衡水金卷2018年高三数学全国统考模拟试卷三理科附答案

合集下载

2018年高考理科数学全国卷3(含答案与解析)

2018年高考理科数学全国卷3(含答案与解析)

2018年高考理科数学全国卷3(含答案与解析) 数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{10}A x x =-∣≥,{0,1,2}B =,则A B = ( )A .{0}B .{1}C .{1,2}D .{0,1,2} 2.()(1i 2i)+-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )ABC D 4.若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-5.252()x x+的展开式中4x 的系数为( )A .10B .20C .40D .806.直线2=0x y ++分别与x 轴,y 交于A ,B 两点,点P 在圆22(2)=2x y -+上,则ABP △面积的取值范围是( )A .[2,6 ]B .[4,8]C .[2,3 2 ]D [ 22,32] 7.函数422y x x =-++的图象大致为( )ABCD8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数, 2.4DX =,()6(4)P X P X ==<,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224,则C = ( )A .π2B .π3C .π4D .π6毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||6||PF OP =,则C 的离心率为 ( )A .5B .2C .3D .2 12.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .ab a b +<<0C .0a b ab +<<D .0ab a b +<<第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量2)(1,=a ,)2(2,=-b ,),(1λ=c .若2()+∥c a b ,则=λ . 14.曲线)e (1xy ax =+在点(0,1)处的切线的斜率为2-,则a = .15函数π()cos(3)6f x x =+在[0,π]的零点个数为 .16.已知点1()1,M -和抛物线C :²4y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分. 17.(12分)等比数列{}n a 中,11a =,534a a =. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()(a b)(c d)(a c)(b d)n ad bc K -=++++,2()P K k ≥0.050 0.010 0.001k3.841 6.635 10.82819.(12分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------2018年高考理科数学全国卷3(含答案与解析)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)()M m m >0.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB成等差数列,并求该数列的公差. 21.(12分)已知函数22()()ln(1)2f x a x x x x +=-++.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若=0x 是()f x 的极大值点,求a .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos ,sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,2)且倾斜角为α的直线l 与O 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.[选修4—5:不等式选讲](10分) 设函数()211f x x x =++-. (1)画出() y f x =的图象;(2)当[ 0),x ∈+∞,()b x f ax +≤,求a b +的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵={1}A x x |≥,{0,1,2}B =,∴={1,2}A B ,故选C .2.【答案】D【解析】21i 2i)(2i 2i i 3i )(+-=-+-=+,故选D . 3.【答案】A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A .故选A . 4.【答案】B 【解析】由1sin 3α=,得22127cos212sin 12()=1=399αα=-=-⨯-.故选B .5.【答案】C【解析】252()x x+的展开式的通项251103155()(2)2r r r r r r r T C x x C x ---+==,令1034r -=,得2r =,所以4x 的系数为225240C ⨯=.故选C . 6.【答案】A【解析】由圆22(2)=2x y -+可得圆心坐标(2,0),半径r =ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有12S AB d =.易知AB =maxd ==min d =所以26S ≤≤,故选A .7.【答案】D【解析】∵42()2f x x x =-++,∴3()42f x x x '=-+,令()0f x '>,解得x <或x 0<此时,()f x 递增;令()0f x '<,解得x <0或x ,此时,()f x 递减.由此可得()f x 的大致图象.故选D . 8.【答案】B【解析】由题知~1()0,X B p ,则(101 2.4)DX p p =⨯⨯-=,解得0.4p =或0.6.又∵()6(4)P X P X ==<,即446664221010(1)(1)(1)0.5C P p C P p p p p --⇒-⇒<<>,∴0.6p =,故选B .9.【答案】C【解析】根据余弦定理得2222cos a b c ab C +-=,因为2224ABCa Sbc +-=△,所以c 42os ABC ab C S =△,又1sin 2ABC S ab C =△,所以tan 1C =,因为π()0,C ∈,所以4C π=.故选C .10.【答案】B【解析】设ABC △的边长为a ,则1sin60=932ABC S a a =△,解得6a =(负值舍去).ABC △的外接圆半径r 满足62sin60r=,得r =球心到平面ABC 的距离为2=.所以点D 到平面ABC 的最大距离为246+=,所以三棱锥DABC -体积的最大值为163⨯=故选B .11.【答案】C【解析】点2(,0)F c 到渐近线b y x a =的距离2(0)PF b b ==>,而2OF c =,所以在2Rt OPF △中,由勾股定理可得OP a ,所以1PF ==.在2Rt OPF △中,222cos PF b PF O OF c∠==,在12F F P△中,2222222121221246cos 22PF F F PF b c a PF O PF F F b c+-+-∠==⋅⋅2,所以222222463464b b c a b c a c bc +-=⇒=-,则有22223()46c a c a -=-值舍去),即e =.故选C .2018年高考理科数学全国卷3(含答案与解析)数学试卷 第9页(共20页) 数学试卷 第10页(共20页)12.【答案】B【解析】解法一:∵0.20.2log 0.3log 1=0a =>,22log 0.3log 1=0b =<,∴0ab <,排除C . ∵0.20.20log 0.3log 0.2=1<<,22log 0.3log 0.5=1-<,即01a <<,1b <-,∴0a b +<,排除D .∵220.2log 0.3lg0.2log 0.2log 0.3lg 2b a ===,∴2223log 0.3log 0.2log 12b b a -=-=<,∴1bb ab a b a+⇒+<<,排除A .故选B . 解法二:易知01a <<,1b -<,∴0ab <,0a b +<, ∵0.30.30.311log 0.2log 2log 0.41a b +=+=<, 即1a bab+<,∴a b ab +>, ∴0ab a b +<<.故选B .第Ⅱ卷二、填空题13.【答案】12【解析】由已知得2(4,2)+=a b .又,()1c λ=,2()+∥c a b ,所以42=0λ-,解得12λ=. 14.【答案】3-【解析】设(e ))1(x f x ax =+,则()()1e x f x ax a '=++,所以曲线在点(0,1)处的切线的斜率(0)12k f a '==+=-,解得3a =-. 15.【答案】3【解析】令()0f x =,得πcos(3)6x +,解得ππ+()39k x k =∈Z .当0k =时,π9x =;当1k =时,4π9x =;当2k =时,7π9x =,又[ 0,π]x ∈,所以满足要求的零点有3个.16.【答案】2【解析】解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为1y x k =+,设111,y A y k ⎛⎫+ ⎪⎝⎭,221,y B y k ⎛⎫+ ⎪⎝⎭,将直线方程与抛物线方程联立得21,4,y x k y x ⎧=+⎪⎨⎪=⎩整理得2440y y k --=,从而得124y y k +=,124y y =-.∵1()1,M -,90AMB ∠=,∴0MA MB =,即1212(2)(2)(1)(1)0y yy y k k+++--=,即2440k k -+=,解得2k =.解法二:设11A(,)x y ,22(),B x y ,则2112224,4,y x y x ⎧=⎨=⎩①②②-①得2221214()y y x x -=-,从而2121124y y x x k y y --+==.设AB 的中点为M ',连接MM '.∵直线AB 过抛物线24y x =的焦点,∴以线段AB 为直径的M '⊙与准线:1l x =-相切.∵1()1,M -,90AMB ∠=,∴点M 在准线:1l x =-上,同时在M '⊙上,∴准线l 是M '⊙的切线,切点M ,且MM l '⊥,即MM '与x 轴平行,∴点M '的纵坐标为1,即1212221y y y y =⇒++=,故124422y y k =+==. 故答案为:2. 三、解答题17.【答案】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.数学试卷 第11页(共20页) 数学试卷 第12页(共20页)由63m S =得(2)188m -=-.此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.【解析】(1)解:设{}n a 的公比为q ,由题设得1n n a q-=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-。

衡水金卷2018高校招生全国统考理科数学(三)

衡水金卷2018高校招生全国统考理科数学(三)

衡水金卷2018高校招生全国统考理科数学(三)2018高校招生全国统考模拟理数(三)一、选择题:1.已知复数z满足z(2+i)=3+i(i为虚数单位),其共轭复数为z,则z为()A。

7-1iB。

-7-1iC。

5+5iD。

-5+5i2.已知cos(π-α)=1/2,sin(α+β)=3/2(其中,α,β∈(0,π)),则sin(α+β)的值为()A。

-4/3B。

5/6C。

-5/6D。

4/33.已知集合A={x∈R|x-3x-4≤0},B={x∈R|x≤a},若A⊆B,则实数a的取值范围为()A。

(4,+∞)B。

[4,+∞)C。

(-∞,4)D。

(-∞,4]4.某高三学生进行考试心理素质测试,场景相同的条件下每次通过测试的概率为0.8,连续测试4次,至少有3次通过的概率为()A。

0.5512B。

0.5664C。

0.625D。

0.91255.已知1+2=2×3×5×4×7×9×3×4×5×6×7×8×9×10×11×12×13×14×15×16×17×18×19×20×21×22×23×n,其中n∈N*,且1^2+2^2+3^2+。

+n^2=385,则n的值为()A。

8B。

9C。

10D。

116.已知椭圆(x^2/a^2)+(y^2/b^2)=1(a>b>0)的左顶点为M,上顶点为N,右焦点为F,若NM×NF=0,则椭圆的离心率为()A。

√2-1B。

2/√2C。

√2/2D。

1/√27.将函数f(x)=sin^2x图像上的所有点向右平移π/4个单位长度后得到函数g(x)的图像,若g(x)在区间[0,a]上单调递增,则a的最大值为()A。

衡水金卷2018届全国高三大联考理科试卷和答案

衡水金卷2018届全国高三大联考理科试卷和答案

衡水金卷2018届全国三大联考理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分。

考试时间120分钟。

注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卡相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|540}M x x x =-+≤,{|24}xN x =>,则 ( ) A .{|24}M N x x =<< B .M N R =C .{|24}MN x x =<≤D .{|2}MN x x =>2. 记复数z 的虚部为Im()z ,已知复数5221iz i i =--(i 为虚数单位),则Im()z 为( ) A .2 B .-3 C .3i - D .33. 已知曲线32()3f x x =在点(1,(1))f 处的切线的倾斜角为α,则222sin cos 2sin cos cos ααααα-=+( ) A .12 B .2 C .35 D . 38- 4. 2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚8克圆形金质纪念币,直径22mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( ) A .27265mm π B .236310mm π C.23635mm π D .236320mm π5率A6A7A8cA9A1f下A1线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM ∆的周长为 ( )A .712612 B .926+ C. 910+ D .83261212.已知数列{}n a 与{}n b 的前n 项和分别为n S ,n T ,且0n a >,2*63,n n S a a n N =+∈,12(21)(21)nn n a n a a b +=--,若*,n n N k T ∀∈>恒成立,则k 的最小值是( ) A .71 B .149 C. 49 D .8441第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每题5分.13.已知在ABC ∆中,||||BC AB CB =-,(1,2)AB =,若边AB 的中点D 的坐标为(3,1),点C 的坐标为(,2)t ,则t = . 14. 已知*1()()2nx n N x-∈的展开式中所有项的二项式系数之和、系数之和分别为p ,q ,则64p q +的最小值为 .15. 已知x ,y 满足3,,60,x y t x y π+≤⎧⎪⎪≥⎨⎪≥⎪⎩其中2t π>,若sin()x y +的最大值与最小值分别为1,12,则实数t 的取值范围为 .16.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao ).已知在鳖臑M ABC -中,MA ⊥平面ABC ,2MA AB BC ===,则该鳖臑的外接球与内切球的表面积之和为 .三、解答题 :解答应写出文字说明、证明过程或演算步骤.1((求1且((1的调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为A 市使用网络外卖的情况与性别有关? (Ⅱ)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠卷,求选出的3人中至少有2人经常使用网络外卖的概率②将频率视为概率,从A 市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为X ,求X 的数学期望和方差.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥0.050 0.010 0.001 0k3.8416.63510.82820. 已知椭圆C :22221(0)x ya b a b+=>>的左、右焦点分别为点1F ,2F ,其离心率为12,短轴长为3(Ⅰ)求椭圆C 的标准方程;(四2((请2在轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线lsin()34θ+=.(Ⅰ)当1t =时,求曲线C 上的点到直线l 的距离的最大值; (Ⅱ)若曲线C 上的所有点都在直线l 的下方,求实数t 的取值范围.23.选修4-5:不等式选讲 已知函数()21|1|f x x x =-++. (Ⅰ)解不等式()3f x ≤;(Ⅱ)记函数()()|1|g x f x x =++的值域为M ,若t M ∈,证明:2313t t t+≥+.一1二、填空题13. 1 14. 16 15. 57[,]66ππ16. 2482ππ- 三、解答题17. 解:(1)原式可化为,21()cos 3sin cos 2f x x x =--,1cos 231sin 2222x x +=--, sin(2)sin(2)66x x ππ=-=--, 故其最小正周期22T ππ==,令2()62x k k Z πππ-=+∈,解得()23k x k Z ππ=+∈,即函数()f x 图象的对称轴方程为,()23k x k Z ππ=+∈. (2)由(1),知()sin(2)6f x x π=--, 因为02A π<<,所以52666A πππ-<-<. 又()sin(2)16f A A π=--=-,故得262A ππ-=,解得3A π=.由正弦定理及sin sin b C a A =,得29bc a ==. 故193sin 24ABCS bc A ∆==. 18.(1)当12λ=时,//CE 平面BDF . 证明如下:连接AC 交BD 于点G ,连接GF . ∵//,2CD AB AB CD =,∴12CG CD GA AB ==. ∵12EF FA =,∴12EF CG FA GA ==. ∴又∴(则∵∴∵∴又由则当∴∴设则令即设则sin |cos |CE n θ=<⋅>=1555=⨯. ∴当1λ=时,直线CE 与平面BDF 所成的角的正弦值为15. 19.解:(1)由列联表可知2K 的观测值,2()()()()()n ad bc k a b c d a c b d -=++++2200(50405060) 2.020 2.07211090100100⨯-⨯=≈<⨯⨯⨯.所以不能在犯错误的概率不超过0.15的前提下认为A 市使用网络外卖情况与性别有关. (2)①依题意,可知所抽取的5名女网民中,经常使用网络外卖的有6053100⨯=(人), 偶尔或不用网络外卖的有4052100⨯=(人). 则选出的3人中至少有2人经常使用网络外卖的概率为2133233355710C C C P C C =+=. ②由22⨯列联表,可知抽到经常使用网络外卖的网民的频率为1101120020=, 将频率视为概率,即从A 市市民中任意抽取1人, 恰好抽到经常使用网络外卖的市民的概率为1120. 由题意得11~(10,)20X B , 所以1111()10202E X =⨯=;11999()10202040D X =⨯⨯=. 20. 解:(1)由已知,得12c a =,3b =,又222c a b =-, 故解得224,3a b ==,所以椭圆C 的标准方程为22143x y +=. (2)由(1),知1(1,0)F -,如图,易所M联得所此同P此此故所若于又=所整即21250m +=,上述关于m 的方程显然没有实数解, 故四边形MNPQ 不可能是菱形.21.解:(1)由题意得'()(1)xf x e a =-+.当10a +≤,即1a ≤-时,'()0f x >,()f x 在R 内单调递增,没有极值. 当10a +>,即1a >-, 令'()0f x =,得ln(1)x a =+,当ln(1)x a <+时,'()0f x <,()f x 单调递减; 当ln(1)x a >+时,'()0f x >,()f x 单调递增,故当ln(1)x a =+时,()f x 取得最小值(ln(1))1(1)ln(1)f a a b a a +=+--++,无极大值. 综上所述,当1a ≤-时,()f x 在R 内单调递增,没有极值;当1a >-时,()f x 在区间(,ln(1))a -∞+内单调递减,在区间(ln(1),)a ++∞内单调递增,()f x 的极小值为1(1)ln(1)a b a a +--++,无极大值.(2)由(1),知当1a ≤-时,()f x 在R 内单调递增,当1a =-时,(1)3024b a +=<成立. 当1a <-时,令c 为1-和11ba -+中较小的数,所以1c ≤-,且11bc a-≤+.则1x e e -≤,(1)(1)a c b -+≤--+.所以1()(1)(1)0xf c e a c b e b b -=-+-≤---<, 与()0f x ≥恒成立矛盾,应舍去.当1a >-时,min ()(ln(1))f x f a =+=1(1)ln(1)0a b a a +--++≥, 即1(1)ln(1)a a a b +-++≥,所以22(1)(1)(1)ln(1)a b a a a +≤+-++. 令22()ln (0)g x x x x x =->,则令令故在故即所所而所2曲当即(∴即∴又∴23.解:(1)依题意,得3,1,1()2,1,213,,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩于是得1,()333,x f x x ≤-⎧≤⇔⎨-≤⎩或11,223,x x ⎧-<<⎪⎨⎪-≤⎩或1,233,x x ⎧≥⎪⎨⎪≤⎩ 解得11x -≤≤.即不等式()3f x ≤的解集为{|11}x x -≤≤.(2)()()|1|g x f x x =++=|21||22|x x -++≥|2122|3x x ---=, 当且仅当(21)(22)0x x -+≤时,取等号, ∴[3,)M =+∞.原不等式等价于2331t t t-+-,22233(3)(1)t t t t t t t-+--+==.∵t M ∈,∴30t -≥,210t +>.∴2(3)(1)0t t t-+≥. ∴2313t t t+≥+.高。

2018年高考理科数学模拟试卷(共三套)(含答案)

2018年高考理科数学模拟试卷(共三套)(含答案)

