2015届高考数学总复习第四章 第五节数系的扩充、复数的概念与四则运算精讲课件 文

合集下载

高考数学一轮复习第4章 第5节 数系的扩充与复数的引入

高考数学一轮复习第4章 第5节 数系的扩充与复数的引入
∴- 2x-x+y=y=-3, 2. 解得xy= =14, , 故 x+y=5.
答案:5
5.已知复数 z=1-3+3ii2,则|z|=________. 解析:z=1-3+3ii2=-2-3+2 i 3i =-2-3+2 i3-i2-+22+23i3i=- 43+14i,
答案:8
单击此处编辑母版文本样式 第二级 • 第三级 – 第四级 »第五级
单击此处编辑母版文本样式 第二级 • 第三级 – 第四级 »第五级
解析:由题意知xx2--11≠=00, 得 x=-1.
单击此处编辑母版文本样式 第二级 • 第三级 – 第四级
解析:当 m»=第1 五时级,z1=3-2i,故 z1=z2;反之当 z1=z2 时, 有mm22+ +mm+ -14= =- 3,2, 解得 m=1 或 m=-2.所以 m=1 是 z1= z2 的充分不必要条件.
以 1 为半径的圆上.yx表示圆上的点与原点连线的斜率.
设过原点的直线为 y=kx,由直线与圆相切,得 k|22+k| 1=1,
解得
k=±
3 3.
故所求yx的取值范围为- 33, 33.
答案:A
单击此处编辑母版文本样式 第二级 • 第三级 – 第四级 »第五级
单击此处编辑母版文本样式 第二级 • 第三级 – 第四级 »第五级
单击此处编辑母版文本样式 第二级 • 第三级 – 第四级 »第五级
单击此处编辑母版文本样式 第二级 • 第三级 – 第四级 »第五级
单击此处编辑母版文本样式 第二级 • 第三级 – 第四级 »第五级
点击进入WORD链接
谢谢观看!
谢谢!
单击此处编辑母版复文数本中样的式新概念、新运算问题 第二级 • 第三级 – 第四级 »第五级

