分式化简求值练习题库(经典、精心整理)说课讲解
分式化简求值练习题库(经典精心整理)
1.先化简,再求值:12112---x x ,其中x =-2.2、先化简,再求值:,其中a=﹣1.3、(2011•綦江县)先化简,再求值:,其中x=.4、先化简,再求值:,其中.5先化简,再求值,其中x 满足x 2﹣x ﹣1=0.6、化简:ba ba b a b 3a -++--7、(2011•曲靖)先化简,再求值:,其中a=.8、(2011•保山)先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.9、(2011•新疆)先化简,再求值:(+1)÷,其中x=2.10、先化简,再求值:3x –3 – 18x 2 – 9,其中x = 10–311、(2011•雅安)先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..12、先化简,再求值:12-x x (xx 1--2),其中x =2.13、(2011•泸州)先化简,再求值:,其中.14、先化简22()5525x x xx x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值.15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .16、(2011•成都)先化简,再求值:232()111x x x x x x --÷+--,其中x =17先化简。
再求值:2222121111a a a a a a a +-+⋅---+,其中12a =-。
18.先化简,再求值:⎝ ⎛⎭⎪⎫1+1x -2÷x 2-2x +1x 2-4,其中x =-5.19. 先化简再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程2220x x --=的正数根.20 化简,求值: 111(11222+---÷-+-m m m m m m ) ,其中m =. 21、(1)化简:÷.(2)化简:22a b ab b a (a b )a a ⎛⎫--÷-≠ ⎪⎝⎭22、先化简,再求值:,其中.23请你先化简分式2223691,x 1211x x x x x x x +++÷+--++再取恰的的值代入求值.24、(本小题8分)先化简再求值()121112222+--++÷-+a a a a a a 其中a=3+1 25、化简,其结果是.326.(11·辽阜新)先化简,再求值:(xx -2-2)÷x 2-16x 2-2x,其中x =3-4.27、先化简,再求值:x 2+4x +4x 2-16÷x +22x -8-2xx +4,其中x =2.28、先化简,再求值:232()224x x xx x x -÷-+-,其中4x =.29.先化简,再求值:2()11a aa a a+÷--,其中 1.a =30、先化简,再求值:2211()11a a a a++÷--,其中a31、(1)化简:.(2)2111x x x -⎛⎫+÷ ⎪⎝⎭(3)aa a a 1)1(-÷-32.(1)aba b a b b a +⋅++-)(2。
专题训练(一) 分式化简求值常见题型归纳
专题训练(一) 分式化简求值常见题型归纳► 类型一 代入求值型一、直接代入型1.先化简,再求值:⎝ ⎛⎭⎪⎫a 2a -1+11-a ·1a,其中a =-12. 二、选择代入型2.先化简:x 2+x x 2-2x +1÷⎝ ⎛⎭⎪⎫2x -1-1x ,再从-2<x <3的范围内选取一个你喜欢的x 值代入求值.3.若a 满足-3≤a≤3,请你选取一个合适的数a 使得代数式a 2-1a ÷⎝ ⎛⎭⎪⎫1-1a 的值是一个奇数.三、整体代入型4.已知x ,y 满足x =5y ,求分式x 2-2xy +3y 24x 2+5xy -6y 2的值. 5.已知a +b b =52,求a -b b的值. 6.若1a -1b =12,求a -b ab -ab a -b的值. 7.已知1x +1y =5,求2x -3xy +2y x +2xy +y的值. 8.已知a 满足a 2+2a -15=0,求1a +1-a +2a 2-1÷(a +1)(a +2)a 2-2a +1的值. 9.已知t +1t =3,求t 2+⎝ ⎛⎭⎪⎫1t 2的值. 10.已知x +1x =4,求x 2x 4+x 2+1的值. ► 类型二 设比例系数或用消元法求值11.已知2a -3b +c =0,3a -2b -6c =0,abc ≠0,则a 3-2b 3+c 3a 2b -2b 2c +3ac 2=________. 12.已知x 2=y 3=z 4≠0,求xy +yz +zx x 2+y 2+z 2的值.► 类型三 利用非负数的性质挖掘条件求值13.已知x 2-4x +4与|y -1|互为相反数,则式子⎝ ⎛⎭⎪⎫x y -y x ÷(x +y)的值为________. 14.已知⎪⎪⎪⎪⎪⎪x -12x -3+⎝ ⎛⎭⎪⎫3y +1y +42=0,求32x +1-23y -1的值. ► 类型四 值恒不变形15.已知y =x 2+6x +9x 2-9÷x +3x 2-3x-x +3,试说明不论x 为任何使原式有意义的值,y 的值均不变. 详解详析1.解:原式=⎝⎛⎭⎫a 2a -1-1a -1·1a =a 2-1a -1·1a =(a +1)(a -1)a -1·1a =a +1a . 当a =-12时,a +1a =-12+1-12=-1. 2.解:原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x 2x -1. 由题意,可取x =2代入上式,得x 2x -1=222-1=4.(注意:x 不能为0和±1) 3.解:原式=a +1.由原代数式有意义,得a ≠0且a ≠1,又代数式的值是奇数,且-3≤a ≤3,所以a =±2.4.解:由已知可得y ≠0,将分式的分子、分母同除以y 2,得原式=⎝⎛⎭⎫x y 2-2·x y +34·⎝⎛⎭⎫x y 2+5·x y-6. 又已知x =5y ,变形得x y =5,将其代入原式,得⎝⎛⎭⎫x y 2-2·x y +34·⎝⎛⎭⎫x y 2+5·x y -6=52-2×5+34×52+5×5-6=18119. 5.[解析] 由a -b b =a +b -2b b =a +b b-2,再将已知条件代入该式即可求解. 解:a -b b =a +b -2b b =a +b b -2,又知a +b b =52,将其代入上式,得 a -b b =52-2=12. 6.解:由1a -1b =12, 得b -a ab =12, 所以a -b ab =-12,ab a -b=-2, 所以a -b ab -ab a -b=-12+2=32. 7.[解析] 由条件1x +1y =5,通分化简,得x +y =5xy ,代数式可化为2(x +y )-3xy x +2xy +y,从而整体代入求值.解:∵1x +1y =x +y xy=5, ∴x +y =5xy ,∴2x -3xy +2y x +2xy +y =2(x +y )-3xy x +2xy +y =10xy -3xy 5xy +2xy=1. 8.[解析] 对要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a 2+2a -15=0进行配方,得到a +1的值,再把它整体代入即可求出答案.解:1a +1-a +2a 2-1÷(a +1)(a +2)a 2-2a +1=1a +1-a +2(a +1)(a -1)·(a -1)2(a +1)(a +2)=1a +1-a -1(a +1)2=2(a +1)2. ∵a 2+2a -15=0,∴(a +1)2=16,∴原式=216=18.9.[解析] 利用t 2+⎝⎛⎭⎫1t 2=⎝⎛⎭⎫t +1t 2-2的形式,将已知条件整体代入求解. 解:因为t 2+⎝⎛⎭⎫1t 2=⎝⎛⎭⎫t +1t 2-2, 又t +1t=3,将其代入上式,得原式=32-2=7. 10.解:因为x +1x=4,所以⎝⎛⎭⎫x +1x 2=42, 即x 2+2+1x 2=16,所以x 2+1x 2=14. 因为x 4+x 2+1x 2=x 2+1+1x 2=x 2+1x 2+1=14+1=15, 所以x 2x 4+x 2+1=115. 11.1142[解析] 由已知条件不能求出a ,b ,c 的具体值,但是我们可以把已知等式组成方程组,用其中一个字母(如c)来表示另两个字母,把分式转化为只含一个字母的分式,再约分.由已知,得⎩⎨⎧2a -3b =-c ,3a -2b =6c , 解这个方程组得 ⎩⎨⎧a =4c ,b =3c ,代入原式,得a 3-2b 3+c 3a 2b -2b 2c +3ac 2= (4c )3-2·(3c )3+c 3(4c )2·3c -2·(3c )2c +3×4c·c 2=11c 342c 3=1142. 12.解:设x 2=y 3=z 4=k ,则x =2k ,y =3k ,z =4k ,所以xy +yz +zx x 2+y 2+z 2=6k 2+12k 2+8k 24k 2+9k 2+16k 2=2629. 13.12[解析] 代数式x 2-4x +4=(x -2)2.因为x 2-4x +4与|y -1|互为相反数,所以由非负数的性质,得x -2=0,y -1=0,解得x =2,y =1,所以⎝⎛⎭⎫x y -y x ÷(x +y)=⎝⎛⎭⎫21-12÷(2+1)=12.14.解:由⎪⎪⎪⎪⎪⎪x -12x -3+⎝ ⎛⎭⎪⎫3y +1y +42=0,得x -12x -3=0,3y +1y +4=0,所以x =1,y =-13, 所以原式=32×1+1-23×⎝⎛⎭⎫-13-1=2. 15.[解析] 先化简分式,再通过分析化简结果得出结论.解:y =x 2+6x +9x 2-9÷x +3x 2-3x-x +3 =(x +3)2(x +3)(x -3)·x (x -3)x +3-x +3 =x -x +3=3.由化简结果,可知y 的值为常数3,与x 的取值无关,故不论x 为任何使原式有意义的值,y 的值均不变.。
分式化简与求值57题(精心整理、经典)
分式化简与求值57题(精心整理、经典)分式化简与求值57题(精心整理、经典)1. 先化简,再求值:12112---x x ,其中x =-2.2、先化简,再求值:,其中a=﹣1.3、(2011•綦江县)先化简,再求值:,其中x=.4、先化简,再求值:,其中.5先化简,再求值,其中x满足x 2﹣x ﹣1=0.6、化简:ba ba b a b 3a -++--7、(2011•曲靖)先化简,再求值:,其中a=.8、(2011•保山)先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.9、(2011•新疆)先化简,再求值:(+1)÷,其中x=2.10、先化简,再求值:3x –3–18x 2– 9,其中x = 10–311、(2011•雅安)先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..12、先化简,再求值:12-x x (x x 1--2),其中x =2.13、(2011•泸州)先化简,再求值:,其中.14、先化简22()5525x x xx x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值.15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .16、(2011•成都)先化简,再求值:232()111x x x x x x --÷+--,其中3x =17先化简。
再求值:2222121111a a a a a a a +-+⋅---+,其中12a =-。
