平面图形和立体图形

合集下载

平面图形和立体图形的区别

平面图形和立体图形的区别

平面图形和立体图形的区别
1、概念不一样。

平面图形是存在于一个平面上的图形,立体图形是由一个或者多个平面形成的可以存在于现实生活的。

2、形体特点不一样。

平面图形是只有一个面,而立体图形有多个面组成,有上面、左面、侧面、下面等。

3、观察角度不一样。

平面图形只能从一个角度看,而立体图形是二个,三个甚至是多个角度去看。

拓展:
平面图形的周长和面积公式:
平面图形有长方形、正方形、三角形、平行四边形等,他们的周长和面积公式计算如下:长方形周长=(长+宽)x2,面积=长x宽。

正方形周长=边长x4,面积=边长x边长。

三角形周长=边长a+边长b+边长c,面积=底x高/2=ah/2.平行四边形周长=边长ax2+边长bx2,面积=底x高=ah。

认识平面图形与立体图形

认识平面图形与立体图形
斜投影
当立体图形与投影面成一定角度放置时,其投影为斜投影。斜投影的形状会随 角度变化而变化。
利用平面图形理解立体图形
截面理解
通过切割立体图形得到平面图形(截面),可以帮助我们理解立体图形的内部结 构。
展开图理解
某些立体图形可以展开成平面图形,观察这种展开图有助于我们理解立体图形的 表面积和体积等性质。例如,正方体可以展开成一个由六个正方形组成的平面图 形。
要点二
产品设计
立体图形在产品设计中起到关键作用 。设计师使用立体图形来展示产品的 外观和细节。通过立体图形,设计师 可以更好地表达产品的设计理念和功 能特点,以便制造商和消费者更好地 理解和使用产品。
要点三
3D打印
立体图形在3D打印领域具有重要应用 。3D打印技术可以通过立体图形文件 直接制造出三维物体。设计师可以使 用立体图形软件创建3D模型,并将其 导出为立体图形文件,然后通过3D打 印机将模型打印成实物。这种技术为 制造业、医疗、艺术等领域带来了革 命性的变革。
应用实例
• 建筑设计:建筑师利用立体图形的性质设计出稳定、 美观的建筑结构,如楼房、桥梁等。
• 机械工程:工程师通过立体图形的分析和计算,设计 出各种复杂的机械零件和装置。
• 计算机图形学:立体图形在计算机图形学中作为三维 模型的基础,应用于游戏开发、影视特效等领域。
• 物理模拟:物理学家利用立体图形的几何性质,研究 物体的运动规律、碰撞检测等问题。
06
总结与展望
对平面图形与立体图形的总结
定义与特性
平面图形是在二维空间中定义的图形,其只有长度和宽度,没有深 度。而立体图形是在三维空间中定义的,具有长度、宽度和深度。
分类与例子
常见的平面图形包括圆形、正方形、三角形等。常见的立体图形包 括长方体、正方体、球体、圆锥体等。

数学中的平面图形和立体图形

数学中的平面图形和立体图形

数学中的平面图形和立体图形一、平面图形的知识1.1 定义与性质平面图形是平面内的图形,它由线段、射线、直线组成。

平面图形有无数个,如正方形、长方形、三角形、圆形、椭圆形等。

根据边数和角数对平面图形进行分类:(1)三角形:由三条边和三个角组成,分为不等边三角形、等腰三角形、等边三角形;(2)四边形:由四条边和四个角组成,分为矩形、正方形、平行四边形、梯形;(3)五边形、六边形等:根据边数和角数进行分类;(4)圆:由无数条等距的线段组成,圆心到圆上任意一点的距离相等。

1.3 面积计算(1)三角形面积:底×高÷2;(2)矩形面积:长×宽;(3)正方形面积:边长×边长;(4)圆形面积:π×半径²。

二、立体图形的知识2.1 定义与性质立体图形是空间内的图形,它由平面图形组成。

立体图形有无数个,如长方体、正方体、圆柱、圆锥、球等。

根据面、棱、顶点的数量对立体图形进行分类:(1)三棱锥:四个面,六个棱,四个顶点;(2)四棱锥:五个面,七个棱,四个顶点;(3)五棱锥:六个面,十一个棱,五个顶点;(4)长方体:六个面,十二条棱,八个顶点;(5)正方体:六个面,十二条棱,八个顶点;(6)圆柱:两个底面,一个侧面,四个顶点;(7)圆锥:一个底面,一个侧面,两个顶点;(8)球:一个曲面,无数个点。