2018年高考理科数学模拟试卷(一)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知集合S={1,2},设S的真子集有m个,则m=()A.4 B.3 C.2 D.12.已知i为虚数单位,则的共轭复数为()A.﹣+i B. +i C.﹣﹣i D.﹣i3.已知、是平面向量,如果||=3,||=4,|+|=2,那么|﹣|=()A. B.7 C.5 D.4.在(x﹣)10的二项展开式中,x4的系数等于()A.﹣120 B.﹣60 C.60 D.1205.已知a,b,c,d都是常数,a>b,c>d,若f(x)=2017﹣(x﹣a)(x﹣b)的零点为c,d,则下列不等式正确的是()A.a>c>b>d B.a>b>c>d C.c>d>a>b D.c>a>b>d6.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,他从圆内接正六边形算起,令边数一倍一倍地增加,即12,24,48,…,192,…,逐个算出正六边形,正十二边形,正二十四边形,…,正一百九十二边形,…的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候π的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想及其重要,对后世产生了巨大影响,如图是利用刘徽的“割圆术”思想设计的一个程序框图,若运行改程序(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305),则输出n的值为()A.48 B.36 C.30 D.247.在平面区域内随机取一点(a,b),则函数f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数的概率为()A. B.C.D.8.已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.12 B.18 C.24 D.3010.已知常数ω>0,f(x)=﹣1+2sinωxcosωx+2cos2ωx图象的对称中心得到对称轴的距离的最小值为,若f(x0)=,≤x0≤,则cos2x0=()A.B.C.D.11.已知三棱锥P﹣ABC的所有顶点都在表面积为16π的球O的球面上,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,设二面角P﹣AB﹣C的大小为θ,则sinθ=()A. B.C.D.12.抛物线M的顶点是坐标原点O,抛物线M的焦点F在x轴正半轴上,抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,设A是抛物线M上的一点,若•=﹣4,则点A的坐标是()A.(﹣1,2)或(﹣1,﹣2)B.(1,2)或(1,﹣2)C.(1,2) D.(1,﹣2)二、填空题(共4小题,每小题5分,满分20分)13.某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2),若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70分的人数为人.14.过双曲线﹣=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率的取值范围为.15.计算=(用数字作答)16.已知f(x)=,若f (x﹣1)<f(2x+1),则x的取值范围为.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和为S n,a1=1,当n≥2时,a n=2a n S n﹣2S n2.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.18.云南省20XX年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.19.如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.(1)求证:AM⊥SD;(2)若二面角B﹣SA﹣M的正弦值为,求四棱锥S﹣ABCD的体积.20.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于,P 是椭圆E上的点,以线段PF1为直径的圆经过F2,且9•=1.(1)求椭圆E的方程;(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.21.已知e是自然对数的底数,实数a是常数,函数f(x)=e x﹣ax﹣1的定义域为(0,+∞).(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;(2)判断函数f(x)的单调性;(3)设g(x)=ln(e x+x3﹣1)﹣lnx,若∀x>0,f(g(x))<f(x),求a 的取值范围.[选修4-4:坐标系与参数方程选讲]22.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵集合S={1,2},∴S的真子集的个数为:22﹣1=3.故选:B.2.解:∵=,∴的共轭复数为.故选:C.3.解:根据条件:==4;∴;∴=9﹣(﹣21)+16=46;∴.故选:A.==(﹣1)r x10﹣2r,4.解:通项公式T r+1令10﹣2r=4,解得r=3.∴x4的系数等于﹣=﹣120.故选:A5.解:由题意设g(x)=(x﹣a)(x﹣b),则f(x)=2017﹣g(x),所以g(x)=0的两个根是a、b,由题意知:f(x)=0 的两根c,d,也就是g(x)=2017 的两根,画出g(x)(开口向上)以及直线y=2017的大致图象,则与f(x)交点横坐标就是c,d,f(x)与x轴交点就是a,b,又a>b,c>d,则c,d在a,b外,由图得,c>a>b>d,故选D.6.解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:D.7.解:作出不等式组对应的平面区域如图:对应的图形为△OAB,其中对应面积为S=×4×4=8,若f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数,则满足a>0且对称轴x=﹣≤1,即,对应的平面区域为△OBC,由,解得,∴对应的面积为S1=××4=,∴根据几何概型的概率公式可知所求的概率为=,故选:B.8.解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.9.解:由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,切去一个三棱锥所得的组合体,其底面面积S=×3×4=6,棱柱的高为:5,棱锥的高为3,故组合体的体积V=6×5﹣×6×3=24,故选:C10.解:由f(x)=﹣1+2sinωxcosωx+2cos2ωx,化简可得:f(x)=sin2ωx+cos2ωx=2sin(2ωx+)∵对称中心得到对称轴的距离的最小值为,∴T=π.由,可得:ω=1.f(x0)=,即2sin(2x0+)=∵≤x0≤,∴≤2x0+≤∴sin(2x0+)=>0∴cos(2x0+)=.那么:cos2x0=cos(2x0+﹣)=cos(2x0+)cos+sin(2x0+)sin=故选D11.解:如图所示:由已知得球的半径为2,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,△ABC为等腰直角三角形,P在面ABC上的射影为圆心O,过圆心O作OD⊥AB于D,连结PD,则∠PDO为二面角P﹣AB﹣C的平面角,在△ABC△中,PO=2,OD=BC=,∴,sinθ=.故选:C12.解:x2+y2﹣6x+4y﹣3=0,可化为(x﹣3)2+(y+2)2=16,圆心坐标为(3,﹣2),半径为4,∵抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,∴3+=4,∴p=2.∴F(1,0),设A(,y0)则=(,y0),=(1﹣,﹣y0),由•=﹣4,∴y0=±2,∴A(1,±2)故选B.二、填空题(共4小题,每小题5分,满分20分)13.解:由X服从正态分布N(90,σ2)(σ>0),且P(70≤X≤110)=0.35,得P(X≤70)=(1﹣0.35)=.∴估计这次考试分数不超过70分的人数为1000×=325.故答案为:325.14.解:设双曲线﹣=1(a>0,b>0)的右焦点为(c,0),当x=c时代入双曲线﹣=1得y=±,则A(c,),B(c,﹣),则AB=,将x=c代入y=±x得y=±,则C(c,),D(c,﹣),则|CD|=,∵|AB|≥|CD|,∴≥•,即b≥c,则b2=c2﹣a2≥c2,即c2≥a2,则e2=≥,则e≥.故答案为:[,+∞).15.解:由===.故答案为:.16.解:∵已知f(x)=,∴满足f(﹣x)=f(x),且f(0)=0,故f(x)为偶函数,f(x)在[0,+∞)上单调递增.若f(x﹣1)<f(2x+1),则|x﹣1|<|2x+1|,∴(x﹣1)2<(2x+1)2,即x2+2x>0,∴x>0,或x<﹣2,故答案为:{x|x>0,或x<﹣2}.三、解答题(共5小题,满分60分)17.解:(1)∵当n≥2时,a n=2a n S n﹣2S n2,∴a n=,n≥2,∴(S n﹣S n﹣1)(2S n﹣1)=2S n2,∴S n﹣S n﹣1=2S n S n﹣1,∴﹣2,n≥2,∴数列{}是以=1为首项,以2为公差的等差数列,∴=1+2(n﹣1)=2n﹣1,∴S n=,∴n≥2时,a n=S n﹣S n﹣1=﹣=﹣,∵a1=S1=1,∴a n=,(2)设f(n)=,则==>1,∴f(n)在n∈N*上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,∵f(n)min=f(1)=,∴0<k≤18.解:(1)由频率分布直方图可得:(x+0.012+0.056+0.018+0.010)×10=1,解得x=0.004.甲校的合格率P1=(1﹣0.004)×10=0.96=96%,乙校的合格率P2==96%.可得:甲乙两校的合格率相同,都为96%.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.则P(X=k)=,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.∴X的分布列为:X0123PE(X)=0+1×+2×+3×=.19.证明:(1)∵SB=SC,M是BC的中点,∴SM⊥BC,∵平面ABCD⊥平面SBC,平面ABCD∩平面SBC=BC,∴SM⊥平面ABCD,∵AM⊂平面ABCD,∴SM⊥AM,∵底面ABCD是矩形,M是BC的中点,AB=1,BC=2,∴AM2=BM2==,AD=2,∴AM2+BM2=AD2,∴AM⊥DM,∵SM∩DM=M,∴AM⊥平面DMS,∵SD⊂平面DMS,∴AM⊥SD.解:(2)∵SM⊥平面ABCD,∴以M为原点,MC为x轴,MS为y轴,过M作平面BCS的垂线为z轴,建立空间直角坐标系,设SM=t,则M(0,0,0),B(﹣1,0,0),S(0,t,0),A(﹣1,0,1),=(0,0,1),=(1,t,0),=(﹣1,0,1),=(0,t,0),设平面ABS的法向量=(x,y,z),则,取x=1,得=(1,﹣,0),设平面MAS的法向量=(a,b,c),则,取a=1,得=(1,0,1),设二面角B﹣SA﹣M的平面角为θ,∵二面角B﹣SA﹣M的正弦值为,∴sinθ=,cosθ==,∴cosθ===,解得t=,∵SM⊥平面ABCD,SM=,∴四棱锥S﹣ABCD的体积:V S﹣=== ABCD.20.解:(1)由题意可知:设题意的方程:(a>b>0),e==,则c=a,设丨PF1丨=m,丨PF2丨=n,则m+n=2a,线段PF1为直径的圆经过F2,则PF2⊥F1F2,则n2+(2c)2=m2,9m•n×cos∠F1PF2=1,由9n2=1,n=,解得:a=3,c=,则b==1,∴椭圆标准方程:;(2)假设存在直线l,依题意l交椭圆所得弦MN被x=﹣平分,∴直线l的斜率存在.设直线l:y=kx+m,则由消去y,整理得(k2+9)x2+2kmx+m2﹣9=0∵l与椭圆交于不同的两点M,N,∴△=4k2m2﹣4(k2+9)(m2﹣9)>0,即m2﹣k2﹣9<0①设M(x1,y1),N(x2,y2),则x1+x2=﹣∴=﹣=﹣,∴m=②把②代入①式中得()2﹣(k2+9)<0∴k>或k<﹣,∴直线l倾斜角α∈(,)∪(,).21.解:(1)a=e时,f(x)=e x﹣ex﹣1,f(1)=﹣1,f′(x)=e x﹣e,可得f′(1)=0,故a=e时,函数f(x)在切点(1,f(1))处的切线方程是y=﹣1;(2)f(x)=e x﹣ax﹣1,f′(x)=e x﹣a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=e x﹣a=0,得x=lna,则f(x)在(﹣∞,lna]上单调递减,在(lna,+∞)上单调递增.(3)设F(x)=e x﹣x﹣1,则F′(x)=e x﹣1,∵x=0时,F′(x)=0,x>0时,F′(x)>0,∴F(x)在[0,+∞)递增,∴x>0时,F(x)>F(0),化简得:e x﹣1>x,∴x>0时,e x+x3﹣1>x,设h(x)=xe x﹣e x﹣x3+1,则h′(x)=x(e x﹣ex),设H(x)=e x﹣ex,H′(x)=e x﹣e,由H′(x)=0,得x=1时,H′(x)>0,x<1时,H′(x)<0,∴x>0时,H(x)的最小值是H(1),x>0时,H(x)≥H(1),即H(x)≥0,∴h′(x)≥0,可知函数h(x)在(0,+∞)递增,∴h(x)>h(0)=0,化简得e x+x3﹣1<xe x,∴x>0时,x<e x+x3﹣1<xe x,∴x>0时,lnx<ln(e x+x3﹣1)<lnx+x,即0<ln(e x+x3﹣1)﹣lnx<x,即x>0时,0<g(x)<x,当a≤1时,由(2)得f(x)在(0,+∞)递增,得f(g(x))<f(x)满足条件,当a>1时,由(2)得f(x)在(0,lna)递减,∴0<x≤lna时,f(g(x))>f(x),与已知∀x>0,f(g(x))<f(x)矛盾,综上,a的范围是(﹣∞,1].[选修4-4:坐标系与参数方程选讲]22.解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C 的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|PA|取得最大值,最大值为.[选修4-5:不等式选讲]23.解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].2018年高考理科数学模拟试卷(二)(考试时间120分钟满分150分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.复数z满足方程=﹣i(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|x2+x﹣2<0},集合B={x|(x+2)(3﹣x)>0},则(∁R A)∩B 等于()A.{x|1≤x<3}B.{x|2≤x<3}C.{x|﹣2<x<1}D.{x|﹣2<x≤﹣1或2≤x<3}3.下列函数中,在其定义域内,既是奇函数又是减函数的是()A.f(x)=B.f(x)=C.f(x)=2﹣x﹣2x D.f(x)=﹣tanx 4.已知“x>2”是“x2>a(a∈R)”的充分不必要条件,则a的取值范围是()A.(﹣∞,4)B.(4,+∞)C.(0,4]D.(﹣∞,4]5.已知角α是第二象限角,直线2x+(t anα)y+1=0的斜率为,则cosα等于()A. B.﹣C.D.﹣6.执行如图所示的程序框图,若输入n的值为8,则输出s的值为()A.16 B.8 C.4 D.27.(﹣)8的展开式中,x的系数为()A.﹣112 B.112 C.56 D.﹣568.在△ABC中,∠A=60°,AC=3,面积为,那么BC的长度为()A.B.3 C.2D.9.记曲线y=与x轴所围成的区域为D,若曲线y=ax(x ﹣2)(a<0)把D的面积均分为两等份,则a的值为()A.﹣B.﹣C.﹣D.﹣10.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m0,平均值为,则()A.m e=m0=B.m e=m0<C.m e<m0<D.m0<m e<11.已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的侧面积为()A.20+8B.44 C.20 D.4612.函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后关于y轴对称,则以下判断不正确的是()A.是奇函数 B.为f(x)的一个对称中心C.f(x)在上单调递增D.f(x)在(0,)上单调递减二、填空题:本大题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件,则z=2x﹣y的最大值为.14.如图所示是一个几何体的三视图,则这个几何体的体积为.15.已知抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,则该双曲线的方程为.16.已知向量,的夹角为θ,|+|=2,|﹣|=2则θ的取值范围为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知S n为等差数列{a n}的前n项和,S6=51,a5=13.(1)求数列{a n}的通项公式;(2)数列{b n}的通项公式是b n=,求数列{b n}的前n项和S n.18.袋中有大小相同的四个球,编号分别为1、2、3、4,从袋中每次任取一个球,记下其编号.若所取球的编号为偶数,则把该球编号改为3后放同袋中继续取球;若所取球的编号为奇数,则停止取球.(1)求“第二次取球后才停止取球”的概率;(2)若第一次取到偶数,记第二次和第一次取球的编号之和为X,求X的分布列和数学期望.19.在三棱椎A﹣BCD中,AB=BC=4,AD=BD=CD=2,在底面BCD内作CE ⊥CD,且CE=.(1)求证:CE∥平面ABD;(2)如果二面角A﹣BD﹣C的大小为90°,求二面角B﹣AC﹣E的余弦值.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1).(1)求椭圆C的方徎;(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PM=PN,再过P作直线l′⊥MN,直线l′是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.21.已知函数f(x)=m(x﹣1)2﹣2x+3+lnx(m≥1).(1)求证:函数f(x)在定义域内存在单调递减区间[a,b];(2)是否存在实数m,使得曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.[选修4-1:几何证明选讲]22.选修4﹣1:几何证明选讲如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC 的中点,连接AD并延长交⊙O于点E,若PA=2,∠APB=30°.(Ⅰ)求∠AEC的大小;(Ⅱ)求AE的长.[选修4-4:极坐标与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系x0y中,动点A的坐标为(2﹣3sinα,3cosα﹣2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos (θ﹣)=a.(Ⅰ)判断动点A的轨迹的形状;(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,∀x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.解:由=﹣i,得,即z=1+i.则复数z在复平面内对应的点的坐标为(1,1).位于第一象限.故选:A.2.解:∵集合A={x|x2+x﹣2<0}={x|﹣2<x<1},集合B={x|(x+2)(3﹣x)>0}={x|﹣2<x<3},∴(C R A)∩B={x|x≤﹣2或x≥1}∩{x|﹣2<x<3}={x|1≤x<3}.故选:A.3.解:A中,f(x)=是奇函数,但在定义域内不单调;B中,f(x)=是减函数,但不具备奇偶性;C中,f(x)2﹣x﹣2x既是奇函数又是减函数;D中,f(x)=﹣tanx是奇函数,但在定义域内不单调;故选C.4.解:由题意知:由x>2能得到x2>a;而由x2>a得不出x>2;∵x>2,∴x2>4;∴a≤4;∴a的取值范围是(﹣∞,4].故选:D.5.解:由题意得:k=﹣=,故tanα=﹣,故cosα=﹣,故选:D.6.解:开始条件i=2,k=1,s=1,i<8,开始循环,s=1×(1×2)=2,i=2+2=4,k=1+1=2,i<8,继续循环,s=×(2×4)=4,i=6,k=3,i<8,继续循环;s=×(4×6)=8,i=8,k=4,8≥8,循环停止,输出s=8;故选B:=(﹣2)r C8r x4﹣r,7.解:(﹣)8的展开式的通项为T r+1令4﹣r=1,解得r=2,∴展开式中x的系数为(﹣2)2C82=112,故选:B.8.解:在图形中,过B作BD⊥ACS△ABC=丨AB丨•丨AC丨sinA,即×丨AB丨×3×sin60°=,解得:丨AB丨=2,∴cosA=,丨AD丨=丨AB丨cosA=2×=1,sinA=,则丨BD丨=丨AB丨sinA=2×=,丨CD丨=丨AC丨﹣丨AD丨=3﹣1=2,在△BDC中利用勾股定理得:丨BC丨2=丨BD丨2+丨CD丨2=7,则丨BC丨=,故选A.9.解:由y=得(x﹣1)2+y2=1,(y≥0),则区域D表示(1,0)为圆心,1为半径的上半圆,而曲线y=ax(x﹣2)(a<0)把D的面积均分为两等份,∴=,∴(﹣ax2)=,∴a=﹣,故选:B.10.解:根据题意,由题目所给的统计图可知:30个得分中,按大小排序,中间的两个得分为5、6,故中位数m e=5.5,得分为5的最多,故众数m0=5,其平均数=≈5.97;则有m0<m e<,故选:D.11.解:由题意可知四棱锥O﹣ABCD的侧棱长为:5.所以侧面中底面边长为6和2,它们的斜高为:4和2,所以棱锥O﹣ABCD的侧面积为:S=4×6+2=44.故选B.12.解:把函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后,得到y=2sin(2x++φ+π)=﹣2sin(2x++φ)的图象,再根据所得关于y轴对称,可得+φ=kπ+,k∈Z,∴φ=,∴f(x)=2sin(2x++φ)=2cos2x.由于f(x+)=2cos(2x+)=﹣sin2x是奇函数,故A正确;当x=时,f(x)=0,故(,0)是f(x)的图象的一个对称中心,故B正确;在上,2x∈(﹣,﹣),f(x)没有单调性,故C不正确;在(0,)上,2x∈(0,π),f(x)单调递减,故D正确,故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.解:由约束条件作出可行域如图,联立,解得A(4,2),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过点A时,直线在y 轴上的截距最小,z有最大值为6.故答案为:6.14.解:由三视图得到几何体如图:其体积为;故答案为:15.解:抛物线y2=8x的焦点F(2,0),双曲线C:﹣=1(a>0,b >0)一条渐近线的方程为ax﹣by=0,∵抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,∴,∴2b=a,∵P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,∴FF1=3,∴c2+4=9,∴c=,∵c2=a2+b2,a=2b,∴a=2,b=1,∴双曲线的方程为﹣x2=1.故答案为:﹣x2=1.16.解:由|+|=2,|﹣|=2,可得:+2=12,﹣2=4,∴=8≥2,=2,∴cosθ=≥.∴θ∈.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.解:(1)设等差数列{a n}的公差为d,则∵S6=51,∴×(a1+a6)=51,∴a1+a6=17,∴a2+a5=17,∵a5=13,∴a2=4,∴d=3,∴a n=a2+3(n﹣2)=3n﹣2;(2)b n==﹣2•8n﹣1,∴数列{b n}的前n项和S n==(8n﹣1).18.解:(1)记“第二次取球后才停止取球”为事件A.∴第一次取到偶数球的概率为=,第二次取球时袋中有三个奇数,∴第二次取到奇数球的概率为,而这两次取球相互独立,∴P(A)=×=.(2)若第一次取到2时,第二次取球时袋中有编号为1,3,3,4的四个球;若第一次取到4时,第二次取球时袋中有编号为1,2,3,3的四个球.∴X的可能取值为3,5,6,7,∴P(X=3)=×=,P(X=5)=×+×=,P(X=6)=×+×=,P(X=7)=×=,∴X的分布列为:X3567P数学期望EX=3×+5×+6×+7×=.19.(1)证明:∵BD=CD=2,BC=4,∴BD2+CD2=BC2,∴BD⊥CD,∵CE⊥CD,∴CE∥BD,又CE⊄平面ABD,BD⊂平面ABD,∴CE∥平面ABD;(2)解:如果二面角A﹣BD﹣C的大小为90°,由AD⊥BD得AD⊥平面BDC,∴AD⊥CE,又CE⊥CD,∴CE⊥平面ACD,从而CE⊥AC,由题意AD=DC=2,∴Rt△ADC中,AC=4,设AC的中点为F,∵AB=BC=4,∴BF⊥AC,且BF=2,设AE中点为G,则FG∥CE,由CE⊥AC得FG⊥AC,∴∠BFG为二面角B﹣AC﹣E的平面角,连接BG,在△BCE中,∵BC=4,CE=,∠BCE=135°,∴BE=,在Rt△DCE中,DE==,于是在Rt△ADE中,AE==3,在△ABE中,BG2=AB2+BE2﹣AE2=,∴在△BFG中,cos∠BFG==﹣,∴二面角B﹣AC﹣E的余弦值为﹣.20.解:(1)∵椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.(2)∵直线l的方程为x=﹣2,设P(﹣2,y0),,当y0≠0时,设M(x1,y1),N(x2,y2),由题意知x1≠x2,联立,∴,∴,又∵PM=PN,∴P为线段MN的中点,∴直线MN的斜率为,又l′⊥MN,∴l′的方程为,即,∴l′恒过定点.当y0=0时,直线MN为,此时l′为x轴,也过点,综上,l′恒过定点.21.(1)证明:令f′(x)=0,得mx2﹣(m+2)x+1=0.(*)因为△=(m+2)2﹣4m=m2+4>0,所以方程(*)存在两个不等实根,记为a,b (a<b).因为m≥1,所以a+b=>0,ab=>0,所以a>0,b>0,即方程(*)有两个不等的正根,因此f′(x)≤0的解为[a,b].故函数f(x)存在单调递减区间;(2)解:因为f′(1)=﹣1,所以曲线C:y=f(x)在点P(1,1)处的切线l为y=﹣x+2.若切线l与曲线C只有一个公共点,则方程m(x﹣1)2﹣2x+3+lnx=﹣x+2有且只有一个实根.显然x=1是该方程的一个根.令g(x)=m(x﹣1)2﹣x+1+lnx,则g′(x)=.当m=1时,有g′(x)≥0恒成立,所以g(x)在(0,+∞)上单调递增,所以x=1是方程的唯一解,m=1符合题意.当m>1时,令g′(x)=0,得x1=1,x2=,则x2∈(0,1),易得g(x)在x1处取到极小值,在x2处取到极大值.所以g(x2)>g(x1)=0,又当x→0时,g(x)→﹣∞,所以函数g(x)在(0,)内也有一个解,即当m>1时,不合题意.综上,存在实数m,当m=1时,曲线C:y=f(x)在点P(1,1)处的切线l与C 有且只有一个公共点.[选修4-1:几何证明选讲]22.解:(Ⅰ)连接AB,因为:∠APO=30°,且PA是⊙O的切线,所以:∠AOB=60°;∵OA=OB∴∠AB0=60°;∵∠ABC=∠AEC∴∠AEC=60°.(Ⅱ)由条件知AO=2,过A作AH⊥BC于H,则AH=,在RT△AHD中,HD=2,∴AD==.∵BD•DC=AD•DE,∴DE=.∴AE=DE+AD=.[选修4-4:极坐标与参数方程]23.解:(Ⅰ)设动点A的直角坐标为(x,y),则,利用同角三角函数的基本关系消去参数α可得,(x﹣2)2+(y+2)2=9,点A的轨迹为半径等于3的圆.(Ⅱ)把直线C方程为ρcos(θ﹣)=a化为直角坐标方程为+=2a,由题意可得直线C与圆相切,故有=3,解得a=3 或a=﹣3.[选修4-5:不等式选讲]24.解:(1)当a=2时,,由于f(x)≥2,则①当x<1时,﹣2x+3≥2,∴x≤;②当1≤x≤1时,1≥2,无解;③当x>2时,2x﹣3≥2,∴x≥.综上所述,不等式f(x)≥2的解集为:(﹣∞,]∪[,+∞);(2)令F(x)=f(x)+|x﹣1|,则,所以当x=1时,F(x)有最小值F(1)=a﹣1,只需a﹣1≥1,解得a≥2,所以实数a的取值范围为[2,+∞).2018年高考理科数学模拟试卷(三)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知复数z满足z(1﹣i)2=1+i(i为虚数单位),则z=()A. +i B.﹣i C.﹣+i D.﹣﹣i2.已知集合A={x|(x﹣1)2≤3x﹣3,x∈R},B={y|y=3x+2,x∈R},则A∩B=()A.(2,+∞)B.(4,+∞)C.[2,4]D.(2,4]3.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ12)及N(μ2,σ22),其正态分布的密度曲线如图所示,则下列说法错误的是()A.乙类水果的质量服从的正态分布的参数σ2=1.99B.甲类水果的质量比乙类水果的质量更集中C.甲类水果的平均质量μ1=0.4kgD.甲类水果的平均质量比乙类水果的平均质量小4.已知数列{a n}的前n项和S n满足S n+S m=S n(n,m∈N*)且a1=5,则a8=()+mA.40 B.35 C.12 D.55.设a=(),b=(),c=ln,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b6.执行如图所示的程序框图,则输出b的值为()A.2 B.4 C.8 D.167.若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,则k的值为()A.﹣1 B.﹣C.﹣D.﹣38.某同学在运动场所发现一实心椅子,其三视图如图所示(俯视图是圆的一部分及该圆的两条互相垂直的半径,有关尺寸如图,单位:m),经了解,建造该类椅子的平均成本为240元/m3,那么该椅子的建造成本约为(π≈3.14)()A.94.20元 B.240.00元C.282.60元D.376.80元9.当函数f(x)=sinx+cosx﹣t(t∈R)在闭区间[0,2π]上,恰好有三个零点时,这三个零点之和为()A.B. C. D.2π10.有5位同学排成前后两排拍照,若前排站2人,则甲不站后排两端且甲、乙左右相邻的概率为()A.B.C.D.11.某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.甲产品所需工时乙产品所需工时A设备23B设备41若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为()A.40万元B.45万元C.50万元D.55万元12.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是()A.(﹣∞,0)B.(﹣e,e)C.(﹣1,1)D.(0,+∞)二、填空题(共4小题,每小题5分,满分20分)13.在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,则•=.14.有下列四个命题:①垂直于同一条直线的两条直线平行;②垂直于同一条直线的两个平面平行;③垂直于同一平面的两个平面平行;④垂直于同一平面的两条直线平行.其中正确的命题有(填写所有正确命题的编号).15.若等比数列{a n}的公比为2,且a3﹣a1=2,则++…+=.16.设抛物线C:y2=2px(p>0)的焦点为F,点A在C上,若|AF|=,以线段AF为直径的圆经过点B(0,1),则p=.三、解答题(共5小题,满分60分)17.在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A﹣)﹣cos(A+)=.(1)求角A的大小;(2)若a=,sin2B+cos2C=1,求△ABC的面积.18.某大学有甲、乙两个图书馆,对其借书、还书的等待时间进行调查,得到下表:甲图书馆12345借(还)书等待时间T1(分钟)频数1500 1000 500 500 1500乙图书馆12345借(还)书等待时间T2(分钟)频数100050020001250250以表中等待时间的学生人数的频率为概率.(1)分别求在甲、乙两图书馆借书的平均等待时间;(2)学校规定借书、还书必须在同一图书馆,某学生需要借一本数学参考书,并希望借、还书的等待时间之和不超过4分钟,在哪个图书馆借、还书更能满足他的要求?19.如图所示,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.(1)当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;(2)当D、E、F分别为线段VA、VC、AB上的中点,且VC=2BC时,求二面角B ﹣DE﹣F的余弦值.20.已知椭圆+=1(a>b>0)过点P(2,1),且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足=,直线PM、PN分别交椭圆于A,B.(i)求证:直线AB过定点,并求出定点的坐标;(ii)求△OAB面积的最大值.21.已知函数f(x)=lnx﹣2ax(其中a∈R).(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;(Ⅱ)若f(x)≤1恒成立,求a的取值范围;(Ⅲ)设g(x)=f(x)+x2,且函数g(x)有极大值点x0,求证:x0f(x0)+1+ax02>0.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,双曲线E的参数方程为(θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求直线l的极坐标方程;(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|﹣2a,其中a∈R.(1)当a=﹣2时,求不等式f(x)≤2x+1的解集;(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵z(1﹣i)2=1+i,∴,故选:C.2.解:集合A={x|(x﹣1)2≤3x﹣3,x∈R}={x|(x﹣1)(x﹣4)≤0}={x|1≤x ≤4}=[1,4];B={y|y=3x+2,x∈R}={y|y>2}=(2,+∞),则A∩B=(2,4].故选:D.3.解:由图象可知,甲类水果的平均质量μ1=0.4kg,乙类水果的平均质量μ2=0.8kg,故B,C,D正确;乙类水果的质量服从的正态分布的参数σ2=,故A 不正确.故选:A.4.解:数列{a n}的前n项和S n满足S n+S m=S n+m(n,m∈N*)且a1=5,令m=1,则S n+1=S n+S1=S n+5.可得a n+1=5.则a8=5.故选:D.5.解:b=()=>()=a>1,c=ln<1,∴b>a>c.故选:B.6.解:第一次循环,a=1≤3,b=2,a=2,第二次循环,a=2≤3,b=4,a=3,第三次循环,a=3≤3,b=16,a=4,第四次循环,a=4>3,输出b=16,故选:D.7.解:圆C:x2+y2﹣2x+4y=0的圆心(1,﹣2),若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,可知直线经过圆的圆心,可得﹣2=k﹣1,解得k=﹣1.故选:A.8.解:由三视图可知:该几何体为圆柱的.∴体积V=.∴该椅子的建造成本约为=×240≈282.60元.故选:C.9.解:f(x)=2sin(x+)﹣t,令f(x)=0得sin(x+)=,做出y=sin(x+)在[0,2π]上的函数图象如图所示:∵f(x)在[0,2π]上恰好有3个零点,∴=sin=,解方程sin(x+)=得x=0或x=2π或x=.∴三个零点之和为0+2π+=.故选:B.10.解:由题意得:p===,故选:B.11.C解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是z=0.4x+0.3y由约束条件画出可行域,如图所示的阴影部分由z=0.4x+0.3y,结合图象可知,z=0.4x+0.3y在A处取得最大值,由可得A(50,100),此时z=0.4×50+0.3×100=50万元,故选:C.12.解:函数f(x)为“复合5解“,∴f(f(x))=2,有5个解,设t=f(x),∴f(t)=2,∵当x>0时,f(x)=,∴f(x)=,当0<x<1时,f′(x)<0,函数f(x)单调递减,当x>1时,f′(x)>0,函数f(x)单调递增,∴f(x)min=f(1)=1,∴t≥1,∴f(t)=2在[1,+∞)有2个解,当x≤0时,f(x)=kx+3,函数f(x)恒过点(0,3),当k≤0时,f(x)≥f(0)=3,∴t≥3∵f(3)=>2,∴f(t)=2在[3,+∞)上无解,当k>0时,f(x)≤f(0)=3,∴f(t)=2,在(0,3]上有2个解,在(∞,0]上有1个解,综上所述f(f(x))=2在k>0时,有5个解,故选:D二、填空题(共4小题,每小题5分,满分20分)13.解:在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,可得AD=BD=5,即AB=10,由勾股定理可得AC==8,则•=﹣•=﹣||•||•cosA=﹣5×8×=﹣32.14.解:如图在正方体ABCD﹣A′B′C′D′中,对于①,AB⊥BB′,BC⊥BB′,AB、BC不平行,故错;对于②,两底面垂直于同一条侧棱,两个底面平面平行,故正确;对于③,相邻两个侧面同垂直底面,这两个平面不平行,故错;对于④,平行的侧棱垂直底面,侧棱平行,故正确.故答案为:②④15.解:∵等比数列{a n}的公比为2,且a3﹣a1=2,∴=2,解得a1=.∴a n==.∴=.则++…+=3×==1﹣.故答案为:1﹣.16.解:由题意,可得A(,),AB⊥BF,∴(,﹣1)•(,﹣1)=0,∴﹣+1=0,∴p(5﹣p)=4,∴p=1或4.三、解答题(共5小题,满分60分)17.解:(1)sin(A﹣)﹣cos(A+)=sin(A﹣)﹣cos(2π﹣A)=sin(A﹣)﹣cos(A+)=sinA﹣cosA﹣cosA﹣sinA=即cosA=,∵0<A<π,∴A=.(2)由sin2B+cos2C=1,可得sin2B=2sin2C,由正弦定理,得b2=2c2,即.a=,cosA==,解得:c=1,b=∴△ABC的面积S=bcsinA=.18.解:(1)根据已知可得T1的分布列:T1(分钟)12345P0.30.20.10.10.3T1的数学期望为:E(T1)=1×0.3+2×0.2+3×0.1+4×0.1+5×0.3=2.9.T2(分钟)12345P0.20.10.4 0.250.05T2的数学期望为:E(T1)=1×0.2+2×0.1+3×0.4+4×0.25+5×0.05=2.85.因此:该同学甲、乙两图书馆借书的平均等待时间分别为:2.9分钟,2.85分钟.(2)设T11,T12分别表示在甲图书馆借、还书所需等待时间,设事件A为“在甲图书馆借、还书的等待时间之和不超过4分钟”.T11+T12≤4的取值分别为:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).。