18. 先化简,再求值:⎝⎛⎭⎪⎫1+1x -2÷x 2-2x +1x 2-4,其中x =-5.19. 先化简再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程2220xx --=的正数根.20 化简,求值: 111(11222+---÷-+-m m m m m m ) ,其中m =.21、(1)化简:÷. (2)化简:22a b ab b a (a b )a a ⎛⎫--÷-≠ ⎪⎝⎭22、先化简,再求值:,其中.323请你先化简分式2223691,x 1211x x x x x x x +++÷+--++再取恰的的值代入求值.24、(本小题8分)先化简再求值()121112222+--++÷-+a a a a a a 其中a=3+1 25、化简,其结果是.26.(11·辽阜新)先化简,再求值:(x x -2-2)÷x 2-16x 2-2x ,其中x =3-4.27、 先化简,再求值:x 2+4x +4x 2-16÷x +22x -8-2xx +4,其中x =2.28、先化简,再求值:232()224x x xx x x -÷-+-,其中34x =.29.先化简,再求值:2()11a aa a a+÷--,其中2 1.a =30、先化简,再求值:2211()11a a a a++÷--,其中2a31、(1)化简:. (2)2111x x x -⎛⎫+÷⎪⎝⎭(3)aa a a 1)1(-÷-32.(1)aba b a b b a +⋅++-)(2。
分式化简求值练习题库(经典精心整理)
分式化简求值练习题库(经典精心整理)1.先化简,再求值:frac{-2x-1}{x-1},\text{其中}x=-2.$$2.先化简,再求值:frac{12}{2x^2-1},\text{其中}x=-2.$$3.(2011·綦江县)先化简,再求值:frac{a^2+3a+2}{a^2-3a},\text{其中}a=-1.3.$$4.先化简,再求值:frac{x^2-4}{x^2-5x+6},\text{其中}x=3.$$5.先化简,再求值:frac{2x^2-2x-4}{x^2-3},\text{其中}x=-2.$$6.化简:frac{2x^2+4x+2}{x^2+2x+1}.$$7.(2011·曲靖)先化简,再求值:frac{2x^2-2x+1}{x^2+2x+1},\text{其中}x=-1.$$8.(2011·保山)先化简,其中:frac{a-3b}{a+b}+\frac{a-b}{a- b},\text{其中}a=1,\text{且}b=2.$$frac{x^3+x}{x^2-x-1},\text{其中}x=\frac{1+\sqrt{5}}{2}.$$9.(2011·新疆)先化简,再求值:frac{x-3}{x^2-9},\text{其中}x=10^{-3}.$$10.先化简,再求值:frac{x^2-6x+9}{x^2-5x+6},\text{其中}x=3.$$11.(2011·雅安)先化简下列式子,再从2,-2,1,-1中选择一个合适的数进行计算:frac{2x^2-4x-3}{x^2-x-2}.$$12.先化简,再求值:frac{a^2-4a+4}{a^2-2a+1},\text{其中}a=2.$$13.(2011·泸州)先化简,再求值:frac{3x+18}{x^2-5x+6},\text{其中}x=3.$$14.先化简,然后从不等组$\begin{cases}-x-5\leq 3x\\x^2-5x+2<5x-12\end{cases}$的解集中,选取一个符合题意的x的值代入求值:frac{x-5}{5-x}-\frac{x^2-2x-25}{x^2-25}.$$15.先化简,再求值:frac{a^2-4a-2}{2a^2+10a+12},\text{其中}a=-5.$$16.(2011·成都)先化简,再求值:frac{3x}{x^3-2x},\text{其中}x=\frac{\sqrt{3}+1}{2}.$$17.先化简,再求值:frac{2a+1}{a^2-2a+1},\text{其中}a=-1.$$18.先化简,再求值:frac{1}{x-2}+\frac{x-2}{x^2-4},\text{其中}x=-5.$$19.先化简再计算:frac{x}{x+1}+\frac{x+1}{x},\text{其中}x\neq 0,-1.$$20.化简,求值:其中$m=3$.frac{m^2-2m+1}{m^2-1}-\frac{m^2-m-2}{m^2-4}.$$21.(1)化简:frac{a-b}{a^2-ab},\text{其中}a\neq b.$$2)化简:frac{x+3}{2x^2+6x+9}.$$22.先化简,再求值:其中$a=2b$.frac{a^2-b^2}{a^2+ab},\text{其中}b\neq 0.$$23.请你先化简分式:frac{2x-1}{x^2-2x-3}-\frac{2x+1}{x^2+2x-3}.$$24.(本小题8分)先化简再求值,其中$a=3+1$. frac{a^2-1}{2a^2-6a+4}.$$25.化简,其结果是:x-8)^2-64x+1024.$$51、先化简,再求值:$\frac{x^2+2x+11}{x^2}$,其中$x$所取的值是在$-2<x\leq 3$内的一个整数。
分式化简求值练习题库(经典精心整理)
1 21.先化简,再求值:x2,其中 x=- 2.x 1 12、先化简,再求值:,其中 a= ﹣ 1.3、( 2011?綦江县)先化简,再求值:,其中 x= .4、先化简,再求值:,其中.5 先化简,再求值,其中 x 满足 x2﹣ x﹣ 1=0 .a 3b a b6、化简:a b a b7、( 2011?曲靖)先化简,再求值:,其中 a= .8、( 2011?保山)先化简(x 1 ) 1,再从﹣ 1、 0、1 三个数中,选择一个你认x 1 x 1 x2 1为合适的数作为x 的值代入求值.9、( 2011?新疆)先化简,再求值: ( +1) ÷ ,其中 x=2 .10、先化简,再求值: 318 ,其中 x =10–3 x –3 – 2–9x11、( 2011?雅安)先化简下列式子,再从2,﹣ 2, 1, 0,﹣ 1中选择一个合适的数进行计算..12、先化简,再求值:x x 12 1 ( -2), 其中 x=2.x x13、(2011?泸州)先化简,再求值: ,其中 .14、先化简 (x x ) 2x ,然后从不等组 x 2 3 的解集中,选取一个你认 x 5 5 x x 2 25 2x 12 为符合题意的x 的值代入求值.15、先化简,再求值: 2 a 2 4 a 2,其中 a5 .a 6a 9 2a616、( 2011?成都)先化简,再求值: ( 3x x ) x2,其中 x 3 . 17 先化简。
再求1 a2 x 1 x 1 x 212 值: 2aa 2 2a 11 ,其中 a1 。
a2 1 a a 1 21x 2- 2x + 1 x =- 5. .先化简,再求值: 1+÷2,其中18 x - 2x -419. 先化简再计算:x 2 1 x 2x 1,其中 x 是一元二次方程 x 22 x 2 0的正数根 .x 2 xx20 化简,求值:m 2 2m 1 m 1 ) 其中 = 3 .m 2 1 (m 1 1 m m ,21、( 1)化简: ÷ .( 2)化简:ab a 2ab b 2 ( ab )a a22、先化简,再求值: ,其中 .23请你先化简分式x3 x 2 6x 91, 再取恰的 x 的值代入求值 . x 21 x2 2 x 1x 124、(本小题 2a 2a 2 1其中 a= 3 +18 分)先化简再求值 a 1a 2 2a 1 a125、化简,其结果是.26.( 11·辽阜新)先化简,再求值:x x2-16,其中 x= 3-4.( - 2) ÷2-2xx- 2x27、先化简,再求值:x2+ 4x+4x+ 2-2x,其中 x=2. 2-16÷x+x2x-8428、先化简,再求值: ( 3x x ) 2x ,其中 x 3 4 .x 2 x 2 x2 429.先化简,再求值:2a a( ) a ,其中 a2 1.a 1 1 a2a 1 130、先化简,再求值: ( 21 ) a ,其中 a2a 1 a31、( 1)化简:.( 2) 1 1x2 1x x ( 3) (a 1 ) a 1a a32.( 1) (a b b2) a b。
初中数学分式的化简求值专项训练题10(附答案详解)
初中数学分式的化简求值专项训练题W (附答案详解)1•计算:个合适的X值代入求值.5.先化简,再求值:z7-~4^~4÷(--/H-1),其中Z,7=√2-2.m -1 7/7-14 16先化简’再求值:L一三’其中心•7.先化简再求值:(a-卫匸匕)÷伫二伫,其中a=l+√2 * b=l - √2 • a a8.先化简,再求值:(1 + —,其中。
=一3・。
一2 Cr -43x9∙(I)≡ □τE对一112・先化简,再求值:疋一1一口厂TT齐0其中"满足*6=0(1) 4√6-3∙l+√8 ÷2y∕2Z⑵宀’心字求泻的值.2.先化简,再求值:(x+2--^―X — 2m— 3 3・(1)先化简,再求值° r ;・3nΓ + 6〃?4γ +1⑵解方程:—÷i-7=ι匚其中x=3+√3・< + 35-m÷2)t其中m是方程x2+3x-l=0的根; m + 24先化简’再求值:⅛÷^2- A-2 )÷-,其中一2<x≤2,且X为整数,请你选一(2)先化简3x u'^1,再取一个适当的数代入求值•10・先化简, 再求值:亠L —其中V 对一2Λ +1 Xi 1 + X 211・先化简, 再求值:x2一2x1Xr- -1 i(2)先化简,再求值:( 一?—一丄)÷ 丄,其中X=-I. Λ'-2Λ + 1 X x-115.已知F-3Λ∙-3 = O,那么请化简代数式(―-—)÷ lr ~A '并求值.X x + 1 f +2Λ + 1已知X-------------------- = — 1 , ( 1)求兀2 -------------- 7的值;XΛΓ18∙先化简式子:≡÷ (^- ⅛λ再从3' 2'。
三个数中选一个恰当的数作为"的值代入求值.19. 先化简,再求值:x + 4 x-1 X 2 -1 x + 1 XX 2+ Ix20. (1) 2X 2-(Λ∙ + 2)(X -2)-(-1)°(X ^2)'1. (2)先化简,再求值:—-∕~λ^÷∆l±∑,其中x = 2.x + 1 J Γ-6X + 9 X - 3α — 2 9Λ -1 \21. 先化简,再求值: j÷「1-斗 ,其中a 是方程χ2-χ=2019的解./ 一 1 α +1 丿 2 Y 1—22. 先化简,再求值:-一,其中X= √2 - 1.2—1 x-1/牙 _] Or λ 123. 先化简:-一 + = ÷丁再从1中选一个合适的X 的值代入求值・< X +1 X —1丿 X —124. 计算:Cr -4Cr -4t∕ + 4 2(I)/+2α + l= (" + I)?2y X 4xyx + 2y 2y-x 4),一疋Z、 x+ y",.f U->[χ-2-y-2)÷(w)∖其中 χ = r ∖y = -3L(2)求疋-丄的值.X17.先化简,再求值:-y ÷IX+y 丿-(x-2y)(x+y),其中χ = -l, y = 2.16. (1)已知 αb = 12(d>0e>0),求其中x = √2-L(2)先化简再求值:已知X= →½14.先化简,再求值:的值;25.先化简(1・一 )J 厂-6"_9,然后a在.2, 0, 2, 3中选择一个合适的数代入。
第三章分式的化简求值问题
第三章:分式一、中考要求:1 •经历用字母表示现实情境中数量关系(分式、分式方程)的过程,了解分式、分式方程的概念,体会分式、分式方程的模型思想,进一步发展符号感.2•经历通过观察、归纳、类比、猜想、获得分式的基本性质、分式乘除运算法则、分式加减运算法则的过程,发展学生的合情推理能力与代数恒等变形能力.3•熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,会解可化为一元一次方程的分式方程(方程中分式不超过两个)会检验分式方程的根.4.能解决一些与分式、分式方程有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识.5 •通过学习,能获得学习代数知识的常用方法,能感受学习代数的价值.二、中考卷研究(一)中考对知识点的考查:本章多考查分式的意义、性质,运算也是中考热点之一,另外分式方程及其应用也是热点考题.本章还多考查方程思想和转化思想以及学生收集和处理信息的能力,获取新知识的能力、分析问题和解决问题的能力.三、中考命题趋势及复习对策本章内容是中考命题的重要内容之一,在中考中占有一定的比例,命题的形式有填空、选择、计算、解答题,占4〜12分,主要考查学生对概念的理解和运用基础知识、计算、分析判断的能力.针对中考命题趋势,在复习时应夯实基础知识,锻炼计算能力,还应在方程的应用上多下功夫、加大力度,多观察日常生活中的实际问题.★★★ (I )考点突破★★★考点1:分式的运算、考点讲解:A1.分式:整式A除以整式B,可以表示成g的形式,如果除式B中含有字母,那么称令错误!为分式. 注:(1 )若B z 0,则错误!有意义;(2)若B=0,则错误!无意义;(2)若A=0且B z0,则错误!=02 .分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.3 .约分:把一个分式的分子和分母的公团式约去,这种变形称为分式的约分.4 .通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.5 •分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加减;(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.6 •分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.7 .通分注意事项:(1 )通分的关键是确定最简公分母,最简公分母应为各分母系救的最小公倍数与所有相同因式的最高次幂的积;(2)易把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.8 .分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.9 .对于化简求值的题型要注意解题格式,要先化简,再代人字母的值求值.二、经典考题剖析:【考题1 - 1】(2004、南宁,2分)当x 时,分式错误!有意义.解:z 1点拨:考查分式有意义的条件 1 - x z 0,即X z 1.解:一1【考题1 —2】(2004、青岛)化简: a 2.a24a 4(a 2)【考题1 - 3】(2004、贵阳,8分)先化简,再求 2值:(3x x x 1,其中 x 2 2。
