大学物理第5章 角动量守恒定律 刚体的转动
大学物理角动量转动惯量及角动量的守恒定律

方向垂直于轴,其效果是改
变轴的方位,在定轴问题中,
第二项
与轴承约束力矩平衡。
M 2rF
方称为向力平对行于轴的轴矩,,其效表果为代是数改变量绕:轴M 转z 动 状r态,F
即: i j k
Mo rFx y z
Fx FyFz
i yFz zFy jzFxxFzk xFyyFx
Mz xFyyFx
由
rc
i
miri M
rc
i
miri M
ri m ivcM rc vc0
i
质心对自己的位矢
L r c m iv ir i m iv c r i m iv i
i
i
i
与 i 有关
第三项:
rimivi 各质点相对于质心角动量的矢量和
i
反映质点系绕质心的旋转运动,与参考点O的选择无关,
o ri
vi
mi
L io 大 方小 向 Lio : : rimiv沿 i miri2 即 L iomiri2
在轴上确定正方向,角速度 表示为代数量,则
定义质点对 z 轴的角动量为:
LizLiom iri2
刚体对 z 轴的总角动量为:
Lz Liz ri2mi
i
i
ri2mi
i
对质量连续分布的刚体:
02
3
4. 求质量 m ,半径 R 的均匀球体对直径的转动惯量
解:以距中心 r,厚 dr 的球壳
dr
R
r
o
为积分元
dV4r2dr
m
m
4 R3
3
dJ3 2dmr22m R3 4rdr
dm dV
J
R
dJ
刚体定轴转动的角动量定理和角动量守恒定律

刚体定轴转动的角动量定理和角动量守恒定律
1、刚体定轴转动的角动量
刚体绕定轴转动的角动量等于刚体对该轴的转动惯量与角速度的乘积;方向与角速度的方向相同。
2、刚体定轴转动的角动量定理
(1)微分形式:刚体绕某定轴转动时,作用于刚体的合外力矩,等于刚体绕该定轴的角动量随时间的变化率。
(2)积分形式:当物体绕某定轴转动时,作用在物体上的冲量矩等于角动量的增量。
3、刚体定轴转动的角动量守恒定律
如果物体所受的合外力矩等于零,或者不受外力矩作用,物体的角动量保持不变。
练习:1角动量守恒的条件是 。
0=M 11222
1ωωJ J Mdt t t -=⎰刚体 ) 21J J ==ωJ 恒量
ωJ L =()ωJ dt d dt dL M ==。
刚体动力学刚体的转动与角动量守恒定律

刚体动力学刚体的转动与角动量守恒定律刚体动力学——刚体的转动与角动量守恒定律刚体动力学是研究刚体运动的物理学分支,主要研究刚体的平动和转动。
在刚体的运动过程中,角动量的守恒定律是关键的一条定律,它在很多物理问题的求解中起着重要的作用。
一、刚体转动的基本概念刚体是指具有一定形状和大小的物体,在运动过程中保持其形状和大小不变的情况下,绕一个固定轴线进行旋转。
在刚体转动的过程中,存在着固定轴线上的角位移、角速度、角加速度等概念。
角位移表示刚体在转动过程中的角度变化,通常用符号θ表示;角速度表示单位时间内刚体转动的角度变化率,通常用符号ω表示;角加速度表示单位时间内角速度的变化率,通常用符号α表示。
二、刚体的转动与力矩刚体在转动过程中需受到外力的作用,这些外力可以将刚体带动产生转动现象。
力矩是刚体转动的重要力学量,它描述了力对于刚体转动的影响程度。
力矩的大小等于力乘以作用点到转轴的距离,用数学式表示为:τ = F × r其中τ表示力矩,F表示力的大小,r表示作用点到转轴的距离。
三、刚体的转动惯量与角动量刚体的转动惯量与角动量是刚体转动过程中的另外两个重要概念。
转动惯量描述了刚体对于转动的惯性程度,它的大小取决于刚体的质量分布和几何形状。
角动量描述了刚体在转动过程中的旋转性质,它等于刚体质量的转动惯量乘以角速度,用数学式表示为:L = I × ω其中L表示角动量,I表示转动惯量,ω表示角速度。
四、角动量守恒定律角动量守恒定律是刚体动力学中的一个基本定律,它表明在没有外力矩作用的情况下,刚体转动过程中的角动量保持不变。
如果一个刚体在初态时角动量为L1,在末态时角动量为L2,且没有外力矩作用,则有L1 = L2。
这一定律体现了一个自然规律,对于理解刚体的转动过程和求解相关物理问题具有重要意义。
五、应用案例角动量守恒定律可以应用于各种实际物理问题的求解中,例如刚体的转动稳定性、陀螺的运动等。
大学物理第5章刚体的定轴转动

