人教版高中数学必修1第三章单元测试卷(二)- Word版含答案

合集下载

高中数学必修一第三章《函数的应用》单元测试卷及答案2套

高中数学必修一第三章《函数的应用》单元测试卷及答案2套

高中数学必修一第三章《函数的应用》单元测试卷及答案2套测试卷一(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.函数y =1+1x的零点是( )A .(-1,0)B .-1C .1D .02.设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.某企业2010年12月份的产值是这年1月份产值的P 倍,则该企业2010年度产值的月平均增长率为( )A .P P -1 B .11P -1C .11PD .P -1114.如图所示的函数图象与x 轴均有交点,其中不能用二分法求图中交点横坐标的是( )A .①③B .②④C .①②D .③④5.如图1,直角梯形OABC 中,AB∥OC,AB =1,OC =BC =2,直线l∶x=t 截此梯形所得位于l 左方图形面积为S ,则函数S =f(t)的图象大致为图中的( )图16.已知在x 克a%的盐水中,加入y 克b%的盐水,浓度变为c%,将y 表示成x 的函数关系式为( )A .y =c -ac -b x B .y =c -ab -c x C .y =c -bc -axD .y =b -cc -ax 7.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是( ) (下列数据仅供参考:2=1.41,3=1.73,33=1.44,66=1.38)A .38%B .41%C .44%D .73%8.某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入R 是单位产量Q 的函数:R(Q)=4Q -1200Q 2,则总利润L(Q)的最大值是________万元,这时产品的生产数量为________.(总利润=总收入-成本)( )A .250 300B .200 300C .250 350D .200 3509.在一次数学实验中,运用图形计算器采集到如下一组数据:x -2.0 -1.0 0 1.00 2.00 3.00 y0.240.5112.023.988.02则x 、y )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +b x10.根据统计资料,我国能源生产自1986年以来发展得很快,下面是我国能源生产总量(折合亿吨标准煤)的几个统计数据:1986年8.6亿吨,5年后的1991年10.4亿吨,10年后的1996年12.9亿吨,有关专家预测,到2001年我国能源生产总量将达到16.1亿吨,则专家是以哪种类型的函数模型进行预测的?( )A .一次函数B .二次函数C .指数函数D .对数函数11.用二分法判断方程2x 3+3x -3=0在区间(0,1)内的根(精确度0.25)可以是(参考数据:0.753=0.421875,0.6253=0.24414)( )A .0.25B .0.375C .0.635D .0.82512.有浓度为90%的溶液100g ,从中倒出10g 后再倒入10g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 2=0.3010,lg 3=0.4771)( )A .19B .20C .21D .22二、填空题(本大题共4小题,每小题5分,共20分)13.用二分法研究函数f(x)=x 3+2x -1的零点,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x 0∈________,第二次计算的f(x)的值为f(________).14.若函数f(x)=a x-x -a(a>0,且a≠1)有两个零点,则实数a 的取值范围为________.15.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为________________万元.16.函数f(x)=x 2-2x +b 的零点均是正数,则实数b 的取值范围是________. 三、解答题(本大题共6小题,共70分)17.(10分)华侨公园停车场预计“十·一”国庆节这天停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.(1)写出国庆这天停车场的收费金额y(元)与小车停放辆次x(辆)之间的函数关系式,并指出x 的取值范围.(2)如果国庆这天停放的小车占停车总辆数的65%~85%,请你估计国庆这天该停车场收费金额的范围.18.(12分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y.(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下?(lg 3≈0.4771)19.