2018年普通高等学校招生全国统一考试模拟试题(衡水金卷信息卷)三理科数学(附解析)

2018年普通高等学校招生全国统一考试模拟试题(衡水金卷信息卷)三理科数学(附解析)

2018年普通高等学校招生全国统一考试模拟试题(衡水金卷信息卷)三理科数学(附解析)第I卷(选择题)一、单选题1.已知集合,集合,则()A. B. C. D.2.设为虚数单位,给出下面四个命题:;为纯虚数的充要条件为;共轭复数对应的点为第三象限内的点;的虚部为.其中真命题的个数为()A. B. C. D.3.某同学从家到学校途经两个红绿灯,从家到学校预计走到第一个红绿灯路口遇到红灯的概率为,两个红绿灯路口都遇到红灯的概率为,则在第一个路口遇到红灯的前提下,第二个路口也遇到红灯的概率为()A. B. C. D.4.在区间上随机取一个数,则方程表示焦点在轴上的椭圆的概率为()A. B. C. D.5.已知抛物线的焦点到双曲线的渐近线的距离为,则双曲线的离心率为A. B.C. D.6.已知,,若,则在的展开式中,含项的系数为()A. B. C. D.7.已知,是以为周期的奇函数,且定义域为,则的值为()A. B. C. D.8.已知函数,把函数的图象的横坐标伸长到原来的倍,然后将图象向右平移个单位,纵坐标不变,得到函数的图象,若当时,方程有两个不同的实根,则的取值范围为()A. B. C. D.9.运行如图所示的程序框图,输出的值为()A. B. C. D.10.已知几何体的三视图如图所示,则该几何体的外接球的表面积为()A. B. C. D.11.已知抛物线,过点作该抛物线的切线,,切点为,,若直线恒过定点,则该定点为()A. B. C. D.12.已知函数的导函数为,且满足,,若函数恒成立,则实数的取值范围为()A. B. C. D.第II卷(非选择题)二、填空题13.已知向量,,其中,且与共线,则当取最小值时,为__________.14.已知圆的方程为,过圆上一点的切线方程为.由类比法可经过椭圆上一点的切线方程为.若过椭圆的第一象限内的点的切线经过点,则的最小值为__________.15.已知,满足约束条件其中,若使得取得最小值的解有无穷多个,则的值为__________.16.已知的三边分别为,,,所对的角分别为,,,且满足,且的外接圆的面积为,则的最大值的取值范围为__________.三、解答题17.已知在等差数列中,,其前项和为.等比数列的各项均为正数,且,公比为.若,.(1)求数列与的通项公式;(2)求数列的前项和.18.已知在几何体中,四边形是边长为的正方形,且平面,,且,与平面所成角的正切值为.(1)求证:平面平面;(2)求二面角的大小.19.某学校高三有名学生,按性别分层抽样从高三学生中抽取名男生,名女生期未某学科的考试成绩,得到如下所示男生成绩的频率分布直方图和女生成绩的茎叶图.(1)试计算男生考试成绩的平均分与女生考试成绩的中位数(每组数据取区间的中点值);(2)根据频率分布直方图可以认为,男生这次考试的成绩服从正态分布,试计算男生成绩落在区间内的概率及全校考试成绩在内的男生的人数(结果保留整数);(3)若从抽取的名学生中考试成绩优势(分以上包括分)的学生中再选取名学生,作学习经验交流,记抽取的男生人数为,求的分布列与数学期望.参考数据,若,则,,.20.已知椭圆的焦点与双曲线的焦点重合,过椭圆的右顶点任意作直线,交抛物线于,两点,且,其中为坐标原点.(1)试求椭圆的方程;(2)过椭圆的左焦点作互相垂直的两条直线,分别交椭圆于点、、、,试求四边形的面积的取值范围.21.已知函数,其中为实数.(1)若曲线在点处的切线方程为,试求函数的单调区间;(2)当,,且时,若恒有,试求实数的取值范围.22.选修4-4:坐标系与参数方程在平面直角坐标系中,已知直线的参数方程为(为参数).以原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,圆的极坐标方程为.(1)求直线的普通方程与圆的直角坐标方程;(2)若直线与圆交于,两点,求弦与劣弧围成的图形的面积.23.选修4-5:不等式选讲已知函数,不等式的解集为.(1)求实数的值;(2)若不等式对任意的恒成立,求实数的取值范围.数学(理)答案1.D【解析】则故选2.B【解析】复数不能比较大小,故错误,为纯虚数,则,解得,故正确,,,为第三象限内的点,故正确,,故其虚部为,故错误故真命题个数为故选3.B【解析】设“第一个路口遇见红灯”为事件,“第二个路口遇见红灯”为事件,,则故选4.B【解析】若方程表示焦点在轴上的椭圆则,解得故方程表示焦点在轴上的椭圆的概率为故选5.C【解析】由题意可得,抛物线的焦点为双曲线的渐近线为,化简得:故则故选6.B【解析】令,则根据二项式定理,得:的通项公式为,令,得,故项的系数为,故选7.A【解析】可知的周期为,故选8.D【解析】可得根据函数的图象,可知时,有两个不同的根故选9.D【解析】第一次运行结果为,第二次运行结果为,第一次运行结果为,...可知输出结果为两式相减可得可得故选10.D【解析】根据几何体的三视图可知,该几何体为三棱锥其中,且底面,根据余弦定理可知:可知根据正弦定理可知外接圆直径,如图,设三棱锥外接球的半径为,球心为,过球心向作垂线,则垂足为的中点,在中,外接球的表面积故选点睛:本题主要考查了三视图与几何体外接球的体积问题,有一定的难度,先由三视图推得几何体为三棱锥,结合题目中的长度利用正弦定理和余弦定理解三角形,求出三角形外接圆的半径,进而求出球体的半径,需要一定的观察能力和计算能力11.C【解析】设的坐标为,,,的方程为,由,,可得,切线都过点,,故可知过,两点的直线方程为,当时,直线恒过定点故选点睛:本题主要考查了直线与抛物线的位置关系并求出直线恒过定点坐标,在解答过程中运用了求导来计算切线的斜率,然后给出切线的直线方程,由过点计算出直线的方程,从而计算出定点坐标。