2.3 体积计算(1)三棱锥体积:底面积×高÷3;(2)四棱锥体积:底面积×高÷3;(3)五棱锥体积:底面积×高÷3;(4)长方体体积:长×宽×高;(5)正方体体积:棱长×棱长×棱长;(6)圆柱体积:底面积×高;(7)圆锥体积:底面积×高÷3;(8)球体积:4/3×π×半径³。

三、平面图形与立体图形的联系与转换平面图形与立体图形之间存在联系,如长方体、正方体的展开图是矩形或正方形,圆柱的侧面展开图是矩形或圆形。

立体图形与平面图形的联系与教学探究

立体图形与平面图形的联系与教学探究

立体图形与平面图形的联系与教学探究立体图形与平面图形是数学中常见的两种形态,它们之间既有联系又有差异。

在数学的教学过程中,如何将二者联系起来,加深学生对它们的认识,是一项必要的课题。

一、立体图形与平面图形的联系作为两种不同形态的图形,立体图形与平面图形无论在结构、特征上,还是在运用中,都有着不同的特点。

但二者在形态上的联系不可避免,这也正是数学中有关平面与立体变形的关键。

1.1 平面图形与立体图形的构成平面图形是指只存在于平面上的引线,它们仅有长度和宽度,没有厚度。

而立体图形是三维空间中的实体,拥有长度、宽度和高度三个维度。

立体图形的直接表现形式是一个物体,但其构成仍然包括着平面图形。

我们可以将立体图形看做是由多个平面图形组成的。

如立方体就是由六个平面正方形组成的,棱柱就是由一个底面和若干个侧面组成的。

从这个角度出发来看,立体图形与平面图形便有联系。

1.2 平面图形与立体图形间的转换平面图形和立体图形不仅在构成上有联系,在图像上也能相互转换。

将平面图形放入某个平面上,利用图形变换(旋转等)、模型渲染等技术,可以将平面图形转化为立体图形。

而立体图形也可以通过科技手段被转为平面图形,如在屏幕上,我们可以看到平面上的三维运动图。

1.3 平面图形与立体图形的运用平面图形与立体图形在实际生活和科学技术中有着广泛的运用。

平面图形在建筑研究中主要指建筑平面图,也是花园设计、产品设计等的关键。

而立体图形则直接涉及产品制作与科技研究中。

汽车、飞机、船只等大型物体的开发设计均需要涉及到立体图形。

3D打印技术,直接使用了立体图形的成型原理,它的出现让立体图形的制作及生产变得更加容易与高效。

二、立体图形与平面图形的教学探究在教学中,立体图形与平面图形的联系与差异一直是重要课题之一。

如何将这两者联系起来,并充分利用这种联系,充分发掘课程的教育价值,显得十分重要。

2.1 立体图形与平面图形在逻辑思考中的应用逻辑思考在数学中占有重要的地位。

4.1.1 立体图形与平面图形

4.1.1  立体图形与平面图形

从正面看
从上面看 从左面看
【跟踪训练】
分别将下列四个物体与其相应的从上面看到的图 连接起来:
温馨提示:为更好地满足您的学习和使用需求,课件在下载后可以自由编辑,请您根据实际情况进行调整!Thank you for
把你手中的立体图形沿棱展开,看它的平面展 开图是什么?
长方体
展开
圆柱
展开
圆锥
展开
A
B
C
D
13. 如图是由若干个大小相同的小正方体堆砌而成的几何 体.那么从哪个方向看得到的图形中面积最小( )
A.从正面看
B.从左面看
C.从上面看
D.三种一样
【解析】选B.从正面看是由5个小正方形构成的平面图形;
从左面看是由3个小正方形构成的平面图形;从上面看是由
5个小正方形构成的平面图形.
14.(宁波·中考)骰子是一种特别的数字立方体(如
象出熟悉的几何体吗?
根据上述实物,我们想象出熟悉的几何体是:
长方体
正方体
圆柱体