初中数学分式的化简求值专项训练题(精选历年60道中考题 附答案详解)
初中数学分式的化简求值专项训练题(精选历年60道中考题 附答案详解)1.化简求值 :22244(4)2x x x x x+--÷+,其中2x = 2.先化简、再求值:352242a a a a -⎛⎫÷-- ⎪--⎝⎭,其中a3. 3.()1化简:21111x x x ⎛⎫÷+ ⎪--⎝⎭然后选择你喜欢且符合题意的一个x 的值代入求值. ()2分解因式:22344xy x y y --4.先化简再求值:211122x x x -⎛⎫÷- ⎪++⎝⎭,其中x =135.先化简(2341x x +-﹣21x -)÷2221x x x +-+,再从﹣2,﹣1,0,1,2中选一个你认为合适的数作为x 的值代入求值.6.2316133962x x x x x x --⎛⎫÷-- ⎪+--+⎝⎭7.先化简再求值:(2221244x x x x x x ---+++)÷42x x -+,其中x =(﹣1)0. 8.先化简,再求值:22214244a a a a a a a a +--⎛⎫-÷⎪--+⎝⎭,其中3a =. 9.先化简,再求值: 2295(2)242y y y y y -÷----,其中y =. 10.先化简,再求值:(2241x x x -+-+2-x)÷2441x x x++-,其中x-2. 11.化简求值:22111m m m m +-⎛⎫-÷ ⎪⎝⎭,其中m12.(1)计算:22214()244x x x x x x x x+---÷--+; (2)解分式方程:1121x x x -=+-. 13.(1)化简2422x x x+-- (2)先化简,再求值221111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 为整数且满足不等式组11622x x --⎧⎨+≥⎩>.14.先化简,再求值:(11x +﹣1)÷21x x -,其中x =2 15.(1)化简:2112x x x x x ⎛⎫++÷- ⎪⎝⎭; (2)化简分式:2221121x x x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,并从13x -≤≤中选一个你认为适合的整数x 代人求值.16.先化简,再求值:211()1211x x x x x x ++÷--+-,其中x=3. 17.先化简,再求值:(522a a -++a ﹣2)÷22a a a -+,其中a =2+1. 18.如图,作业本上有这样一道填空题,其中有一部分被墨水污染了,若该题化简的结果为1x 3+.(1)求被墨水污染的部分;(2)原分式的值能等于17吗?为什么? 19.先化简,再求值:2211()3369x x x x x x --÷---+,其中x 满足240x +=. 20.先化简再求值2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中a 是方程x 2-x =2017的解. 21.化简求值:22a 2ab b 2a 2b-+÷-(11b a -),其中a 2=1,b 2=1. 22.(1)解方程 :21124x x x -=-- (2)先化简,再求值:22112()2a a b a b a ab b+÷+--+,其中269a a -+与|1|b -互为相反数. 23.先化简,再求值:(1﹣11a -)÷2244a a a a-+-,其中2.24.先化简,再求值:2221111a a a a a ⎛⎫++-÷ ⎪--⎝⎭,其中a =﹣3. 25.(1)计算:23(3)3x x x x--- (2)计算:22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭ (3)先化简,再求值: 已知a b =3,求222443a ab b b a b a b a b ⎛⎫++÷-- ⎪--⎝⎭的值. 26.计算:(1)2111a a a a -++-; (2)2222421121a a a a a a a ---÷+--+; (3)先化简再求值:(132x -+)212x x x -÷+-,其中x 是﹣2,1,2中的一个数值. 27.先化简,再求值:2221()211a a a a a a+÷--+-,其中a 是方程2230x x +-=的解. 28.先化简,再求代数式214(1)33x x x -+÷--的值,其中3tan 3022cos 45x =- 29.()1解方程:28124x x x -=-- ()2先化简后求值2221412211a a a a a a --⋅÷+-+-,其中a 满足20a a -= 30.若13x x +=,求: (1)221x x+的值; (2)1x x-的值; (3)221x x -的值. 31.先化简再求值:221111x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =-.32.先化简,再求值:233()111a a a a a -+÷--+,其中. 33.先化简,再求值22111211a a a a -⎛⎫÷+ ⎪-+-⎝⎭,其中a =2.34.先化简再求值:22221111x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中x 是不等式组30223x x x +>⎧⎪-⎨<+⎪⎩的最大整数解.35.(1)先化简22121211x x x x x ÷---++,然后从-1,0,2中选一个合适的x 的值,代入求值. (2)解不等式组3(2)2513212x x x x +>+⎧⎪⎨+-<⎪⎩36.先化简,再取一个你喜欢的x 的值带入并求值21211()()111x x x x x x +⨯--+-+ 37.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x ≠. 38.已知,求的值.39.化简:222524(1)244x x x x x x -+-+÷+++,并求当=-123x 40.先化简,再求值:265222x x x x -⎛⎫÷-- ⎪--⎝⎭,其中x =﹣1. 41.先化简,再求值:2112111x x x x +⎛⎫-÷⎪-+-⎝⎭,其中x 满足240x -=. 42.先化简(22444a a a -+-﹣2a a +)÷12a a -+,再从a ≤2的非负整数解中选一个适合的整数代入求值.43.先化简,再求值:2222444x x x x x x x--+-÷-,其中1x =. 44.化简求值:2121(1)m m m m--+÷,从-1,0, 1,2中选一个你认为合适的m 值代入求值.45.(1)计算:()()322423523a a a a ⎡⎤⋅+-÷⎢⎥⎣⎦; (2)先化简,再求值:524223x x x x-⎛⎫++⋅ ⎪--⎝⎭,其中5x =.46.(1)先化简,再求值:24512111a a a a a a -⎛⎫⎛⎫+-÷- ⎪ ⎪---⎝⎭⎝⎭,其中4a = (2)解分式方程:28142y y y +=-- 47.先化简,再求值.(1﹣32x +)÷212x x -+的值,其中x=2.48.化简求值:244()33x x x x x ---÷--,其中-249.先化简,再求值:222a b 2ab b a a a ⎛⎫--÷- ⎪⎝⎭,其中,a 1b 1=+=. 50.先化简,再求值:223232442x x x x x x -⎛⎫-÷ ⎪--+-⎝⎭,其中3x =. 51.先化简,再求值22214244a a a a a a a a +--⎛⎫+÷⎪--+⎝⎭并从04a ≤≤中选取合适的整数代入求值. 52.先化简,再求值:23(1)11x x x x -÷----,其中1x =- 53.化简并求值:2x+221x 111x x x --÷+--,其中x=﹣3. 54.先化简,再求值:(1)()223(2)(2)844a b a b a b ab ab +---÷其中2,1a b ==(2)22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭其中3x =. 55.先化简,再求值231(1)22x x x --÷++的值,其中2sin 45x ︒=︒.56.先化简,再求值:22(1)x y x y x y -÷--,其中x 2,y =11()2-. 57.先化简再求值2324()422x x x x x --÷---,其中x=3tan30°-4cos60°. 58.先化简,再求值:2443111a a a a a -+⎛⎫÷-+ ⎪++⎝⎭,其中3a =. 59.化简分式222x x x x x 1x 1x 2x+1-⎛⎫-÷ ⎪---⎝⎭,并从﹣1≤x≤3中选一个你认为合适的整数x 代入求值.60.(1)解方程:2236111x x x +=+-- (2)计算:3a(2a 2-9a+3)-4a(2a-1)(3)计算:(×(-1|+(5-2π)0(4)先化简,再求值:(xy 2+x 2y )222222x x y x xy y x y ⋅÷++-,其中,y=2.参考答案 1.2x -;2.【解析】 【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,现时利用除法法则变形,约分得到最简结果,再把x 的值代入计算即可.【详解】22244(4)2x x x x x+--÷+ =244(2)(2)(2)x x x x x x x +-+-÷+ =2(2)(2)(2)(2)x x x x x x -+⨯+- =2x -; 当22x =+时,原式=2222+-=.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.2.1-2(3+a),【解析】【详解】解:原式=35(2)(2)2(2)22a a a a a a ⎡⎤--+⎛⎫÷- ⎪⎢⎥---⎝⎭⎣⎦322(2)(3)(3)12(3)a a a a a a --=-⋅--+=-+ 当33时,原式=3-3.(1)11x+,取x=2,得原分式的值为13(答案不唯一);(2)-y(2x-y)2.【解析】【分析】(1)先根据分式的运算法则进行化简,再选一个使原分式有意义的x的值代入求值即可;(2)先提取公因式,再利用完全平方公式进行二次分解即可.【详解】解:(1)原式=1111 (1)(1)1(1)(1)1x x x xx x x x x x x-+-÷=⨯= +--+-+,取x=2代入上式得,原式11213==+.(答案不唯一)(2)原式=y(4xy-4x2-y2)=-y(2x-y)2.【点睛】本题考查分式的化简求值以及因式分解,掌握基本运算法则和乘法公式是解题的关键.4.化简的结果是1x-;2 3 -.【解析】【分析】先计算括号里的减法,将21x-进行因式分解,再将除法运算化为乘法运算,约分得到最简结果,将x的值代入计算即可求出值.