d ctdt
对上式两边积分得
d c td t
0 0
t
1 2 ct 2
2 2 600π π 3 rad s 由给定条件, c 2 t 300 2 75
d π 2 由角速度的定义,则任意 t 时刻的角速度可写为: d t 150
得到: 转子转数:
A M d E K
a b
动能定理
动量定理
A F ds E K
动能定理 角动量定理 角动量 守恒
t 0Fdt P
t
动量守恒
F 0, P 0
t 0 M z dt Lz
t
M 0, L 0
§5.1 刚体、刚体运动
一、一般运动 二、刚体的定轴转动 三、解决刚体动力学问题的一般方法
基本方法: 加
质点系运动定理 刚体特性 平动:动量定理
刚体定轴转动的 动能定理 角动量定理
F mac
可以解决刚体的一般运动(平动加转动)
一、一般运动
1. 刚体 特殊的质点系, 形状和体积不变化 —— 理想化模型 在力作用下,组成物体的所有质点间的距离始终保持不变 2. 自由度 确定物体的位置所需要的独立坐标数 —— 物体的自由度数 z
刚体平面运动可看做刚体的平动与定轴转动的合成。 例如:车轮的滚动可以看成车轮随轮 轴的平动与绕轮轴的转动的组合。 描述刚体平面运动的自由度:3个
定点转动 刚体运动时,刚体上的一点固定不动,刚体绕过定点的一 瞬时转轴的转动,称作定点转动。
描述定点转动的自由度:3个
刚体的一般运动 质心的平动
+
绕质心的转动
z
描述刚体绕定轴转动的角量: 角坐标
大学物理 第五章.

时,
刚体定轴转动的 角动量守恒定律
35
§5.4 刚体的角动量定理及守恒定律
例5.6:如图,质量为M,半径为R的转台,可绕通过中心竖直轴
转动,阻力忽略不计,质量为m的人站在台的边缘,人和台原来都 静止,如果人沿转台的边缘绕行了一周,问相对地面转台转过了多 少角度?
解:把人和转台看做一个系统
系统的角动量守恒 规定:逆时针转动为正方向,以 地面为参考系。 设人的角速度为ω,转台的角速度为Ω。
或
A = ∫ Mdθ = Mθ
42
例5.9:一质量为m,长为 l的匀质杆,两端用绳悬挂杆处于水平 状态,现突然将杆右端的悬线剪断,求(1)此瞬间另一根绳受到 的张力 ;(2)剪断绳子之后任一时刻杆的角速度 ω与转过角度 θ之 间的关系。 解: (1)首先考虑杆绕O点的的转动 根据转动定律: T O
匀变速运动
6
§5.1 刚体及其定轴转动描述
例5.1:一汽车发动机的转速在5s内由200r(转)/min均匀地增加 到3000r(转)/min。(1)求在这段时间内的初角速度、末角速 度和角加速度;(2)求这段时间内转过的角度;(3)发动机轴 上装有一半径为R=0.15m的飞轮,求轮边缘上一点在这第5s末的 切向加速度、法向加速度和总加速度。
24
§5.3 刚体转动的功和能
回顾: 质点 质量 牛顿运动定律
M = Jβ
刚体 转动惯量 转动定律
力做功
力矩做功
25
§5.3 刚体转动的功和能
一、力矩的功
轴
dθ dr α r
α
F 在转动平面内
ω
元功: dA = F • dr = F dr cos α = F ( rdθ ) cos α F ( r cos α )dθ = Mdθ
大学物理2-1第5章

若质量离散分布:
(质点,质点系)
J i mi ri2
J r2 dm
若质量连续分布:
dm dl
其中: d m d s
d m dV
例题补充 求质量为m,半径为R 的均匀圆环的对中心 轴的转动惯量。 解: 设线密度为λ; d m d l
J R dm
2
2R
0
R dl
2
o
R
dm
R2 2R mR2
例题5-3 求质量为m、半径为R 的均匀薄圆盘对中心轴 的转动惯量。 解: 设面密度为σ。
取半径为 r 宽为d r 的薄圆环,
R
d m d s 2 r d r
J r d m r 2 2r 2 d r
2
3 3g 2L
2)由v r得: v A L
L 3 3 gL 3 3 gL vB 2 8 2
5.2 定轴转动刚体的功和能
一、刚体的动能 当刚体绕Oz轴作定轴转动时,刚体上各质元某一瞬时 均以相同的角速度绕该轴作圆周运动。
2 2 质元mi的动能 E ki mi v i mi ( i ri )2 mi ri 2
2)取C 点为坐标原点。 在距C 点为x 处取dm 。 说明
A
A
x dm
B
L
C
x
x
xd m B
L2
L2
2 mL x 2 d x 12
JC x 2 d m
L 2 L 2
1) 刚体的转动惯量是由刚体的总质量、质量分布、 转轴的位置三个因素共同决定; 2) 同一刚体对不同转轴的转动惯量不同, 凡提到转动惯量 必须指明它是对哪个轴的。
第五章 刚体的定轴转动