衡水金卷2018届高三上学期全国大联考(理数)

衡水金卷2018届高三上学期全国大联考(理数)

衡水金卷2018届高三上学期全国大联考数学(理科)本试卷分共4页,23题(含选考题)。

第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

全卷满分150分。

考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|540}M x x x =-+≤,{|24}x N x =>,则 ( ) A .{|24}M N x x =<< B .M N R = C .{|24}M N x x =<≤ D .{|2}M N x x =>2. 记复数z 的虚部为Im()z ,已知复数5221iz i i =--(i 为虚数单位),则Im()z 为( ) A .2 B .-3 C .3i - D .33. 已知曲线32()3f x x =在点(1,(1))f 处的切线的倾斜角为α,则222sin cos 2sin cos cos ααααα-=+( ) A .12 B .2 C .35 D . 38-4. 2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行 了以此为主题的金银纪念币,如图所示是一枚8克圆形金质纪念币,直径 22mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )A .27265mm π B .236310mm π C .23635mm π D .236320mm π5. 已知双曲线C :22221(0,0)x y a b a b-=>>的渐近线经过圆E :22240x y x y +-+=的圆心,则双曲线C 的离心率为( )A B C .2 D 6. 已知数列{}n a 为等比数列,且2234764a a a a =-=-,则46tan()3a a π⋅=( )A .BC .D .3-7. 执行如图的程序框图,若输出的S 的值为-10,则①中应填()A .19?n <B .18?n ≥ C. 19?n ≥D .20?n ≥8.已知函数()f x 为R 内的奇函数,且当0x ≥时,2()1cos f x e m x =-++,记2(2)a f =--,(1)b f =--,3(3)c f =,则a ,b ,c 间的大小关系是( ) A .b a c << B .a c b << C .c b a << D .c a b << 9. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和 半圆,则该几何体的体积为( ) A .23π+ B .12π+ C .26π+D .23π+10.已知函数()2sin()(0,[,])2f x x πωϕωϕπ=+<∈的部分图象如图所示,其中5||2MN =.记命题p :5()2sin()36f x x ππ=+,命题q :将 ()f x 的图象向右平移6π个单位,得到函数22sin()33y x ππ=+的图象. 则以下判断正确的是( )A .p q ∧为真B .p q ∨为假C .()p q ⌝∨为真D .()p q ∧⌝为真 11.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM ∆的周长为 ( )A.7112+ B.9C. 9 D.831212.已知数列{}n a 与{}n b 的前n 项和分别为n S ,n T ,且0n a >,2*63,n n S a a n N =+∈,12(21)(21)nnn a n a a b +=--,若*,n n N k T ∀∈>恒成立,则k 的最小值是( ) A .71 B .149 C. 49 D .8441第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每题5分.13.已知在ABC ∆中,||||BC AB CB =- ,(1,2)AB =,若边AB 的中点D 的坐标为(3,1),点C 的坐标为(,2)t ,则t = .14. 已知*1()()2nx n N x-∈的展开式中所有项的二项式系数之和、系数之和分别为p ,q ,则64p q +的最小值为 .15. 已知x ,y 满足3,,60,x y t x y π+≤⎧⎪⎪≥⎨⎪≥⎪⎩其中2t π>,若sin()x y +的最大值与最小值分别为1,12,则实数t 的取值范围为 .16.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bi ē n ào ).已知在鳖臑M ABC -中,MA ⊥平面ABC ,2MA AB BC ===,则该鳖臑的外接球与内切球的表面积之和为 .三、解答题 :解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分12分)已知函数21()cos )cos()2f x x x x ππ=-+-,x R ∈. (Ⅰ)求函数()f x 的最小正周期及其图象的对称轴方程;(Ⅱ)在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,已知()1f A =-,3a =,sin sin b C a A =,求ABC ∆的面积.18. (本小题满分12分)如图,在四棱锥E ABCD -中,底面ABCD 为直角梯形,其中//,CD AB BC AB ⊥,侧面ABE ⊥平面ABCD ,且222AB AE BE BC CD =====,动点F 在棱AE 上,且EF FA λ=. (1)试探究λ的值,使//CE 平面BDF ,并给予证明; (2)当1λ=时,求直线CE 与平面BDF 所成的角的正弦值.19. (本小题满分12分)如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在A 市的普及情况,A 市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为A 市使用网络外卖的情况与性别有关?(Ⅱ)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠卷,求选出的3人中至少有2人经常使用网络外卖的概率 ②将频率视为概率,从A 市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为X ,求X 的数学期望和方差.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为点1F ,2F ,其离心率为12,短轴长为(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点1F 的直线1l 与椭圆C 交于M ,N 两点,过点2F 的直线2l 与椭圆C 交于P ,Q 两点,且12//l l ,证明:四边形MNPQ 不可能是菱形.21. (本小题满分12分)已知函数,()(1)(,)xf x e a x b a b R =-+-∈其中e 为自然对数的底数. (Ⅰ)讨论函数()f x 的单调性及极值;(Ⅱ)若不等式()0f x ≥在x R ∈内恒成立,求证:(1)324b a +<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22. (本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 的参数方程为cos ,sin x t y αα=⎧⎨=⎩(0t >,α为参数).以坐标原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为sin()34πθ+=.(Ⅰ)当1t =时,求曲线C 上的点到直线l 的距离的最大值;(Ⅱ)若曲线C 上的所有点都在直线l 的下方,求实数t 的取值范围.23. (本小题满分10分)选修4-5:不等式选讲已知函数()21|1|f x x x =-++. (Ⅰ)解不等式()3f x ≤;(Ⅱ)记函数()()|1|g x f x x =++的值域为M ,若t M ∈,证明:2313t t t+≥+.数学(理科)参考答案一、选择题1-5: CBCBA 6-10:ACDAD 11、12:BB 二、填空题13. 1 14. 16 15. 57[,]66ππ16. 24π- 三、解答题17. 解:(1)原式可化为,21()cos cos 2f x x x =-,1cos 21222x x +=-,sin(2)sin(2)66x x ππ=-=--, (3分)故其最小正周期22T ππ==, (4分) 令2()62x k k Z πππ-=+∈,解得()23k x k Z ππ=+∈, 即函数()f x 图象的对称轴方程为,()23k x k Z ππ=+∈.(6分) (2)由(1),知()sin(2)6f x x π=--,因为02A π<<,所以52666A πππ-<-<.又()sin(2)16f A A π=--=-,故得262A ππ-=,解得3A π=.(9分)由正弦定理及sin sin b C a A =,得29bc a ==.故1sin 24ABC S bc A ∆==.(12分)18.(1)当12λ=时,//CE 平面BDF .证明如下:连接AC 交BD 于点G ,连接GF .∵//,2CD AB AB CD =,∴12CG CD GA AB ==. ∵12EF FA =,∴12EF CG FA GA ==.∴//GF CE . 又∵CE ⊄平面BDF ,GF ⊂平面BDF ,∴//CE 平面BDF .(5分) (2)取AB 的中点O ,连接EO .则EO AB ⊥.∵平面ABE ⊥平面ABCD ,平面ABE 平面ABCD AB =,且E O A B ⊥,∴EO ⊥平面ABCD .∵//BO CD ,且1BO CD ==,∴四边形BODC 为平行四边形,∴//BC DO . 又∵BC AB ⊥,∴OD AB ⊥. (7分)由,,OA OD OE 两两垂直,建立如图所示的空间直角坐标系Oxyz . 则(0,0,0)O ,(0,1,0)A ,(0,1,0)B -,(1,0,0)D ,(1,1,0)C -,E .当1λ=时,有EF FA =,∴可得1(0,2F .∴(1,1,0)BD = ,(1,1CE =- ,)23,23,0(=BF .设平面BDF 的一个法向量为(,,)n x y z = ,则有0,0,n BD n BF ⎧⋅=⎪⎨⋅=⎪⎩即0,30,2x y y z +=⎧⎪⎨=⎪⎩令z =1y =-,1x =.即(1,1n =-. (10分)设CE 与平面BDF 所成的角为θ,则sin |cos |CE n θ=<⋅>=15=. ∴当1λ=时,直线CE 与平面BDF 所成的角的正弦值为15.(12分)19.解:(1)由列联表可知2K 的观测值,2()()()()()n ad bc k a b c d a c b d -=++++2200(50405060) 2.020 2.07211090100100⨯-⨯=≈<⨯⨯⨯. 所以不能在犯错误的概率不超过0.15的前提下认为A 市使用网络外卖情况与性别有关. (4分) (2)①依题意,可知所抽取的5名女网民中,经常使用网络外卖的有6053100⨯=(人), 偶尔或不用网络外卖的有4052100⨯=(人). (6分) 则选出的3人中至少有2人经常使用网络外卖的概率为2133233355710C C C P C C =+=.(8分) ②由22⨯列联表,可知抽到经常使用网络外卖的网民的频率为1101120020=, 将频率视为概率,即从A 市市民中任意抽取1人, 恰好抽到经常使用网络外卖的市民的概率为1120. 由题意得11~(10,)20X B , (10分) 所以1111()10202E X =⨯=; (11分) 11999()10202040D X =⨯⨯=. (12分)20. 解:(1)由已知,得12c a =,b =222c a b =-, (3分)故解得224,3a b ==,所以椭圆C 的标准方程为22143x y +=. (5分) (2)由(1),知1(1,0)F -,如图,易知直线MN 不能平行于x 轴. 所以令直线MN 的方程为1x my =-,11(,)M x y ,22(,)N x y .联立方程2234120,1,x y x my ⎧+-=⎨=-⎩,得22(34)690m y my +--=,所以122634m y y m +=+,122934y y m -=+. (8分)此时MN =同理,令直线PQ 的方程为1x my =+,33(,)P x y ,44(,)Q x y ,此时342634m y y m -+=+,342934y y m -=+,此时PQ =. 故||||MN PQ =.所以四边形MNPQ 是平行四边形.若□MNPQ 是菱形,则OM ON ⊥,即0OM ON ⋅=,于是有12120x x y y +=.又1212(1)(1)x x my my =--,21212()1m y y m y y =-++,所以有21212(1)()10m y y m y y +-++=,整理得到22125034m m --=+, 即21250m +=,上述关于m 的方程显然没有实数解,故四边形MNPQ 不可能是菱形. (12分)21.解:(1)由题意得'()(1)x f x e a =-+.当10a +≤,即1a ≤-时,'()0f x >,()f x 在R 内单调递增,没有极值. (2分) 当10a +>,即1a >-,令'()0f x =,得ln(1)x a =+,当ln(1)x a <+时,'()0f x <,()f x 单调递减; 当ln(1)x a >+时,'()0f x >,()f x 单调递增,故当ln(1)x a =+时,()f x 取得最小值(ln(1))1(1)ln(1)f a a b a a +=+--++,无极大值. 综上所述,当1a ≤-时,()f x 在R 内单调递增,没有极值;当1a >-时,()f x 在区间(,ln(1))a -∞+内单调递减,在区间(ln(1),)a ++∞内单调递增,()f x 的极小值为1(1)ln(1)a b a a +--++,无极大值. (5分) (2)由(1),知当1a ≤-时,()f x 在R 内单调递增,当1a =-时,(1)3024b a +=<成立. 当1a <-时,令c 为1-和11b a -+中较小的数,所以1c ≤-,且11bc a-≤+.则1x e e -≤,(1)(1)a c b -+≤--+.所以1()(1)(1)0x f c e a c b e b b -=-+-≤---<, 与()0f x ≥恒成立矛盾,应舍去. (6分)当1a >-时,min ()(ln(1))f x f a =+=1(1)ln(1)0a b a a +--++≥,即1(1)ln(1)a a a b +-++≥,所以22(1)(1)(1)ln(1)a b a a a +≤+-++.(8分) 令22()ln (0)g x x x x x =->,则'()(12ln )g x x x =-.令'()0g x >,得0x <<'()0g x <,得x >故()g x 在区间内单调递增,在区间)+∞内单调递减.故max ()ln 2eg x g e e ==-=, (10分)即当11a a +=时,max ()2e g x =. 所以22(1)(1)(1)ln(1)2e a b a a a +≤+-++≤.所以(1)24b a e+≤. 而3e <,所以(1)324b a +<. (12分)22.解:(1)直线l 的直角坐标方程为30x y +-=.(2分)曲线C 上的点到直线l的距离,d ==|)3|πα+-当sin()14πα+=-时,max 22d +==, 即曲线C 上的点到直线l的距离的最大值为22+. (5分) (2)∵曲线C 上的所有点均在直线l 的下方,∴对R α∀∈,有cos sin 30t αα+-<恒成立,)3αϕ-<(其中1tan tϕ=3<. 又0t >,∴解得0t <<t的取值范围为. (10分)23.解:(1)依题意,得3,1,1()2,1,213,,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩于是得1,()333,x f x x ≤-⎧≤⇔⎨-≤⎩或11,223,x x ⎧-<<⎪⎨⎪-≤⎩或1,233,x x ⎧≥⎪⎨⎪≤⎩解得11x -≤≤.即不等式()3f x ≤的解集为{|11}x x -≤≤. (5分) (2)()()|1|g x f x x =++=|21||22|x x -++≥|2122|3x x ---=,当且仅当(21)(22)0x x -+≤时,取等号,∴[3,)M =+∞. (8分)原不等式等价于2331t t t -+-,22233(3)(1)t t t t t t t-+--+==.∵t M ∈,∴30t -≥,210t +>.∴2(3)(1)0t t t-+≥. ∴2313t t t+≥+. (10分)。

衡水金卷2018年普通高等学校招生全国统一考试模拟试卷分科综合卷理科数学(三)

衡水金卷2018年普通高等学校招生全国统一考试模拟试卷分科综合卷理科数学(三)