【详解】解:211122xx x-⎛⎫÷-⎪++⎝⎭=(1)(1)122x x xx x-++÷++=(1)(1)221x x xx x-++⋅++=1x-,当x=13时,原式=113-=23-【点睛】此题考查了分式的化简求值,以及解分式方程,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.5.原式=11xx-+,当x=0时,原式=﹣1.【解析】【分析】括号内先通分进行分式的加减法运算,然后再进行分式的除法运算,最后选择使分式的意义的x 的值代入进行计算即可得.【详解】原式=()()()()()23422211111x x x x x x x x ⎡⎤+++-÷⎢⎥+-+--⎢⎥⎣⎦ =()()()212·112x x x x x -++-+ =11x x -+, ∵x≠±1且x≠﹣2,∴x 只能取0或2,当x=0时,原式=﹣1.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.6.2-【解析】【分析】先算括号内分式的减法,得()()269233x x x x -+-+-,根据完全平方公式化简得()()()23233x x x --+-,再根据分式的除法法则计算即可.【详解】 2316133962x x x x x x --⎛⎫÷-- ⎪+--+⎝⎭ ()()232612433233x x x x x x x -+--+-=÷++- ()()23693233x x x x x x --+-=÷++-()()()2333233x x x x x ---=÷++- ()()()2233333x x x x x +--=⨯+-- 2=-.【点睛】本题考查了分式的化简运算,掌握分式的运算法则以及完全平方公式是解题的关键. 7.212x x +,13【解析】【分析】直接将括号里面通分运算,再计算除法,化简后,再代入x 的值得出答案.【详解】 解:原式=2214[](2)(2)2x x x x x x x ----÷+++ =22(2)(2)(1)4[](2)(2)2x x x x x x x x x x -+---÷+++ =222244[](2)(2)2x x x x x x x x x ----÷+++ =242(2)4x x x x x -++- =1(2)x x + =212x x+ 当x =(﹣1)0=1时,原式=2111213=+⨯ 【点睛】本题主要考查分式的化简求值,掌握分式加减乘除混合运算顺序和法则是解题的关键.8.21(2)a -,1 【解析】【分析】根据分式的混合运算法则化简,再将a 的值代入化简后的式子计算即可.【详解】 解:22214244a a a a a a a a +--⎛⎫-÷ ⎪--+⎝⎭ 221(2)(2)4a a a a a a a ⎡⎤+-=-⋅⎢⎥---⎣⎦ 22(2)(2)(1)(2)(2)4a a a a a a a a a a ⎡⎤+--=-⋅⎢⎥---⎣⎦ 2224(2)4a a a a a a a --+=⋅-- 24(2)4a a a a a -=⋅-- 21(2)a =- 当3a =时,22111(2)(32)a ==--. 【点睛】 本题考查了分式的化简求值问题,解题的关键是掌握分式混合运算的法则,正确化简.9.12y 【解析】【分析】先把原式化简,化为最简后再代数求值即可.【详解】解:原式=()()3y)3y 22y y +-÷-([52y --()()222y y y +--] =()()()()3y)3y 522222y y y y y +--+-÷--(=()()()3y)3y 2223y)3y y y y +--⨯-+-(( =12y当y =时,原式=4. 【点睛】本题考查了化简求值问题,正确化简是解题的关键.10.-12x +【解析】【分析】先用乘法的分配律去括号,利用分式的加减进行化简后代入数值即可.【详解】 原式=2241x x x -+-2(1)(2)x x --+-(x -2) 2(1)(2)x x --+ =-2224(2)x x x -+++2(1)(2)(2)x x x --+ =()()2222432(2)x x x x x --++-++ =2(2)(2)x x -++ =-12x + 当x-2=-6【点睛】 本题考查的是分式的化简求值,掌握分式的运算法则和二次根式的化简是关键.11.11m --【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把m 的值代入计算即可求出值.【详解】22111m m m m +-⎛⎫-÷ ⎪⎝⎭ ()()2111m m m mm m --=+- ()()111m m mm m +=-+- 11m =--当1m =时,原式===. 【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则及分式有意义的条件.12.(1)21(2)x -;(2)x =0. 【解析】【分析】 (1)原式括号中两项通分并利用同分母分式的减法法则计算,利用除法法则变形,约分即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)原式=[221](2)(2)4x x x x x x x +-----=2224(2)x x x x x --+-•4x x - =21(2)x -; (2)方程两边乘(x +2)(x ﹣1),得x (x ﹣1)﹣(x +2)(x ﹣1)=x +2,整理得:x 2﹣x ﹣(x 2+x ﹣2)=x +2解得,x =0,检验:当x =0时,(x +2)(x ﹣1)≠0,所以,原分式方程的解为x =0.【点睛】此题考查了解分式方程,以及分式的混合运算,熟练掌握运算法则是解本题的关键. 13.(1)x +2;(2)1x x +,当x =﹣2时,原式=2. 【解析】【分析】(1)根据分式的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,解不等式组求出不等式组的整数解,从中找到符合分式的整数,代入计算可得.【详解】 (1)原式2422x x x =--- 242x x -=- ()()222x x x +-=- =x +2;(2)原式()()2111x x x x x =÷+-- ()()211x x x =+-•1x x-1x x =+, 解不等式组11622x x --⎧⎨+≥⎩>①②解不等式①得x <2;解不等式②得x≥-2;∴不等式组的解集是﹣2≤x <2,所以该不等式组的整数解为﹣2、﹣1、0、1,因为x ≠±1且x ≠0,所以x =﹣2, 则原式221-==-+2. 【点睛】本题主要考查分式的化简求值与解不等式组,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解不等式组的能力.14.-1【解析】【分析】先对括号内的式子进行通分,再将除法转化为乘法,并对分子、分母因式分解,最后约分即可得到最简形式1-x ;接下来将x=2代入化简后的式子中进行计算即可求得答案.【详解】 解:原式=x x+x-x+1x -(1)(1) =﹣x+1当x =2时原式=﹣2+1=﹣1.【点睛】本题考查分式的混合运算,求代数式的值.在对分式进行化简时,先观察分式的特点,运用合适的运算法则进行化简. 15.(1)21x -;(2)1x x +,x=3时,34【解析】【分析】(1)根据分式的减法和除法法则即可化简题目中的式子;(2)根据分式的减法和除法可以化简题目中的式子,再从13x -≤≤中选取一个使得原分式有意义的整数代入即可解答本题.【详解】解:(1)原式221212x x x x x=+--÷ ()()122111x x x x x x +⨯=+--=; (2)原式()()()()()()()22111111111x x x x x x x x x x x x x x x +---⨯=⨯=+--+-+, 当3x =时,原式33314==+. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.3,12x x - 【解析】【分析】根据分式的乘法和减法可以化简,然后将x 的值代入即可.【详解】2111211x x x x x x +⎛⎫+÷ ⎪--+-⎝⎭ =()()()()22111111x x x x x x ⎛⎫+-- ⎪+⨯ ⎪--⎝⎭ =()2211x x xx -⨯- =1x x -; 当x=3时,原式=33312=-. 【点睛】考查分式的化简求值,解答本题的关键是明确分式化简求值的计算方法.17.1a a-,2. 【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【详解】 解:原式=252422(1)a a a a a a -+-+⨯+- =2(1)22(1)a a a a a -+⨯+-=1a a -,当a +1时,=2. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 18.(1)x-4;(2)不能,见解析.【解析】试题分析:(1)设被墨水污染的部分是A ,计算即可得到结论;(2)令1137x =+,解得x =4,而当x =4时,原分式无意义,所以不能. 试题解析:解:(1)设被墨水污染的部分是A ,则2443193(3)(3)3x A x x x x x x A x ---÷=⋅=--+-+,解得:A = x -4; (2)不能,若1137x =+,则x =4,由原题可知,当x =4时,原分式无意义,所以不能. 19.31x x -+,5. 【解析】【分析】原式括号中利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出已知方程的解得到x 的值,代入计算即可求出值.【详解】原式=21(3)3(1)(1)x x x x x --⨯-+-=31x x -+, 由2x+4=0,得到x=﹣2,则原式=5.20.1(1)a a -,12017. 【解析】【分析】先计算括号内的分式减法,再计算分式的除法即可化简,然后根据方程的解定义得出一个关于a 的等式,最后代入求解即可.【详解】2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭ 22(1)(1)21111a a a a a a a --+-⎡⎤=÷-⎢⎥-++⎣⎦ 222121()111a a a a a a ---=÷--++ 222211a a a a a --=÷-+ 21(1)(1)(2)a a a a a a -+=⋅+-- 1(1)a a =- 因a 是方程22017x x -=的解,则22017a a -= 将其代入得,原式211(1)20171a a a a -===-. 【点睛】本题考查了分式的化简求值、一元二次方程的解定义,熟记分式的运算法则是解题关键. 21.ab 2,12 【解析】【分析】根据分式的混合运算,先化简,再代入求值,即可得到答案.【详解】原式()2(a b)a b 2a b ab--=÷- a b 2-=•ab a b- ab 2=, 当a =1,b =1时,原式)112=212-=12=. 【点睛】本题主要考查分式的化简求值,掌握分式的约分和通分,是解题的关键.22.(1)x=32-;(2)a b a b -+;12. 【解析】【分析】(1)把方程两边同时乘以最简公分母x 2-4,去分母得整式方程,解整式方程可求出x 的值,把x 的值代入最简公分母检验即可得答案;(2)先把括号内的分式通分,除式的分母因式分解,再根据分式除法法则化简得出最简结果,根据平方和绝对值的非负数性质可求出a 、b 的值,代入化简后的式子计算即可得答案.【详解】(1)21124x x x -=-- 方程两边同时乘以最简公分母x 2-4得:x(x+2)-(x 2-4)=1,整理得:2x=-3,解得:x=32-,检验:当x=32-时,x 2-4≠0, ∴x=32-是原分式方程的解. (2)22112()2a a b a b a ab b+÷+--+ =22()()()a b a b a a b a b a b -++÷+-- =22()()()2a a b a b a b a-⋅+- =a b a b-+, ∵269a a -+与|1|b -互为相反数,∴2(3)a - +|1|b -=0,∴a-3=0,b-1=0,解得:a=3,b=1,当a=3,b=1时,原式=a b a b -+=3131-+=12. 