(12分)某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用,服用药后每毫升中的含药量y(微克)与服药的时间t(小时)之间近似满足如图所示的曲线,其中OA 是线段,曲线AB 是函数y =ka t(t≥1,a>0,且k ,a 是常数)的图象.(1)写出服药后y 关于t 的函数关系式;(2)据测定,每毫升血液中的含药量不少于2微克时治疗疾病有效.假设某人第一次服药为早上6∶00,为保持疗效,第二次服药最迟应当在当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后3小时,该病人每毫升血液中的含药量为多少微克(精确到0.1微克)?20.(12分)已知一次函数f(x)满足:f(1)=2,f(2)=3, (1)求f(x)的解析式;(2)判断函数g(x)=-1+lg f 2(x)在区间[0,9]上零点的个数.21.(12分)截止到2009年底,我国人口约为13.56亿,若今后能将人口平均增长率控制在1%,经过x 年后,我国人口为y 亿.(1)求y 与x 的函数关系式y =f(x);(2)求函数y =f(x)的定义域;(3)判断函数f(x)是增函数还是减函数?并指出函数增减的实际意义.22.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)答案1.B [由1+1x =0,得1x=-1,∴x =-1.]2.B [由题意x 0为方程x 3=(12)x -2的根,令f (x )=x 3-22-x,∵f (0)=-4<0,f (1)=-1<0,f (2)=7>0, ∴x 0∈(1,2).]3.B [设1月份产值为a ,增长率为x ,则aP =a (1+x )11, ∴x =11P -1.]4.A [对于①③在函数零点两侧函数值的符号相同,故不能用二分法求.] 5.C [解析式为S =f (t ) =⎩⎪⎨⎪⎧12t ·2t 0≤t ≤112×1×2+t -1×21<t ≤2=⎩⎪⎨⎪⎧t 20≤t ≤12t -11<t ≤2∴在[0,1]上为抛物线的一段,在(1,2]上为线段.]6.B [根据配制前后溶质不变,有等式a %x +b %y =c %(x +y ),即ax +by =cx +cy ,故y =c -a b -cx .] 7.B [设职工原工资为p ,平均增长率为x , 则p (1+x )6=8p ,x =68-1=2-1=41%.]8.A [L (Q )=4Q -1200Q 2-Q -200=-1200(Q -300)2+250,故总利润L (Q )的最大值是250万元,这时产品的生产数量为300.]9.B [∵x =0时,b x无意义,∴D 不成立. 由对应数据显示该函数是增函数,且增幅越来越快, ∴A 不成立. ∵C 是偶函数,∴x =±1的值应该相等,故C 不成立. 对于B ,当x =0时,y =1, ∴a +1=1,a =0;当x =1时,y =b =2.02,经验证它与各数据比较接近.]10.B [可把每5年段的时间视为一个整体,将点(1,8.6),(2,10.4),(3,12.9)描出,通过拟合易知它符合二次函数模型.]11.C [令f (x )=2x 3+3x -3,f (0)<0,f (1)>0,f (0.5)<0,f (0.75)>0,f (0.625)<0,∴方程2x 3+3x -3=0的根在区间(0.625,0.75)内, ∵0.75-0.625=0.125<0.25,∴区间(0.625,0.75)内的任意一个值作为方程的近似根都满足题意.]12.C [操作次数为n 时的浓度为(910)n +1,由(910)n +1<10%,得n +1>-1lg 910=-12lg3-1≈21.8,∴n ≥21.] 13.(0,0.5) 0.25解析 根据函数零点的存在性定理. ∵f (0)<0,f (0.5)>0,∴在(0,0.5)存在一个零点,第二次计算找中点,即0+0.52=0.25. 14.(1,+∞)解析 函数f (x )的零点的个数就是函数y =a x与函数y =x +a 交点的个数,如下图,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有唯一交点,故a >1.15.a (1-b %)n解析 第一年后这批设备的价值为a (1-b %);第二年后这批设备的价值为a (1-b %)-a (1-b %)·b %=a (1-b %)2; 故第n 年后这批设备的价值为a (1-b %)n. 16.(0,1]解析 设x 1,x 2是函数f (x )的零点,则x 1,x 2为方程x 2-2x +b =0的两正根,则有⎩⎪⎨⎪⎧Δ≥0x 1+x 2=2>0x 1x 2=b >0,即⎩⎪⎨⎪⎧4-4b ≥0b >0.解得0<b ≤1.17.解 (1)依题意得y =5x +10(1200-x ) =-5x +12000,0≤x ≤1200. (2)∵1200×65%≤x ≤1200×85%, 解得780≤x ≤1020,而y =-5x +12000在[780,1 020]上为减函数, ∴-5×1020+12000≤y ≤-5×780+12000. 即6900≤y ≤8100,∴国庆这天停车场收费的金额范围为[6 900,8 100]. 