2018年普通高等学校招生全国统一考试模拟试题理数(三)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()23z i i +=+(i 为虚数单位),其共轭复数为z ,则z 为( )A .7155i - B .7155i -- C .7155i + D .7155i -+ 2.已知()1cos 3πα-=,2sin 23πβ⎛⎫+= ⎪⎝⎭(其中,α,(0,)βπ∈),则()sin αβ+的值为( )A .9 B .9+C .9- D .9-3.已知集合{}2340A x R x x =∈--≤,{}B x R x a =∈≤,若A B B =,则实数a 的取值范围为( )A .()4,∞+B .[)4,∞+C .(),4-∞D .(],4-∞4.某高三学生进行考试心理素质测试,场景相同的条件下每次通过测试的概率为45,则连续测试4次,至少有3次通过的概率为( ) A .512625 B .256625 C.64625 D .641255.已知222351+2=6⨯⨯,2223471236⨯⨯++=,223245912346⨯⨯+++=,,若()22222*1234385n n N +++++=∈,则n 的值为( )A .8B .9 C.10 D .116.已知椭圆()222210x y a b a b +=>>的左顶点为M ,上顶点为N ,右焦点为F ,若=0NM NF ⋅,则椭圆的离心率为( )A D 7.将函数()sin 2f x x =图像上的所有点向右平移4π个单位长度后得到函数()g x 的图像,若()g x 在区间[]0,a 上单调递增,则a 的最大值为( )A .8π B .4π C.6π D .2π 8.如图是计算()11111223341n n ++++⨯⨯⨯+的程序框图,若输出的S 的值为99100,则判断框中应填入的条件是( )A .98?n >B .99?n > C.100?n > D .101?n >9.朱世杰是历史上有名的数学家之一,他所著的《四元玉鉴》卷中“如像招数一五间”,有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日?”其大意为:“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始,每天派出的人数比前一天多7人,修筑堤坝的每人每天发大米3升,共发出大米40392升,问修筑堤坝多少天”,在这个问题中,第8天应发大米( )A .350升B .339升 C.2024升 D .2124升 10.已知三棱锥的三视图如图所示,则该三棱锥内切球的半径为( )AB D11.如图所示,在矩形ABCD 中,4AB =,2AD =,P 为边AB 的中点,现将DAP ∆绕直线DP 翻转至'DA P ∆处,若M 为线段'A C 的中点,则异面直线BM 与'PA 所成角的正切值为( )A .12 B .2 C.14D .4 12.若函数()y f x =图像上存在两个点A ,B 关于原点对称,则对称点(),A B 为函数()y f x =的“孪生点对”,且点对(),A B 与(),B A 可看作同一个“孪生点对”.若函数()f x =322,0692,0x x x x a x <⎧⎨-+-+-≥⎩恰好有两个“孪生点对”,则实数a 的值为( ) A .0 B .2 C.4 D .6第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.()()3212x x +-的展开式中含2x 项的系数为 .14.如图所示,在正方形ABCD 中,点E 为边BC 的中点,点F 为边CD 上的靠近点C 的四等分点,点G 为边AE 上的靠近点A 的三等分点,则向量FG 用AB 与AD 表示为 .15.已知在等腰梯形ABCD 中,//AB CD ,24AB CD ==,60ABC ∠=,双曲线以A ,B 为焦点,且与线段AD ,BC (包含端点D ,C )分别有一个交点,则该双曲线的离心率的取值范围是 .16.已知数列{}n a 满足11a =,()21122n n n a a a n --=+≥,若()*1112nn n b n N a a +=+∈+,则数列{}n b 的前n 项和n S = .三、解答题 (解答应写出文字说明、证明过程或演算步骤.)17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()sin cos cos A A C -()cos sin sin A A C ++=D 为边AB 上一点,2BC =,BD =(1)求BCD ∆的面积;(2)若DA DC =,求角A 的大小.18.如图所示,在三棱锥P ABC -中,平面PAB ⊥平面ABC ,AC CB ⊥,4AB =,PA =45PAB ∠=.(1)证明:AC ⊥平面PCB ;(2)若二面角A PB C --的平面角的大小为60,求直线PB 与平面PAC 所成角的正弦值. 19.某葡萄基地的种植专家发现,葡萄每株的收获量y (单位:kg )和与它“相近”葡萄的株数x 具有线性相关关系(所谓两株作物“相近”是指它们的直线距离不超过1m ),并分别记录了相近葡萄的株数为1,2,3,4,5,6,7时,该葡萄每株收获量的相关数据如下:(1)求该葡萄每株的收获量y 关于它“相近”葡萄的株数x 的线性回归方程及y 的方差2s ; (2)某葡萄专业种植户种植了1000株葡萄,每株“相近”的葡萄株数按2株计算,当年的葡萄价格按10元/kg 投入市场,利用上述回归方程估算该专业户的经济收入为多少万元;(精确到0.01)(3)该葡萄基地在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株葡萄,其中每个小正方形的面积都为21m ,现在所种葡萄中随机选取一株,求它的收获量的分布列与数学期望.(注:每株收获量以线性回归方程计算所得数据四舍五入后取的整数为依据)附:对于一组数据()11,x y ,()22,x y ,,(),n n x y ,其回归直线y b x a ∧∧∧=+的斜率和截距的最小二乘估计分别为()()()121niii nii x x y y b x x ∧==--=-∑∑,a y b x ∧∧=-.20.已知抛物线2:4C x y =的焦点为F ,直线():0l y kx a a =+>与抛物线C 交于A ,B 两点.(1)若直线l 过焦点F ,且与圆()2211x y +-=交于D ,E (其中A ,D 在y 轴同侧)两点,求证:AD BE ⋅是定值;(2)设抛物线C 在点A 和点B 处的切线交于点P ,试问在y 轴上是否存在点Q ,使得四边形APBQ 为菱形?若存在,求出此时直线l 的斜率和点Q 的坐标;若不存在,请说明理由. 21.已知函数()()21ln f x a x x =-+,a R ∈.(1)当2a =时,求函数()y f x =在点()()1,1P f 处的切线方程;(2)当1a =-时,令函数()()ln 21g x f x x x m =+-++,若函数()g x 在区间1,e e ⎡⎤⎢⎥⎣⎦上有两个零点,求实数m 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知点()2+cos ,sin P αα(α为参数).以O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)求点P 的轨迹C 的方程及直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值. 23.选修4-5:不等式选讲已知函数()512f x x x =-+--.(1)在给出的平面直角坐标系中作出函数()y f x =的图像;(2)记函数()y f x =的最大值为M ,是否存在正数a ,b ,使2a b M +=,且123a b+=,若存在,求出a ,b 的值,若不存在,说明理由.试卷答案一、选择题1-5:CABAC 6-10:DDBDB 11、12:AA二、填空题13.18 14.55126FG AB AD =-- 15.1] 16.21121n -- 三、解答题17.解:(1)由()sin cos cos A A C -+()cos sin sin A A C +=可知sin cos cos cos A C A C -cos sin sin sin A C A C ++=,即()()sin cos A C A C +-+=sin cos B B ⇒+=sin 22B B ⎫+=⎪⎪⎭sin 14B π⎛⎫⇒+= ⎪⎝⎭. 因为在ABC ∆中,()0,B π∈,所以424B B πππ+=⇒=,所以1sin 2BCD S BC BD B ∆=⨯⨯12sin 24π=⨯⨯=22=. (2)在BCD ∆中,由余弦定理,可知2222cos DC BD BC BD BC B =+-⨯⨯8422cos4π=+-⨯⨯8422=42=+-⨯⨯, 所以2DC =,所以DC BC =,所以4BDC π∠=. 又由已知DA DC =,得8A π∠=, 故角A 的大小为8π.18.解:(1)在PAB ∆中,因为4AB =,PA =45PAB ∠=, 所以由余弦定理,可知2222cos PB AB AP AB AP PAB =+-⨯⨯⨯∠163224162=+-⨯⨯=, 所以4PB =.故222PB BA PA +=,即有PB BA ⊥. 又因为平面PAB ⊥平面ABC ,且平面PAB平面ABC AB =,PB ⊂平面PAB ,所以PB ⊥平面ABC .又AC ⊂平面ABC ,所以PB AC ⊥. 又因为AC CB ⊥,PBCB B =,所以AC ⊥平面PBC .(2)过点B 作BD PC ⊥,垂足为D ,连接AD . 由(1),知AC ⊥平面PBC ,BD ⊂平面PBC , 所以AC BD ⊥.又PCAC C =,所以BD ⊥平面PAC ,因此BPD ∠即为直线PB 与平面PAC 所成的角. 又由(1)的证明,可知PB ⊥平面ABC ,又BC ⊂平面ABC ,AB ⊂平面ABC ,所以PB BC ⊥,PB BA ⊥, 故ABC ∠即为二面角A PB C --的平面角,即60ABC ∠=. 故在Rt ACB ∆中,由4AB =,得2BC =.在Rt PBC ∆中,PC ==且42PB BC PC BD BD ⨯=⨯⇒⨯=BD ⇒=因此在Rt PBD ∆中,得5sin 45BD BPD PB ∠===, 故直线PB 与平面PAC19.解:(1)由题意,可知()112356746x =+++++=, ()11513121097116y =+++++=. ()()()()613422iii x x y y =--=-⨯+-⨯+∑()()()()11112234-⨯+⨯-+⨯-+⨯-=34-,()()()()62222213211i i x x=-=-+-+-++∑222328+=,所以()()()6162134172814iii i i x x y y b x x∧==--==-=--∑∑, 所以17111114147a yb x ∧∧=-=+⨯=, 故该葡萄每株收获量y 关于它“相近”葡萄的株数x 的线性回归方程为17111147y x ∧=-+. y 的方差为()()()222211511131112116s ⎡=-+-+-+⎣()()()22210119117117⎤-+-+-=⎦.(2)由17111147y x =-+,可知当2x =时,171119421477y =-⨯+=,因此总收入为941010001000013.437⨯⨯÷≈(万元). (3)由题知,2,3,4x =.由(1)(2),知当2x =时,13.42y ≈,所以13y =;当3x =时,5111117112.2114714y =-+=≈,所以12y =; 当4x =时,341117711777y =-+==, 即2,3,4x =时,与之相对应的y 的值分别为13,12,11, 又()()41132164P y P x =====, ()()81123162P y P x =====, ()()41114164P y P x =====, 所以在所种葡萄中随机选取一株,它的收获量y 的分布列为()111131********E y =⨯+⨯+⨯=.20.解:由题知抛物线2:4C x y =的焦点为()0,1F ,设()11,A x y ,()22,B x y .由24x yy kx a⎧=⎨=+⎩2440x kx a ⇒--=, 则()2160k a ∆=+>,且124x x k +=,124x x a =-.(1)若直线l 过焦点F ,则1a =,所以124x x k +=,124x x =-.由条件可知圆()2211x y +-=的圆心为()0,1F ,半径为1, 又由抛物线定义可知11AF y =+,21BF y =+, 故可得11AD AF y =-=,21BE BF y =-=, 所以()()121211AD BE y y kx kx ⋅==++()212121k x x k x x =+++=224411k k -++=. 故AD BE ⋅为定值1.(2)假设存在点Q 满足题意,设()00,Q y , 由22144x y y x =⇒=,因此1'2y x =. 若四边形APBQ 为菱形,则//AQ BP ,//BQ AP , 则102112AQ y y k x x -==,201212BQ y y k x x -==, 则101212y y x x -=,201212y y x x -=, 则12y y =,所以0k =,此时直线AB 的方程为y kx a a =+=,所以()A a -,()B a .则抛物线在点()A a -处的切线为y a =-,① 同理,抛物线在点B处的切线为y a =-,②联立①②,得()0,P a -. 又线段AB 的中点为()0,R a ,所以点()0,3Q a .即存在点()0,3Q a ,使得四边形APBQ 为菱形,此时0k =.21.解:(1)当2a =时,()()221ln f x x x =-+224ln 2x x x =-++. 当1x =时,()10f =,所以点()()1,1P f 为()1,0P ,又()1'44f x x x=-+,因此()'11k f ==. 因此所求切线方程为()0111y x y x -=⨯-⇒=-.(2)当1a =-时,()22ln g x x x m =-+,则()()()2112'2x x g x x x x-+-=-=. 因为1,x e e ⎡⎤∈⎢⎥⎣⎦,所以当()'0g x =时,1x =, 且当11x e<<时,()'0g x >;当1x e <<时,()'0g x <; 故()g x 在1x =处取得极大值也即最大值()11g m =-. 又2112g m e e⎛⎫=-- ⎪⎝⎭,()22g e m e =+-, ()221122g e g m e m e e ⎛⎫-=+--++ ⎪⎝⎭24e =-+210e <, 则()1g e g e ⎛⎫< ⎪⎝⎭,所以()g x 在区间1,e e⎡⎤⎢⎥⎣⎦上的最小值为()g e , 故()g x 在区间1,e e ⎡⎤⎢⎥⎣⎦上有两个零点的条件是 ()21101120g m g m e e =->⎧⎪⎨⎛⎫=--≤ ⎪⎪⎝⎭⎩2112m e ⇒<≤+, 所以实数m 的取值范围是211,2e ⎛⎤+ ⎥⎝⎦. 22.解:(1)设点(),P x y ,所以2cos sin x y αα=+⎧⎨=⎩,(α为参数), 消去参数,得()2221x y -+=, 即P 点的轨迹C 的方程为()2221x y -+=直线:sin 4l πρθ⎛⎫+= ⎪⎝⎭cos sin 4ρθρθ⇒+=4x y ⇒+=, 所以直线l 的直角坐标方程为40x y +-=.(2)由(1),可知P 点的轨迹C 是圆心为()2,0,半径为1的圆, 则圆心C 到直线l的距离为1d r ==>=.所以曲线C 上的点到直线l1.23.解:(1)由于()512f x x x =-+--24,12,1226,2x x x x x +<-⎧⎪=-≤≤⎨⎪-+>⎩.作图如下:(2)由图像可知,当12x -≤≤,()max 2f x =,即得2M =.假设存在正数a ,b ,使22a b +=,且123a b +=, 因为12122b a a b a b ⎛⎫⎛⎫+=++ ⎪⎪⎝⎭⎝⎭22()242b a a b =++≥+≥,当且仅当2222,0a b b a a b a b +=⎧⎪⎪=⎨⎪>⎪⎩121a b ⎧=⎪⇒⎨⎪=⎩时,取等号, 所以12a b +的最小值为4,与123a b+=相矛盾, 故不存在正数a ,b ,使22a b +=,且123a b +=成立.。