【点睛】本题考查分式的混合运算——化简求值及解分式方程,解分式方程的基本思想是转化思想,把分式方程转化成整式方程再解方程,注意最后要检验是否有增根;熟练掌握分式的混合运算法则及非负数的性质是解题关键23.原式=2a a -+1. 【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 详解:原式=211(2)(11(1)a a a a a a ---÷---) =22(1)•1(2)a a a a a ---- =2a a -当原式1=. 点睛:本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.24.11a +;12【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【详解】 解:原式=21(1)(1)11(1)1a a a a a a a -++-⋅=-++, 当a =﹣3时,原式=﹣12. 【点睛】本题主要考查了分式的混合运算,灵活的利用通分、约分进行分式的化简是解题的关键. 25.(1)22(3)x x -;(2)x ﹣1;(3)22a b b a+-,﹣5. 【解析】【分析】(1)直接通分运算进而利用分式的混合运算法则计算得出答案;(2)直接将括号里面通分进而利用分式的混合运算法则计算得出答案;(3)直接将括号里面通分进而利用分式的混合运算法则计算得出答案.【详解】解:(1)原式2223(3)(3)(3)x x x x x x +-==--; (2)原式2221(1)(1)(1)(1)1(1)(1)1(1)(1)1x x x x x x x x x x x x x +++-+-=⋅=⋅=--++-++; (3)原式222(+2)3()()(+2)2(2)(2)2a b b a a b b a b a b a b a b a b a b a b b a b a b a-----+=÷=⋅=---+--∵3a b=, ∴a =3b ,所以原式=32523b b b b +=--. 【点睛】本题考查的知识点是分式的化简求值,掌握分式化简的一般步骤以及分式的混合运算法则是解此题的关键,注意化简过程中各项的符号变化.26.(1)1;(2)21a +;(3)x ﹣1,x =2时,原式=1. 【解析】【分析】(1)先约分,再相加即可求解;(2)先因式分解,将除法变为乘法约分,再通分,相减即可求解;(3)先计算括号里面的减法,再因式分解,将除法变为乘法约分化简,再把x =2代入计算即可求解.【详解】 (1)2111a a a a -++-, =111a a a +++, =11a a ++, =1;(2)2222421121a a a a a a a ---÷+--+, =222(2)(1)1(1)(1)2a a a a a a a ---⋅++--, =22(1)11a a a a --++, =22(1)1a a a --+, =21a +; (3)(132x -+)212x x x -÷+-, =23(1)(2)21x x x x x +--+⋅+-, =x ﹣1,∵x +2≠0,x ﹣1≠0,∴x ≠﹣2,x ≠1,当x =2时,原式=2﹣1=1.【点睛】此题考查分式的混合运算及化简求值,正确将分式的分子与分母因式分解是解题的关键.27.2a a 1-,910-. 【解析】【分析】先把分式化简后,再解方程确定a 的值,最后代入求值即可.【详解】解:原式=2(1)2(1)(1)(1)a a a a a a a +--÷-- =2(1)(1)(1)1a a a a a a +-⋅-+ =2a a 1- 由2230x x +-=,得11x =,232x =-又10a -≠∴32a =-. ∴原式=23()9231012-=---. 【点睛】本题考查分式的化简求值;一元二次方程的解法,掌握计算法则正确计算是解题关键. 28.12x +,3【解析】【分析】 先去括号,再算乘法约去公约数,即可完成化简,化简3tan 3022cos 45x =-,先算三角函数值,再算乘法,再算减法,再将化简后x 的值代入原式求解即可.【详解】 原式313()33(2)(2)x x x x x x --=+•--+- 233(2)(2)x x x x x --=•-+- 12x =+当33tan 3022cos 453232x =-=⨯-=时原式3=== 【点睛】本题考查了整式的混合运算,掌握整式混合运算的法则是解题的关键.29.(1)无解;(2)22a a --,-2【解析】【分析】(1)根据解分式方程的步骤计算即可;(2)先根据分式的混合运算顺序和运算法则化简原式,再整体代入计算可得.【详解】(1)两边都乘以(x +2)(x ﹣2),得:x (x +2)﹣(x +2)(x ﹣2)=8,解得:x =2,当x =2时,(x +2)(x ﹣2)=0,∴x =2是增根,∴原分式方程无解;(2)原式12a a -=+•()()222(1)a a a +--•(a +1)(a ﹣1) =(a ﹣2)(a +1)=a 2﹣a ﹣2.当a 2﹣a =0时,原式=﹣2.【点睛】本题考查了分式的化简求值,解答本题的关键是掌握分式的混合运算顺序和运算法则及解分式方程的步骤.30.(1)2217x x +=;(2)1x x -=(3)221x x -=±. 【解析】【分析】(1)利用完全平方公式对已知等式变形,即可求得答案;(2)利用(1)的结论运用配方法即可求得;(3)利用(2)的结论结合已知等式,运用平方差公式即可求解.【详解】(1)∵13x x+=, ∴219x x ⎛⎫+= ⎪⎝⎭, 整理,得,22129x x ++=, ∴2217x x +=; (2)由(1)知2217x x+=, ∴22125x x +-=,即215x x ⎛⎫-= ⎪⎝⎭,∴1x x-=(3)∵1x x -=13x x +=,∴11x x x x ⎛⎫⎛⎫-⋅+=± ⎪ ⎪⎝⎭⎝⎭即221x x-=±; 【点睛】本题考查了分式的化简求值,熟练掌握并灵活运用完全平方公式、平方差公式进行变形是解本题的关键.31.3x x+;0. 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值代入计算即可求出值.【详解】221111x x x x ⎛⎫-÷ ⎪-+-⎝⎭ ()()()()()()()()211111111x x x x x x x x x ⎡⎤+-+-=-⋅⎢⎥+-+-⎣⎦()()()()()()2111111x x x x x x x +--+-=⋅+- 221x x x+-+= 3x x+=; 当3x =-时, 原式3303-+==-. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.32.【解析】【分析】根据分式的运算法则即可求出答案.【详解】当时,原式=()()333111a a a a a a++-+⨯-+ =()()4111a a a a a+⨯-+ =41a -.【点睛】本题考查分式的运算,解题的关键的是熟练运用分式的运算法则.33.1a a +;32. 【解析】【分析】原式括号中的两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【详解】解:原式=2(1)(1)(1)a a a +--÷1a a - =2(1)(1)(1)a a a +--•1a a - =1a a+, 当a =2时,原式=32. 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.34.13-【解析】【分析】先将分式化简,再求出不等式组,利用分式有意义时分母不等于0,求出x 的值代入即可解题.【详解】 解:原式2(2)121(1)1(1)x x x x x x x ⎛⎫---+=÷ ⎪+⎝-⎭+(1)(1)(2)x x x x =•+-- =11x - ∵x 2﹣1≠0,x ﹣2≠0,x≠0∴x≠±1且x≠2,且x≠0解不等式组,得﹣3<x≤2,则x 整数解为x =﹣2,﹣1,0,1,2,∴x =﹣2 原式=13-.【点睛】本题考查了分式方程的化简求值,不等式组的求解,中等难度,正确化简并利用分式有意义的条件求出x 的值代入是解题关键.35.(1)1x-,12-;(2)13x 【解析】【分析】(1)根据分式的各个运算法则化简,然后选择一个使原分式有意义的x 的值代入即可;(2)根据不等式的基本性质解不等式组即可.【详解】 (1)原式=21(1)2(1)(1)1x x x x x -⋅-+-+ 12(1)(1)x x x x x x -=-++ (1)(1)x x x -+=+ 1x=- 根据原分式有意义的条件:1,0x ≠±当2x =时,原式=12-(2)13212x x ⎪⎨+-<⎪⎩② 解①得,1x >解②得,3x <∴该不等式组的解集为13x【点睛】此题考查的是分式的化简求值题和解不等式组,掌握分式的各个运算法则和不等式的基本性质是解决此题的关键. 36.224421x x x ---,x=2时值为2. 【解析】【分析】先对分式进行化简,要是分式有意义,则需要使在整个运算过程中的分母不为0,取值时避开这些使分母为0的数即可.【详解】 解:原式2221211=+111x x x x x x x x ++-⎛⎫⎛⎫⨯-- ⎪ ⎪--⎝⎭⎝⎭ ()()()()()()()()()()()()22222122=+1111421114211141211114421x x x x x x x x x x x x x x x x x x x x x x x x x +⎛⎫⨯- ⎪+-⎝⎭+=⨯-+-+=-++--=-+-+---=- 要使分式有意义,则x ≠0,1,-1则当=2x 时,代入得2244244422=2141x x x --⨯-⨯-=--【点睛】 本题主要考查的是分式的化简求值以及使分式有意义的条件,掌握这两个知识点并正确的运用是解题的关键. 37.22x -,12- 【解析】 【分析】先化简括号内的式子,再根据分式的除法进行计算即可化简原式,然后将2x =-代入化简后的式子即可解答本题. 【详解】 解:原式228(2)(2)(2)22x x x x x x ⎡⎤+-=÷-⎢⎥---⎣⎦22284(2)2x x x x -+=÷-- 282(2)4x x -=⋅- =22x -. ∵2x =,∴2x =±,2x =舍,当2x =-时,原式21222==---. 【点睛】本题考查了分式的化简求值,解题的关键是明确分式化简求值的方法.38.,当x=+1时,原式= 【解析】试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简,然后代x 的值,进行二次根式化简.试题解析:, 当时,原式.考点:1.分式的化简;2.二次根式化简.39.2x -【解析】【分析】根据分式的混合运算法则,先化简,再代入求值,即可求解.【详解】原式=22522(2)2(2)(2)x x x x x x x -++++⨯++- =22(2)(2)2(2)(2)x x x x x -+⨯++- =2x -,当=1x -2= 【点睛】本题主要考查分式的混合运算法则,掌握分式的通分与约分进行化简,是解题的关键. 40.﹣23x +,﹣1 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】 解:原式=2(3)2x x --÷5(2)(2)2x x x -+-- =2(3)22(3)(3)x x x x x --⋅--+- =﹣23x +, 当x =﹣1时,原式=﹣1.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.41.22x ,12. 【解析】【分析】根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可. 【详解】 原式11(1)(1)()112x x x x x +-=-⨯-++ 1122x x x x +-=-++ 22x =+ 因为:240x -=2x =当2x =时,原式12=. 【点睛】本题考查分式的化简求值,熟练掌握计算法则是解题关键.42.21a --,2 【解析】【分析】先将分式的分子和分母分解因式,再根据分式的化简求值的过程计算即可求解. 【详解】 解:原式=2(2)2(2)(2)21a a a a a a a ⎡⎤-+-⋅⎢⎥-++-⎣⎦, 22()221a a a a a a -+=-⋅++-, 2221a a a +=-⋅+-, 21a =--. ∵a ≤2的非负整数解有0,1,2,又∵a ≠1,2,∴当a =0时,原式=2.