刚体定轴转动
ω
v 的方向按右手螺旋法则确定. 的方向按右手螺旋法则确定.
在定轴转动中, 在定轴转动中,角速度的方向 沿转轴方向. 沿转轴方向.
角加速度α 角加速度
v ω
2
ω dω d θ = = 2 α = lim t →0 t dt dt
单位: 单位:rad /s 2 角加速度也是矢量, 角加速度也是矢量,方向与角速度增量 的极限方向相同,在定轴转动中, 与 同向 的极限方向相同,在定轴转动中,α与ω同向 或反向. 或反向. 刚体的转动其转轴是可以改变的, 刚体的转动其转轴是可以改变的,为反映瞬时轴的方 向及其变化情况,引入角速度矢量和角加速度矢量. 向及其变化情况,引入角速度矢量和角加速度矢量. 注意 退化为代数量. :定轴转动时, ω,α退化为代数量. 定轴转动时, 退化为代数量
刚体的一般运动都可认为是平动和转动的结合. 刚体的一般运动都可认为是平动和转动的结合.
1. 用角量描述转动 (1) 角位移 θ : ) 时间内刚体转动角度. 在 t 时间内刚体转动角度. 单位: 单位:rad (2)角速度 ω : )
z θ
B A
θ dθ ω = lim = t →0 t dt
●
r2
转动惯量的定义: 转动惯量的定义:
J = ∑mi ri
2
对质量连续分布的刚体, 对质量连续分布的刚体,上式可写成积分形式
J = ∫ r dm
2
dm—质元的质量 质元的质量 r—质元到转轴的距离 质元到转轴的距离
线分布 dm = λdx 面分布 dm = σds 体分布 dm = ρdV
λ 是质量的线密度
F iz
ri = roi sinθ
大学物理第5章-角动量守恒定律-刚体的转动

第5章 角动量守恒定律 刚体的转动5-1 质点的动量守恒与角动量守恒的条件各是什么,质点动量与角动量能否同时守恒?試说明之。
答:质点的动量守恒的条件是:当0F =时,p mv ==恒矢量。
质点的角动量守恒的条件是:当0M =时,即000,F r θπ⎧=⎪⎪=⎨⎪=⎪⎩时,L =恒矢量。
可见,当0F =时,质点动量与角动量能同时守恒。
5-2 质点在有心力场中的运动具有什么性质?答:质点在有心力场中运动时,0,0F M ≠=,则角动量守恒,即:当0M =时,L =恒矢量。
又因为有心力是保守力,则机械能守恒,即:当0ex in nc A A +=时,K P E E E =+=恒量。
5-3 人造地球卫星是沿着一个椭圆轨道运行的,地心O 是这一轨道的一个焦点。
卫星经过近地点和远地点时的速率一样吗?卫星在近地点和远地点时的速率与地心到卫星的距离有什么关系?答:卫星经过近地点和远地点时的速率不一样,由角动量守恒定律得:a ab b r mv r mv = a b b av r v r ∴= 可见,速率与距离成反比。
5-4 作匀速圆周运动的质点,对于圆周上某一定点,它的角动量是否守恒?对于通过圆心而与圆面垂直的轴上的任意一点,它的角动量是否守恒?对于哪一个定点,它的角动量守恒?答:作匀速圆周运动的质点,对于圆周上某一定点,它的角动量不守恒;对于通过圆心而与圆面垂直的轴上的任意一点,它的角动量不守恒;对于圆心定点,它的角动量守恒。
5-5 以初速度0v 将质量为m 的小球斜上抛,抛射角为θ,小球运动过程中,相对于抛射点的角动量如何变化?小球运动到轨道最高点时,相对于抛射点的角动量为多少?答:取抛射点为坐标原点,取平面直角坐标系Oxy ,y 轴正方向向上,则质点的运动方程和速度表达式为:020cos 1sin 2x v ty v t gt θθ=⎫⎪⎬=-⎪⎭ , 00cos sin x y v v v v gt θθ=⎫⎬=-⎭ 对于抛射点的角动量:()()x y y x L r mv xi y j mv i mv j xmv k ymv k =⨯=+⨯+=- 将,,,x y x y v v 代入得:201cos 2L mgv t k θ=- 当小球到达最高点时,时刻为:0sin v t gθ=,代入上式得: 小球相对于抛射点的角动量为:320sin cos 2mv L k gθθ=-。
第五章刚体的转动