2015届高考数学(人教,理科)大一轮复习配套讲义:第四章 平面向量、数系的扩充与复数的引入

2015届高考数学(人教,理科)大一轮复习配套讲义:第四章 平面向量、数系的扩充与复数的引入

第四章平面向量、数系的扩充与复数的引入第一节平面向量的概念及其线性运算(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算平行四边形法则3.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa .1.作两个向量的差时,要注意向量的方向是指向被减向量的终点; 2.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个;3.要注意向量共线与三点共线的区别与联系. [试一试]1.若向量a 与b 不相等,则a 与b 一定( ) A .有不相等的模 B .不共线C .不可能都是零向量D .不可能都是单位向量答案:C2.若菱形ABCD 的边长为2,则|AB -CB+CD |=________.解析:|AB -CB +CD |=|AB +BC +CD |=|AD|=2. 答案:21.向量的中线公式若P 为线段AB 的中点,O 为平面内一点,则OP OP =12(OA +OB). 2.三点共线等价关系A ,P ,B 三点共线⇔AP =λAB(λ≠0)⇔OP =(1-t )·OA +t OB (O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔OP =x OA +y OB(O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1).[练一练]1.D 是△ABC 的边AB 上的中点,则向量CD等于( ) A .-BC +12BAB .-BC -12BAC .BC -12BAD .BC +12BA答案:A2.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________.解析:由题意知a +λb =k [-(b -3a )], 所以⎩⎨⎧λ=-k ,1=3k ,解得⎩⎪⎨⎪⎧k =13,λ=-13.答案:-131.给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB =DC是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b ; ⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( )A .②③B .①②C .③④D .④⑤解析:选A ①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB =DC ,∴|AB |=|DC |且AB ∥DC, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形,则AB ∥DC 且|AB |=|DC |,因此,AB =DC. ③正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.⑤不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是②③.故选A.2.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( )A .0B .1C .2D .3解析:选D 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.[类题通法]平面向量中常用的几个结论(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)向量可以平移,平移后的向量与原向量是相等向量.解题时不要把它与函数图像的平移混为一谈.(3)a |a |是与a 同向的单位向量,a -|a |是与a 反向的单位向量.[典例] (1)如图,在正六边形ABCDEF 中,BA +CD +EF=( )A .0B . BEC .ADD . CF(2)(2013·江苏高考)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值为________.[解析] (1)如图,∵在正六边形ABCDEF 中,CD =AF,BF =CE,∴BA +CD +EF =BA +AF +EF =BF +EF =CE+EF =CF.(2)由题意DE =CE +BE =12AB +23BC =12AB +23(BA +AC )=-16AB+23AC,所以λ1=-16,λ2=23,即λ1+λ2=12. [答案] (1)D (2)12解析:∵CD =CA +AD ,CD =CB +BD ,∴2CD =CA +CB +AD +BD .又∵AD=2CE , ∴2CD =CA +CB +13AB =CA +CB +13(CB -CA )=23CA+43CB .∴CD =13CA +23CB ,即λ=23. 答案:23 [类题通法]在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.[针对训练]若A ,B ,C ,D 是平面内任意四点,给出下列式子:①AB +CD =BC +DA ;②AC +BD =BC+AD ; ③AC -BD =DC +AB.其中正确的有( ) A .0个B .1个C .2个D .3个解析:选C ①式的等价式是AB -BC =DA -CD ,左边=AB +CB,右边=DA +DC ,不一定相等;②式的等价式是AC -BC =AD -BD ,AC+CB=AD +CE =AB 成立;③式的等价式是AC -DC =AB +BD ,AD =AD成立.[典例] 设两个非零向量a 与b 不共线,(1)若AB=a +b ,BC =2a +8b ,CD =3(a -b ), 求证:A ,B ,D 三点共线.(2)试确定实数k ,使k a +b 和a +k b 共线.[解] (1)证明:∵AB=a +b ,BC =2a +8b ,CD =3(a -b ),∴BD =BC +CD =2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB. ∴AB ,BD共线, 又∵它们有公共点B , ∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b . ∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量, ∴k -λ=λk -1=0, ∴k 2-1=0.∴k =±1. [类题通法]1.共线向量定理及其应用(1)可以利用共线向量定理证明向量共线,也可以由向量共线求参数的值. (2)若a ,b 不共线,则λa +μb =0的充要条件是λ=μ=0,这一结论结合待定系数法应用非常广泛.2.证明三点共线的方法若AB=λAC ,则A 、B 、C 三点共线. [针对训练]已知a ,b 不共线,OA =a ,OB =b , OC =c , OD =d , OE=e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD =d -c =2b -3a ,CE=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE =k CD,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎨⎧t -3+3k =0,t -2k =0,解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.第二节平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |(2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB=(x 2-x 1,y 2-y 1),|AB|3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0.1.若a 、b 为非零向量,当a ∥b 时,a ,b 的夹角为0°或180°,求解时容易忽视其中一种情形而导致出错;2.要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.3.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,应表示为x 1y 2-x 2y 1=0.[试一试]1.若向量BA=(2,3),CA =(4,7),则BC =( ) A .(-2,-4) B .(2,4) C .(6,10)D .(-6,-10)答案:A2.(2013·石家庄模拟)已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值是________.解析:∵u =(1+2x,4),v =(2-x,3),u ∥v ,∴8-4x =3+6x ,∴x =12. 答案:12用基向量表示所求向量时,注意方程思想的运用. [练一练]设e 1、e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .解析:由题意,设e 1+e 2=m a +n b . 因为a =e 1+2e 2,b =-e 1+e 2,所以e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2)=(m -n )e 1+(2m +n )·e 2. 由平面向量基本定理,得⎩⎨⎧m -n =1,2m +n =1,所以⎩⎪⎨⎪⎧m =23,n =-13.答案:23 -131.(2014·昆明一中摸底)已知点M (5,-6)和向量a =(1,-2),若MN=-3a ,则点N 的坐标为( )A .(2,0)B .(-3,6)C .(6,2)D .(-2,0)解析:选A MN =-3a =-3(1,-2)=(-3,6),设N (x ,y ),则MN=(x -5,y -(-6))=(-3,6),所以⎩⎨⎧ x -5=-3,y +6=6,即⎩⎨⎧x =2,y =0,选A.2.(2013·北京高考)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解析:设i ,j 分别为水平方向和竖直方向上的正向单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),根据平面向量基本定理得λ=-2,μ=-12,所以λμ=4.答案:43.已知A (-2,4),B (3,-1),C (-3,-4).设AB=a ,BC =b ,CA =c . (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24) =(6,-42).(2)∵m b +n c =(-6m +n ,-3m +8n ), ∴⎩⎨⎧ -6m +n =5,-3m +8n =-5,解得⎩⎨⎧m =-1,n =-1.[类题通法]1.向量的坐标运算实现了向量运算代数化,将数与形结合起来,从而可使几何问题转化为数量运算.2.两个向量相等当且仅当它们的坐标对应相同.此时注意方程(组)思想的应用.[典例] 如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA=a ,BC =b ,试用a ,b 为基底表示向量EF , DF ,CD.[解] EF =EA +AB +BF =-16b -a +12b =13b -a ,DF =DE +EF =-16b +⎝ ⎛⎭⎪⎫13b -a =16b -a ,CD =CF +FD =-12b -⎝ ⎛⎭⎪⎫16b -a =a -23b .[类题通法]用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.[针对训练](2014·济南调研)如图,在△ABC 中,AN =13NC,P 是BN上的一点,若AP =m AB +211AC ,则实数m 的值为________.解析:因为AP =AB +BP =AB +k BN =AB+k (AN -AB )=AB +k ⎝ ⎛⎭⎪⎫14 AC-AB=(1-k )AB +k 4AC,且AP =m AB +211AC, 所以1-k =m ,k 4=211, 解得k =811,m =311. 答案:311[典例] 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k ; [解] (1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎨⎧-m +4n =3,2m +n =2,得⎩⎪⎨⎪⎧m =59,n =89.(2)a +k c =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0. ∴k =-1613.解:设由题意得⎩⎨⎧4(x -4)-2(y -1)=0,(x -4)2+(y -1)2=5, 得⎩⎨⎧ x =3,y =-1或⎩⎨⎧x =5,y =3. ∴d =(3,-1)或(5,3). [类题通法]1.向量共线的两种表示形式设a =(x 1,y 1),b =(x 2,y 2),①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0,至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.2.两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.[针对训练]已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC =2AB,求点C 的坐标.解:(1)由已知得AB=(2,-2),AC =(a -1,b -1),∵A ,B ,C 三点共线,∴AB ∥AC. ∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC =2AB ,∴(a -1,b -1)=2(2,-2). ∴⎩⎨⎧ a -1=4,b -1=-4,解得⎩⎨⎧a =5,b =-3. ∴点C 的坐标为(5,-3).第三节平面向量的数量积与平面向量应用举例1.平面向量的数量积 平面向量数量积的定义已知两个非零向量a 和b ,它们的夹角为θ,把数量|a||b|cos θ叫做a 和b 的数量积(或内积),记作a·b .即a·b =|a||b|cos θ,规定0·a =0.2.向量数量积的运算律 (1)a·b =b·a .(2)(λa )·b =λ(a·b )=a·(λb ). (3)(a +b )·c =a·c +b·c .3.平面向量数量积的有关结论 已知非零向量a =(x 1,y 1),b =(x 2,y 2)1.若a ,b ,c 是实数,则ab =ac ⇒b =c (a ≠0);但对于向量就没有这样的性质,即若向量a ,b ,c ,若满足a ·b =a ·c (a ≠0),则不一定有b =c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量.2.数量积运算不适合结合律,即(a ·b )·c ≠a ·(b ·c ),这是由于(a ·b )·c 表示一个与c 共线的向量,a ·(b ·c )表示一个与a 共线的向量,而a 与c 不一定共线,因此(a ·b )·c 与a ·(b ·c )不一定相等.[试一试]1.(2013·广州调研)已知向量a ,b 都是单位向量,且a ·b =12,则|2a -b |的值为________.解析:|2a -b |=(2a -b )2=4a 2-4a ·b +b 2=4-2+1= 3. 答案: 32.(2013·山东高考)在平面直角坐标系xOy 中,已知OA =(-1,t ),OB =(2,2).若∠ABO =90°,则实数t 的值为________.解析:AB =OB -OA =(3,2-t ),由题意知OB ·AB=0,所以2×3+2(2-t )=0,t =5.答案:51.明确两个结论:(1)两个向量a 与b 的夹角为锐角,则有a ·b >0,反之不成立(因为夹角为0时不成立);(2)两个向量a 与b 的夹角为钝角,则有a ·b <0,反之不成立(因为夹角为π时不成立).2.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.[练一练]1.已知向量a ,b 均为非零向量,(a -2b )⊥a ,(b -2a )⊥b ,则a ,b 的夹角为( )A.