18.解 (1)依题意:y =a ·0.9x,x ∈N *. (2)依题意:y ≤13a ,即:a ·0.9x≤a3,0.9x≤13=0.91log 30.9,得x ≥log 0.913=-lg32lg3-1≈-0.47710.9542-1≈10.42.答 通过至少11块玻璃后,光线强度减弱到原来的13以下.19.解 (1)当0≤t <1时,y =8t ;当t ≥1时,⎩⎪⎨⎪⎧ka =8,ka 7=1.∴⎩⎪⎨⎪⎧a =22,k =8 2.∴y =⎩⎪⎨⎪⎧8t , 0≤t <1,8222t,t ≥1.(2)令82·(22)t≥2,解得t ≤5. ∴第一次服药5小时后,即第二次服药最迟应当在当天上午11时服药. (3)第二次服药后3小时,每毫升血液中含第一次所服药的药量为y 1=82×(22)8=22(微克);含第二次服药后药量为y 2=82×(22)3=4(微克),y 1+y 2=22+4≈4.7(微克). 故第二次服药再过3小时,该病人每毫升血液中含药量为4.7微克. 20.解 (1)令f (x )=ax +b ,由已知条件得⎩⎪⎨⎪⎧a +b =22a +b =3,解得a =b =1,所以f (x )=x +1(x ∈R ).(2)∵g (x )=-1+lg f 2(x )=-1+lg (x +1)2在区间[0,9]上为增函数,且g (0)=-1<0,g (9)=-1+lg102=1>0,∴函数g (x )在区间[0,9]上零点的个数为1个. 21.解 (1)2009年底人口数:13.56亿. 经过1年,2010年底人口数:13.56+13.56×1%=13.56×(1+1%)(亿). 经过2年,2011年底人口数:13.56×(1+1%)+13.56×(1+1%)×1% =13.56×(1+1%)2(亿). 经过3年,2012年底人口数:13.56×(1+1%)2+13.56×(1+1%)2×1% =13.56×(1+1%)3(亿).∴经过的年数与(1+1%)的指数相同.∴经过x年后人口数为13.56×(1+1%)x(亿).∴y=f(x)=13.56×(1+1%)x.(2)理论上指数函数定义域为R.∵此问题以年作为时间单位.∴此函数的定义域是{x|x∈N*}.(3)y=f(x)=13.56×(1+1%)x.∵1+1%>1,13.56>0,∴y=f(x)=13.56×(1+1%)x是增函数,即只要递增率为正数,随着时间的推移,人口的总数总在增长.22.解(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x0个,则x0=100+60-510.02=550.因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.(2)当0<x≤100时,P=60;当100<x<550时,P=60-0.02·(x-100)=62-x50;当x≥550时,P=51.所以P=f(x)=⎩⎪⎨⎪⎧60,0<x≤10062-x50,100<x<550,51,x≥550(x∈N).(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则L=(P-40)x=⎩⎪⎨⎪⎧20x,0<x≤10022x-x250,100<x<550,11x,x≥550(x∈N).当x=500时,L=6000;当x=1000时,L=11000.因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.测试卷二(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.设方程|x 2-3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .42.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知该商品每个涨价1元,其销售量就减少20个,为了赚得最大利润,售价应定为( )A .每个110元B .每个105元C .每个100元D .每个95元3.今有一组实验数据如下表,现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( )A .y =log 2tB .y =12C .y =t 2-12D .y =2t -24.某商场对顾客实行购物优惠活动,规定一次购物付款总额: (1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他去一次购买上述同样的商品,则应付款是( )A .413.7元B .513.7元C .548.7元D .546.6元5.方程x 2+ax -2=0在区间[1,5]上有解,则实数a 的取值范围为( )A .(-235,+∞) B .(1,+∞) C .[-235,1]D .(-∞,-235]6.设f(x)是区间[a ,b]上的单调函数,且f(a)f(b)<0,则方程f(x)=0在区间[a ,b]( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一实根7.