2018年全国卷3理科数学试题及参考答案

2018年全国卷3理科数学试题及参考答案

绝密★启用前试题类型:新课标Ⅲ2018年普通高等学校招生全国统一考试理科数学参考答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号. 回答非选择题时,将答案写在答题卡上. 写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ( ) A .{}0 B .{}1 C .{}1,2 D .{}0,1,2 【答案】C【解析】:1A x ≥,{}1,2A B ∴= 【考点】交集2.()()12i i +-=( )A .3i --B .3i -+C .3i -D .3i + 【答案】D【解析】()()21223i i i i i +-=+-=+【考点】复数的运算3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫做榫头,凹进部分叫做卯眼,图中的木构件右边的小长方体是榫头. 若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A【解析】注意咬合,通俗点说就是小长方体要完全嵌入大长方体中,嵌入后最多只能看到小长方体的一个面,而B 答案能看见小长方体的上面和左面,C 答案至少能看见小长方体的左面和前面,D 答案本身就不对,外围轮廓不可能有缺失 【考点】三视图 4.若1sin 3α=,则cos 2α=( ) A .89 B .79 C .79- D .89- 【答案】B【解析】27cos 212sin 9αα=-= 【考点】余弦的二倍角公式5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .80 【答案】C【解析】522x x ⎛⎫+ ⎪⎝⎭的第1r +项为:()521035522rr r r r r C x C x x --⎛⎫= ⎪⎝⎭,故令2r =,则10345240r r r C x x -=【考点】二项式定理俯视方向D.C. B.A.6.直线20x y ++=分别与x 轴、y 轴交于点,A B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]2,6B .[]4,8 C. D.⎡⎣【答案】A【解析】()()2,0,0,2A B --,AB ∴=,可设()2,P θθ+,则4P ABd πθ-⎛⎫==+∈ ⎪⎝⎭[]12,62ABP P AB P AB S AB d ∆--∴=⋅=∈ 注:P AB d -的范围也可以这样求:设圆心为O ,则()2,0O,故P AB O AB O AB d d d ---⎡∈+⎣,而O AB d -==,P AB d -∴∈ 【考点】点到直线距离、圆上的点到直线距离最值模型(圆的参数方程、三角函数) 7.422y x x =-++的图像大致为( )【答案】DxxxxyyyyD.C.B.A.OO11OO111111【解析】()12f =,排除A 、B ;()32'42212y x x x x =-+=-,故函数在0,2⎛⎫⎪ ⎪⎝⎭单增,排除C【考点】函数图像辨识(按照奇偶性、特殊点函数值正负、趋势、单调性(导数)的顺序来考虑)8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10为成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )A .0.7B .0.6C .0.4D .0.3 【答案】B【解析】由题意得X 服从二项分布,即()~10,X p ,由二项分布性质可得()101 2.4DX p p =-=,故0.4p =或0.6,而()()()()64446610104161P x C p p P x C p p ==-<==-即()221p p -<,故0.5p >0.6p ∴=【考点】二项分布及其方差公式9.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为2224a b c+-,则C =( )A .2πB .3πC .4πD .6π【答案】C 【解析】2221sin 24ABCa b c S ab C ∆+-==,而222cos 2a b c C ab+-= 故12cos 1sin cos 242ab C ab C ab C ==,4C π∴= 【考点】三角形面积公式、余弦定理10.设,,,A B C D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -的体积最大值为( )A .B .C .D .【答案】B【解析】如图,O为球心,F为等边ABC∆的重心,易知OF⊥底面ABC,当,,D O F三点共线,即DF⊥底面ABC时,三棱锥D ABC-的高最大,体积也最大. 此时:6ABCABCABS∆∆⎫⎪⇒==等边,在等边ABC∆中,233BF BE AB===,在Rt OFB∆中,易知2OF=,6DF∴=,故()max163D ABCV-=⨯=【考点】外接球、椎体体积最值11.设12,F F是双曲线()2222:10,0x yC a ba b-=>>的左,右焦点,O是坐标原点,过2F作C的一条渐近线的垂线,垂足为P.若1PF=,则C的离心率为( )AB.2CD【答案】C【解析】渐近线OP的方程为:by xa=,利用点到直线的距离公式可求得2PF b=,(此结论可作为二级结论来记忆),在Rt ABC∆中,易得OP a=,1PF∴=,在1POF∆中,由余弦定理可得:22216cos2a c aPOFac+-∠=,又2cosaPOFc∠= 22262a c a aac c+-∴+=,故cea==【考点】双曲线几何性质、余弦定理解三角形OF ECBAD12. 设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 【答案】B【解析】首先由0.2log y x =单调递减可知0.20.20.20log 1log 0.3log 0.21a =<=<=,同理可知21b -<<-,0,0a b ab ∴+<<,排除C 、D 其次:利用作商法:0.30.30.311log 0.2log 2log 0.41a b ab a b+=+=+=<(注意到0ab <) a b ab ∴+>【考点】利用对数函数单调性确定对数范围、作商法比较大小 二、填空题:本大题共4小题,每小题5分,共20分13. 已知向量()1,2a = ,()2,2b =- ,()1,c λ=. 若()//2c a b + ,则_______.λ= 【答案】12【解析】()24,2a b +=,故24λ=【考点】向量平行的坐标运算14. 曲线()1xy ax e =+在点()0,1处的切线斜率为2-,则______.a =【答案】3-【解析】()'1x xy ae ax e =++,12k a ∴=+=-【考点】切线斜率的计算方法15.函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0,π的零点个数为_________.【答案】3【解析】[]0,x π∈,3,3666t x ππππ⎡⎤=+∈+⎢⎥⎣⎦,由cos y t =图像可知,当35,,222t πππ=时cos 0t =,即()f x 有三个零点 或者:令362x k πππ+=+,则93k x ππ=+,当0,1,2k =时,[]0,x π∈,故3个零点【考点】换元法(整体法)、余弦函数的图像与性质16. 已知点()1,1M -和抛物线2:4C y x =,过C 的焦点且斜率为k 的直线与抛物线交于,A B 两点,若90AMB ∠= ,则_______.k =【答案】2 【解析】(1) 常规解法:设直线方程为1x my =+,联立214x my y x=+⎧⎨=⎩可求121244y y m y y +=⎧⎨=-⎩,由()()12121212110MB MA y y y y x x x x ⋅=-++++++= ,可得12m =,故2k =(2) 二级结论:以焦点弦为直径的圆与准线相切设AB 中点为N ,则由二级结论可知NM ⊥准线,1N M y y ∴==,故22A B N y y y +==,由点差法可得,42A B k y y ==+ 进一步可得二级结论:AB M k y p ⋅=【考点】直线与抛物线联立(二级结论、点差法)三.解答题:共70分. 解答应写出文字说明,证明过程或演算步骤.. 第17~21题为必考题,每个试题考生必须作答. 第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17. (12分)等比数列{}n a 中,1531,4a a a ==. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和. 若63m S =,求m . 【答案】(1)12n n a -=或()12n n a -=-;(2)6m =【解析】(1)25334a a a q ==,2q ∴=±,∴12n n a -=或()12n n a -=-(2) 当2q =时,()()112631mmS -==-,解得6m =当2q =-时,()()112633mm S --==,得()2188m-=-无解综上:6m =【考点】等比数列通项公式与前n 项和公式 18. (12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式. 为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人. 第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:第一种生产方式第二种生产方式8655689 9 7 627012234 5 6 6 89 8 7 7 6 5 4 3 3281445 2 11 009(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,()2P K k ≥ 0.0500.010 0.001k3.8416.63510.828【答案】(1)第二组生产方式效率更高;(2)见解析;(3)有;【解析】(1)第二组生产方式效率更高;从茎叶图观察可知,第二组数据集中在70min~80min 之间,而第一组数据集中在80min~90min 之间,故可估计第二组的数据平均值要小于第一组数据平均值,事实上168727677798283838485868787888990909191928420E +++++++++++++++++++==同理274.7E =,21E E < ,故第二组生产方式效率更高 (2)由茎叶图可知,中位数7981802m +==,且列联表为:超过m 不超过m第一种生产方式15 5 第二种生产方式515(3)由(2)可知()22224015510 6.63520202020K -==>⨯⨯⨯,故有99%的把握认为两种生产方式的效率有差异 【考点】茎叶图、均值及其意义、中位数、独立性检验 19.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在的平面垂直,M 是CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积的最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析; 【解析】(1)ABCD CDM BC DCM BC DM DM BMC ADN BMC BC CD MC DM ⎫⊥⎫⇒⊥⇒⊥⎬⎪⇒⊥⇒⊥⊥⎬⎭⎪⊥⎭(这边只给出了证明的逻辑结构,方便大家阅读,考试还需要写一些具体的内容)(2)ABC S ∆ 恒定,故要使M ABC V -最大,则M ABC d -最大,结合图象可知M 为弧 CD中点时,M ABC V -最大. 此时取CD 的中点O ,则MO DC ⊥,故MO ⊥面ABCD ,故可建立如图所示空间直角坐标系 则:()0,0,1M ,()2,1,0A -,()2,1,0B ,()0,1,0C ,()0,1,0D -MBCDA()()0,2,0,2,1,1AB MA ==--,∴平面MAB 的法向量为()11,0,2n = ,易知平面MCD 的法向量为()21,0,0n =,故12cos ,5n n <>== , ∴面MAB 与面MCD【考点】面面垂直的判定、三棱锥体积最值、二面角的求法 20. (12分)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 的中点为()()1,0M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=. 证明,,FA FP FB 成等差数列,并求该数列的公差. 【答案】(1)见解析;(2)28d =±【解析】(1) 点差法:设()()1122,,,A x y B x y ,则22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩相减化简可得: 1212121234y y y y x x x x -+⋅=--+,34OM AB k k ⋅=-(此公式可以作为点差法的二级结论在选填题中直接用),34m k ∴=-,易知中点M 在椭圆内,21143m +<,代入可得12k <-或12k >,又0m >,0k ∴<,综上12k <-联立法:设直线方程为y kx n =+,且()()1122,,,A x y B x y ,联立22143x y y kx n⎧⎪+=⎨⎪=+⎩可得,()2224384120k x knx n +++-=,则122212284341243kn x x k n x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,()121226243ny y k x x n k +=++=+224143343M M kn x k n y m k -⎧==⎪⎪+∴⎨⎪==⎪+⎩,两式相除可得34m k =-,后续过程和点差法一样(如果用∆算的话比较麻烦)(2) 0FP FA FB ++= ,20FP FM ∴+= ,即()1,2P m -,214143m ∴+=,()304m m ∴=>∴71,4k n m k =-=-=,由(1)得联立后方程为2171404x x -+=,1,2114x ∴=±, ()22121223c a c a cFA FB x x a x x a c a c a ⎛⎫⎛⎫∴+=-+-=-+= ⎪ ⎪⎝⎭⎝⎭(此处用了椭圆的第二定义,否则需要硬算,计算量太大)而32FP =2FA FB FP ∴+=故,,FA FP FB成等差数列.221212214c a c a c d FA FB x x x x a c a c a ⎛⎫⎛⎫=±-=±---=±-=± ⎪ ⎪⎝⎭⎝⎭28d ∴=±【考点】点差法、直线与椭圆联立求解、等差数列、椭圆的第二定义21. (12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >,()0f x >; (2)若0x =是()f x 的极大值点,求a . 【答案】(1)见解析;(2)16a =-【解析】(1)常规方法:当0a =时,()()()()2ln 121f x x x x x =++->-,()()1'ln 111f x x x∴=++-+ ()()2''1xf x x ∴=+,当10x -<<时,()''0f x <;当0x >时,()''0f x >()'f x ∴在()1,0-上单调递减,在()0,+∞上单调递增,而()'00f =, ∴()'0f x ≥恒成立,()f x ∴单调递增,又()00f = ∴当10x -<<时,()0f x <;当0x >,()0f x >改进方法:若0a =,则()()()()()22ln 122ln 12x f x x x x x x x ⎡⎤=++-=++-⎢⎥+⎣⎦令()()2ln 12x g x x x =+-+,则()()()()22214'01212x g x x x x x =-=>++++ 所以()g x 在()0,+∞单增,又因为()00g = 故当10x -<<时,()()00g x g <=,即()0f x <; 当0x >时,()()00g x g >=,即()0f x >;方法对比:若直接求导,那么完全处理掉对数经常需要二次求导,而方法二提出()2x +之后对数单独存在,一次求导就可消掉对数(2) 方法一:极大值点的第二充要条件:已知函数y =()f x 在0x x =处各阶导数都存在且连续,0x x =是函数的极大值点的一个充要条件为前21n -阶导数等于0,第2n 阶导数小于0()()()22ln 12f x x ax x x =+++-()()()21'21ln 111ax f x ax x x +∴=+++-+,()'00f ∴=()()()2234''2ln 11ax ax xf x a x x ++∴=+++,()''00f ∴=()()232661'''1ax ax x a f x x +-++∴=+0x =是()f x 的极大值点,()'''0610f a ∴=+=,16a ∴=-,下证:当16a =-时,0x =是()f x 的极大值点,()()()3163'''1x x f x x -+=+,所以()''f x 在()1,0-单增,在()0,+∞单减 进而有()()''''00f x f ≤=,从而()'f x 在()1,-+∞单减,当()1,0x ∈-时,()()''00f x f >=,当()0,x ∈+∞时,()()''00f x f <= 从而()f x 在()1,0-单增,在()0,+∞单减,所以0x =是()f x 的极大值点.方法二: 0x =是()f x 的极大值点,所以存在0δ>,使得在()(),00,δδ- ,()()00f x f <=,即()()22ln 120x ax x x +++-<当()0,x δ∈时,()ln 10x +>,故()()()()2222ln 122ln 1ln 1xx x x x x a x x x +--+-++<=+,当(),0x δ∈-时,()ln 10x +<,故()()()222ln 1ln 1x x x a x x -++>+即()()()()()()()()()()()22000022ln 11ln 1limlimln 121ln 11ln 111lim lim 42642ln 144ln 141x x x x x x x x x x a x x x x x x x x x x x x x x →→→→-++-++==++++--++===-++++++++(洛必达法则,极限思想)【考点】导数的应用(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. 选修44-:坐标系与参数方程(10分)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于,A B 两点.(1) 求α的取值范围;(2) 求AB 中点P 的轨迹的参数方程.【答案】(1)3,44ππα⎛⎫∈ ⎪⎝⎭;(2)23,,44222x y αππαα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=-⎪⎩【解析】(1)当2πα=时,直线:0l x =,符合题意;当2πα≠时,设直线:l y kx =-1d =<,即()(),11,k ∈-∞-+∞ ,又tan k α=,3,,4224ππππα⎛⎫⎛⎫∴∈ ⎪ ⎪⎝⎭⎝⎭综上,3,44ππα⎛⎫∈ ⎪⎝⎭(2)可设直线参数方程为cos 3,44sin x t y t αππαα=⎧⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪=+⎝⎭⎪⎝⎭⎩,代入圆的方程可得:2sin 10t α-+=122P t t t α+∴==cos 3,44sin x y ααππααα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=+⎪⎩即点P的轨迹的参数方程为23sin 2,,244x y ππααα⎧⎛⎫=⎪⎛⎫∈⎨⎪ ⎪⎝⎭⎝⎭⎪=⎩(也可以设直线的普通方程联立去做,但是要注意讨论斜率不存在的情况) 【考点】参数方程、直线的斜率,轨迹方程23. 选修45-:不等式选讲(10分)已知函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值. 【答案】(1)见解析;(2)5【解析】(1)()13,212,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤≤⎨⎪>⎪⎪⎩,图象如下(2)由题意得,当0x ≥时,ax b +的图象始终在()f x 图象的上方,结合(1)中图象可知,3,2a b ≥≥,当3,2a b ==时,a b +最小,最小值为5, 【考点】零点分段求解析式、用函数图象解决恒成立问题xy21.531-0.5O。

(河北省衡水金卷一模)2018届高三毕业班模拟演练数学(理)(附答案)

(河北省衡水金卷一模)2018届高三毕业班模拟演练数学(理)(附答案)

(河北省衡水金卷一模)2018届高三毕业班模拟演练数学(理)(附答案)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第I卷(选择题)一、单选题1.已知集合,,则()A. B. C. D.2.已知,为虚数单位,若复数为纯虚数,则的值为()A. B. 2 C. -2 D. 03.已知等比数列中,,,则()A. B. -8 C. 8 D. 164.如图的折线图是某公司2017年1月至12月份的收入与支出数据.若从这12个月份中任意选3个月的数据进行分析,则这3个月中至少有一个月利润(利润=收入-支出)不低于40万的概率为()A. B. C. D.5.我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,上广二丈,袤三丈,下广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),上底宽2丈,长3丈;下底宽3丈,长4丈;高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,再次相加,再乘以高,最后除以6.则这个问题中的刍童的体积为()A. 13.25立方丈B. 26.5立方丈C. 53立方丈D. 106立方丈6.已知偶函数在区间上单调递增,且,,,则满足()A. B.C. D.7.某几何体的正视图与侧视图如图所示,则它的俯视图不可能是()A. B. C. D.8.若运行如图所示的程序框图,输出的的值为127,则输入的正整数的所有可能取值的个数为( )A. 8B. 3C. 2D. 19.已知点分别在正方形的边上运动,且,设,,若,则的最大值为( )A. 2B. 4C.D.10.已知函数,将的图象向右平移个单位,所得函数的部分图象如图所示,则的值为( )A. B. C. D.11.若函数满足:①的图象是中心对称图形;②若时,图象上的点到其对称中心的距离不超过一个正数,则称是区间上的“对称函数”.若函数是区间上的“对称函数”,则实数的取值范围是()A. B. C. D.12.已知双曲线的左、右焦点分别为,点是双曲线上的任意一点,过点作双曲线的两条渐近线的平行线,分别与两条渐近线交于两点,若四边形(为坐标原点)的面积为,且,则点的横坐标的取值范围为()A. B.C. D.第II卷(非选择题)二、填空题13.已知,则__________.14.已知抛物线的焦点坐标为,则抛物线与直线所围成的封闭图形的面积为__________.15.已知实数满足不等式组则目标函数的最大值与最小值之和为__________.16.在中,为的中点,与互为余角,,,则的值为__________.三、解答题17.已知数列的前项和恰好与的展开式中含项的系数相等.(1)求数列的通项公式;(2)记,数列的前项和为,求.18.在矩形中,,,点是线段上靠近点的一个三等分点,点是线段上的一个动点,且.如图,将沿折起至,使得平面平面.(1)当时,求证:;(2)是否存在,使得与平面所成的角的正弦值为?若存在,求出的值;若不存在,请说明理由.19.春节过后,某市教育局从全市高中生中抽去了100人,调查了他们的压岁钱收入情况,按照金额(单位:百元)分成了以下几组:,,,,,.统计结果如下表所示:该市高中生压岁钱收入可以认为服从正态分布,用样本平均数(每组数据取区间的中点值)作为的估计值.(1)求样本平均数;(2)求;(3)某文化公司赞助了市教育局的这次社会调查活动,并针对该市的高中生制定了赠送“读书卡”的活动,赠送方式为:压岁钱低于的获赠两次读书卡,压岁钱不低于的获赠一次读书卡.已知每次赠送的读书卡张数及对应的概率如下表所示:现从该市高中生中随机抽取一人,记(单位:张)为该名高中生获赠的读书卡的张数,求的分布列及数学期望.参考数据:若,则,.20.已知椭圆的上顶点为点,右焦点为.延长交椭圆于点,且满足.(1)试求椭圆的标准方程;(2)过点作与轴不重合的直线和椭圆交于两点,设椭圆的左顶点为点,且直线分别与直线交于两点,记直线的斜率分别为,则与之积是否为定值?若是,求出该定值;若不是,试说明理由.21.已知函数.(1)若函数恰有一个零点,求实数的取值范围;(2)设关于的方程的两个不等实根,求证:(其中为自然对数的底数).22.选修4-4:坐标系与参数方程在平面直角坐标系中,已知圆的参数方程为(为参数,).以原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程是.(1)若直线与圆有公共点,试求实数的取值范围;(2)当时,过点且与直线平行的直线交圆于两点,求的值23.选修4-5:不等式选讲已知函数.(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范数学(理)答案1.A【解析】集合集合,则,故选A.点睛:(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2.B【解析】复数为纯虚数,则,解得x=2,故选B.3.C【解析】由题意可得, ,又同号,所以,则,故选C.4.D【解析】由图知,7月,8月,11月的利润不低于40万元,故所求概率为,故选D.5.B【解析】分析:根据题意,把有关数据代入公式,即可求出刍童的体积.详解:由算法可知,刍童的体积,立方长,\故选:B点睛:本题解题的关键是理解题意,利用题目提供的各个数据代入公式即可.6.D【解析】,故, 又,故,故选D.7.C【解析】若几何体为两个圆锥体的组合体,则俯视图为A;若几何体为四棱锥与圆锥的组合体,则俯视图为B;若几何体为两个四棱锥的组合体,则俯视图为D;不可能为C,故选C.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.8.B【解析】令,可得n=7,故输入n=7符合,当输入的n满足n>7时,输出的结果总是大于127,不合题意,当输入n=6,5,4时,输出的n值分别为,均不合题意,当输入n=3或n=2时,输出的n=127符合题意,当输入n=1时,将进入死循环不符,故输入的所有的n的可能取值为2,3,7,共3个,故选B.点睛:本题考查程序框图的应用,属于中档题.算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9.C【解析】,又因为,,当且仅当x=y时取等号,,即的最大值为,故选C.10.A【解析】由题意得=,则,由图知,则,由,得,解得的值为,故选A.11.A【解析】函数的图象可由的图象向左平移1个单位,再向上平移m个单位得到,故函数f(x)的图象关于点A(-1,m)对称,如图所示,由图可知,当时,点A到函数f(x)图象上的点(-4,m-27)或(2,m+27)的距离最大,最大距离为,根据条件只需,故,应选A.12.A【解析】由题易知四边形PAOB为平行四边形,且不妨设双曲线C的渐近线,设点P(m,n),则直线PB的方程为y-n=b(x-m),且点P到OB的距离为,由,解得,又,又,,双曲线C的方程为,即,又,解得或,所以点P的横坐标m的取值范围为,故选A.13.【解析】=,故填.14.【解析】抛物线的标准方程为,由得或,图形面积,故填.15.【解析】令t=2x,则x=,原可行域等价于,作出可行域如图所示,经计算得的几何意义是点P(t,y)到原点O的距离d的平方,由图可知,当点P与点C重合时,d取最大值;d的最小值为点O到直线AB:t-y-1=0的距离,故,所以的最大值与最小值之和为,故填.点睛: 应用利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值16.或【解析】设,则由+可知,为的中点,,即,由正弦定理得或,当A=B时,AC=BC, ,当时,,在△ACD中,,综上可得,的值为或.17.(1) (2)【解析】试题分析:(1)根据数列的前项和等于展开式中含项的系数,以及的关系,求出数列的通项公式;(2)由(1)求出,根据裂项相消法得出结果.试题解析:(1)依题意得,故当时,,又当时,,也适合上式,故.(2)由(1)得,故.18.(1)见解析(2)【解析】试题分析: (1) 当时,点是的中点,由已知证出,根据面面垂直的性质定理证得平面,进而证得结论;(2) 以为原点,的方向为轴,轴的正方向建立如图所示空间直角坐标系.写出各点坐标,求出平面的法向量,根据线面角的公式求出结果.试题解析:(1)当时,点是的中点.∴,.∵,∴∵,,,∴.∴.又平面平面,平面平面,平面,∴平面.∵平面,∴.(2)以为原点,的方向为轴,轴的正方向建立如图所示空间直角坐标系.则,,.取的中点,∵,∴,∴ 易证得平面,∵,∴,∴.∴,,.设平面的一个法向量为,则令,则.设与平面所成的角为,则,解得或(舍去)∴存在实数,使得与平面所成的角的正弦值为,此时.19.(1)68.5(2)0.8185(3)【解析】试题分析:(1)根据表中数据以及平均数公式代入计算即可;(2) 由(1)得的值,根据概率的计算公式计算即可;(3) 的所有可能取值为1,2,3,4,分别求出概率写出分布列,并求出期望即可.试题解析:(1),(2)由(1)得,.∴.(3)易知.∴的所有可能取值为1,2,3,4.;;;.∴的分布列为∴.20.(1) (2) 与之积为定值,且该定值是【解析】试题分析:(1),可得,将坐标代入求出点E,代入椭圆方程,结合焦点坐标可得椭圆方程;(2) 设,,设出直线AB的方程,与椭圆方程联立,消去y得到关于x的一元二次方程并写出韦达定理,根据三点共线得出M,N的坐标,求出与之积得出定值.试题解析:(1)椭圆的上顶点为,右焦点,点的坐标为.∵,可得,又,,∴代入可得,又,解得,,即椭圆的标准方程为.(2)设,,,,.由题意可设直线的方程为,联立消去,得,∴根据三点共线,可得,∴.同理可得,∴的坐标分别为,,∴.∴与之积为定值,且该定值是.点睛: 本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.21.(1) (2)见解析【解析】试题分析:(1)求出函数的定义域和导函数,对参数m进行讨论得出函数的单调性,根据零点存在性定理判断零点的个数,求出m的取值范围;(2) 记函数,,则函数的两个相异零点为,将零点代入写出方程,并对两式相加和相减,再利用分析法以及变量集中构造新函数,并利用导数求最值的方法证得命题成立.试题解析(1)由题意知的定义域为,且.①当时,,在区间上单调递增,又,,∴,即函数在区间有唯一零点;②当时,,令,得.又易知函数在区间上单调递增,∴恰有一个零点.③当时,令,得,在区间上,,函数单调递增;在区间上,,函数单调递减,故当时,取得极大值,且极大值为,无极小值.若恰有一个零点,则,解得,综上所述,实数的取值范围为.(2)记函数,,则函数的两个相异零点为不妨设,∵,,∴,,两式相减得,两式相加得.∵,∴要证,即证,只需证,只需证,即证,设,则上式转化为,设,∴在区间上单调递增,∴,∴,即,即.点睛:本题考查函数的应用,利用导数解决函数的零点以及函数的单调性,最值和不等式的证明等问题. 本题也考查了零点存在性定理的应用,如果函数在区间[a,b]上的图象是连续不断的一条曲线,并且有,那么函数在区间[a,b]内有零点,即存在,使得,这个c也就是方程的实数根.但是反之不一定成立.22.(1) (2)【解析】试题分析:(1)根据极坐标与普通方程的互化公式求出直线的直角坐标方程,消参得出圆的普通方程, 直线与圆有公共点,则圆心到直线的距离,即可求出范围;(2)将直线的参数方程代入曲线方程,根据t的几何意义求值即可.试题解析:(1)由,得,即,故直线的直角坐标方程为.由得所以圆的普通方程为.若直线与圆有公共点,则圆心到直线的距离,即,故实数的取值范围为.(2)因为直线的倾斜角为,且过点,所以直线的参数方程为(为参数),①圆的方程为,②联立①②,得,设两点对应的参数分别为,则,,故.23.(1)(2)【解析】分析:(1)讨论x的取值范围,把不等式转化为三个不等式组,分别求解集,最后取并集;(2)对于任意的,都存在,使得成立即的值域为值域的子集.详解:(1)依题意,得由,得或或解得.即不等式的解集为.(2)由(1)知,,,则,解得,即实数的取值范围为.点睛:|x-a|+|x-b|≥c(或≤c)(c>0),|x-a|-|x-b|≤c(或≤c)(c>0)型不等式的解法可通过零点分区间法或利用绝对值的几何意义进行求解.(1)零点分区间法的一般步骤①令每个绝对值符号的代数式为零,并求出相应的根;②将这些根按从小到大排列,把实数集分为若干个区间;③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;④取各个不等式解集的并集就是原不等式的解集.(2)利用绝对值的几何意义由于|x-a|+|x-b|与|x-a|-|x-b|分别表示数轴上与x对应的点到a,b对应的点的距离之和与距离之差,因此对形如|x-a|+|x-b|≤c(c>0)或|x-a|-|x-b|≥c(c>0)的不等式,利用绝对值的几何意义求解更直观。