π6 B.π3 C.2π3D.5π6解析:选B (a -2b )·a =|a |2-2a ·b =0,(b -2a )·b =|b |2-2a ·b =0,所以|a |2=|b |2,即|a |=|b |,故|a |2-2a ·b =|a |2-2|a |2cos a ,b =0,可得cos a ,b =12,又因为0≤ a ,b ≤π,所以 a ,b =π3.2.(2013·福建高考)在四边形ABCD 中,AC =(1,2),BD=(-4,2),则该四边形的面积为( )A. 5B .2 5C .5D .10解析:选C 依题意得,AC ·BD=1×(-4)+2×2=0, ∴AC ⊥BD ,∴四边形ABCD 的面积为12|AC|·|BD |=12×5×20=5.1.(2014·11=(x 2,y 2),若|=2,|b |=3,a ·b =-6.则x 1+y 1x 2+y 2的值为( ) A.23 B .-23 C.56D .-56解析:选B 由已知得,向量a =(x 1,y 1)与b =(x 2,y 2)反向,3a +2b =0,即3(x 1,y 1)+2(x 2,y 2)=(0,0),得x 1=-23x 2,y 1=-23y 2,故x 1+y 1x 2+y 2=-23.2.(2014·温州适应性测试)在△ABC 中,若∠A =120°,AB ·AC=-1,则|BC |的最小值是( )A. 2B .2C. 6D .6 解析:选C ∵AB ·AC =-1,∴|AB |·|AC |cos 120°=-1,即|AB |·|AC|=2,∴|BC |2=|AC -AB |2=AC 2-2AB ·AC +AB 2≥2|AB |·|AC |-2AB ·AC =6,∴|BC|min = 6.3.(2013·南昌模拟)已知向量e 1=⎝ ⎛⎭⎪⎫cos π4,sin π6,e 2=⎝ ⎛⎭⎪⎫2sin π4,4cos π3,则e 1·e 2=________.解析:由向量数量积公式得e 1·e 2=cos π4×2sin π4+sin π6×4cos π3=22×2+12×2=2.答案:24.(2013·全国卷Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE ·BD=________.解析:因为AE =AD +12AB ,BD =AD -AB ,所以AE ·BD =(AD +12AB )·(AD -AB )=AD 2-12AD ·AB -12AB 2=2. 答案:2 [类题通法]向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos a ,b .(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.运用两向量的数量积可解决长度、夹角、垂直等问题,解题时应灵活选择相应公式求解.(1)平面向量的模; (2)平面向量的夹角; (3)平面向量的垂直.角度一 平面向量的模1.(2013·天津高考)在平行四边形ABCD 中,AD =1,∠BAD =60° , E 为CD的中点.若AC ·BE=1 , 则AB 的长为________. 解析:由已知得AC =AD +AB ,BE =AD -12AB,∴AC ·BE =AD 2-12AB ·AD +AB ·AD -12AB 2=1+12AB·AD -12|AB |2=1+12|AB |·|AD |cos 60°-12|AB|2=1,∴|AB |=12.答案:12角度二 平面向量的夹角2.(1)已知平面向量a ,b ,|a |=1,|b |=3,且|2a +b |=7,则向量a 与a +b 的夹角为( )A.π2 B.π3 C.π6D .π解析:选B ∵|2a +b |2=4|a |2+4a ·b +|b |2=7,|a |=1,|b |=3,∴4+4a ·b +3=7,∴a ·b =0,∴a ⊥b .如图所示,a 与a +b 的夹角为∠COA .∵tan ∠COA =|CA ||OA |=|b ||a |=3,∴∠COA =π3,即a 与a +b 的夹角为π3. (2)(2014·云南第一次检测)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( )A.126B .-126C.112D .-112解析:选B 记向量2a -b 与a +2b 的夹角为θ,又(2a -b )2=4×22+32-4×2×3×cos π3=13,(a +2b )2=22+4×32+4×2×3×cos π3=52,(2a -b )·(a +2b )=2a 2-2b 2+3a ·b =8-18+9=-1,故cos θ=(2a -b )·(a +2b )|2a -b |·|a +2b |=-126,即向量2a-b 与a +2b 的夹角的余弦值是-126,因此选B.角度三 平面向量的垂直3.(1)(2013·荆州高中毕业班质量检查Ⅰ)已知向量a 与b 的夹角是2π3,且|a |=1,|b |=4,若(2a +λb )⊥a ,则实数λ=________.解析:若a ⊥(2a +λb ),则a ·(2a +λb )=0,即2|a |2+λ·|a ||b |·cos 2π3=0,∴2+λ×1×4×⎝ ⎛⎭⎪⎫-12=0.∴λ=1.答案:1(2)在直角三角形ABC 中,已知AB=(2,3),AC =(1,k ),则k 的值为________. 解析:①当A =90°时,∵AB ⊥AC ,∴AB ·AC=0. ∴2×1+3k =0,解得k =-23.②当B =90°时,∵AB ⊥BC, 又BC =AC -AB=(1,k )-(2,3)=(-1,k -3),∴AB ·BC=2×(-1)+3×(k -3)=0, 解得k =113.③当C =90°时, ∵AC ⊥BC,∴1×(-1)+k (k -3)=0, 即k 2-3k -1=0.∴k =3±132.答案:-23或113或3±132. [类题通法]1.求两非零向量的夹角时要注意: (1)向量的数量积不满足结合律;(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明两向量的夹角为直角,数量积小于0且两向量不能共线时两向量的夹角就是钝角.2.利用数量积求解长度问题的处理方法 (1)a 2=a ·a =|a |2或|a |=a ·a . (2)|a ±b |=(a ±b )2=a 2±2a ·b +b 2. (3)若a =(x ,y ),则|a |=x 2+y 2.[典例sin α),b =(cos ,sin β),0<β<α<π.(1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. [解] (1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1), 所以⎩⎨⎧cos α+cos β=0,sin α+sin β=1.由此得,cos α=cos (π-β),由0<β<π,得0<π-β<π. 又0<α<π,故α=π-β.代入sin α+sin β=1, 得sin α=sin β=12,而α>β,所以α=5π6,β=π6. [类题通法]平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.[针对训练]已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值; (2)若|a |=|b |,0<θ<π,求θ的值.解:(1)因为a ∥b ,所以2sin θ=cos θ-2sin θ, 于是4sin θ=cos θ,故tan θ=14.(2)由|a |=|b |,知sin 2θ+(cos θ-2sin θ)2=5, 所以1-2sin 2θ+4sin 2θ=5.从而-2sin 2θ+2(1-cos 2θ)=4,即sin 2θ+cos 2θ=-1, 于是sin ⎝ ⎛⎭⎪⎫2θ+π4=-22.又由0<θ<π,知π4<2θ+π4<9π4, 所以2θ+π4=5π4或2θ+π4=7π4. 因此θ=π2或θ=3π4.第四节数系的扩充与复数的引入1.复数的有关概念 (1)复数的概念:形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ). (4)复数的模:向量OZ ―→的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2.2.复数的几何意义 (1)复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).(2)复数z =a +b i(a ,b ∈R ) 平面向量OZ.3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0). (2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件. 3.z 2<0在复数范围内有可能成立,例如:当z =3i 时z 2=-9<0. [试一试]1.(2014·惠州调研)i 是虚数单位,若z (i +1)=i ,则|z |等于( ) A .1 B.32 C.22D.12解析:选C 由题意知z =i i +1=i (1-i )(i +1)(1-i )=1+i 2,|z |=22,故选C. 2.(2013·天津高考)已知a ,b ∈R ,i 是虚数单位.若(a +i)·(1+i)=b i ,则a +b i =________.解析:因为(a +i)(1+i)=a -1+(a +1)i =b i ,a ,b ∈R ,所以⎩⎨⎧a -1=0,a +1=b ,解得⎩⎨⎧a =1,b =2,所以a +b i =1+2i. 答案:1+2i1.把握复数的运算技巧(1)设z =a +b i(a ,b ∈R ),利用复数相等和相关性质将复数问题实数化是解决复数问题的常用方法.(2)在复数代数形式的四则运算中,加、减、乘运算按多项式运算法则进行,除法则需分母实数化.2.掌握复数代数运算中常用的几个结论在进行复数的代数运算时,记住以下结论,可提高计算速度. (1)(1±i)2=±2i ;1+i 1-i =i ;1-i 1+i=-i ;(2)-b +a i =i(a +b i);(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0,n ∈N *. [练一练](2013·安徽联考)已知i 是虚数单位,则⎝ ⎛⎭⎪⎫1+i 2 2 013在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C ∵⎝⎛⎭⎪⎫1+i 22=2i2=i , ∴⎝ ⎛⎭⎪⎫1+i 2 2 013=⎝ ⎛⎭⎪⎫1+i 2 2 0121+i 2=i 1 006·1+i 2=i 2·1+i 2=-22-22i.∴其对应点位于第三象限,故选C.1.(2014·湖北八校联考)设x ∈R ,则“x =1”是“复数z =(x 2-1)+(x +1)i 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C 由纯虚数的定义知:⎩⎨⎧x 2-1=0,x +1≠0,⇒x =1,选C.2.(2014·安徽“江南十校”联考)若a +b i =51+2i(i 是虚数单位,a ,b ∈R ),则ab =( )A .-2B .-1C .1D .2解析:选A a +b i =51+2i=1-2i ,所以a =1,b =-2,ab =-2. 3.(2013·安徽高考)设i 是虚数单位,若复数a -103-i(a ∈R )是纯虚数,则a 的值为( )A .-3B .-1C .1D .3解析:选D 复数a -103-i =a -10(3+i )(3-i )(3+i )=(a -3)-i 为纯虚数,则a -3=0,即a =3.4.(2013·洛阳统考)设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则|(1-z )·z -|=( )A.10 B .2 C. 2D .1解析:选A 依题意得(1-z )·z -=(2+i)(-1+i)=-3+i ,|(1-z )·z -|=|-3+i|=(-3)2+12=10.选A.[类题通法]解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a +bi (a ,b ∈R )的形式,以确定实部和虚部.[典例] (1)(2013·四川高考)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( )A .AB .BC .CD .D(2)(2014·郑州质量预测)复数z 1=3+i ,z 2=1-i ,则z =z 1z 2的共轭复数在复平面内的对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] (1)设z =a +b i(a ,b ∈R ),且a <0,b >0,则z 的共轭复数为a -b i ,其中a <0,-b <0,故应为B 点.(2)依题意得,z =3+i 1-i =(3+i )(1+i )(1-i )(1+i )=2+4i 2=1+2i ,因此复数z =z 1z 2的共轭复数1-2i 在复平面内的对应点的坐标是(1,-2),该点位于第四象限,选D.[答案] (1)B (2)D[类题通法]对复数几何意义的理解及应用(1)复数z 、复平面上的点Z 及向量OZ相互联系,即z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔ OZ(2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.[针对训练]1.(2013·湖北八校联考)已知i 是虚数单位,z =1+i ,z -为z 的共轭复数,则复数z 2z-在复平面上对应的点的坐标为________.解析:z =1+i ,则z 2z -=(1+i )21-i =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,则复数z 2z-在复平面上对应的点的坐标为(-1,1).答案:(-1,1)2.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上对应的点分别为A ,B ,C ,若OC =λOA +μOB,(λ,μ∈R ),则λ+μ的值是________.解析:由条件得OC =(3,-4),OA=(-1,2), OB=(1,-1),根据OC =λOA +μOB 得(3,-4)=λ(-1,2)+μ(1,-1)=(-λ+μ,2λ-μ), ∴⎩⎨⎧ -λ+μ=3,2λ-μ=-4,解得⎩⎨⎧λ=-1,μ=2. ∴λ+μ=1. 答案:1[典例] (1)若复数z 满足z (2-i)=11+7i(i 为虚数单位),则z 为( ) A .3+5iB .3-5iC .-3+5iD .-3-5i(2)(2013·长春调研)已知复数z =1+a i(a ∈R ,i 是虚数单位),z -z =-35+45i ,则a =( )A .2B .-2C .±2D .-12[解析] (1)z =11+7i 2-i =(11+7i )(2+i )(2-i )(2+i )=15+25i5=3+5i.(2)由题意可知:1-a i 1+a i =(1-a i )2(1+a i )(1-a i )=1-2a i -a 21+a 2=1-a 21+a 2-2a 1+a 2i =-35+45i ,因此1-a 21+a 2=-35,化简得5a 2-5=3a 2+3,a 2=4,则a =±2,由-2a 1+a 2=45可知a <0,仅有a =-2满足,故选B.[答案] (1)A (2)B解:∵z =3+5i ,∴z -=3-5i∴(1+z )·z -=(4+5i)(3-5i)=12-20i +15i +25=37-5i. [类题通法]复数四则运算的解答策略复数的加法、减法、乘法运算可以类比多项式的运算,除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.[针对训练]1.(2013·山东高考)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为( )A .2+iB .2-iC .5+iD .5-i解析:选D 由(z -3)(2-i)=5,得z =3+52-i =3+5(2+i )(2-i )(2+i )=3+2+i =5+i,所以z=5-i.2.设复数z的共轭复数为z,若z=1-i(i为虚数单位),则zz+z2的值为()A.-3i B.-2i C.i D.-i解析:选D依题意得zz+z2=1+i1-i+(1-i)2=-i2+i1-i-2i=i-2i=-i.。