【点睛】此题考察分式的化简求值,化简时需先分解因式约去公因式得到最简分式,求值时选的数需满足分母不为0的数才可代入求值.43.12x +;13【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.【详解】 解:原式222(2)(2)(2)x x x x x x x -=-⋅+-- 22(2)(2)(2)(2)x x x x x x +=-+-+- ()()222x x x -=+- 12x =+ 当1x =时,原式11123==+. 【点睛】 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.44.11m +,13【解析】【分析】根据分式的混合运算法则运算即可,注意m 的值只能取2.【详解】解:原式=2121()m m m m m-+-÷=1(1)(1)m m m m m -⎛⎫⋅ ⎪-+⎝⎭ =11m+ 把m=2代入得,原式=13. 【点睛】本题考查了分式的化简求值问题,解题的关键是掌握分式的运算法则.45.(1)13-;(2)62x --;16-【解析】【分析】(1)根据单项式乘单项式法则、合并同类项法则和单项式除以单项式法则计算即可;(2)根据分式的各个运算法则化简,然后代入求值即可.【详解】解:(1)()()322423523a a a a ⎡⎤⋅+-÷⎢⎥⎣⎦ =()()666589a a a ⎡⎤+-÷⎣⎦ =()()6639aa -÷ =13- (2)524223x x x x-⎛⎫++⋅ ⎪--⎝⎭ =24524223x x x x x ⎛⎫--+⋅ ⎪---⎝⎭=()222923x x x x--⋅-- =()()()332223x x x x x+--⋅-- =()23x -+将5x =代入,得原式=62516--⨯=-【点睛】此题考查的是整式的混合运算和分式的混合运算,掌握整式的各个运算法则和分式的各个运算法则是解决此题的关键.46.(1)22a a -,8;(2)原方程无解【解析】【分析】(1)现根据分式的运算法则化简分式,再将a 的值代入即可;(2)先变形,再把分式方程转化成整式方程,求出方程的解,再进行检验即可.【详解】解:(1)原式=2145211(1)a a a a a a a ⎛⎫⎡⎤----÷ ⎪⎢⎥---⎣⎦⎝⎭=244(1)12a a a a a a -+-⨯--=2(2)(1)12a a a a a --⨯--=(2)a a -=22a a -,当a =4时,原式=24248-⨯=;(2)解:解:原方程化为:81,(2)(2)2y y y y +=+-- 方程两边都乘以(y+2)(y-2)得:284(2),y y y +-=+化简得,2y=4,解得:y=2,经检验:y=2不是原方程的解.原方程无解.【点睛】本题考查了分式的化简求值以及解分式方程,分式的化简求值注意运用运算法则先化简再代入计算;解分式方程的关键能把分式方程转化成整式方程并注意要检验.47.13.试题分析:先按分式的相关运算法则将原式化简,再代值计算即可.试题解析:原式=()()232211x x x x x +-+⋅++- =11x + 当x=2时,原式=13.48.22x x -+,33- 【解析】【分析】根据分式的各个运算法则化简,然后代入求值即可.【详解】 解:244()33x x x x x ---÷-- =()()22234333x x x x x x x x +-⎛⎫---÷ ⎪---⎝⎭=()()2443322x x x x x x -+-•-+- =()()()223322x x x x x --•-+- =22x x -+将-2代入,得原式=33- 【点睛】此题考查的是分式的化简求值题,掌握分式的各个运算法则是解决此题的关键.49.-【解析】【分析】根据分式混合运算的法则把原式进行化简,再把a 、b 的值代入进行二次根式化简即可.【详解】解:原式=()()()()()222a b a b a b a b 2ab b a a a b a a a a ba b +-+---+÷=⋅=----.当a 1b 1=+=-=2==-. 50.33x x-;0. 【解析】【分析】先把括号内的分式的分母因式分解,再根据分式除法法则,利用乘法分配律化简得出最简结果,最后把x=3代入求值即可.【详解】原式=()()2322232x x x x x ⎡⎤---⋅⎢⎥--⎢⎥⎣⎦()312=223x x x x ⎛⎫--⋅ ⎪ ⎪--⎝⎭()3212=2323x x x x x --⋅-⋅-- 11=3x - =33x x-. 当3x =时,原式=33033-=⨯. 【点睛】本题考查分式的运算——化简求值,熟练掌握分式的混合运算法则是解题关键.51.21(2)a -,1. 【解析】【分析】将原式化简成()212a -,由已知条件a 为04a ≤≤中的整数,原式有意义可知0,2,4a a a ≠≠≠,从而得出1a =或3a =,将其代入()212a -中即可求出结论.【详解】 22214244a a a a a a a a +--⎛⎫+÷ ⎪--+⎝⎭ 221(2)(2)4a a a a a a a ⎡⎤+-=-⨯⎢⎥---⎣⎦ 22224(2)(2)4a a a a a a a a a ⎡⎤--=-⨯⎢⎥---⎣⎦ 24(2)4a a a a a -=⨯-- 21(2)a =- ∵04a ≤≤且为整数,且0a ≠,2,4.∴取1a =,原式211(12)==-.或取3a =,原式211(32)==- 【点睛】分式的化简考查了分式的运算,主要涉及分式的加减法、分式的乘除法,分式的加减法关键是化异分母为同分母,分式的除法关键是将除法转化为乘以除式的倒数;求值部分,尤其是这类选取适当的数代入求值时,千万要注意未知数取值的限制,所有使分母等于零的数都不能取,使使除号后紧跟的分式的分子为零的数也不能取避免进入分式无意义的雷区,例如本题已知条件04a ≤≤中选取的合适的整数只有1和3.52.12x -+;1-【分析】 根据分式的化简,通过通分、约分化简得到的式子,把1x =-代入求值即得.【详解】原式223111x x x x --+=÷-- 211(2)(2)x x x x x --=⨯-+- 12x =-+, 把1x =-代入得原式1112=-=--+. 【点睛】考查分式的化简求值,化简中用到因式分解、约分,注意因式分解,约分符号问题,最后使得式子最简.53.2.【解析】试题分析:先将2x+221x 111x x x --÷+--进行化简,再将x 的值代入即可; 试题解析: 原式=﹣•(x ﹣1)==,当x=﹣3时,原式=﹣2.54.(1)242a ab -,12;(2)12x -,1 【解析】【分析】(1)原式第一项利用平方差公式化简,第二项利用多项式除以单项式法则计算,合并得到最简结果,将a 与b 的值代入计算即可求出值;(2)首先计算括号里面的进而利用分式乘除运算法则计算得出最简结果,将x 的值代入计算即可求出值.解:(1)()223(2)(2)844a b a b a b abab +---÷, = ()22242a b ab b---=242a ab -,当2,1a b ==时,原式=242221=164⨯-⨯⨯-=12; (2)22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭=()()()()()222242222x x x x x x x x x --+⎡⎤-÷-⎢⎥-+++⎣⎦=2222x x x x x -÷++ =()222x x x x x +⋅+- =12x -, 当x=3时,原式=132-=1. 【点睛】本题考查分式的化简求值以及整式的混合运算,正确进行分式的混合运算是解题关键.55.11x +;2【解析】【分析】先算括号里面的,再算除法,根据特殊角的三角函数值先得出x ,再代入即可.【详解】 原式2231()2x 22x x x x +-=-÷+++ 223122x x x x +--=÷++ 21221x x x x -+=⨯+-122(1)(1)x x x x x -+=⨯++- 11x =+.当21x ==时,原式11x ===+. 【点睛】本题考查了分式的化简求值以及特殊角的三角函数值,是基础知识要熟练掌握.56.x +y .【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x 、y 的值代入即可解答本题.试题解析:原式=()()x x y x y x y x y y -++-⋅- =()()y x y x y x y y+-⋅-=x +y ,当x 2,y =11()2-=2时,原式57【解析】【分析】先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可【详解】 原式32(2)2(2)(2)(2)(2)4x x x x x x x x ⎡⎤+-=-•⎢⎥+-+--⎣⎦ 3242421(2)(2)4(2)(2)42x x x x x x x x x x x x -----=•=•=+--+--+134232x =⨯-⨯=∴原式== 【点睛】此题考查分式的化简求值,掌握运算法则是解题关键58.22a a -+,15-. 【解析】【分析】先对括号里的式子进行通分化简运算,然后进一步化简,最后代入求值即可.【详解】 原式2(2)3(1)(1)11a a a a a ---+=÷++ 22(2)411a a a a --=÷++ 2(2)11(2)(2)a a a a a -+=⋅++- 22a a-=+. ∴当3a =时,原式231235-==-+. 【点睛】本题主要考查了分式的化简求值,熟练掌握相关法则是解题关键.错因分析 容易题.失分原因是:①括号内通分时,忘记变号;②将除法变为乘法时,忘记分子分母调换位置.59.x x+1;x=2时,原式=23. 【解析】【分析】先将括号内的分式通分,再按照分式的除法法则,将除法转化为乘法进行计算.最后在﹣1≤x≤3中取一个使分式分母和除式不为0的数代入求值.【详解】解:原式=()()()()()()()()()()()222x x+1x x 1x 1x x x ==x+1x 1x+1x 1x+1x 1x x 1x+1x 1⎡⎤---÷⋅⎢⎥-----⎢⎥⎣⎦. ∵﹣1≤x≤3的整数有-1,0,1,2,3,当x=﹣1或x=1时,分式的分母为0,当x=0时,除式为0,∴取x 的值时,不可取x=﹣1或x=1或x=0.不妨取x=2,此时原式=22=2+13.60.(1)分式方程无解;(2)326a 35?a 13a +﹣;(3)(4 【解析】【分析】(1)去分母化为整式方程求解即可,求出未知数的值要验根;(2)先算单项式与多项式的乘法,再合并同类项即可;(3)第一项按二次根式的乘法计算,第二项按化简绝对值的意义化简,第三项按零指数幂的意义化简,然后进一步合并化简即可;(4)先根据分式的运算法则把所给代数式化简,再把. 【详解】(1)去分母得:2x-2+3x+3=6,解得:x=1,经检验x=1是增根,分式方程无解;(2)原式322326a 27a 9a 8a 4a 6a 35?a 13a =++=+﹣﹣﹣;(3)原式=11+=(4)原式=xy (x+y )()()()22x y x y xx y x y +-⋅⋅+=x ﹣y ,代入得当,y=2时,原式22= 【点睛】 本题考查了解分式方程,实数的混合运算,整式的混合运算,分式的化简求值,熟练掌握各知识点是解答本题的关键.。
初中数学分式的化简求值专项训练题9(附答案详解)
原式
∵
∴ ,即只能取x=0
当x=0时,原式=﹣1.
【点睛】
本题考查了分式的化简运算,掌握分式的性质以及运算法则、完全平方公式是解题的关键.
6. , .
【解析】
试题分析:先将原分式化简,再代入a的值,即可求出结论.
试题解析:解:原式= = = = .
当a= 时,原式= = = = .
7. ,
【解析】
先根据分式的混合运算法则化简,然后代入计算即可.
【详解】
原式=
=
= .
当 时,原式= .
【点睛】
本题考查了分式的混合运算,掌握分式的混合运算法则是解答本题的关键.
16. ,-2
【解析】
【分析】
先化简分式,解不等式组,然后选使分母不等于零的数代入即可.
【详解】
解:因为
=
=
=
=
解 得 ,
所以整数解是-1,0,1,2
【分析】
先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.
【详解】
解:原式= • + -2
=- + -2
= + -
= ,
∵x≠2且x≠-3,x≠0,
∴x=-2,
则原式= = .