方程x 2-(2-a)x +5-a =0的两根都大于2,则实数a 的取值范围是( )A .a<-2B .-5<a<-2C .-5<a≤-4D .a>4或a<-48.四人赛跑,其跑过的路程f(x)和时间x 的关系分别是:f 1(x)=12x ,f 2(x)=14x ,f 3(x)=log 2(x +1),f 4(x)=log 8(x +1),如果他们一直跑下去,最终跑到最前面的人所具有的函数关系是( )A .f 1(x)=12xB .f 2(x)=14xC .f 3(x)=log 2(x +1)D .f 4(x)=log 8(x +1)9.函数f(x)=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(e,3)D .(e ,+∞)10.已知f(x)=(x -a)(x -b)-2的两个零点分别为α,β,则( )A .a<α<b<βB .α<a<b<βC .a<α<β<bD .α<a<β<b11.设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(2x)=f(x +1x +4)的所有x之和为( )A .-92B .-72C .-8D .812.在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后再显示的图象如图所示.现给出下面说法:①前5分钟温度增加的速度越来越快; ②前5分钟温度增加的速度越来越慢; ③5分钟以后温度保持匀速增加; ④5分钟以后温度保持不变. 其中正确的说法是( )A .①④B .②④C .②③D .①③二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=⎩⎪⎨⎪⎧log 2x x>03xx≤0,且关于x 的方程f(x)+x -a =0有且只有一个实根,则实数a 的取值范围是______________.14.要建造一个长方体形状的仓库,其内部的高为3m ,长与宽的和为20m ,则仓库容积的最大值为________.15.已知函数f(x)=⎩⎪⎨⎪⎧2x-1, x>0,-x 2-2x ,x≤0.若函数g(x)=f(x)-m 有3个零点,则实数m 的取值范围为________.16.若曲线|y|=2x+1与直线y =b 没有公共点,则b 的取值范围是________. 三、解答题(本大题共6小题,共70分)17.(10分)讨论方程4x 3+x -15=0在[1,2]内实数解的存在性,并说明理由.18.(12分)(1)已知f(x)=23x-1+m 是奇函数,求常数m 的值; (2)画出函数y =|3x-1|的图象,并利用图象回答:k 为何值时,方程|3x-1|=k 无解?有一解?有两解?19.(12分)某出版公司为一本畅销书定价如下: C(n)=⎩⎪⎨⎪⎧12n ,1≤n≤24,n ∈N *,11n ,25≤n ≤48,n ∈N *,10n ,n ≥49,n ∈N *,这里n 表示定购书的数量,C (n )是定购n 本书所付的钱数(单位:元).若一本书的成本价是5元,现有甲、乙两人来买书,每人至少买1本,两人共买60本,问出版公司最少能赚多少钱?最多能赚多少钱?20.(12分)是否存在这样的实数a,使函数f(x)=x2+(3a-2)x+a-1在区间[-1,3]上与x轴恒有一个交点,且只有一个交点?若存在,求出范围;若不存在,请说明理由.21.(12分)已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求实数a的取值范围.22.(12分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:①若每月用水量不超过最低限量m立方米时,只付基本费9元和每户每月定额损耗费a 元;②若每月用水量超过m立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n元的超额费;③每户每月的定额损耗费a不超过5元.(1)求每户每月水费y(元)与月用水量x(立方米)的函数关系式;(2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:m,n,a的值.答案1.A [在同一坐标系中分别画出函数y1=|x2-3|和y2=a的图象,如图所示.可知方程解的个数为0,2,3或4,不可能有1个解.] 2.D [设售价为x 元,则利润y =[400-20(x -90)](x -80)=20(110-x )(x -80)=-20(x 2-190x +8800) =-20(x -95)2+4500.∴当x =95时,y 最大为4500元.]3.C [当t =4时,y =log 24=2,y =12log 4=-2,y =42-12=7.5,y =2×4-2=6.所以y =t 2-12适合,当t =1.99代入A 、B 、C 、D4个选项,y =t 2-12的值与表中的1.5接近,故选C.]4.D [购物超过200元,至少付款200×0.9=180(元),超过500元,至少付款500×0.9=450(元),可知此人第一次购物不超过200元,第二次购物不超过500元,则此人两次购物总金额是168+4230.9=168+470=638(元).