衡水金卷2018届全国高三大联考理科试卷及答案

衡水金卷2018届全国高三大联考理科试卷及答案

衡水金卷2018届全国三大联考理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分。

考试时间120分钟。

注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卡相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|540}M x x x =-+≤,{|24}xN x =>,则 ( ) A .{|24}M N x x =<<I B .M N R =U C .{|24}M N x x =<≤ID .{|2}M N x x =>U2. 记复数z 的虚部为Im()z ,已知复数5221iz i i =--(i 为虚数单位),则Im()z 为( ) A .2 B .-3 C .3i - D .33. 已知曲线32()3f x x =在点(1,(1))f 处的切线的倾斜角为α,则222sin cos 2sin cos cos ααααα-=+( ) A .12 B .2 C .35 D . 38- 4. 2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚8克圆形金质纪念币,直径22mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( ) A .27265mm π B .236310mm π C.23635mm π D .236320mm π5. 已知双曲线C :22221(0,0)x y a b a b-=>>的渐近线经过圆E :22240x y x y +-+=的圆心,则双曲线C 的离心率为( )A .5B .5C.2 D .2 6. 已知数列{}n a 为等比数列,且2234764a a a a =-=-,则46tan()3a a π⋅=( ) A .3- B .3 C.3± D .3- 7. 执行如图的程序框图,若输出的S 的值为-10,则①中应填( )A .19?n <B .18?n ≥ C. 19?n ≥ D .20?n ≥8.已知函数()f x 为R 内的奇函数,且当0x ≥时,2()1cos f x e m x =-++,记2(2)a f =--,(1)b f =--,3(3)c f =,则a ,b ,c 间的大小关系是( )A .b a c <<B .a c b << C.c b a << D .c a b <<9. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为( )A .23π+ B .12π+ C.26π+ D .23π+ 10. 已知函数()2sin()(0,[,])2f x x πωϕωϕπ=+<∈的部分图象如图所示,其中5||2MN =.记命题p :5()2sin()36f x x ππ=+,命题q :将()f x 的图象向右平移6π个单位,得到函数22sin()33y x ππ=+的图象.则以下判断正确的是( )A.p q ∧为真B.p q ∨为假C.()p q ⌝∨为真D.()p q ∧⌝为真11. 抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM ∆的周长为 ( )A .712612+ B .926+ C. 910+ D .832612+ 12.已知数列{}n a 与{}n b 的前n 项和分别为n S ,n T ,且0n a >,2*63,n n S a a n N =+∈,12(21)(21)nn n a n a a b +=--,若*,n n N k T ∀∈>恒成立,则k 的最小值是( ) A .71 B .149 C. 49 D .8441第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每题5分.13.已知在ABC ∆中,||||BC AB CB =-u u u r u u u r u u u r ,(1,2)AB =u u u r,若边AB 的中点D 的坐标为(3,1),点C 的坐标为(,2)t ,则t = . 14. 已知*1()()2nx n N x-∈的展开式中所有项的二项式系数之和、系数之和分别为p ,q ,则64p q +的最小值为 .15. 已知x ,y 满足3,,60,x y t x y π+≤⎧⎪⎪≥⎨⎪≥⎪⎩其中2t π>,若sin()x y +的最大值与最小值分别为1,12,则实数t 的取值范围为 .16.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao ).已知在鳖臑M ABC -中,MA ⊥平面ABC ,2MA AB BC ===,则该鳖臑的外接球与内切球的表面积之和为 .三、解答题 :解答应写出文字说明、证明过程或演算步骤.17. 已知函数21()cos 3sin()cos()2f x x x x ππ=+-+-,x R ∈. (Ⅰ)求函数()f x 的最小正周期及其图象的对称轴方程;(Ⅱ)在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,已知()1f A =-,3a =,sin sin b C a A =,求ABC ∆的面积.18. 如图,在四棱锥E ABCD -中,底面ABCD 为直角梯形,其中//,CD AB BC AB ⊥,侧面ABE ⊥平面ABCD ,且222AB AE BE BC CD =====,动点F 在棱AE 上,且EF FA λ=. (1)试探究λ的值,使//CE 平面BDF ,并给予证明; (2)当1λ=时,求直线CE 与平面BDF 所成的角的正弦值.19. 如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在A 市的普及情况,A 市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为A 市使用网络外卖的情况与性别有关? (Ⅱ)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠卷,求选出的3人中至少有2人经常使用网络外卖的概率②将频率视为概率,从A 市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为X ,求X 的数学期望和方差.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥0.050 0.010 0.001 0k3.8416.63510.82820. 已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为点1F ,2F ,其离心率为12,短轴长为23(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点1F 的直线1l 与椭圆C 交于M ,N 两点,过点2F 的直线2l 与椭圆C 交于P ,Q 两点,且12//l l ,证明:四边形MNPQ 不可能是菱形.21. 已知函数,()(1)(,)x f x e a x b a b R =-+-∈其中e 为自然对数的底数. (Ⅰ)讨论函数()f x 的单调性及极值;(Ⅱ)若不等式()0f x ≥在x R ∈内恒成立,求证:(1)324b a +<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 的参数方程为cos ,sin x t y αα=⎧⎨=⎩(0t >,α为参数).以坐标原点O 为极点,x轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线lsin()34πθ+=.(Ⅰ)当1t =时,求曲线C 上的点到直线l 的距离的最大值; (Ⅱ)若曲线C 上的所有点都在直线l 的下方,求实数t 的取值范围.23.选修4-5:不等式选讲 已知函数()21|1|f x x x =-++. (Ⅰ)解不等式()3f x ≤;(Ⅱ)记函数()()|1|g x f x x =++的值域为M ,若t M ∈,证明:2313t t t+≥+.衡水金卷2018届全国高三大联考理科参考答案及评分细则一、选择题1-5: CBCBA 6-10:ACDAD 11、12:BB二、填空题13. 1 14. 16 15. 57[,]66ππ16. 2482ππ- 三、解答题17. 解:(1)原式可化为,21()cos 3sin cos 2f x x x =--,1cos 231sin 222x x +=--, sin(2)sin(2)66x x ππ=-=--, 故其最小正周期22T ππ==,令2()62x k k Z πππ-=+∈,解得()23k x k Z ππ=+∈,即函数()f x 图象的对称轴方程为,()23k x k Z ππ=+∈. (2)由(1),知()sin(2)6f x x π=--,因为02A π<<,所以52666A πππ-<-<.又()sin(2)16f A A π=--=-,故得262A ππ-=,解得3A π=.由正弦定理及sin sin b C a A =,得29bc a ==. 故193sin 2ABC S bc A ∆==. 18.(1)当12λ=时,//CE 平面BDF . 证明如下:连接AC 交BD 于点G ,连接GF . ∵//,2CD AB AB CD =,∴12CG CD GA AB ==. ∵12EF FA =,∴12EF CG FA GA ==.∴//GF CE .又∵CE ⊄平面BDF ,GF ⊂平面BDF , ∴//CE 平面BDF .(2)取AB 的中点O ,连接EO . 则EO AB ⊥.∵平面ABE ⊥平面ABCD ,平面ABE I 平面ABCD AB =,且EO AB ⊥, ∴EO ⊥平面ABCD .∵//BO CD ,且1BO CD ==,∴四边形BODC 为平行四边形,∴//BC DO . 又∵BC AB ⊥,∴//AB DO .由,,OA OD OE 两两垂直,建立如图所示的空间直角坐标系Oxyz .则(0,0,0)O ,(0,1,0)A ,(0,1,0)B -,(1,0,0)D ,(1,1,0)C -,3)E .当1λ=时,有EF FA =u u u r u u u r,∴可得13(0,)2F . ∴(1,1,0)BD =u u u r ,(3)CE =-u u u r ,33(1,,22BF =u u u r . 设平面BDF 的一个法向量为(,,)n x y z =r,则有0,0,n BD n BF ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r 即0,330,22x y y z +=⎧⎪⎨+=⎪⎩ 令3z =,得1y =-,1x =.即(1,1,3)n =-r.设CE 与平面BDF 所成的角为θ,则sin |cos |CE n θ=<⋅>=u u u r r 1555=⨯. ∴当1λ=时,直线CE 与平面BDF 所成的角的正弦值为15. 19.解:(1)由列联表可知2K 的观测值,2()()()()()n ad bc k a b c d a c b d -=++++2200(50405060) 2.020 2.07211090100100⨯-⨯=≈<⨯⨯⨯.所以不能在犯错误的概率不超过0.15的前提下认为A 市使用网络外卖情况与性别有关. (2)①依题意,可知所抽取的5名女网民中,经常使用网络外卖的有6053100⨯=(人), 偶尔或不用网络外卖的有4052100⨯=(人). 则选出的3人中至少有2人经常使用网络外卖的概率为2133233355710C C C P C C =+=. ②由22⨯列联表,可知抽到经常使用网络外卖的网民的频率为1101120020=, 将频率视为概率,即从A 市市民中任意抽取1人, 恰好抽到经常使用网络外卖的市民的概率为1120. 由题意得11~(10,)20X B , 所以1111()10202E X =⨯=; 11999()10202040D X =⨯⨯=.20. 解:(1)由已知,得12c a =,3b =,又222c a b =-,故解得224,3a b ==,所以椭圆C 的标准方程为22143x y +=. (2)由(1),知1(1,0)F -,如图,易知直线MN 不能平行于x 轴. 所以令直线MN 的方程为1x my =-,11(,)M x y ,22(,)N x y .联立方程2234120,1,x y x my ⎧+-=⎨=-⎩,得22(34)690m y my +--=, 所以122634m y y m +=+,122934y y m -=+. 此时221212(1)[()]MN m y y y y =++- 同理,令直线PQ 的方程为1x my =+,33(,)P x y ,44(,)Q x y ,此时342634m y y m -+=+,342934y y m -=+, 此时223434(1)[()4]PQ m y y y y =++-. 故||||MN PQ =.所以四边形MNPQ 是平行四边形.若MNPQ Y 是菱形,则OM ON ⊥,即0OM ON ⋅=u u u u r u u u r,于是有12120x x y y +=.又1212(1)(1)x x my my =--,21212()1m y y m y y =-++,所以有21212(1)()10m y y m y y +-++=,整理得到22125034m m --=+, 即21250m +=,上述关于m 的方程显然没有实数解,故四边形MNPQ 不可能是菱形.21.解:(1)由题意得'()(1)xf x e a =-+.当10a +≤,即1a ≤-时,'()0f x >,()f x 在R 内单调递增,没有极值. 当10a +>,即1a >-, 令'()0f x =,得ln(1)x a =+,当ln(1)x a <+时,'()0f x <,()f x 单调递减; 当ln(1)x a >+时,'()0f x >,()f x 单调递增,故当ln(1)x a =+时,()f x 取得最小值(ln(1))1(1)ln(1)f a a b a a +=+--++,无极大值. 综上所述,当1a ≤-时,()f x 在R 内单调递增,没有极值;当1a >-时,()f x 在区间(,ln(1))a -∞+内单调递减,在区间(ln(1),)a ++∞内单调递增,()f x 的极小值为1(1)ln(1)a b a a +--++,无极大值.(2)由(1),知当1a ≤-时,()f x 在R 内单调递增,当1a =-时,(1)3024b a +=<成立. 当1a <-时,令c 为1-和11ba -+中较小的数,所以1c ≤-,且11bc a-≤+.则1x e e -≤,(1)(1)a c b -+≤--+.所以1()(1)(1)0xf c e a c b e b b -=-+-≤---<,与()0f x ≥恒成立矛盾,应舍去.当1a >-时,min ()(ln(1))f x f a =+=1(1)ln(1)0a b a a +--++≥, 即1(1)ln(1)a a a b +-++≥,所以22(1)(1)(1)ln(1)a b a a a +≤+-++. 令22()ln (0)g x x x x x =->,则'()(12ln )g x x x =-.令'()0g x >,得0x <<令'()0g x <,得x >故()g x在区间内单调递增,在区间)+∞内单调递减.故max ()2eg x g e e ==-=,即当11a a +=⇒=时,max ()2e g x =. 所以22(1)(1)(1)ln(1)2e a b a a a +≤+-++≤. 所以(1)24b a e+≤. 而3e <, 所以(1)324b a +<. 22.解:(1)直线l 的直角坐标方程为30x y +-=. 曲线C 上的点到直线l 的距离,d ==|)3|πα+-当sin()14πα+=-时,max 22d +==, 即曲线C 上的点到直线l的距离的最大值为22+.(2)∵曲线C 上的所有点均在直线l 的下方, ∴对R α∀∈,有cos sin 30t αα+-<恒成立, 即21cos()3t αϕ+-<(其中1tan tϕ=)恒成立, ∴213t +<.又0t >,∴解得022t <<, ∴实数t 的取值范围为(0,22).23.解:(1)依题意,得3,1,1()2,1,213,,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩于是得1,()333,x f x x ≤-⎧≤⇔⎨-≤⎩或11,223,x x ⎧-<<⎪⎨⎪-≤⎩或1,233,x x ⎧≥⎪⎨⎪≤⎩ 解得11x -≤≤.即不等式()3f x ≤的解集为{|11}x x -≤≤.(2)()()|1|g x f x x =++=|21||22|x x -++≥|2122|3x x ---=, 当且仅当(21)(22)0x x -+≤时,取等号, ∴[3,)M =+∞.原不等式等价于2331t t t-+-, 22233(3)(1)t t t t t t t-+--+==.∵t M ∈,∴30t -≥,210t +>.∴2(3)(1)0t t t-+≥. ∴2313t t t+≥+.。