【点睛】
本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则及分式有意义的条件.
17.(1)计算:1﹣ ÷
(2)先化简,再求值:( +x﹣3)÷( ),其中x=﹣2.
18.先化简,再求值: ,其中 .
19.先化简,再求值: ,其中 .
20.先化简,再求值: ,其中 .
21.先化简,再求值: .
最新初二数学分式化简求值练习题及答案优秀名师资料
精品文档初二数学分式化简求值练习题及答案2、先化简,再求值:12?2,其中x,,2( x?1x?1,其中a=,1(3、先化简,再求值:4、先化简,再求值:5先化简,再求值6、化简:7、先化简,再求值:,其中(,其中x=(,其中x满足x,x,1=0(2a?3ba?b? a?ba?b,其中a=(先化简x11?)?2,再从,1、0、1三个数中,选择一个你认x?1x?1x?1为合适的数作为x的值代入求值(1 / 26精品文档9、先化简,再求值:先化简下列式子,再从2,,2,1,0,,1中选择一个合适的数进行计算(12、先化简,再求值:13、先化简,再求值:,其中((318+1)?,其中x=2(x?1x,其中x=2.xx?1??x?2?3xx2x?)?14、先化简?2x?1x?1x?12a?1a2?2a?111a????值:2,其中。
2a?1a2?aa?11x,2x,118(先化简,再求值:??1,x,2?x2,4x,,5(??x2?1?2x?1?22 / 26精品文档??x?19. 先化简再计算:2?,其中x是一元二次方程x?2x?2?0的正数根. x?x?x?2m2?2m?1m?120 化简,求值: )其中m=( ? aa??x?3x2?6x?91?2?,再取恰的x的值代入求值.3请你先化简分式2x?1x?2x?1x?12a?2a2?1??a?1??224、先化简再求值其中a=+1 a?1a?2a?125、化简,其结果是(x2,16x26(先化简,再求值:?,其中x3,4(x,2x,2xx2,4x,4x,22x27、先化简,再求值:,x,2.x,162x,8x,428、先化简,再求值:?2,其中x?4( x?2x?2x?42aa3 / 26精品文档?)?a,其中a?1. a?11?a30、先化简,再求值:?a,其中aa2?11?a2?1?x?1(?1???x?x?1a?1?aab2a?b)?32(?a2?b2a?bb?a2??233先化简,再求值:?a?1???a?1,其中a1( a?1????34化简:(35(先化简,再求值:11?a2a?,其中( ?221-a1?a4 / 26精品文档x2,2x,1x36、.先化简,x值代入求值.x,1x,1x22x?1?39(当x??2时,求的值( x?1x?1x2?42?xx?)?40先化简,再把x取一个你最喜欢的数代入求值:42、先化简,再求值:43、先化简:先化简,再求值(+x(其中45、先化简,再求值,?(再从1,2,3中选一个你认为2(+)?,其中x=2(1化简,再从,1,1两数中选取一个适当的数作为x的值代x?1入求值(全国初中数学竞赛辅导第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以同一个不等于5 / 26精品文档零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据(在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值(除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答(本讲主要介绍分式的化简与求值(例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多(,,--+,说明本题的关键是正确地将假分式写成整式与真分式之和的形式(例求分式当a=2时的值(分析与解先化简再求值(直接通分较复杂,注意到平方差公式:a-b=,可将分式分步通分,每一步只通分左边两项(22例若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂(下面介绍几种简单的解法(解法1 因为abc=1,所以a,b,c都不为零(解法因为abc=1,所以a?0,b?0,c?0(6 / 26精品文档例化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简(说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧(例化简计算:似的,对于这个分式,显然分母可以分解因式为,而分子又恰好凑成+,因此有下面的解法(解说明本例也是采取“拆项相消”法,所不同的是利用例已知:x+y+z=3a,求分析本题字母多,分式复杂(若把条件写成++=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解(解令x-a=u,y-a=v,z-a=w ,则分式变为u+v+w+2=0(由于x,y,z不全相等,所以u,v,w不全为零,所以u+v+w?0,从而有7 / 26精品文档222222说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化(下例同:例化简分式:变形,化简分式后再计算求值(适当22=3,即x-8x+13,0(原式分子=+++10432322分式练习题及答案初二1、当x为何值时,分式x2 8 / 26精品文档?1x2?x?2有意义,当x为何值时,分式x2?1 x2?x?2的值为零,2、计算: a2?4x2a?2??a?2??1a?22x?x?2?x? ??1??1?x??xx?2??? x2?2x ?22?x?y??x?y?1124?3x?x?y??x?y?3x????9 / 26精品文档?x1?x?1?x?1?x2?1?x43、计算已知x2x2?2?1,求11??x的值。
分式化简求值练习题库经典精心
1.先化简,再求值:12,其中 x=-2.x 1x 212、先化简,再求值:,其中 a=﹣ 1.3、〔 2021?綦江县〕先化简,再求值:,其中x=.4、先化简,再求值:,其中.5 先化简,再求值,其中x 满足 x2﹣ x﹣ 1=0.6、化简:a3b a b a b a b7、〔 2021?曲靖〕先化简,再求值:,其中a=.8、〔 2021?保山〕先化简〔x1〕1,再从﹣ 1、 0、1 三个数中,选择一个你认x 1x1x21为合适的数作为x 的值代入求值.9、〔 2021?新疆〕先化简,再求值:〔+1〕÷,其中x=2.31810、先化简,再求值:x–3–x2 –9,其中x=10– 311、〔 2021?雅安〕先化简以下式子, 再从 2,﹣2,1,0,﹣ 1 中选择一个合适的数进行计算. .12、先化简,再求值:2x (x 1-2), 其中 x =2.x 1x13、〔 2021?泸州〕先化简,再求值: ,其中.14、先化简 (x x ) 2 x x 2 3 ,尔后从不等组的解集中,采用一个你认x 5 5 xx 2 25 2x 12为吻合题意的x 的值代入求值.15、先化简,再求值:2 a 2 4 a 2,其中 a 5 .a6a 9 2a616、〔2021?成都〕先化简,再求值:( 3x x ) x2,其中 x3.17 先化简。
再求x 1 x 1 x 2 12值:2a1 a2 a 2 2a 11 ,其中a1 。
a 21a a 1 21x 2- 2x + 118. 先化简,再求值:1+ x - 2 ÷ x 2- 4,其中 x =- 5.19. 先化简再计算:x 21 x2 x 1,其中 x 是一元二次方程2的正数根 .x 2xxx 2 x 2 020 化简,求值:m22m 1m1〕其中 =m2(m 1m.1m1,21、〔 1〕化简:÷.〔 2〕化简:aa b a2ab b2( a b )a22、先化简,再求值:,其中.23请你先化简分式x3x26x91, 再取恰的 x的值代入求值 .x21x22x1x124、〔本小题2a2a213 +1 8 分〕先化简再求值 a 1a 2其中 a=a12a 125、化简,其结果是.26.〔 11·辽阜新〕先化简,再求值: (x- 2) ÷x2- 16,其中 x=3-4.2x-2x- 2xx2+4x+4x+22x27、先化简,再求值:x2-16÷2x-8-x+4,其中x=2.28、先化简,再求值:3x x 2 x,其中 x3 4 .(x 2)x 2x2429. 先化简,再求值:(2aa) a ,其中 a2 1.a 1 1a30、先化简,再求值:2a 1 1( 2 1 ) a ,其中 a2a1 a31、〔 1〕化简:.〔 2〕 1x 2 11xx〔 3〕 (a 1 ) a1aa32.〔 1〕 (a bb 2 )a b。
分式化简求值练习题库(经典精心整理)
1.先化简,再求值:12112---x x ,其中x =-2. 2、先化简,再求值:,其中a=﹣1. 3、(2011•綦江县)先化简,再求值:,其中x=.4、先化简,再求值:,其中.5先化简,再求值,其中x 满足x 2﹣x ﹣1=0. 6、化简:ba b a b a b 3a -++-- 7、(2011•曲靖)先化简,再求值:,其中a=. 8、(2011•保山)先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.9、(2011•新疆)先化简,再求值:(+1)÷,其中x=2. 10、先化简,再求值:3x –3 – 18x 2 – 9,其中x = 10–3 11、(2011•雅安)先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..12、先化简,再求值:12-x x (xx 1--2),其中x =2. 13、(2011•泸州)先化简,再求值:,其中. 14、先化简22()5525x x x x x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值. 15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .16、(2011•成都)先化简,再求值:232()111x x x x x x --÷+--,其中x =.17先化简。
再求值:2222121111a a a a a a a +-+⋅---+,其中12a =-。
18.先化简,再求值:⎝ ⎛⎭⎪⎫1+1x -2÷x 2-2x +1x 2-4,其中x =-5. 19. 先化简再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程2220x x --=的正数根. 20 化简,求值: 111(11222+---÷-+-m m m m m m ) ,其中m =. 321、(1)化简:÷.(2)化简:22a b ab b a (a b )a a ⎛⎫--÷-≠ ⎪⎝⎭22、先化简,再求值:,其中.23请你先化简分式2223691,x 1211x x x x x x x +++÷+--++再取恰的的值代入求值. 24、(本小题8分)先化简再求值()121112222+--++÷-+a a a a a a 其中a=3+1 25、化简,其结果是.26.(11·辽阜新)先化简,再求值:(xx -2-2)÷x 2-16x 2-2x ,其中x =3-4. 27、先化简,再求值:x 2+4x +4x 2-16÷x +22x -8-2x x +4,其中x =2.28、先化简,再求值:232()224x x x x x x -÷-+-,其中4x =.29.先化简,再求值:2()11a a a a a+÷--,其中 1.a =30、先化简,再求值:2211()11a a a a++÷--,其中a =31、(1)化简:.(2)2111x x x -⎛⎫+÷ ⎪⎝⎭(3)aa a a 1)1(-÷- 32.(1)ab a b a b b a +⋅++-)(2。
分式的化简求值(整体代入法)——专题练习(解析版)