4.1.1 立体图形与平面图形
圆锥体
有些几何图形(如长方体、正方体、圆柱、圆锥、 球等)的各部分不都在同一平面内,它们是立体图形.
常见的立体图形
长方体 正方体
圆柱
圆锥 球
【例题】
下列实物与给出的哪个立体图形对应?
C.圆
D.长方形
3.如图所示,将下列图形与对应的图形名称用线连 接起来.
4.下列图形中,都是柱体的一组是( C )
5.长方形、正方形、圆等都是 平面 图形. 6.写出下列几何体的名称.
三棱柱
三棱锥
圆锥
7.下列图形中为圆柱的是( D ).
8.埃及金字塔类似于几何体( C ).

立体图形与平面图形

立体图形与平面图形

立体图形与平面图形一、立体图形1. 柱体棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.圆柱:以矩形的一边所在直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆柱.2. 锥体棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.圆锥:以直角三角形一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥.3. 球体半圆以它的直径为旋转轴,旋转所成的曲面所围成的几何体叫球体.4. 多面体围成棱柱和棱锥的面是平的面,像这样的立体图形叫多面体.棱柱有三棱柱、四棱柱、五棱柱等.棱锥也有三棱锥、四棱锥、五棱锥等.二. 画立体图形1. 三视图法从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘三张所看到的图,即视图,这样就把一个物体转化为平面的图形.从正面看到的图形称为正视图;从上面看到的图形称为俯视图;从侧面看到的图形称为侧视图,按观察方向不同,有左视图,右视图.注:⑴正视图与俯视图的长度相等,且相互对正,即“长对正”;⑵正视图与侧视图的高度相等,且相互平齐,即“高平齐”;⑶俯视图与侧视图的宽度相等,即“宽相等”.2. 欧拉公式多面体具有的顶点数,棱数和面数满足欧拉公式:顶点数+面数-棱数=2三、柱体、锥体的展开名称几何体图形平面展开图底面形状侧面展开形状正方体正方形长方形圆锥圆扇形圆柱圆长方形四、常见几何体的主视图【典型例题】例1. 下列说法是否正确?正确的打“√”,不正确的打“×”,并简要说明理由.(1)柱体的上、下两个面一样大(2)圆柱和圆锥的底面都是圆,圆柱的侧面是长方形,圆锥的侧面是三角形(3)棱柱的底面是四边形,侧面可能是三角形(4)棱锥的侧面都是三角形(5)球体、圆柱、圆锥都不是多面体.分析:要对以上各种说法作出正确的判断,应从熟悉柱体、锥体、球体这些立体图形入手,把握它们各自的特征,弄清它们之间的区别.解:(1)√.柱体包括圆柱和棱柱.圆柱的两个底面都是大小一样的圆,棱柱两个底面都是一样大的三角形或多边形.(2)×.圆柱和圆锥的侧面都是弯曲的面.而长方形、三角形都是平的面,两者显然有区别.(3)×.棱柱的底面除了四边形以外,还可以是三角形等其它图形,棱柱的侧面都是四边形.(4)√.棱锥的所有棱都交于一点,侧面都是三角形.(5)√.多面体都是由平的面围成的立体图形,而球体、圆柱、圆锥并不都是由平面围成的.说明:留心生活中的物体,并能从中抽象出立体图形,除了注意不同类立体图形的区别,更应注意同类立体图形的细微差别.例2. 能否组成一个22条棱,10个面,15个顶点的棱柱或棱锥?为什么?分析:本题很难利用图形作出判断、考虑到棱柱或棱锥都是多面体,多面体都应满足“欧拉公式”.解:根据欧拉公式,顶点数+面数-棱数=2+-=当顶点数为15,面数为10时,棱数应为:1510223因此,不能组成一个棱数为22,面数为10,顶点数为15的棱柱或棱锥.说明:欧拉公式体现了多面体中顶点数、面数与棱数之间的关系,已知其中的两个数就可以求出第三个数.另外,还可以用它来判断具有某些条件的多面体是否存在.例3. 填空正方体是由_________个顶点,_________条棱,_________个面组成的,它还具有以下特点(写出三个)___________________________.解:正方体是由8个顶点,12条棱,6个面组成的,它还具有以下特点:所有的棱都相等,所有的面都是正方形,它是一个多面体.(或柱体、四棱柱等)例4. 用火柴摆出正方形,用多少根火柴才能摆出6个正方形?尽可能多地设想各种方案.并画出你的图形.(要求摆出的6个正方体的边长限于一根火柴的长)解:第一种方法:摆平面图形需要用17根火柴.第二种方法:摆三棱柱需要用15根火柴.第三种方法:摆正方体需要用12根火柴.例5.如图,下面是一个物体的三视图,试描述该物体的形状.正视图左视图俯视图分析:由物体的三视图想象物体的形状,要几个视图联系起来看.从正视图中可看出它是由两个部分叠加或是左边挖掉了一个形体,再对照俯视图,左视图便可知道右边上面加了半个圆柱体,圆柱下面是一个长方体,并且圆柱体的左面与长方体左面平齐,柱体的底面直径与长方体的宽一样.解:该物体的形状如图所示:说明:由视图想象物体的形状一般按以下步骤进行:(1)分线框,把几个视图联系起来看,把物体大致分成几部分;(2)识形体,定位置,根据每一部分的视图想象出它的形体,并确定它们的相互位置;(3)综合起来想整体,确定各个部分的形体及相互位置后,整个物体的形状也就清楚了.例6. 如图所示是一个几何体的两个视图,求该几何体的体积( 取3.14,长度单位cm )2032402530正视图 俯视图分析:从所给两个视图可以确定,设几何体是由两部分组成的,下面是一个长方体,它的长、宽、高分别是30cm 、25cm 、40cm.上面是一个圆柱体,底面圆的直径是20cm ,长为32cm ,所以该几何体的体积是这两部分体积之和.解:长方体体积为:30×25×40=30000cm3圆柱体体积为:3.14×102×32=10048 cm 3 30000+10048=40048cm 3答:几何体体积为400483cm .例7. 如图所示的立方体,将其展开得到的图形是( )A B C D (例8图)。