34 第五章 刚体的转动§5-1、刚体定轴转动定律【基本内容】一、刚体的运动1、平动刚体平动的特征:刚体中的任一条直线,在刚体运动过程中始终保持平行。
刚体平动的研究方法:刚体作平动时,刚体各质点的运动情况相同,视为质点处理。
2、定轴转动刚体转动的特征:刚体上各点都绕同一固定的直线作半径不同的圆周运动,该直线称为刚体的转轴。
描述刚体转动的物理量角位移θ∆角速度ω角加速度β刚体匀变速转动公式βθωωβωωβωθ221202020=-+=+=tt t 二、刚体所受的力矩力矩是描述力对物体作用时产生转动效应和改变转动状态的物理量。
F r M ⨯= 式中F为力在转动平面的投影,r为轴指向力的作用点。
结论1 力矩是矢量,对于定轴,力矩的方向在转轴上; 结论2 力经过转轴和力平行于转轴,则力对此轴的力矩为0。
三、刚体定轴转动定律定轴转动的刚体,所受的合外力矩等于刚体的转动惯量与角加速度的乘积,即βJ M =四、转动惯量35定义:对于质点系∑=iii rm J 2对于刚体⎰=dm r J 2线分布:λλ,dx dm =是质量线密度。
面分布:σσ,dS dm =是质量面密度。
体分布:ρρ,dV dm =是质量体密度。
决定转动惯量的三个因素:刚体的质量、质量分布及转轴的位置。
【典型题例】【例5-1】 一轻绳跨过一定滑轮,滑轮可视为匀质圆盘,质量为m ,半径为r 。
绳的两端分别悬挂质量为m 1和m 2的物体,m 1<m 2,如图例2-4所示。
设滑轮轴所受的摩擦力矩为Mr ,绳与滑轮之间无相对滑动,试求运动物体的加速度和绳中的张力。
【解】 依题意,滑轮应视为一个有转动惯性的转动刚体,因此,在加速转动过程中,在图上必有T 2′>T 1′,而且,由于绳的质量可以忽略不计,还应有T 1=T 1′,T2=T 2′。
T 1、T 1′和T 2、T 2′都是绳中的张力。
绳与滑轮无相对滑动的条件,在绳不能伸长的情况下表示m 1与m 2有大小相同的加速度a ,且都等于滑轮边缘的切向加速度。
刚体定轴转动的角动量定理和角动量守恒定律课件

只与刚体的质量和各质点到转动轴 的距离有关,与转动角速度的大小 无关。
02
角动量定理
角动量的定义与性质
角动量的定义
角动量是描述刚体转动状态的物理量 ,等于刚体的转动惯量乘以角速度。
角动量的性质
角动量是矢量,具有方向和大小;对 于定轴转动,角动量位于转轴上;角 动量是相对量,与参考系的选择有关 。
理解角动量守恒定律的证明方法是深入理解该定律的重要途径。
详细描述
证明角动量守恒定律的方法主要有两种,一种是基于牛顿第二定律和转动定理推导,另一种是通过分析系统的能 量变化来证明。通过这些证明方法,可以更深入地理解角动量守恒定律的物理意义和适用条件。
04
刚体定轴转动的实例 分析
刚体定轴转动的实例介绍
角动量守恒定律的内容及应用
总结词
掌握角动量守恒定律的内容及应用是解决实际问题的关键。
详细描述
角动量守恒定律表明,对于不受外力矩或所受外力矩的矢量和为零的系统,其总角动量保持不变。这 一原理在日常生活、工程技术和科学研究中有广泛的应用,如行星运动、陀螺仪、火箭飞行等。
角动量守恒定律的证明方法
总结词
陀螺仪
风扇
陀螺仪是一个典型的刚体定轴转动实 例,其工作原理就是角动量守恒定律 。
当风扇的扇叶旋转时,可以将其视为 刚体定轴转动,这个过程涉及到角动 量定理的应用。
自行车轮
自行车轮在转动时,也是一个刚体定 轴转动的例子,其转动惯量对于理解 角动量定理和角动量守恒定律非常有 帮助。
刚体定轴转动的角动量定理应用实例
舞蹈演员在进行旋转动作时,可以通过改变身体的姿势来改变转动惯量,从而控制旋转的 速度。
刚体定轴转动的角动量守恒定律应用实例
大学物理力学第五章2刚体功和能、角动量

J12
Ek 2
Ek1
A Ek2 Ek1
M、ω1、 ω2是对于同一转轴的!
4、刚体对地面的重力势能:
Ep
mi ghi g
mi hi
Δmi C×
质心高度:
hc
mi hi m
EP mghC
hC
hi
Ep= 0 视为质量集中到质心上
5. 机械能守恒
Aex Ain,nco 0
E E0
M rmg sin rmg R L sin L
Ωdt
Mdt
R
L
θ
Ω 1
摩擦 倒下
Jω
o mg
1、已知m1,m2 ,M1,M2,R1,R2 且m1> m2 试由牛顿运动
定律和转动定律写出系统的运动方程,求m2 的加速度和
张力T1 ,T2 , T3 。 解:设m2的加速度大小为a,方向向上,
M
l / 2 l / 2
dM
20l /2 gxdx
1 mgl
4
始末两态的角动量为: L0 J 0 , L 0
由角动量定理:
t
t0
Mdt L L0
0t
1 mgldt
4
0 J 0
1 mglt
4
1 12
ml
20
0 m ,l o dm l / 2
t l0 3 g
l/2
x dx x
当系统中只有保守力作功,其它力与力矩不 作功时,物体系的机械能守恒。
例1:一均匀细杆质量为m,长度为l,一端固定在
光滑水平轴上,由静止从水平位置摆下,求细杆摆
到铅直位置时的角速度。 棒上重力矩之和等于全部重
解(一):应用动能定理 力集中于质心对轴的力矩
第5章 刚体定轴转动1