分式的化简求值(整体代入法)——专题练习一、选择题1、若a -b =ab ,则2322a ab ba ab b +---的值为( )A. -5B. 5C. 4D. -4 答案:A 解答:2322a ab ba ab b +---=()()232a b aba b ab -+--.∵a -b =ab ,∴原式=232ab ab ab ab +-=5abab -=-5.2、已知ab =13,那么11a a +-·211a a -+·63b +=( )A. 1B. 2C. 3D. 4 答案:B 解答:11a a +-·211a a -+·63b +=()613a b ++,而a b =13,选择B.3、已知1a +1b =5a b +,则ba +ab 的值是( ).A. 5B. 7C. 3D. 1 答案:C 解答:∵1a +1b =5a b + ∴a bab +=5a b +,(a +b )2=5ab ,a 2+2ab +b 2=5ab ,∴a 2+b 2=3ab , ∴ba +ab =22b a ab +=3abab =3.4、已知x 2-3x +1=0,那么x 3+31x =( ).A. 27B. 21C. 18D. 15 答案:C解答:由题意可知x +1x =3,则x 2+21x =7,(x +1x )(x 2+21x )=x 3+31x +x +1x =21,故x 3+31x =18.二、填空题5、若分式11x y-=2,则分式4543x xy y x xy y +---的值等于______. 答案:35解答:由题意得:y -x =2xy ,代入原式得:4543x xy y x xy y+--- =585xy xy xy-- =35. 6、已知x +y =9,xy =20,则11y x +++11x y ++=______. 答案:6130解答:原式=()()()()221111y x x y +++++ =222221x y x y xy x y +++++++ =()()()22221x y xy x y xy x y +-++++++ =292202922091-⨯+⨯+++ =6130. 7、若2x =3y =4z (x ,y ,z 均不为0),则2x y z z +-的值为______. 答案:1解答:已知2x =3y =4z (x ,y ,z 均不为0),由比例的性质得: x z =24=12, y z =34, 则2x y z z +-=x z +2·y z z z -=12+32-1=1. 8、已知a 、b 、c 满足3a =4b =6c (a ≠0),则a b c b+-=______. 答案:3.5解答:令a =3t (t ≠0),则b =4t ,c =6t . 则a b c b +-=3464t t t t+-=3.5. 9、已知x 2+3x +1=0,则x 2+21x 的值为______. 答案:7解答:∵x 2+3x +1=0,而x ≠0,∴x +3+1x=0, ∴x 2+21x =(x +1x )2-2=32-2=7. 10、若x 2-3x -1=0,则2421x x x -+的值为______. 答案:110解答:由已知,有x 2=3x +1,∴原式=()222311x x x +-+=22862x x x ++=()3183162x x x ++++=()311031x x ++=110. 11、设x -1x =1,则x 2+21x=______. 答案:3 解答:∵x -1x =1, ∴(x -1x)2=1, x 2-2+21x=1,x 2+21x =3. 12、若a +1a =3,则(a -1a )2的值是______. 答案:5解答:∵a +1a =3, ∴(a +1a )2=a 2+2+21a=32=9, ∴a 2+21a=7, ∴(a -1a )2=a 2-2+21a=7-2=5. 13、已知x 为实数,且x +1x =2,则x 4+41x=______. 答案:2解答:x 4+41x =(x 2+21x)2-2=[(x +1x )2-2]2-2=2. 故答案为:2.三、解答题14、已知x =2y ,求代数式(11y x-)÷2222x xy y x y -+的值. 答案:2.解答:原式=x y xy -·()22x y x y - =x x y-. 当x =2y 时,原式=22y y y -=2. 15、化简求值:已知y =3x ,求223x x y x y x y --+-·2232y x xy y++的值. 答案:-32. 解答:原式=()()3x y x y x x y x y +--+-·()23y x y +=33 x y x y x y-++=() 3x yx y-+.将y=3x代入得()333x xx x-+=64xx-=-32.16、已知:a+b=2,求(1a+1b)·()24aba b ab-+的值.答案:12.解答:(1a+1b)·()24aba b ab-+=a bab+·2224aba ab b ab-++=a bab+·()2aba b+=1a b +.当a+b=2时,原式的值是12.17、先化简,再求值:(x+2-52x-)÷2336xx x--,其中x满足x2+3x-1=0.答案:3.解答:原式=(()()2252x xx+---)÷()332xx x--=292xx--×()323x xx--=()()332x xx+--×()323x xx--=3x2+9x∵x2+3x-1=0∴x2+3x=1∴原式=3x2+9x=3(x2+3x)=3×1=3.18、已知a 2+2a =4,求21111a a -+-÷2121a a a +-+的值. 答案:25. 解答:原式=()()11111a a a -++-·()211a a -+=()()221111a a a a +--++=2221a a ++. ∵a 2+2a =4,∴原式=25. 19、先化简,再求值:(m +44m m +)÷22m m +,其中m 是方程2x 2+4x -1=0的根. 答案:12. 解答:原式=244m m m ++·22m m +=()22m m+·22m m +=m 2+2m . ∵m 是方程2x 2+4x -1=0的根,∴2m 2+4m -1=0.∴m 2+2m =12. 20、已知x 2+2x -8=0,求代数式211x -÷211211x x x x +--++的值. 答案:-29. 解答:原式=()()111x x +-·()21111x x x --++ =()21111x x x --++ =()()221111x x x x -+-++ =()2111x x x ---+ =-()221x + =-2221x x ++. ∵x 2+2x -8=0,∴x 2+2x =8.∴原式=-29. 21、先化简,再求值已知:x y =23,求(252y x y --x -2y )÷22692x xy y x y -+-的值. 答案:117. 解答:原式=[()22521x y y x y +--]×()223x y x y -- =()()25222y x y x y x y -+--×()223x y x y -- =()22293y x x y -- =33y x y x+-; ∵x y =23,不妨设x =2k ,y =3k (k ≠0), ∴原式=9292k k k k +-=117. 22、已知a 2-4ab +4b 2=0,ab ≠0,求222a b a b +-·(a -b )的值. 答案:原代数式的值为43. 解答:∵a 2-4ab +4b 2=0,∴(a -2b )2=0,∴a =2b .∵ab ≠0, ∴222a b a b +-·(a -b )=()()2a b a b a b +-+·(a -b )=2a b a b ++=222b b b b ++=43. ∴原代数式的值为43. 23、若m 是方程x 2-3x +1=0的一个根,求代数式m 2(3m +1)·223291m m m -++-的值. 答案:3.解答:原式=m2(3m+1)·() ()()232 3131m mm m---+-,=()223231m m mm----,∵m是方程x2-3x+1=0的一个根,∴m2-3m+1=0,∴m2-3m=-1,m2=3m-1,∴原式=()() 311231mm-----=3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化简求值题
1. 先化简,再求值:1
2
112
---x x ,其中x =-2.
2、先化简,再求值:,其中a=
﹣1.
3、(2011•綦江县)先化简,再求值:,其中x=
.
4、先化简,再求值:,其中
.
5先化简,再求值,其中x 满足x 2﹣x ﹣1=0.
6、化简:b
a b
a b a b 3a -++
--
7、(2011•曲靖)先化简,再求值:,其中a=
.
8、(2011•保山)先化简2
11
111
x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.
9、(2011•新疆)先化简,再求值:(+1)÷,其中x=2.
10、先化简,再求值:3x –3 – 18
x 2 – 9 ,其中x = 10–3
11、(2011•雅安)先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..
12、先化简,再求值:12-x x (x
x 1
--2),其中x =2.
13、(2011•泸州)先化简,再求值:,其中
.
14、先化简2
2()5525x x x
x x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩
的解集中,选取一个你认为符合题意的x 的值代入求值.
15、先化简,再求值:6
22
96422+-÷++-a a a a a ,其中5-=a .
16、(2011•成都)先化简,再求值:2
32()111
x x x x x x --÷+--
,其中x =
17先化简。
再求值: 2222121111a a a a a a a +-+⋅---+,其中1
2
a =-。
18. 先化简,再求值:⎝ ⎛⎭
⎪⎫1+ 1 x -2÷ x 2
-2x +1
x 2-4,其中x =-5.
19. 先化简再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭
,其中x 是一元二次方程2
220x x --=的正数根.
20 化简,求值: 11
1(1
1222+--
-÷-+-m m m m m m ) ,其中m =.
21、(1)化简:÷
. (2)化简:2
2a b ab b a (a b )a a ⎛⎫
--÷-≠ ⎪⎝
⎭
22、先化简,再求值:,其中
.
3
23请你先化简分式22
23691
,x 1211
x x x x x x x +++÷+--++再取恰的的值代入求值.
24、(本小题8分)先化简再求值()1
21
112222+--++÷-+a a a a a a 其中a=3+1
25、化简,其结果是
.
26.(11·辽阜新)先化简,再求值:(x
x -2-2)÷x 2-16x 2-2x
,其中x =3-4.
27、 先化简,再求值:x 2+4x +4x 2-16÷x +22x -8-2x
x +4
,其中x =2.
28、先化简,再求值:2
32()224
x x x
x x x -÷-+-,其中4x =.
29.先化简,再求值:2()11a a
a a a
+÷--,其中 1.a =
30、先化简,再求值:2211
()11a a a a
++÷--,其中a
31、(1)化简:
. (2)2
11
1x x x -⎛⎫+÷ ⎪⎝⎭
(3)a a a a 1)1(-÷-
(1)a b a b a b b a +⋅++-)(2。
(2)计算221()a b
a b a b b a -÷-+-
32.
33先化简,再求值:()
2
2111a a a ⎛⎫-+÷+ ⎪+⎝
⎭,其中1a .
34化简:. 35.先化简,再求值:
2
12
1-1a a a ++-,其中2
1=a .
36、.先化简x 2+2x +1x 2-1-x
x -1
,再选一个合适的x 值代入求值.
39.(本题满分4分)当2x =-时,求221
11
x x x x ++++的值.
40先化简,再把 x 取一个你最喜欢的数代入求值:2)22444(2
2-÷+-++--x x
x x x x x
41.(本题满分6分)先化简,再选择一个你喜欢的数代入求值。
2011a a 2-2a+1÷(a+1
a 2-1+1)
42、(2011•湘潭)先化简,再求值:,其中
.
43、先化简:()÷.再从1,2,3中选一个你认为合适的数作为a 的值代入求值.
44、(2011•衡阳)先化简,再求值.(x+1)2+x (x ﹣2).其中.
45、(2011•常德)先化简,再求值,(+
)÷
,其中x=2.
46.先将代数式1
1
)(2+⨯+x x x 化简,再从-1,1两数中选取一个适当的数作为x 的值代入求值.
47、(2011•襄阳)先化简再求值:,其中x=tan60°﹣1.
48.(本题满分6分)先化简,再求值:
)4
(22x
x x x x -÷-,其中x=3.
49.(本小题满分7分)先化简,再求值:232244()()442x y y xy x x xy y x y -⋅+++-
,其中1
1
x y ⎧=⎪⎨
=⎪⎩
50、(2011•恩施州)先化简分式:(a ﹣)÷
•
,再从﹣3、
﹣3、2、﹣2中选一个你喜欢的数作为a
的值代入求值.
51、(2011•牡丹江)先化简,再求值:,其中x 所取的值是在﹣2<x≤3内的一个整数.
52、先化简,再求值:x
x x x +++2
212÷(2x — x x 2
1+)其中,x =2+1
53、(2011•鸡西)先化简,再求值:(1﹣)÷
,其中a=sin60°.
54、先化简,再求代数式3
1
922
-÷-x x 的值,其中,x =5
55.(本题5分)已知x 、y 满足方程组3
3814
x y x y -=⎧⎨-=⎩,先将2x xy xy x y x y +÷--化简,再求
56. (8分)先化简22144(1)11
x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.
57、(2011•遵义)先化简,再求值:
,其中x=2,y=﹣1.。