2015届高考人教版数学大一轮复习精讲课件:第4章 第4节 数系的扩充与复数的引入

2015届高考人教版数学大一轮复习精讲课件:第4章 第4节 数系的扩充与复数的引入

数学
首页
上一页
下一页
末页
第十八页,编辑于星期五:九点 五十九分。
第四节 数系的扩充与复数的引入 结束
2.已知复数 z1=-1+2i,z2=1-i,z3=3-4i,它们在复平面上
对应的点分别为 A,B,C,若OC =λOA+μOB,(λ,μ∈R), 则 λ+μ 的值是________. 解析:由条件得OC =(3,-4),OA=(-1,2),
末页
第九页,编辑于星期五:九点 五十九分。
第四节 数系的扩充与复数的引入 结束
1.(2014·湖北八校联考)设 x∈R,则“x=1”是“复数 z=(x2-1)
+(x+1)i 为纯虚数”的
()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析:由纯虚数的定义知:xx2+-11≠=00,, ⇒x=1,选C .
数学
首页
上一页
下一页
末页
第三页,编辑于星期五:九点 五十九分。
第四节 数系的扩充与复数的引入 结束
③乘法:z1·z2=(a+bi)·(c+di)=(ac-bd)+(ad+bc)i ;
④除法:zz12=ac++dbii=ac++dbiicc--ddii= acc2++bdd2 +bcc2- +ad2d i(c+di≠0). (2)复数加法的运算定律 复数的加法满足交换律、结合律,即对任何 z1,z2,z3∈C, 有 z1+z2= z2+z1 ,(z1+z2)+z3= z1+(z2+z3) .
B.-2 D.-12
数学
首页
上一页
下一页
末页
第二十页,编辑于星期五:九点 五十九分。
第四节 数系的扩充与复数的引入 结束

2015届高三数学第一轮复习课件:11.4数系的扩充与复数的引入

2015届高三数学第一轮复习课件:11.4数系的扩充与复数的引入
2.复平面的概念:建立直角坐标系来表示复数的平面
叫作复平面,x 轴叫作实轴,y 轴叫作虚轴.实轴上的点表
示__实数__;除原点外,虚轴上的点都表示纯虚数;各象限 内的点都表示虚数.
3.复数的相等:a+bi=c+di⇔__a=c 且 b=d__(a, b,c,d∈R).
4.共轭复数:当两个复数的实部相等,虚部相反时,
§11.4 数系的扩充与复数的引入
1.理解复数的基本概念、理解复数相等的充要条件 2.了解复数的代数表示法及其几何意义 3.能进行复数代数形式的四则运算、了解复数代数形 式的加、减运算的几何意义.
第一页,编辑于星期五:八点 五十分。
一、复数的有关概念
1.复数的概念:形如 a+bi(a,b∈R)的数叫复数,其 中 a,b 分别是它的实部和虚部,当__b=0__时,a+bi 为 实数;当__b≠0__, a+bi 为虚数;当__a=0 且 b≠0__时, a+bi 为纯虚数.
(2013 年北京卷)在复平面内,复数 i(2-i)对应的点位
于( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象

i(2-i)=2i-i2=1+2i,它对应的点位于第一象
第九页,编辑于星期五:八点 五十分。
限. A
(2012 年陕西卷)设 a,b∈R,i 是虚数单位,则“ab=
0”是“复数 a+bi为纯虚数”的(
1 部为2.
1
2
根据题中的条件,必须设出复数的代数形式,建立
有关方程,求出方程即可.
1+z 已知复数1-z=i,则
z=________.
第十二页,编辑于星期五:八点 五十分。
1+z 由1-z=i
可得
1+z=i-iz,设

4-4第四节 数系的扩充与复数的引入(2015年高考总复习)

4-4第四节 数系的扩充与复数的引入(2015年高考总复习)

第27页
返回导航
第四章
第四节
高考总复习模块新课标
新课标A版数学
(2)在复平面内,复数 6+5i,-2+3i 对应的点分别为 A,B, 若 C 为线段 AB 的中点,则点 C 对应的复数是( A.4+8i C.2+4i B.8+2i D.4+i )
考源教学资源网
第28页
第31页
返回导航
第四章
第四节
高考总复习模块新课标
新课标A版数学
(3)已知复数 z1=cos23° +isin23° 和复数 z2=cos37° +isin37° , 则 z1 · z2 为( 1 3 A.2+ 2 i 1 3 C.2- 2 i ) 3 1 B. 2 +2i 3 1 D. 2 -2i
(2)几何意义: 复数加减法可按向量的平行四边形或三角形法 则进行. 如右图给出的平行四边形 OZ1ZZ2 可以直观地反映出复数加减
→ → → → → → OZ2-OZ1 OZ1+OZ2 ,Z1Z2=____________. 法的几何意义,即OZ=____________
考源教学资源网
第2页
返回导航
第四章
第四节
高考总复习模块新课标
新课标A版数学
高考这样考 1.考查复数的基本概念,复数相等的条件.
2.考查复数的代数形式的运算,复数的几何意义.
考源教学资源网
第3页
返回导航
第四章
第四节
高考总复习模块新课标
新课标A版数学
备考这样做 1.要理解复数的相关概念如实部、 虚部、 纯虚数、 共轭复数等, 以及复数的几何意义. 2.要把复数的基本运算作为复习的重点, 尤其是复数的四则运 算与共轭复数的性质等.因考题较容易,所以重在练基础.