衡水金卷2018届全国高三大联考理科数学试题含答案

衡水金卷2018届全国高三大联考理科数学试题含答案

金卷 2018 届全国高三大联考理科第Ⅰ卷一、选择题:本大题共 12 个小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则 ( )A.B.C.D.【答案】C【解析】.所以,.故选 C.2. 记复数的虚部为,已知复数(为虚数单位),则 为( )A. 2 B. -3 C. D. 3【答案】B【解析】.故的虚部为-3,即.故选 B.3. 已知曲线在点处的切线的倾斜角为,则( )A. B. 2 C. D.【答案】C【解析】由,得,故.故选 C.4. 2017 年 8 月 1 日是中国人民解放军建军 90 周年,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚 8 克圆形金质纪念币,直径 22mm,面额 100 元.为了测算图中军旗部分的面积,现用 1 粒芝麻向硬币投掷 100 次,其中恰有 30 次落在军旗,据此可估计军旗的面积大约是( )A. B. C. D. 【答案】B 【解析】根据题意,可估计军旗的面积大约是. 故选 B.5. 已知双曲线 :的渐近线经过圆 :的圆心,则双曲线 的离心率为( )A.B.C. 2 D.【答案】A【解析】圆 :的圆心为 ,双曲线 的渐近线为 .依题意得 .故其离心率为.故选 A.6. 已知数列 为等比数列,且,则()A.B.C.D.【答案】A【解析】依题意,得,所以 .由 ,得 ,或 (由于 与 同号,故舍去).所以..故选 A.7. 执行如图的程序框图,若输出的 的值为-10,则①中应填()A.B.C.D.【答案】C【解析】由图,可知.故①中应填 .故选 C.8. 已知函数 为 的奇函数,且当 时,,记,, ,则 , , 间的大小关系是( )A.B.C.D.【答案】D【解析】根据题意得,令.则为 的偶函数,当 时,.所以 在 单调递减.又,,.故 ,选 D.9. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为( )A.B.C.D.【答案】A 【解析】由三视图可知该几何体是一个半圆柱与一个地面是等腰直角三角形的三棱锥构成的组合体,故其体积.故选 A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.10. 已知函数的部分图象如图所示,其中 .记命题 :,命题 :将 的图象向右平移 个单位,得到函数的图象.则以下判断正确的是()A. 为真 B. 为假 C.为真 D.为真【答案】D【解析】由 ,可得 因为 ,所以.解得 . ,故 为真命题;将 图象所有点向右平移 个单位,.............................. 所以 为假, 为真,为假,为真.故选 D.11. 抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线 的焦点为 ,一条平行于 轴的光线从点 射出,经过抛物线上的点 反射后,再经抛物线上的另一点 射出,则 的周长为 ( )A.B.C.D.【答案】B【解析】令 ,得 ,即 .由抛物线的光学性质可知 经过焦点 ,设直线 的方程为,代入 .消去 ,得.则 ,所以..将 代入 得 ,故 .故.故 的周长为.故选 B.点睛:抛物线的光学性质:从抛物线的焦点发出的光线或声波在经过抛物线周上反射后,反射光线平行于抛物线的对称轴.12. 已知数列 与 的前 项和分别为 , ,且 ,,,若恒成立,则 的最小值是( )A. B. C. 49 D.【答案】B【解析】当 时,,解得由 得 .由,得两式相减得.所以.因为 ,所以.或. .即数列 是以 3 为首项,3 为公差的等差数列,所以 .所以.所以.要使恒成立,只需 .故选 B.点睛:由 和 求通项公式的一般方法为.数列求和的常用方法有:公式法;分组求和;错位相减法;倒序相加法;裂项相消法;并项求和.第Ⅱ卷本卷包括必考题和选考题两部分.第 13~21 题为必考题,每个试题考生都必须作答.第 22~23 题为选考题,考生根据要求作答.二、填空题:本大题共 4 小题,每题 5 分.13. 已知在 中,,,若边 的中点 的坐标为 ,点 的坐标为 ,则 __________.【答案】1【解析】依题意,得,故 是以 为底边的等腰三角形,故,所以.所以 .14. 已知的展开式中所有项的二项式系数之和、系数之和分别为 , ,则 的最小值为__________.【答案】16【解析】显然 .令 ,得 .所以.当且仅当 .即 时,取等号,此时的最小值为 16.15. 已知 , 满足其中 ,若的最大值与最小值分别为 , ,则实数的取值围为__________. 【答案】 【解析】作出可行域如图所示(如图阴影部分所示)设 ,作出直线,当直线过点 时, 取得最小值 ;当直线过点 时, 取得最大值 .即,当 或 时,.当 时,.所以,解得.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.16. 在《九章算术》中,将四个面都为直角三角形的三棱锥 称之为鳖臑(bie nao).已知在鳖臑 中, 平面 ,,则该鳖臑的外接球与切球的表面积之和为 __________. 【答案】 【解析】设 的中点为 ,如图,由,且 为直角三角形,得.由等体积法,知.即,解得 .故该鳖臑的外接球与切球的表面积之和为.三、解答题 :解答应写出文字说明、证明过程或演算步骤.17. 已知函数,.(Ⅰ)求函数 的最小正周期及其图象的对称轴方程;(Ⅱ)在锐角 中,角 , , 的对边分别为 , , ,已知,,,求 的面积.【答案】(1)最小正周期,对称轴方程为;(2) .【解析】试题分析:(1)化简函数得,其最小正周期,令即可解得对称轴;(2)由,解得 ,由正弦定理及,得,利用即可得解.试题解析:(1)原式可化为,,,,故其最小正周期,令,解得,即函数 图象的对称轴方程为,.(2)由(1),知,因为 ,所以.又,故得,解得 .由正弦定理及,得.故.18. 如图,在四棱锥中,底面 为直角梯形,其中,侧面 平面 ,且,动点 在棱 上,且.(1)试探究 的值,使 平面 ,并给予证明;(2)当 时,求直线 与平面 所成的角的正弦值.【答案】(1)见解析;(2) .【解析】试题分析:(1)连接 交 于点 ,连接 通过证得 ,即可证得 平面 ;(2)取 的中点 ,连接 ,可得两两垂直,建立空间直角坐标系,设 与平面 所成的角为 ,则, 为平面 的一个法向量.试题解析:(1)当 时, 平面 .证明如下:连接 交 于点 ,连接 .∵,∴.∵,∴.∴.又∵ 平面 , 平面 ,∴ 平面 .(2)取 的中点 ,连接 .则.∵平面 平面 ,平面 平面,且,∴ 平面 .∵ ,且,∴四边形 为平行四边形,∴ .又∵,∴ .由两两垂直,建立如图所示的空间直角坐标系 .则,,,,,.当 时,有 ,∴可得 .∴,,.设平面 的一个法向量为,则有即令 ,得 , .即.设 与平面 所成的角为 ,则.∴当 时,直线 与平面 所成的角的正弦值为 .点睛:高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.19. 如今我们的互联网生活日益丰富,除了可以很方便地网 购,网上叫外卖也开始成为不少人日常生活中不可或缺的一 部分.为了解网络外卖在 市的普及情况, 市某调查机构借 助网络进行了关于网络外卖的问卷调查,并从参与调查的网 民中抽取了 200 人进行抽样分析,得到下表:(单位:人)(Ⅰ)根据以上数据,能否在犯错误的概率不超过 0.15 的前提下认为 市使用网络外卖的情况与性别有关?(Ⅱ)①现从所抽取的女网民中利用分层抽样的方法再抽取5 人,再从这 5 人中随机选出 3 人赠送外卖优惠卷,求选出的 3 人中至少有 2 人经常使用网络外卖的概率②将频率视为概率,从 市所有参与调查的网民中随机抽取10 人赠送礼品,记其中经常使用网络外卖的人数为 ,求 的数学期望和方差.参考公式:,其中.参考数据:【答案】(1)见解析;(2)① ,②见解析. 【解析】试题分析:(1)计算 的值,进而可查表下结论;(2)①由分层抽样的抽样比计算即可;②由 列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从 市市民中任意抽取 1 人,恰好抽到经常使用网络外卖的市民的概率为 ,由题意得.试题解析:(1)由列联表可知 的观测值,.所以不能在犯错误的概率不超过 0.15 的前提下认为 市使用网络外卖情况与性别有关.(2)①依题意,可知所抽取的 5 名女网民中,经常使用网络外卖的有(人),偶尔或不用网络外卖的有(人).则选出的 3 人中至少有 2 人经常使用网络外卖的概率为.②由 列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从 市市民中任意抽取 1 人,恰好抽到经常使用网络外卖的市民的概率为 .由题意得,所以;.20. 已知椭圆 :的左、右焦点分别为点 , ,其离心率为 ,短轴长为 .(Ⅰ)求椭圆 的标准方程;(Ⅱ)过点 的直线 与椭圆 交于 , 两点,过点 的直线与椭圆 交于 , 两点,且 ,证明:四边形 不可能是菱形.【答案】(1);(2)见解析.【解析】试题分析:(1)由 , 及,可得方程;(2)易知直线 不能平行于 轴,所以令直线 的方程为与椭圆联立得,令直线 的方程为,可得,进而由 是菱形,则,即,于是有由韦达定理代入知无解.试题解析:(1)由已知,得 , ,又,故解得,所以椭圆 的标准方程为.(2)由(1),知 ,如图,易知直线 不能平行于 轴.所以令直线 的方程为,,.联立方程,得,所以,.此时,同理,令直线 的方程为,,,此时,,此时.故.所以四边形 是平行四边形.若 是菱形,则,即,于是有.又,,所以有,整理得到,即,上述关于 的方程显然没有实数解,故四边形 不可能是菱形.21. 已知函数,其中 为自然对数的底数.(Ⅰ)讨论函数 的单调性及极值;(Ⅱ)若不等式 在 恒成立,求证: .【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)函数求导得,讨论和 演技单调性及极值即可;(2)当 时, 在 单调递增,可知 在 不恒成立,当 时,,即,所以.令,进而通过求导即可得最值.试题解析:(1)由题意得.当 ,即 时, , 在 单调递增,没有极值.当 ,即 ,令 ,得,当时, , 单调递减;当时, , 单调递增,故当时, 取得最小值,无极大值.综上所述,当 时, 在 单调递增,没有极值;当 时, 在区间单调递减,在区间单调递增, 的极小值为,无极大值.(2)由(1),知当 时, 在 单调递增,当 时,成立.当 时,令 为 和 中较小的数,所以 ,且 .则,.所以,与 恒成立矛盾,应舍去.当 时,,即,所以.令,则.令 ,得,令 ,得 ,故 在区间 单调递增,在区间 单调递减.故,即当时,.所以.所以 .而,所以 .点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若 就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若 恒成立;(3)若恒成立,可转化为请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修 4-4:坐标系与参数方程在平面直角坐标系 中,已知曲线 的参数方程为( , 为参数).以坐标原点 为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.(Ⅰ)当 时,求曲线 上的点到直线的距离的最大值;(Ⅱ)若曲线 上的所有点都在直线的下方,数的取值围.【答案】(1) ;(2) .【解析】试题分析:(1)将直线的极坐标方程化为普通方程,进而由圆的参数方程得曲线 上的点到直线的距离,,利用三角函数求最值即可;(2)曲线 上的所有点均在直线的下方,即为对 ,有恒成立,即(其中 )恒成立,进而得.试题解析:(1)直线的直角坐标方程为.曲线 上的点到直线的距离,,当时,,即曲线 上的点到直线的距离的最大值为 .(2)∵曲线 上的所有点均在直线的下方,∴对 ,有恒成立,即(其中 )恒成立,∴.又 ,∴解得,∴实数的取值围为 .23. 选修 4-5:不等式选讲已知函数.(Ⅰ)解不等式 ;(Ⅱ)记函数的值域为 ,若 ,证明:.【答案】(1);(2)见解析.【解析】试题分析:(1)分段去绝对值解不等式即可;(2)利用绝对值三角不等式得 ..用作差法比较大小得到,即可证得.试题解析:(1)依题意,得于是得或或解得.即不等式的解集为.(2),当且仅当时,取等号,∴.原不等式等价于,. ∵,∴,.∴.∴.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

衡水金卷2018年高三数学全国统考模拟试卷(三)理科附答案
2018年普通高等学校招生全国统一考试模拟试题
理数(三)
第Ⅰ卷
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知复数满足(为虚数单位),其共轭复数为,则为()A.B.C.D.
2.已知,(其中,,),则的值为()
A.B.
C.D.
3.已知集合,,若,则实数的取值范围为()A.B.C.D.
4.某高三学生进行考试心理素质测试,场景相同的条件下每次通过测试的概率为,则连续测试4次,至少有3
次通过的概率为()
A.B.C.D.
5.已知,,,,若,则的值为()
A.8B.9C.10D.11
6.已知椭圆的左顶点为,上顶点为,右焦点为,若,则椭圆的离心率为()
A.B.C.D.
7.将函数图像上的所有点向右平移个单位长度后得到函数的图像,若在区间上单调递增,则的最大值为()A.B.C.D.
8.如图是计算的程序框图,若输出的的值为,则判断框中应填入的条件是()
A.B.C.D.
9.朱世杰是历史上有名的数学家之一,他所著的《四元玉鉴》卷中“如像招数一五间”,有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日?”其大意为:“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始,每天派出的人数比前一天多7人,修筑堤坝的每人每天发大米3升,共发出大米40392升,问修筑堤坝多少天”,在这个问题中,第8天应发大米()
A.350升B.339升C.2024升D.2124升
10.已知三棱锥的三视图如图所示,则该三棱锥内切球的半径为()
A.B.C.D.
11.如图所示,在矩形中,,,为边的中点,现将绕直线翻转至处,若为线段的中点,则异面直线与所成角的正切值为()
A.B.2C.D.4
12.若函数图像上存在两个点,关于原点对称,则对称点为函数的“孪生点对”,且点对与可看作同一个“孪生点对”.若函数恰好有两个“孪生点对”,则实数的值为()
A.0B.2C.4D.6
第Ⅱ卷
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.的展开式中含项的系数为.
14.如图所示,在正方形中,点为边的中点,点为边上的靠近点的四等分点,点为边上的靠近点的三等分点,则向量用与表示为.
15.已知在等腰梯形中,,,,双曲线以,为焦点,且与线段,(包含端点,)分别有一个交点,则该双曲线的离心率的取值范围是.
16.已知数列满足,,若,则数列的前项和.
三、解答题(解答应写出文字说明、证明过程或演算步骤.)
17.在中,角,,的对边分别为,,,且,为边上一点,,.
(1)求的面积;
(2)若,求角的大小.
18.如图所示,在三棱锥中,平面平面,,,,.
(1)证明:平面;
(2)若二面角的平面角的大小为,求直线与平面所成角的正弦值.
19.某葡萄基地的种植专家发现,葡萄每株的收获量(单位:)和与它“相近”葡萄的株数具有线性相关关系(所谓两株作物“相近”是指它们的直线距离不超过),并分别记录了相近葡萄的株数为1,2,3,4,5,6,7时,该葡萄
每株收获量的相关数据如下:
123567
1513121097
(1)求该葡萄每株的收获量关于它“相近”葡萄的株数的线性回归方程及的方差;
(2)某葡萄专业种植户种植了1000株葡萄,每株“相近”的葡萄株数按2株计算,当年的葡萄价格按10元/投入市场,利用上述回归方程估算该专业户的经济收入为多少
万元;(精确到0.01)
(3)该葡萄基地在如图所示的正方形地块的每个格点(指
纵、横直线的交叉点)处都种了一株葡萄,其中每个小正方形的面积都为,现在所种葡萄中随机选取一株,求它的收获量的分布列与数学期望.(注:每株收获量以线性回归方程计算所得数据四舍五入后取的整数为依据)附:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计分别为,.
20.已知抛物线的焦点为,直线与抛物线交于,两点. (1)若直线过焦点,且与圆交于,(其中,在轴同侧)两点,求证:是定值;
(2)设抛物线在点和点处的切线交于点,试问在轴上是否存在点,使得四边形为菱形?若存在,求出此时直线的斜率和点的坐标;若不存在,请说明理由.
21.已知函数,.
(1)当时,求函数在点处的切线方程;
(2)当时,令函数,若函数在区间上有两个零点,求实数的取值范围.
请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.
22.选修4-4:坐标系与参数方程
在平面直角坐标系中,已知点(为参数).以为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.
(1)求点的轨迹的方程及直线的直角坐标方程;
(2)求曲线上的点到直线的距离的最大值.
23.选修4-5:不等式选讲
已知函数.
(1)在给出的平面直角坐标系中作出函数的图像;(2)记函数的最大值为,是否存在正数,,使,且,若存在,求出,的值,若不存在,说明理由.
试卷答案
一、选择题
1-5:CABAC6-10:DDBDB11、12:AA
二、填空题
13.1814.15.16.
三、解答题
17.解:(1)由,
可知,
即,
即.
因为在中,,所以,
所以.
(2)在中,由余弦定理,
可知

所以,所以,所以.
又由已知,得,
故角的大小为.
18.解:(1)在中,因为,,,
所以由余弦定理,可知

所以.故,即有.
又因为平面平面,且平面平面,平面,所以平面.又平面,所以.
又因为,,所以平面.
(2)过点作,垂足为,连接.
由(1),知平面,平面,
所以.又,所以平面,
因此即为直线与平面所成的角.
又由(1)的证明,可知平面,
又平面,平面,所以,,
故即为二面角的平面角,即.
故在中,由,得.
在中,,
且.
因此在中,得,
故直线与平面所成角的正弦值为.
19.解:(1)由题意,可知,
.


所以,
所以,
故该葡萄每株收获量关于它“相近”葡萄的株数的线性回归方程为.
的方差为
.
(2)由,可知当时,,
因此总收入为(万元).
(3)由题知,.
由(1)(2),知当时,,所以;
当时,,所以;
当时,,
即时,与之相对应的的值分别为13,12,11,
又,


所以在所种葡萄中随机选取一株,它的收获量的分布列为
.
20.解:由题知抛物线的焦点为,设,. 由,
则,且,.
(1)若直线过焦点,则,所以,.
由条件可知圆的圆心为,半径为1,
又由抛物线定义可知,,
故可得,,
所以.
故为定值1.
(2)假设存在点满足题意,设,
由,因此.
若四边形为菱形,则,,
则,,
则,,
则,所以,
此时直线的方程为,
所以,.
则抛物线在点处的切线为,①
同理,抛物线在点处的切线为,②
联立①②,得.
又线段的中点为,所以点.
即存在点,使得四边形为菱形,此时.
21.解:(1)当时,.
当时,,所以点为,
又,因此.
因此所求切线方程为.
(2)当时,,
则.
因为,所以当时,,
且当时,;当时,;
故在处取得极大值也即最大值.
又,,

则,所以在区间上的最小值为,
故在区间上有两个零点的条件是

所以实数的取值范围是.
22.解:(1)设点,所以,(为参数),
消去参数,得,
即点的轨迹的方程为
直线,
所以直线的直角坐标方程为.
(2)由(1),可知点的轨迹是圆心为,半径为1的圆,
则圆心到直线的距离为.
所以曲线上的点到直线的距离的最大值为.
23.解:(1)由于
.
作图如下:
(2)由图像可知,
当,,即得.
假设存在正数,,使,且,
因为

当且仅当时,取等号,
所以的最小值为4,与相矛盾,
故不存在正数,,使,且成立.。

相关文档
最新文档