平面图形立体图形总结

平面图形立体图形总结
全等图形
两个图形如果形状和大小都完全相同,则称这两个图形全等。全等图形具有相 同的角和边,可以完全重合。
03
立体图形基础知识
基本几何体及其性质
正方体
所有棱长都相等的特殊长方体, 六个面都是正方形。
圆锥
由一个圆面和一个侧面(母线) 围成的几何体,侧面展开为扇 形。
长方体
由六个矩形围成的几何体,具 有三组平行的相对面,且相对 面的面积相等。
投影
立体图形在二维平面上的投影通常 表现为平面图形,如三视图中的主 视图、俯视图和左视图。
立体图形对平面图形的拓展
维度增加
立体图形是平面图形在三 维空间中的拓展,具有长 度、宽度和高度三个维度。
空间感
立体图形具有空间感,可 以呈现更丰富的视觉效果 和实际应用,如建筑设计、 机械制造等。
表面积和体积
通过创新,可以打破常规的思维 模式,发现新的解题途径。
创新法需要具备一定的数学素养 和思维能力,但一旦成功,往往
能够带来意想不到的效果。
06
经典案例剖析与讨论
案例一:利用相似性质求解问题
相似三角形性质
通过相似三角形的性质,可以求 解线段比例、角度等问题。
相似多边形性质
利用相似多边形的性质,可以求 解面积、周长等问题。
角的分类
根据角的大小和性质,角可分为 锐角、直角、钝角、平角、周角 等。
平行与垂直关系
平行关系
在同一平面内,不相交的两条直线叫 做平行线。平行线之间的距离相等, 且永不相交。
垂直关系
两条直线相交成直角时,这两条直线 互相垂直。垂线是两条直线的特殊位 置关系。
相似与全等图形
相似图形
两个图形如果形状相同但大小不一定相等,则称这两个图形相似。相似图形具 有相同的角和相似的边。

