., Nature, 2001, 414, 625.

实验室制取氢气PPT课件

实验室制取氢气PPT课件
• 5、通过对氢气纯度的检验,了解点燃可燃性气体 之前,需要进行验纯的必要性,强化安全意识, 感知生命的可贵。
可编辑课件
2
氢能是一种新能源,它放热效率高;它清 洁无污染,原料资源丰富。空气中氢气的 量及其低,这就需要我们去制取。
之前我们学过了氧气的实验室制法,回 顾一下:氧气的实验室制法是从哪几个方 面进行研究的?
品 4、检验纯度 5、收集氢气
检验纯度的方法:收集一试管的氢气,将 试管口靠近点燃的酒精灯火焰。
<小结> 请同学回顾一下本节课的内容, 我们是从哪几个方面探究了实验室制取氢气的 方法? 从中思考我们又懂得了什么?
对比实验室制取氧气和二氧化碳的实验装 置,各有什么相同点和不同点?
可编辑课件
10
实验室制取氢气
可编辑课件
1
• 教学目标:
• 1、懂得实验室制备氢气的原理,并初步学会实验 室制取氢气的方法,能尝试改进实验的发生装置;
• 2、通过观察不同金属与酸的反应,能选择实验室 制取氢气的药品;
• 3、通过已有知识的迁移,能选择正确的发生装置 和气体收集方法;
• 4、通过阅读“制取氢气的几种方法”,能选择实 验室制取氢气的方法;
锌与稀硫酸反应生成氢气,如果蒸发反应 剩下的液体后,会得到白色的硫酸锌晶体。
书写的方程式
可编辑课件
5
<提问>反应原理解决后, 我们来学习:发生装置。根据什么来选择正确 的发生装置?
根据反应物的状态和反应的条件。因为反
应物为固态和液态,并且不用加热,选择第二
套装置。
可编辑课件
6
❖ 那么如何设计装置,让反应随时开始随时 停下,使反应可控?即:做到使锌粒与稀 硫酸能接触,又能巧妙的分开?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转化炉内进行的烃类蒸汽转化反应是很复杂的,包括高 级烃类的热裂解、催化裂解、脱氢、加氢、结碳、消碳、 甲烷化等反应。这些反应构成了一个极复杂的平行、顺 序反应体系。 结碳是转化反过程中的必然反应,当结碳反映速度大于消碳 反应速度转化催化剂就会积碳,使催化剂活性下降甚至 失活。为保证催化剂活性,就要有一定量的水蒸汽来消 碳。因此,正常生产时要求转化进料始终保持一定的水 碳比,使消碳速度大于结碳速度,避免催化剂上碳的沉 积,一旦转பைடு நூலகம்配汽中断,瞬间就会使催化剂造成不可挽 回的热力学结碳。
四、中温变换
原料经转化生成的产品气中含有11-12% 的CO,为了尽可能多的产氢气以节约原料消 耗和减少PSA系统进料的杂质,这就要使转 化气中的CO继续于与汽反应生成H2与CO2 。这就是变换反应,反应机理为:
CO+H2O→CO2+H2
五、变压吸附(PSA)
从中变气第四分液罐出来的气大部分为氢气约74%, 另外还含有近5%的甲烷,3%的一氧化碳和18%的二氧化 碳,其中甲烷和一氧化碳都含有很高的热值,而且一氧化 碳和二氧化碳是加氢装置的毒物,PSA单元的任务就是把 这些毒物除去,得到99.9%以上的高纯氢,而杂质气体甲烷 、一氧化碳和二氧化碳则作为PSA尾气为送至转化炉全部 做燃料。
装置从原料净化到原料蒸汽转化及中温变换, 每个过程都包含有复杂的化学反应,而产物的分离 则是一个除去杂质的变压吸附过程,装置各组成部 分的催化剂又有所不同,对操作的要求及处理也不 同,为达到控制正常生产的目的,必须对每个过程 的生产原理及催化剂性能有一定认识。
一 、原料加氢精制反应
制氢原料中的硫、氯等有害杂质能使转化催化 剂中毒而失去活性,而原料中的烯烃则在较高的温 度下易热裂解,使催化剂积碳失活,因此在原料进 转化前必须除去。但原料中的硫、氯大多以有机硫 、氯形式存在,要想除去必须进行加氢处理,使之 生产易除去的H2S、HCl,同时原料中的烯烃也需 要经过加氢饱和才能达到进转化的要求。
产品:制氢单元产品为工业氢气,副产解吸气。
工业氢规格:
出装置温度:40℃
出装置压力:2.4MPa(表)
组成:H2
≥99.9%
CH4
0.1%
CO+CO2 <20ppm
第三节 制氢化学反应机理
干气制氢装置是由原料烯烃饱和、原料的脱硫 与净化、水蒸气转化、中温变换、PSA净化、余热 回收等几个部分组成.