z
Li
Liz ri pi
Liz
pi
Liz ri pi mi ri vi mi ri2
轴向总角动量:
ri O riR
Lz
i
Liz
i
mi ri
2
OR
r 注意: i 为质元到转轴的垂直距离。
2
I C I1 ml 2
1 2 ml 12
例: 求质量为m 半径为R 的均匀圆环的转动惯量。轴与圆环 平面垂直并通过圆心。
解: 在环上任取一小线元dl 其质量
J
m dm dl 2R
R 2 dm
O
R dm
m
0 2
R
2 R
0
m dl 2R
均匀圆环的 转动惯量: J mR 2
求得。所以
v v r sin r sin900 r 78.5m / s
v 的方向垂直于 和 r 构成的平面,如图所示
相应的切向加速度和向心加速度分别为
at ar 3.14m / s 2
an 2 r 6.16 103 m / s 2
t 边缘上该点的加速度 a a n a其中 a t的方向与 n 向相反, a的方向指向轮心, a 的大小为
第五章 刚体的转动
本章主要内容
§5-1 刚体转动的描述 §5-2 转动定律 §5-3 转动惯量的计算 §5-4 转动定律的应用
§5-5 角动量守恒
§5-6 转动中的功和能
§5-7 进动
§5-1 刚体转动的描述
刚体的概念
没有形状和体积的变化; 理想模型; 特殊的质点系;
大学物理学第三版 第5章 刚体的定轴转动2011

vi θ
P
Δmi
o
转动平面
x
op r
2.定轴转动的角量描述 1.角位置θ
2.角位移
P 方向与转动方向成右手螺旋法则。 o θ X 转动平面 op r P点线速度 v r d ( rad / s 2 ) 4. 角加速度矢量 dt 由于在定轴转动中轴的 当加速转动时, 与 方向相同; 方位不变,故 , 只 有沿轴的正负两个方向, 当减速转动时, 与 方向相反;
Δmj
质元
Δmi
r ij
2. 刚体的运动形式: ⑴平动: 在描述刚体的平动时,可以用一点的运 动来代表,通常就用刚体的质心的运动来 代表整个刚体的平动。
⑵转动: 转动是刚体的基本运动形式之一。 刚体转动时各质元均做圆周运动,而且 各圆的圆心都在一条固定不动的直线上, 这条直线叫转轴。如果转轴方向不随时间 变化, 则称定轴转动。
d 3.角速度: 单位:rad/s dt 角速度是矢量 。
Z
ω 转动方向 v
可以用标量代替。
5.当角加速度是常量时: 0 t
( 0 ) t 1 t 2 2
2 2 0 2 ( 0 )
P点线加速度 a r
an r
转轴
⑶ 刚体的一般运动都可以认为是平动和绕某一转轴转动 的结合。如图,车轮的转动。
二、刚体定轴转动的描述 1.特点: 其上各质元都在垂直于转轴的平面内作圆周运动, 且所有质元的矢径在相同的时间内转过的角度相同. 一般用角量描述。 转动平面: 取垂直于转轴 的平面为参考系, 称转动平面。,
转轴 Z
转动方向
刚体的角动量
L J
大学物理力学第五章1刚体、转动定律

(12)
例1、如图所示,A、B为两个相同的绕着轻绳的定滑
轮.A滑轮挂一质量为M的物体,B滑轮受拉力F,而且
F=Mg.设A、B两滑轮的角加速度分别为βA和β B,
不计滑轮轴的摩擦,则有
(A) β A= β B. (B) β A> β B. (C) β A< β B. (D) 开始时β A= β B,以后β A< β B.
转动惯量的计算
1)定义 J miri2
J r 2dm
i
m
2) 对称的 简单的 查表
3) 平行轴定理
典型的几种刚体的转动惯量
m
m
l
细棒转轴通过中 心与棒垂直
J ml 2 12
l
细棒转轴通过端 点与棒垂直
J ml 2 3
M,R
M,R
o
圆环转轴通过环心与环面垂直
J MR2
薄圆盘转轴通过 中心与盘面垂直
以 m1 为研究对象 m1g T1 m1a 以 m 2 为研究对象 T2 m2a 以 M 为研究对象
(T1 T2 )R J J 1 MR 2 2
m 2 T2 M , R
(1) T1
T1
(2)
m1
m1
M ,R
m1g (3)
T2
m2
T2
T1
补充方程:
a R
(4)
联立方程(1)---(4)求解得
J 1 MR 2 2
m 2r
r l
球体转轴沿直径
J 2mr 2 5
圆柱体转轴沿几何轴
J 1 mr 2 2
转动定律应用举例 解题步骤: 1. 认刚体;
3. 分析力和力矩;
大学物理第5章角动量守恒定律