【全程复习方略】(福建专版)高考数学 第四章 第五节数系的扩充与复数课件 理

【全程复习方略】(福建专版)高考数学 第四章 第五节数系的扩充与复数课件 理
ac bd bc ad ④除法:z1 a bi a bi c di 2 i c di 0 . 2 2 2 z 2 c di c di c di _____________ c d c d
(a+c)+(b+d)i ①加法:z1+z2=(a+bi)+(c+di)=_____________;
(a-c)+(b-d)i ②减法:z1-z2=(a+bi)-(c+di)=_____________;
(ac-bd)+(ad+bc)i ③乘法:z1·z2=(a+bi)·(c+di)=_________________;
(2)(2012·江西高考)若复数z=1+i(i为虚数单位), z 是z的共
轭复数,则 z2 z2 的虚部为( )
(A)0
(B)-1
(C)1
(D)-2
1 ai 1 ai 2 i 2 a 1 2a i, 【规范解答】(1)选A. 2 i 2 i 2 i 5 5 又 1 ai 是纯虚数, 2i
其中|z|=|OP|.

(4)复数的加法和减法的几何意义复数 的加、减法可以转化为其对应的向量的 加、减法,即满足平行四边形法则或三 角形法则.如图所示,设复数z=a+bi, ω =c+di,分别用向量 OA,OB 表示,则①z+ω = OC ,其中OC是以 OA,OB为邻边的平行四边形的对角线;②z-ω = BA OD ;③kz对 应的向量 OM k OA.
第五节 数系的扩充与复数
1.复数的有关概念 (1)复数的定义

2015高考数学一轮总复习课件:4.4数系的扩充与复数的引入

2015高考数学一轮总复习课件:4.4数系的扩充与复数的引入
复数的四则运算类似于多项式的四则运算,此时含有虚 数单位i的看作一类,不含i的看作另一类,分别合并即可,但 要注意把i的幂写成最简单的形式,在运算过程中,要熟悉i的
特点及熟练应用运算技巧.
(2)一般先乘方、再乘除、最后为加减,有括号者可先算括号 里面的.
第二十一页,编辑于星期五:十二点 三十三分。
聚焦考向透析
梳理自测1
1.(教材改编)复数1-+i2i(i 是虚数单位)的实部是( D )
A.15
B.-15
C.-15i
D.-25
2.(课本精选)已知1+z i=3-i,则复数 z 的实部为( A )
A.4 B.-4 C.2 D.-2
第四页,编辑于星期五:十二点 三十三分。
基础知识梳理 梳 理 一 复数的概念与运算
11
11
A.-2-2i B.-2+2i
C.12-12i
D.12+12i
审题视点 典例精讲 类题通法 变式训练
(1)先利用i的性质,再进行除法
运算.
第十六页,编辑于星期五:十二点 三十三分。
聚焦考向透析
考向二 复数的代数运算
例题精编
(1)(2014·重庆质检) i2+i3+i4
复数 1-i =( C )
单位)在复平面内对应的点在直线 x+y=0 上,
则实数 a 的值是( )
A.-1
B.0
C.1
D.2
第二十五页,编辑于星期五:十二点 三十三分。
聚焦考向透析
考向三 复数的几何意义
例题精编
审题视点 典例精讲 类题通法 变式训练
(2014·豫东、豫北十校联考) 设 a 是实数,若复数1-a i+1-2 i(i 为虚数
No ◆以上题目主要考查了以下内容:

2015届高考数学总复习配套课件:4-4 数系的扩充与复数的引入

2015届高考数学总复习配套课件:4-4 数系的扩充与复数的引入

能力
提 升 部,从定义出发,把复数问题转化成实数问题来处理.由于复数z=a+
提素能
高效 训练
bi(a,b∈R),由它的实部与虚部唯一确定,故复数z与点Z(a,b)相对
应.


2.z= z ⇔z∈R.


3.若z≠0且z+ z =0,则z为纯虚数,利用这个性质可证明一个复 阳 书
数为纯虚数.





高考总复习 A 数学(文)
抓主干 考点 解密
研考向
要点
探究
第四节 数系的扩充与复数的引入
悟典题
能力
提升
提素能
[最新考纲展示]
高效
训练
1.理解复数的基本概念. 2.理解复数相等的充要条件. 3.了解
复数的代数表示形式及其几何意义. 4.会进行复数代数形式的四则运
山 东
算. 5.了解复数的代数形式的加、减运算的几何意义.
抓主干 考点 解密 研考向 要点 探究 悟典题 能力 提升 提素能 高效 训练
菜 单 隐藏
高考总复习 A 数学(文)
山 东 金 太 阳 书 业 有 限 公 司
第十七页,编辑于星期五:十点 十三分。
抓主干 考点 解密
研考向
要点
探究 悟典题
解析:由a-3-a i
能力
提升 提素能
=a-a31+0 i=a-310a-1a0i
(1)(1±i)2=±2i;(2)11+ -ii=i;(3)11+-ii=-i;
山 东 金

(4)a+i bi=b-ai.
阳 书 业




菜 单 隐藏
第二十二页,编辑于星期五:十点 十三分。

2015高考数学(理)一轮课件:14-5数系的扩充与复数的引入

2015高考数学(理)一轮课件:14-5数系的扩充与复数的引入

(6)(2013·福建卷改编)复数z=-1-2i在复平面内对应的点位 于第三象限. (√)
3.对复数四则运算的理解 1 (7)(教材习题改编) i =-i. (8)(2013· 浙江卷改编)(2+i)(3+i)=5+5i. ( √) ( √)
[感悟·提升]
1.两点提醒 一是在实数范围内无解的方程在复数范围内都有
考点三
复数代数形式的四则运算
3+i 【例 3】 (1)已知复数 z= ,z 是 z 的共轭复数,则 z· z= 1- 3i2 ________. 2+ 2i34+5i (2) =________. 5-4i1-i i (3)已知复数 z 满足 =2-i,则 z=________. z +i
2.复数的加、减、乘、除运算法则
设z1=a+bi,z2=c+di(a,b,c,d∈R),则 (1)加法:z1+z2=(a+bi)+(c+di)= (a+c)+(b+d)i ; (2)减法:z1-z2=(a+bi)-(c+di)= (a-c)+(b-d)i ; (3)乘法:z ·z =(a+bi)·(c+di)= (ac-bd)+(ad+bc)i ;
解析
| 3+i| 1 (1)法一 |z|= = , |1- 3i2| 2
2
1 z· z =|z| =4. 法二 3+i 3 i z= =- 4 +4, -21+ 3i
3 i 3 i 1 - 4 -4=4. 4 +4
z· z = -
2+ 2i34+5i 2 21+i3i5-4i 2 21+i4i (2) = = = 2i(1+ 2 5-4i1-i 5-4i1-i i)4= 2i[(1+i)2]2= 2i(2i)2=-4 2i. i2+i i i 2 1 1 3 (3)由 =2-i,得 z= -i= 5 -i=5i-5-i=-5-5i. z +i 2-i