本装置脱硫剂的主要活性组分为ZnO,其脱硫 机理为:
ZnO+H2S=ZnS+H2O
三、 蒸汽-烃类转化反应 烃类的蒸汽转化是以烃类为原料,在催化剂作用
下使组成为CnHm的烃类和水蒸汽反应,转化为气体 H2和CO,同时伴生CO2和少量残余的CH4,其中H2
是本装置的目的产物。转化炉出口的转化气中甲烷含 量≯5.0%(干基)。 1 轻烃裂解蒸汽转化反应
欢迎大家!
自我介绍:
姓名:常亚莉 职位:焦化加制氢联合车间工艺员
10000Nm3/h干气制氢装置
目录
第一节 制氢工艺发展简介 第二节 原料、产品性质及要求 第三节 制氢化学反应机理 第四节 制氢装置工艺过程 第五节 制氢催化剂及吸附剂 第六节 制氢装置主要设备 第七节 制氢装置安全运行
第一节 制氢工艺发展简介
蒸气-烃类转化制氢法是由国外巴登苯胺 纯碱公司和法本公司于1913~1927年研究发 展起来的,目前国内制氢工艺应用发展较快, 至今全国共建近60多套制氢装置,目前国内 地方炼油为了增加效益,提高产品质量,争 先恐后建设制氢、加氢装置,这就更加促进制 氢工艺的应用及发展。
第二节 原料、产品性质及要求
C2H6 + 2H2O → CH4 + CO2 +3H2 C3H8 + H2O → CH4 + CH4 + CO+H2 2 甲烷-蒸汽转化反应
CH4 + H2O → CO + 3H2 CH4 + 2H2O → CO2 + 4H2
3 甲烷化反应 (低温,低水炭比发生甲烷化反应) CO + 3H2 → CH4 +H2O CO2 + 4H2 → CH4 +2H2O
原料预加氢的目的就是在一定温度下使原料中的 烯烃加氢饱和及有机硫、氯的生成H2S、HCl以便 除去。其反应机理:
1 烯烃加氢饱和反应: 乙烯加氢:C2H4 + H2 → C2H6 +Q 热量 丙烯加氢:C3H6 + H2 → C3H8 +Q 热量
2 加氢脱硫反应 硫醇加氢:RSH + H2 → RH +H2S 硫醚加氢:R1SR2 + 3H2 → R1H+R2H+H2S 噻吩加氢:C4H4S + 4H2 → C4H10 + H2S
变压吸附技术是以吸附剂(多孔固体物质)内部表面 对气体分子的物理吸附为基础,利用吸附剂在相同压力下 易吸附高沸点组份、不易吸附低沸点组份和高压下吸附量 增加(吸附组份)、减压下吸附量减小(解吸组份)的特 性。将原料气在高的压力下通过吸附剂床层,达到氢和杂 质组份的分离。然后在减压下解吸被吸附的杂质组份使吸 附剂获得再生,以利于下一次再次进行吸附分离杂质。这 种压力下吸附杂质提纯氢气、减压下解吸杂质使吸附剂再
随着炼油工艺的发展,特别是加氢工艺广泛的 应用,增大了对氢气的需求 ,同时促进了制氢工 艺的发展。现各种制氢工艺路线有干气制氢、电 解制氢、水煤气制氢、甲醇裂解制氢、轻油制氢 、重油制氢等。
制氢工艺技术多样化发展,各制氢工艺路线 不同,相应成本也不同。相比之下蒸汽-轻烃转化 制氢成本较其它制氢工艺要低得多。尤其是干气 制氢成本最低。
3 氧化锌脱硫反应 H2S + ZnO → ZnS + H2O 4 脱氯反应:脱氯剂脱出HCI.
5 脱金属反应As Pb 吸附在催化剂上。
二、原料的脱硫与净化
原料净化的目的主要是脱除原料中的硫、氯,保 证转化催化剂的正常运行,其反应机理为,利用金 属氧化物在一定温度下与HCl、H2S反应生成金属 氯化物与金属硫化物,是原料中的氯、硫被固定下 来,脱除原料气。
序号
1
原料:我公司制 2
氢装置原料主要是
3 4
焦化干气,现简要 5
介绍一下焦化干气 6
的成分.
7
8
9
10
11
温度
压力
组分 H2O H2 CH4 C2H6 C3H8 C4H10 C5H12 C2H4 H2S N2 O2 ℃ MPa
组成(V%) 0 16.53 58.56 18.69
3.59 ≤50PPM 1.0 1.63 40 0.6
相关文档
最新文档