平面图形和立体图形的计算公式

平面图形和立体图形的计算公式

平面图形和立体图形的计算公式1、正方形C:周长S:面积a:边长周长=边长×4 C=4a 面积=边长×边长 S=a×a=2a 2、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长 V=a×a×a=3a3、长方形C:周长S:面积a:边长周长=长+宽×2 C=2a+b面积=长×宽 S=ab4、长方体V:体积s:面积a:长b: 宽h:高1表面积长×宽+长×高+宽×高×2 S=2ab+ah+bh2体积=长×宽×高 V=abh5、三角形s:面积a:底h:高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形s:面积a:底h:高面积=底×高 s=ah7、梯形s:面积a:上底b:下底h:高面积=上底+下底×高÷2 s=a+b× h÷28、圆形S:面积C:周长лd=直径r=半径1周长=直径×л=2×л×半径 C=лd=2лr2面积=半径×半径×л=π2r9、圆柱体v:体积h:高s:底面积r:底面半径c:底面周长1侧面积=底面周长×高=ch2лr或лd 2表面积=侧面积+底面积×2 3体积=底面积×高 4体积=侧面积÷2×半径10、圆锥体v:体积h:高s:底面积r:底面半径体积=底面积×高÷3。

立体图形和平面图形-完整版PPT课件全

立体图形和平面图形-完整版PPT课件全
第四十四页,共五十五页。
正方体的展开图有11种基本情况:
一四一型
二三一型
二二二型
三三型
第四十五页,共五十五页。
练习:下列图形中可以作为一个正方体的展开图的是( ).
C
(A)
(B)
(C)
(D)
第四十六页,共五十五页。
探究常见的立体图形的展开图
下面是一些立体图形的展开图,用它们能围成什么样的立 体图形?把它们画在一张硬纸片上,剪下来,折叠、 粘贴,看看得到的图形和你想象的是否相同.
作业
教科书习题4.1第 4 题.
第三十八页,共五十五页。
4.1.1 立体图形与平面图形
(第3课时)
第三十九页,共五十五页。
学习目标:
1. 能画出简单的几何体的展开图; 2. 能根据展开图判断几何体的形状,并能理解
这样做的现实意义.
学习重点: 通过“展开”和“围成”两种途径认识常见几何
体的展开图.
立体图形
正面
左面
上面
第三十六页,共五十五页。
分别从正面、左面、上面看一个由若干个正方体组成的立体图形,
得到的平面图形如下图所示,你能搭出这个立体图形吗?动手试试看!
正面
左面
上面
第三十七页,共五十五页。
小结
这节课我们主要学习了从不同方向看立体图形得到平面图形,
回顾学习过程,谈一谈自己有哪些学习成果.
第四章 几何图形初步
9.1.1立体图形和平面图形(1)
第一页,共五十五页。
学习目标:
1.可以从简单实物的外形中抽象出几何图形,并了解立 体图形与平面图形的区别;
2.会判断一个几何图形是立体图形还是平面图形, 能准确识别棱柱与棱锥.