1 ml2 3
l
m
m 1.73
z2
o
l 2
G
JZ2
1 ml2 3
RGC G 不是质心
转动惯量的计算
例: 求半径为 R,总质量为 m的均匀圆盘绕垂直于盘面
通过中心轴的转动惯量 如下图:
解:
质量面密度
m R 2
J z r 2dm R r 2ds 0
Z ds
R r 2 2rdr 0
R r 2 m 2rdr
a 法向分量
an
v2 r
r 2
O
匀变速直线运动
匀变速定轴转动
v dS dt
a dv dt
v v0 at
S
v0t
1 2
at 2
v2 v02 2aS
d
dt
d
dt
0 t
0t
1t2
2
2 02 2
5.4 定轴转动刚体的角动量定理
1.刚体对转轴的力矩和角动量
z
角动量守恒
质点系的角动量定理
M J
4g
t
3 4
R
1 2
gt
2
LA
r
p
1 2
mpt3gmvg
mgt 0
orRA r源自(2) 对 O 点的角动量m
mv
r r R
LO r p (R r) p R p R mgt
Rg
LO Rmgt
2. 质点的角动量定理
角动量的时间变化率
dL
d
(r
p)
dr
p
r
dp
r 表示从O到速度矢量 v 的垂直距离, 则有
r sin s rs 2
《大学物理》第五章刚体的定轴转动

偏转角为30°。问子弹的初速度为多少。
o
解: 角动量守恒:
30°
mva 1 Ml 2 ma 2
la
3
v
机械能守恒:
1 1 Ml 2 ma 2 2 mga1 cos 30 Mg l 1 cos 30
23
2
v 1 g 2 3 Ml 2ma Ml 2 3ma 2 ma 6
刚体可以看成是很多质元组成的质点系,且在外力 作用下,各个质元的相对位置保持不变。 因此,刚体的运动规律,可通过把牛顿运动定律应 用到这种特殊的质点系上得到。
3
2.刚体的运动
平动:刚体在运动过程中,其上任意两点的连线 始终保持平行。
刚体的平动可看做刚体质心 的运动。
转动:刚体中所有的点都绕同一直线做圆周运动. 转动又分定轴转动和非定轴转动 .
r2dm
L
r2 dl
L
(线质量分布)
12
3 平行轴定理
如果刚体的一个轴与过质 心轴平行并相距d,则质量 为 m 的刚体绕该轴的转动 惯量,等于刚体绕过质心 轴的转动惯量与 md2 之和:
J z Jc md 2
请同学们自己证明平行轴定理的。
提示:利用余弦定理 ri2 ri '2 d 2 2dxi 13
hc hi
若A外+ A内非=0
Ep=0
则Ek +Ep =常量。
例13 一均质细杆可绕一水平轴旋转,开始时处于 水平位置,然后让它自由下落。求: ( )
解 方法一 动能定理
M mg L cos
2
W
Md
mg
L cosd
0
0
2
mg L sin
2
θ
5 刚体的角动量定理和角动量守恒定律

角动量守恒定律
一.刚体的角动量定理
dL 刚体转动定理的 M dt 可以改写为 Mdt dL
对上式积分,得 式中 t
t2
1
t2
t1
t2 Mdt dL L2 L1
t1
Mdt
叫做合外力矩在
t 2 t1
时间内的冲量矩。上式表明:刚体所受合外力矩 的冲量矩,等于刚体在这段时间内刚体的角动量 的增量,这就是刚体的角动量定理。 在SI制中,冲量矩的单位式 N m s
I1 2kg m2 。 在外力推动后, 此系统开始以 n1 15 转/分转动, 转动中摩擦力矩忽略不计。
2 I 0 . 80 kg m 当人的两臂收回, 使系统的转动惯量就为 2 时, 它的转速 n2
。
光滑的水平桌面上有一长 2l、质量为 m 的匀质细杆,可绕过其中心、垂直于杆的竖直轴自 由转动。开始杆静止在桌面上。有一质量为 m 的小球沿桌面以速度 v 垂直射向杆一端,与 杆发生完全非弹性碰撞后,粘在杆端与杆一起转动。求碰撞后系统的角速度。
2 rel dt
0 T T 0
M 2m M
2M 因此,在此时间内,人相对ห้องสมุดไป่ตู้地面转过的角度为0 d t M 2m
T
M 2m M 2m T dt dt 0 M M
转台相对于地面转动的角度为
T
0
2m T 4m dt dt M 0 M 2m
2
二.角动量守恒定律 由刚体的角动量定理可见,当刚体所受的合外 力矩为零,则
L I 常量
3
上式说明,当刚体所受的合外力矩为零,或者不受外 力距的作用时,刚体的角动量保持不变,这就是角动量 守恒定律。 必须指出,这个定律不仅对一个刚体有效,对转动 惯量I会变化的物体,或者绕定轴转动的力学系统仍然 成立。如果转动过程中,转动惯量保持不变,则物体 以恒定的角速度转动;如果转动惯量发生改变,则物 体的角速度也随之改变,但两者之积保持恒定。 应用角动量守恒定律时,还应该注意的是,一个系 统内的各个刚体或质点的角动量必须是对于同一个固 定轴说的。
大学物理05刚体的定轴转动习题解答

第五章 刚体的定轴转动一 选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:( )A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B 。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21=(2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
简要提示:由定轴转动定律: α221MR FR =,得:mRF t 4212==∆αθ 所以:m F M W /42=∆=θ5. 一电唱机的转盘正以ω 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J +B .0121ωJ J J +C .021ωJ JD .012ωJ J 解:答案是A 。
5A 转动动能 角动量守恒定律