高考数学 第四章 第五节 数系的扩充与复数的引入课件 理 新人教A版

高考数学 第四章 第五节 数系的扩充与复数的引入课件 理 新人教A版

判断下面结论是否正确(请在括号中打“√”或“×”). (1)方程x2+x+1=0没有解.( ) (2)复数z=a+bi(a,b∈R)中,虚部为bi.( ) (3)复数中有相等复数的概念,因此复数可以比较大小.( ) (4)原点是实轴与虚轴的交点.( ) (5)复数的模实质上就是复平面内复数对应的点到原点的距离, 也就是复数对应的向量的模.( )
第五节 数系的扩充与复数的引入
1.复数的有关概念 (1)定义: 形如a+bi(a,b∈R)的数叫做复数,其中a叫做_实__部__,b叫做 _虚__部__.
(2)分类:
复 数 的 分 类
满足条件(a,b为实数) a+bi为实数⇔_b_=_0_ a+bi为虚数⇔_b_≠__0_
a+bi为纯虚数⇔
1 2i
则a+b的值为_______.
【思路点拨】
【规范解答】(1)选A. 因为z=1+i,所以 z =1-i, ∴ z2 = z(12 +i)2+(1-i)2=2i-2i=0,故虚部为0.
(2)由条件得z=(3+i)2=9+6i-1=8+6i,
∴|z|= 82 = 1620.
答案:10
(3)∵a+bi=
1.已知a∈R,若(1-ai)(3+2i)为纯虚数,则a的值为( )
(A)- 3
(B) 3
2

(C)- 2
(D) 2
3
3
【解析】选A.(1-ai)(3+2i)=(3+2a)+(2-3a)i为纯虚
数,故
3+ 2-
2 3
a a
=得0,a=-
0,
.

数系的扩充和复数的概念公开课PPT课件

数系的扩充和复数的概念公开课PPT课件

3
学习目标: 1、理解复数的基本概念 2、理解复数相等的充要条件 3、理解复数的代数表示方法
4、了解数系的扩充过程
学习重点:
复数的概念,复数的代数形式表示.
学习难点:
理解复数的基本概念以及复数相等的充要条件.
-
4
解方程 x2 1?0,x
-
5
平方等于-1的数用符号i来表示。
i

引 (1)i2 1
复数相等问题 转化 求方程组解的问题
-
16


复数





-
17
当堂检测
-
18
作业:
习题3.1A组 1、2.
-
19
练一练(口答):指出下列各数的实部和虚部
1 3i
(1)i
1i
6
7
8 5i
-
9
自主学习反馈
在复数集 C a b|a i,b R 任
复 取两个数 a b与 ic d( ia ,b ,c ,d R ) 数 abicdi ac,bd 相 等 特别地,abi0 a0,b0
作用 判断两个复数是否相等
-
入 (2)可以和实数一起进行四则
运算,原有的加法乘法运算律仍 成立
-
6
自主学习反馈
复 数
定义:把形如 a 的bi数叫做复数 (a,b 是实数)
的 概
其中i叫做虚数单位

复数全体组成的集合叫复数集,
记作:C
-
7
自主学习反馈


பைடு நூலகம்
的 za b i (aR,bR)

实部 虚部 虚数

2015年高考数学一轮总复习配套课件:10.4数系的扩充与复数的引入

2015年高考数学一轮总复习配套课件:10.4数系的扩充与复数的引入
= -1
=1
= -1.
= 1 + i,
= -1 + i,
= -1-i,
= 1-i,
故所求复数为



= 1-i
= 1+i
= -1-i
= -1 + i.
考点一
考点二
考点三
考点四
第二十五页,编辑于星期五:十一点 十二分。
(-2)
= 0,
-1
2 + 2m-3 ≠ 0.
解得 m=0 或 m=2.∴当 m=0 或 m=2 时,z 为纯虚数.
(3)当 z 对应的点位于复平面的第二象限时,则有
(-2)
< 0,
-1
解得 m<-3 或
2 + 2m-3 > 0,
1<m<2.故当 m<-3 或 1<m<2 时,z 对应的点位于复平面的第二象限.
对应点分别在实轴和虚轴上.若实部为正且虚部为正,则复数对应点在第一
象限;若实部为负且虚部为正,则复数对应点在第二象限;若实部为负且虚部
为负,则复数对应点在第三象限;若实部为正且虚部为负,则复数对应点在第
四象限.此外,若复数的对应点在某些曲线上,还可写出代数形式的一般表达
式.如:若复数 z 的对应点在直线 x=1 上,则 z=1+bi(b∈R);若复数 z 的对应点
1
i
5.i 为虚数单位, +
A.0
1
1
i
i
3+
1
i
5 + 7=(
)
B.2i
C.-2i
D.4i
关闭

高考数学一轮总复习 第4章 第5节 数系的扩充与复数的引入课件 理

高考数学一轮总复习 第4章 第5节 数系的扩充与复数的引入课件 理
【答案】 i-1
考向 1 复数的有关概念 【例 1】 (1)设 a,b∈R,i 是虚数单位,则“ab=0” 是“复数 a+bi 为纯虚数”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 (2)(2013·全国高考改编)设复数-z 是复数 z=i+2 1的共轭复 数,则-z +|z|=________.
【 解 析 】 z = (2 - i)2 = 3 - 4i , 所 以 |z| = |3 - 4i| = 32+-42=5.
【答案】 5
5.(2013·课标全国Ⅱ卷改编)设复数 z 满足(1-i)z=2i, 则 z=________.
【解析】 z=12-i i=12-ii1+1+i i=i(1+i)=i-1.
(1)复数 z=a+bi(a,b∈R)中,虚部为 bi( ) (2)复数中有相等复数的概念,因此复数可以比较大小
() (3)实轴上的点表示实数,虚轴上的点都表示纯虚数
() (4)复数的模实质上就是复平面内复数对应的点到原点的 距离,也就是复数对应的向量的模( )
【解析】 依据复数的概念,(1)、(2)不正确,(4)正确.(3) 中,虚轴上除原点外表示纯虚数.(3)错.
-3)-i,由纯虚数的定义,知 a-3=0,所以 a=3.
【答案】 D
考向 2 复数的代数运算
【例 2】 (1)(2013·山东高考)复数 z 满足(z-3)(2-i)=5(i
为虚数单位),则 z 的共轭复数 z 为( )
A.2+i
B.2-i
C.5+
D.5-i
(2)(2012·湖北高考)若31+-bii=a+bi(a,b 为实数,i 为虚数
单位),则 a+b=________. 【思路点拨】 (1)利用复数除法,先求 z-3,再求 z 的