4.1.1立体图形与平面图形

4.1.1立体图形与平面图形

4.1.1 立体图形与平面图形
栏目索引
例2 如图4-1-1-3所示,下列各标志图形主要由哪些简单的几何图形组 成?
图4-1-1-3
解析 图①由圆组成;图②由长方形和正方形组成;图③由四边形(或菱 形)组成;图④由圆和圆弧组成.
4.1.1 立体图形与平面图形
知识点三 从不同方向看物体
栏目索引
常见立体图形从不同方向看得到的平面图形列表如下:
栏目索引
答案 B A是球,B是圆柱,C是圆锥,D是三棱柱,故选B.
4.1.1 立体图形与平面图形
2.如图是一座房子的平面图,组成这幅图的图形有 ( )
栏目索引
A.三角形、长方形 B.三角形、正方形、长方形 C.三角形、正方形、长方形、梯形 D.正方形、长方形、梯形 答案 C 由题图可以看出,在这个平面图中,房子的屋顶是三角形,其 余的图形分别有长方形、正方形、梯形.这座房子的平面图是由上述四 种图形组成的.
答案 A 点拨 考查从不同角度观察物体的能力,体会立体图形与平面图形相互 转化的过程,培养空间想象能力.
4.1.1 立体图形与平面图形
栏目索引
题型二 正方体的平面展开图 例2 图4-1-1-8是每个面上都有一个汉字的正方体的一种平面展开图, 那么在原正方体中和“国”字所在面相对的面上的汉字是 ( )
4.1.1 立体图形与平面图形
知识点一 认识立体图形 1.下列几何图形中,是棱柱的是 ( )
答案 B A是圆柱;B是棱柱;C是球;D是圆锥.
栏目索引
4.1.1 立体图形与平面图形
栏目索引
2.与图中实物图相类似的立体图形按从左至右的顺序依次是 ( )
A.圆柱、圆锥、正方体、长方体 B.圆柱、球、正方体、长方体 C.棱柱、球、正方体、棱柱 D.棱柱、圆锥、棱柱、长方体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方形。找一个魔方看看,正方体是否有这些特点呢?
• 圆柱体的上下有两个一样大的圆形的面,圆十住的曲面也叫做侧面,展开之 后就变成了一个长方形或者正方形,也可以变成平行四边形。你一定见到过圆 柱体的薯片盒吧?还有喝水用的圆柱体杯子,大桥底下的圆柱体石柱,他们都 能体现圆柱体的特点。

圆锥体有一个顶点,一个曲面,一个圆形的底面把他的曲面展开会变成
平面图形和立体图形
在此输入您的封面副标题
• 你所见到的图形中,有的是在纸上或者广告板上的,有的是立在那里的,他们 一样吗?我告诉你他们有些是平面图形,有些是立体图形,那么,平面图形就 是立体图形吗?或者,你知道他们的区别吗?
平面图形指的是图形上的所有部分都在一个平面上,比 如直线、线段、三角形、四边形、圆等等,它们的所有组 成部分都在一个平面上。而立体图形指的是由一个或者 多个面围成的图形,比如四四方方的盒子,厚厚的字典 等。我们已经知道了点是几何图形中最基本的组成部分, 点的运动轨迹组成了线,线的运动轨迹组成了面,而面 的运动轨迹又组成了体。虽然都叫做图形,但是立体图 形是由平面图形构成的,它们并不是一回事。
一个扇形,沙漏是圆锥体的,喝红酒的高脚杯也是圆锥体的,草帽、小喇叭的
设计都是圆锥体。
• 举了这么多例子,相信你已经能够区分平面图形和立体图形了,那下面再列举 一个生活中的例子:鸡蛋放在桌面上是一个椭圆的物体,我们叫它立体图形。可 是我们当我们从一个角度去看他的时候,他只是一个椭圆形,是一个平面图形, 无法单拿出来立在桌面上。再比如一本字典摆在书架上,它是一个长方体,可 我们看他的封面,那是一个平面,是不能单独立起来的。
•就拿长方体来说吧,长方体有八个顶点,六个面,每个面都是由长方形组成 的。它有+二条棱,相对应的四条棱的长度是相等的。长方体的物品有很多:长 方体的积木、长方体的纸箱、长方体的文具盒等等。

正方体是特殊的长方体,它的每条棱长都是相等的,它的六个面都是正

平面图形是立体图形的一个面。区分平面图形和立体图形,只要看它有几
个面,如果只有一个平面就是平面图形,有多个面又能够立起来的就是立体图
形。
• 长方体(又称矩体)是底面为长方形的直四棱柱(或上、下底面为矩形的直平行 六面体)。其由六个面组成的,相对的面面积相等,可能有两个面(可能四个 面是长方形,也可能是六个面都是长方形)是正方形。
• 平面图形 周长(长度单位)围绕一个封闭的平面图形一周的长度 • 面积:物体的表面或封闭图形的大小 • 立体图形 • 体积:物体所占空间的大小 • 面积和周长计算都需要知道长方形的长和宽。意义不同 单位不同 计算方法不

相关文档
最新文档