M = mgR cosθ
由质点的角动量定理
dL mgR cos θ = dt
B
2.4 角动量守恒定律
dL mgR cos θ = dt d L = mgR cos θ d t
考虑到
ω = dθ dt , L = mRv = mR ω
2
得
LdL = m gR cosθdθ
2 3
由题设条件积分上式
∫
L
2.4 角动量守恒定律 一个物体可以绕定轴作无摩擦的匀速转动。 一个物体可以绕定轴作无摩擦的匀速转动。当它 受热或受冷(即膨胀或收缩) 受热或受冷(即膨胀或收缩)时,角速度是否改 为什么? 变?为什么? 角动量守恒应用: 角动量守恒应用: 当膨胀时, 当膨胀时,
I ↑⇒ ω ↓ I ↓⇒ ω ↑
当收缩时: 当收缩时:
o
30
o
1 ′l 2 + ma 2 )ω mva = ( m 3 3m v a ω= 2 2 m ' l + 3 ma
a
m v v
'
2.4 角动量守恒定律
3m v a ω= 2 2 m ' l + 3 ma
射入竿后,以子弹、 射入竿后,以子弹、细杆和 地球为系统 ,机械能守恒 .
o
30
o
a
m v v
l 1 l 2 2 mv0 = ml + m( ) ω 4 12 4
12 v 0 ω= 7 l
2.4 角动量守恒定律
12 v 0 ω= 7 l
由角动量定理
d L d ( Iω ) dI M = = =ω dt dt dt
即
d 1 dr 2 2 mgr cosθ = ω ( ml + mr ) = 2mrω dt 12 dt
5.5 刚体定轴转动的角动量守恒定律