2015届高考数学总复习 基础知识名师讲义 第四章 第五节数系的扩充、复数的概念与四则运算 文

2015届高考数学总复习 基础知识名师讲义 第四章 第五节数系的扩充、复数的概念与四则运算 文

第五节数系的扩充、复数的概念与四则运算1.理解复数的基本概念.2.理解复数相等的充要条件.3.了解复数的代数表示形式及其几何意义.4.会进行复数代数形式的四则运算.5.了解复数代数形式的加、减运算的几何意义.知识梳理一、复数的有关概念1.复数的概念.形如a+b i(a,b∈R)的数叫做复数,其中a,b分别是它的________和________.若________,则a+b i为实数,若________,则a+b i为虚数,若________,则a+b i为纯虚数.2.复数相等:a+b i=c+d i⇔________(a,b,c,d∈R).3.共轭复数:a+b i与c+d i共轭⇔________(a,b,c,d∈R).4.复平面.建立直角坐标系来表示复数的平面,叫做复平面.________叫做实轴,________叫做虚轴.实轴上的点都表示________;除原点外,虚轴上的点都表示________;各象限内的点都表示________.5.复数的模.向量OZ →的模r 叫做复数z =a +b i 的模,记作________或________,即|z |=|a +b i|=________.6.复数的几何意义.(1)复数z =a +b i 一一对应复平面内的点Z (a ,b )(a ,b ∈R ). (2)复数z =a +b i(a ,b ∈R )一一对应平面向量OZ →. 二、复数代数形式的运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 1.z 1±z 2=(a +b i)±(c +d i)=(a ±c )+(b ±d )i ; 2.z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i ; 3.z 1z 2=a +b i c +d i =ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0). 三、常见运算规律1.i 的幂运算:i4n =1;i4n +1=i ;i4n +2=-1;i4n +3=-i(其中n ∈N ). 2.(a +b i)(a -b i)=a 2+b 2. 3.(1±i)2=±2i. 4.1+i 1-i =i ,1-i1+i=-i. 5.1的立方根是1;-12+32i ,-12-32i ,-1的立方根是-1,12+32i ,12-32i.6.设ω=-12+32i ,则ω2=ω,1+ω+ω2=0.四、复数运算所满足的运算律 1.加法交换律: z 1+z 2=z 2+z 1.2.加法结合律: (z 1+z 2)+z 3=z 1+(z 2+z 3).3.乘法运算律:(1)z 1(z 2z 3)=(z 1z 2)z 3 ; (2)z 1(z 2+z 3)=z 1z 2+z 1z 3;(3)(z 1+z 2)z 3=z 1z 3+z 2z 3. 五、复数的几何意义1.复数加法的几何意义:如果复数z 1,z 2分别对应于向量OP 1→,OP 2→,那么,以OP 1,OP 2为两边作平行四边形OP 1SP 2,对角线OS 表示的向量OS →就是z 1+z 2的和所对应的向量. 2.复数减法的几何意义:两个复数的差z 1-z 2与连接向量Oz 1→,Oz 2→的终点,并指向被减数的向量z 2z 1→对应.六、几个重要的结论1.|z1+z2|2+|z1-z2|2=2(|z1|2+|z2|2).2.z·z=|z|2=|z|2.3.若z为虚数,则|z|2≠z2.一、1.实部虚部b=0b≠0a=0且b≠0 2.a=c且b=d 3.a=c,b=-d 4.x 轴y轴实数纯虚数非纯虚数 5.|z||a+b i|基础自测1.(2013·汕头二模)已知i 为虚数单位,若复数(1+a i)(2+i)是纯虚数,则实数a 等于( ) A .2 B.12C .-12D .-2解析:因为复数(1+a i)(2+i)=2-a +(1+2a )i 是纯虚数,所以⎩⎪⎨⎪⎧2-a =0,1+2a ≠0,解得a =2.故选A.答案:A2.(2013·广州一模)已知a1-i=1+b i ,其中a ,b 是实数,i 是虚数单位,则a +b i =( ) A .1+2i B .2+i C .2-iD .1-2i解析:由a 1-i =1+b i ,即a 2+a2i =1+b i ,得a =2,b =1.故选B.答案:B3.(2012·荆州质检)设i 为虚数单位,则1-i +i 2-i 3+i 4-…+i 20=________.解析:根据i n (n ∈N *)的周期性知,-i +i 2-i 3+i 4=-i 5+i 6-i 7+i 8=…=0, ∴1-i +i 2-i 3+i 4-…+i 20=1. 答案:14.(2013·湖北卷)i 为虚数单位,设复数z 1,z 2在复平面内对应的点关于原点对称,若z 1=2-3i ,则z 2=________.解析:依题意z 1+z 2=0,所以z 2=-z 1=-2+3i. 答案:-2+3i1.(2013·广东卷)若i(x+y i)=3+4i,x,y∈R,则复数x+y i的模是()A.2B.3 C.4 D.5解析:根据复数相等的充要条件可得x=4,y=-3,易得x+y i的模为5,故选D. 答案:D2.(2013·安徽卷)设i是虚数单位.若复数a-103-i(a∈R)是纯虚数,则a的值为() A.-3 B.-1 C.1 D.3解析:a -103-i =a -(3+i)=(a -3)-i ,由a ∈R ,且a -103-i为纯虚数知a =3.故选D. 答案:D1.(2013·梅州二模)复数z =11-i (i 为虚数单位)的共轭复数z -是( )A .1-iB .1+iC.12+12iD.12-12i解析:因为复数z =11-i =1+i(1-i )(1+i )=12+12i.所以z -=12-12i.故选D.答案:D2.(2013·江门一模)在复平面内,O 是原点,向量OA →对应的复数是2-i(其中,i 是虚数单位),如果点A 关于实轴的对称点为点B ,则向量OB →对应的复数是( )A .-2-iB .-2+iC .2+iD .1-2i解析:由题意可得点A 的坐标为(2,-1),点A 关于实轴的对称点为点B (2,1),则向量OB →对应的复数是2+i ,故选C.答案:C。

2015高考数学一轮课件:5-4数系的扩充与复数的引入

2015高考数学一轮课件:5-4数系的扩充与复数的引入
理解复数的基本概 念;理解复数相等 的充要条件
会进行复数代数形 式的四则运算;了 解复数代数形式的 加、减运算的几何 意义
理解复数的有关概 念
了解复数代数表示 法及其几何意义
考查角度 由复数的分类求参数 值
复数的四则运算及与 四则运算有关的问题
求复数的共轭复数 复数与复平面内点的 对应;会计算复数的 模
=-2-21632ii221- 3i
=41+
-64 3i21-
3i
=1+-31i6×4=1+-43i
=-1+ 3i.
第二十三页,编辑于星期五:十三点 二十分。
(2)原式=i11++22 33ii+[(1-2i)2]1005
=i+(-22i)1005=i+i1005
=i+i4×251+1=i+i=2i.
解析:z=12-ii1+1+i i=-1+i,故选 A.
答案:A
第十五页,编辑于星期五:十三点 二十分。
第十六页,编辑于星期五:十三点 二十分。
题型一 复数的有关概念 【例 1】 (2014·南安期末)已知 m∈R,复数 z=mm2+-21m+(m2 +2m-3)i,当 m 为何值时,(1)z∈R,(2)z 是虚数.
第二十一页,编辑于星期五:十三点 二十分。
题型二 复数的四则运算
【例 2】 (2013·广安期末)计算:(1)12-+23ii45;
(2)-1+2 23+3ii+(1-2i)2010;
(3)(11+ -ii)6+
2+ 3-
3i 2i.
第二十二页,编辑于星期五:十三点 二十分。
[解] (1)原式=1-163i14+1i-4 3i
(3)原式=[1+2 i2]6+
2+ 3-
3ii 2ii