周期约1.19 s
脉冲星的精确周期性信号
J z const .
星体不被惯性离心力甩散,必须满足条件:
GM 4 2 3 R , ( M R ) 2 3 R
3 2 3 11 3 10 kg / m 4 G GT 2 3 3
恒星 红巨星 中子星 脉冲星是高速旋转的中子星。
5.5 刚体定轴转动的角动量定理和角动量守恒定律
一、角动量定 理 质点系 对点 对轴 刚体
M外
dL dt
Lz J z
M 外z dLz dt
d ( J z ) Mz dt
刚体的角动量定理
二、刚体定轴转动的角动量守恒定律
d ( J z ) Mz dt
M 外z 0
J z
t2 M 外z t1
d t J z 2 J z 1
——刚体定轴转动的角动量定理
【例题】一质量为 m 的子弹以水平速度射入一静止 悬于顶端长棒的下端,穿出后速度损失 3/4,求子弹穿出后棒的角速度 解:棒对子弹的阻力为 f
M
l
对子弹 fdt m( 0 ) m0 4
Fe 7.8 10 kg / m 白矮星 黑洞
三、角动量定理的另一形式 对点
M外
冲量矩
t2 M外 t1
dL dt
M外 d t d L
d t L2 L1
t2
t1
M 外 d t 力矩对时间的积累效应
刚体定轴转动
d ( J z ) Mz dt
子弹对棒的反作用力
m
f3Leabharlann 对棒的冲量矩0
3 f ldt l f dt l fdt lm0 J 4 9m0 3 lm0 4J 4Ml
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 角动量守恒定律 刚体的转动
5-1 质点的动量守恒与角动量守恒的条件各是什么,质点动量与角动量能否同时守恒?試说明之。
答:质点的动量守恒的条件是:
当0F =时,p mv ==恒矢量。
质点的角动量守恒的条件是:
当0M =时,即000,F r θπ⎧=⎪⎪=⎨⎪=⎪⎩
时,L =恒矢量。
可见,当0F =时,质点动量与角动量能同时守恒。
5-2 质点在有心力场中的运动具有什么性质?
答:质点在有心力场中运动时,0,0F M ≠=,则角动量守恒,即:
当0M =时,L =恒矢量。
又因为有心力是保守力,则机械能守恒,即:
当0ex in nc
A A +=时,K P E E E =+=恒量。
5-3 人造地球卫星是沿着一个椭圆轨道运行的,地心O 是这一轨道的一个焦点。
卫星经过近地点和远地点时的速率一样吗?卫星在近地点和远地点时的速率与地心到卫星的距离有什么关系?
答:卫星经过近地点和远地点时的速率不一样,由角动量守恒定律得:
a a
b b r mv r mv = a b b a
v r v r ∴= 可见,速率与距离成反比。
5-4 作匀速圆周运动的质点,对于圆周上某一定点,它的角动量是否守恒?对于通过圆心而与圆面垂直的轴上的任意一点,它的角动量是否守恒?对于哪一个定点,它的角动量守恒?
答:作匀速圆周运动的质点,对于圆周上某一定点,它的角动量不守恒;对于通过圆心而与圆面垂直的轴上的任意一点,它的角动量不守恒;对于圆心定点,
它的角动量守恒。
5-5 以初速度0v 将质量为m 的小球斜上抛,抛射角为θ,小球运动过程中,相对于抛射点的角动量如何变化?小球运动到轨道最高点时,相对于抛射点的角动量为多少?
答:取抛射点为坐标原点,取平面直角坐标系Oxy ,y 轴正方向向上,则质点的运动方程和速度表达式为:
020cos 1sin 2x v t y v t gt θθ=⎫⎪⎬=-⎪⎭
, 00cos sin x y v v v v gt θθ=⎫⎬=-⎭ 对于抛射点的角动量:
()()
x y y x L r mv xi y j mv i mv j xmv k ymv k =⨯=+⨯+=- 将,,,x y x y v v 代入得:
201cos 2L mgv t k θ=- 当小球到达最高点时,时刻为:0sin v t g
θ=,代入上式得: 小球相对于抛射点的角动量为:320sin cos 2mv L k g
θθ=-。
5-6 为什么说刚体平动的讨论可归结为对质点运动的研究?
答:由于刚体平动时,各点的运动状态相同,则可取刚体上任意一点运动代表刚体的运动,所以刚体的平动可用质点运动来描述。
5-7如果刚体所受的合外力为零,其合外力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否一定为零?
答:如果0i i F =∑,但力不共轴,则力矩不为零0i i M ≠∑。
如果0i i M =∑,但力方向相同,则力不为零0i i
F ≠∑。
5-8 在某一瞬时,如果刚体受到的合外力矩不为零,其角加速度可以为零吗?其角速度可以为零吗?
答:由刚体的转动定理:M J β=
当0,0M J ≠≠时,则0M J
β=≠ 可见,力矩与角加速度有关,力矩与角速度无关,所以角速度可以为零。
5-9 两个同样大小的轮子,质量也相同。
一个轮子的质量主要集中在轮緣,另一个轮子的质量主要集中在轮轴附近。
问:
(1)如果它们的角速度相同,哪一个飞轮的动能较大?
(2)如果它们的角加速度相等,作用在哪一个飞轮上的力矩较大?
(3)如果它们的角动量相等,哪一个飞轮转得快?
答:质量主要集中在轮緣的轮子的转动惯量用J A 表示,质量主要集中在轮
轴附近的轮子的转动惯量用J B 表示。
由∑=i
i i r m J 2
Δ可知,J A >J B 。
βJ M =
A 轮相当于圆环,转动惯量 2A J mR =
B 轮相当于圆盘, 转动惯量 212
B J mR = (1)当ω一定时,转动动能 2221122
KA A E J mR ωω== 2221124
KB B E J mR ωω== 所以 kB kA E E >
(2)当β一定时,转动定理 2A A M J mR ββ== 212
B B M J mR ββ== 所以 B A M M >
(3)当L 一定时,角动量 2A A A L J mR ωω==
212
B B B L J mR ωω== 2A A L L J mR ω== , 22B B L L J mR
ω== 所以 B A ωω<
5-10 将一个生鸡蛋和一个熟鸡蛋放在桌子上使其转动,如何判断哪一个是
生的?哪一个是熟的?为什么?
答:转动时,生、熟鸡蛋所受阻力矩相同。
根据角动量定理
00t
Mdt J J ωω=-⎰
停止时,0ω=,则 0J t M
ω∆= 因为熟鸡蛋内部凝固,而生鸡蛋内部不固定,转动惯量随转动而增大,即J J >生熟,
所以t t ∆>∆生熟
生鸡蛋转动时间较长,熟鸡蛋转动时间较短。
5-11 一半径为r 的均质小球,沿两个高度相同,倾角不同的斜面无滑动地滚下,在这两种情况下,小球到达斜面下端的速率是否相同?
答:因为小球只作滚动,没有滑动,故摩擦力不作功,机械能守恒。
221122
c c mgh mv J ω=
+ 其中:小球的转动惯量225c J mr =,质心的速度c v r ω=,代入上式得:
c v ∴= 可见,只要小球从同一高度滚下,与斜面的夹角无关,则小球到达斜面下端时的速率是相同的。
5-12 一个人将两臂伸平,两手各拿一只重量相等的哑铃坐在角速度为ω的转台上(ω为人与转台共同角速度),突然,他将哑铃丢下,但两臂不动,问角动量是否守恒?它们的角速度是否改变?
答:因为0i i
M =∑,所以角动量守恒。
设人和转台的转动惯量为J ,哑铃的质量为m ,手臂的长为l ,开始时角速度为ω,丢掉哑铃时角速度为ω',由角动量守恒得:
()2
2J ml J ωω'+= 221ml J ωωω⎛⎫'∴=+> ⎪⎝⎭
可见,丢掉哑铃后,角速度变大。
5-13 你骑自行车前进时,车轮的角动量指向什么方向?当你的身体向左侧倾
斜时,对车轮加了什么方向的力矩?试根据进动原理说明这时你的自行车为什么要向左转弯。
答:当车轮前进时,角动量L方向与角速度ω方向一致,即:L Jω
=。
当你的身体向左侧倾斜时,对车轮施加了一个进动方向的力矩,即:
c d L
M r mg
dt
=⨯=
力矩改变了角动量的方向,所以自行车就向左转弯。