2015高中数学北师大版选修2-2课件:《数系的扩充和复数的概念》

2015高中数学北师大版选修2-2课件:《数系的扩充和复数的概念》

导.学. .固 思
1 “a=0”是“复数a+bi(a,b∈R)为纯虚数”的( ). B
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】a=0时,a+bi(a,b∈R)可能为纯虚数,也可能为0;a+bi为纯虚 数时,a=0.所以答案为B.
2 复数z=-3-10i的实部是( )B.
A.0
B.1
C.3
D.4
第十四页,编辑于星期五:十二点 十二分。
导.学. .固 思
【解析】①是假命题,因为当 a∈R 且 b=0 时,a+bi
是实数.②是假命题,因为两个复数都是实数时,可以比较
大小.③是假命题,因为由纯虚数的条件得
x2-4 = 0,
解得 x=2.④是假命题,因为没有强调
x2 + 3x + 2 ≠ 0,
第十三页,编辑于星期五:十二点 十二分。
导.学. .固 思
对复数概念的理解
已知下列命题: ①复数 a+bi 一定不是实数; ②两个复数不能比较大小; ③若(x2-4)+(x2+3x+2)i 是纯虚数,其中 x∈R,则 x=±2; ④若复数 z=a+bi,则当且仅当 b≠0 时,z 为虚数; ⑤若 a+bi=c+di,则 a=c 且 b=d. 其中真命题的个数是( A ).
下列命题中正确的有 ① . ①若 z=a+bi(a,b∈R),则当 a=0,b≠0 时,z 为纯虚数; ②若(z1-z2)2+(z2-z3)2=0,则 z1=z2=z3; ③若实数 a 与 ai 对应,则实数集与纯虚数集一一对应.
【解析】①正确. ②错误,只有当 z1,z2,z3∈R 时才成立;若 z1=1,z2=0,z3=i 也满足题意. ③错误,若 a=0,则 0·i=0 不再是纯虚数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)(2013· 陕西卷 ) 设 z1 , z2 是复数,则下列命题中的假 命题是( ) A.若|z1-z2|=0,则 Z 1 = Z 2
B.若z1= Z 2 ,则 Z 1 =z2
C.若|z1|=|z2|,则z1· Z Z =z2·
1 2
D.若|z1|=|z2|,则
解析:(1)设z=a+bi,a,b∈R,
变式探究
3.(1)(2013· 四川卷)如图,在复平面内,点A表示复数z,
则图中表示z的共轭复数的点( A.A C.C B.B D.D )
(2)若复数z=(x-5)+(3-x)i在复平面
内对应的点位于第三象限,则实数x的
取值范围是( A.(-∞,5) C.(3,5) ) B.(3,+∞) D.(5,+∞)
(2)z1z2=(1-i)(2+i)=2+i-2i-i2=2+1-i=3-i.故选A.
(3)z2+
2=பைடு நூலகம்cos
θ+isin θ)2+(cos θ-isin θ)2=2cos 2θ=
1⇒sin 2θ=
.
点评: 复数代数形式的运算是复数部分的重点,其基本
思路就是应用运算法则进行计算.复数的加减运算类似于实 数中的多项式的加减运算(合并同类项),复数的乘除运算是复
变式探究
1 . (1) 设 a , b∈R , i 是虚数单位,则“ ab = 0” 是“复数 a + 为纯虚数”的( )
A.充分不必要条件
C.充要条件 (2)下面是关于复数z= p1:|z|=2,p2:z2=2i,
B.必要不充分条件
D.既不充分也不必要条件 的四个命题:
p3:z的共轭复数为1+i,p4:z的虚部为-1,
运算转化为实数运算,体现了化归与转化思想;
(2)对于复数的模,可用直接套用复数模的公式求解.
变式探究 4 . (1)(2013· 广州二模 ) 若 1 - i(i 是虚数单位 ) 是关于 x 的方 程x2+2px+q=0(p,q∈R)的一个解,则p+q=( A.-3 B.-1 数z的虚部是( ) C.1 D.3 )
— 2 2 代入z· Z i+2=2z,整理得:(a +b )i+2=2a+2bi,
— — (2) 对 A ,若 |z1 - z2| = 0 ,则 z1 - z2 = 0 ,所以 Z 1 = Z 2 为
真.
— — 对 B ,若 z1 = Z 2 ,则 z1 和 z2 互为共轭复数,所以 Z 1 = z2
第四章
第五节 数系的扩充、复数的概念 与四则运算
数的概念的理解与应用 【例1】 当实数m为何值时,z= +(m2+5m+6)i.
(1) 为实数; (2) 为虚数; (3) 是纯虚数; (4) 复数 z 对应的点在复
平面的第二象限内.
思路点拨: 根据复数的有关概念的定义,把此复数的实 部与虚部分离开,转化为实部与虚部分别满足定义的条件这 一实数问题去求解. 自主解答:
其中的真命题为(
A.p2,p3
)
C.p2,p4 D.p3,p4
B.p1,p2
解析:(1)z=a+ b≠0,选B项.
=a-bi为纯虚数的充要条件是a=0,
(2)z=-1-i,∴|z|=
,z2=2i,z的共轭复数为-1+
i,z的虚部为-1,选C项. 答案:(1)B (2)C
复数的四则运算 【例2】 完成下列各题: (1)设复数ω= ,则化简复数 的结果是( )
解析:(1)表示复数z的点A与表示z的共轭复数的点
关于x轴对称,∴B点表示 (2)由题意可知, 答案:(1)B (2)C .故选B. 得3<x<5.故选C.
复数的相等与复数的模 (1)(2013· 安徽卷 )设i 是虚数单位 . Z 是复数 z 的共轭复数.若z· Z i+2=2z,则z=( ) A.1+i C.-1+i B.1-i D.-1-i 【例4】
解析:∵z=(m2-4m)+(m2-m-6)i,z所对应的点在第
二象限,∴m2-4m<0且m2-m-6>0. ∴0<m<4且m>3或m<-2. ∴m∈(3,4).故选D. 答案:D 点评:复数与复平面内的点是一一对应的,复数和复平 面内以原点为起点的向量也是一一对应的,因此复数加减法 的几何意义可按平面向量加减法理解,利用平行四边形法则 或三角形法则解决问题.
解析:(1)若z为实数,则
(2)若z为虚数,则m2+5m+6≠0,得m≠-2,且m≠-3且 m∈R. (3)若z为纯虚数,则 得m=3. (4)若复数z对应点在第二象限,则
∴m<-3或-2<m<3.
点评:本题考查复数集中各数集的分类及复 数的几何意义,本题中给出的复数采用的是标准 的代数形式,若不然,则应先化为代数形式后再 依据概念求解.
复数的几何意义 【例 3】 在复平面内,若 z = m2(1 + i) - m(4 + i) - 6i 所对
应的点在第二象限,则实数m的取值范围是(
A.(0,3) C.(-2,0) B.(-∞,-2) D.(3,4)
)
思路点拨: 根据复数的几何意义,复数 z = a + bi(a , b∈R)对应的点位于复平面的第二象限时,必须a<0,b>0.
(2) 已知 i 为虚数单位,若复数 z1 = 1 - i , z2 = 2 + i ,则
Z1Z2(
)
B.2-2i C.1+i D.2+2i
A.3-i
(3) 若 复 数 z = cos θ + isin θ 且 z2 + Z2 = 1 , 则 sin2θ ______. (4)已知复数z=1-i,则 =________.
为真.
对C,设z1=a1+b1i,z2=a2+b2i,若|z1|=|z2|,则
— — — — z1 · = a + b , z · = a + b ,所以 z · = z · 2 Z 2 1 Z 1 2 Z 2为真. Z1
对D,若z1=1,z2=i,则|z1|=|z2|为真,而z =1,z =-1, 所以z =z 为假.故选D. 点评:(1) 两个复数相等的充要条件的作用是把复数的
数运算的难点,运算时要多加注意,以免造成计算失误.
变式探究
2.(1)(2013· 东莞二模)设z=1-i(是虚数单位),则 ( A.2 ) B.2+i C.2-i D.2+2i
(2)(2013· 大连质检)已知i为虚数单位,复数z= =( )
,则|z|+
A.i
B.1-i
C.1+i
D.-i
答案:(1)D (2)B (3)C (4)A
相关文档
最新文档