若一次购物,应付500×0.9+138×0.7=546.6(元).]5.C [令f (x )=x 2+ax -2,则f (0)=-2<0, ∴要使f (x )在[1,5]上与x 轴有交点,则需要⎩⎪⎨⎪⎧f 1≤0f 5≥0,即⎩⎪⎨⎪⎧a -1≤023+5a ≥0,解得-235≤a ≤1.]6.D [∵f (a )·f (b )<0,∴f (x )在区间[a ,b ]上存在零点,又∵f (x )在[a ,b ]上是单调函数,∴f (x )在区间[a ,b ]上的零点唯一,即f (x )=0在[a ,b ]上必有唯一实根.]7.C [由题意知⎩⎪⎨⎪⎧Δ≥02-a2>2f 2>0,解得-5<a ≤-4.]8.B [在同一坐标系下画出四个函数的图象,由图象可知f 2(x )=14x 增长的最快.]9.B [f (2)=ln2-22=ln2-1<1-1=0,f (3)=ln3-23>1-23=13>0.故零点所在区间为(2,3).]10.B [设g (x )=(x -a )(x -b ),则f (x )是由g (x )的图象向下平移2个单位得到的,而g (x )的两个零点为a ,b ,f (x )的两个零点为α,β,结合图象可得α<a <b <β.]11.C [∵x >0时f (x )单调且为偶函数, ∴|2x |=|x +1x +4|,即2x (x +4)=±(x +1). ∴2x 2+9x +1=0或2x 2+7x -1=0. ∴共有四根.∵x 1+x 2=-92,x 3+x 4=-72,∴所有x 之和为-92+(-72)=-8.]12.B [因为温度y 关于时间t 的图象是先凸后平行直线,即5分钟前每当t 增加一个单位增量Δt ,则y 随相应的增量Δy 越来越小,而5分钟后y 关于t 的增量保持为0.故选B.]13.(1,+∞)解析 由f (x )+x -a =0, 得f (x )=a -x ,令y =f (x ),y =a -x ,如图,当a >1时,y =f (x )与y =a -x 有且只有一个交点, ∴a >1. 14.300m 3解析 设长为x m ,则宽为(20-x )m ,仓库的容积为V , 则V =x (20-x )·3=-3x 2+60x,0<x <20,由二次函数的图象知,顶点的纵坐标为V 的最大值. ∴x =10时,V 最大=300(m 3). 15.(0,1)解析 函数f (x )=⎩⎪⎨⎪⎧2x-1, x >0,-x 2-2x ,x ≤0的图象如图所示,该函数的图象与直线y =m 有三个交点时m ∈(0,1),此时函数g (x )=f (x )-m 有3个零点.16.[-1,1]解析 分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件为b ∈[-1,1].17.解 令f (x )=4x 3+x -15, ∵y =4x 3和y =x 在[1,2]上都为增函数. ∴f (x )=4x 3+x -15在[1,2]上为增函数,∵f (1)=4+1-15=-10<0,f (2)=4×8+2-15=19>0, ∴f (x )=4x 3+x -15在[1,2]上存在一个零点, ∴方程4x 3+x -15=0在[1,2]内有一个实数解. 18.解 (1)∵f (x )=23x -1+m 是奇函数,∴f (-x )=-f (x ),∴23-x -1+m =-23x -1-m .∴2·3x1-3x +m =21-3x -m , ∴23x -11-3x+2m =0. ∴-2+2m =0,∴m =1.(2)作出直线y =k 与函数y =|3x-1|的图象,如图.①当k <0时,直线y =k 与函数y =|3x-1|的图象无交点,即方程无解;②当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解;③当0<k <1时,直线y =k 与函数y =|3x-1|的图象有两个不同的交点,所以方程有两解.19.解 设甲买n 本书,则乙买(60-n )本(不妨设甲买的书少于或等于乙买的书),则n ≤30,n ∈N *.①当1≤n ≤11且n ∈N *时,49≤60-n ≤59,出版公司赚的钱数f (n )=12n +10(60-n )-5×60=2n +300; ②当12≤n ≤24且n ∈N *时,36≤60-n ≤48, 出版公司赚的钱数f (n )=12n +11(60-n )-5×60=n +360;③当25≤n ≤30且n ∈N *时,30≤60-n ≤35, 出版公司赚的钱数f (n )=11×60-5×60=360. ∴f (n )=⎩⎪⎨⎪⎧2n +300, 1≤n ≤11,n ∈N *,n +360,12≤n ≤24,n ∈N *,360,25≤n ≤30,n ∈N *.∴当1≤n ≤11时,302≤f (n )≤322; 当12≤n ≤24时,372≤f (n )≤384; 当25≤n ≤30时,f (n )=360.故出版公司最少能赚302元,最多能赚384元. 20.解 若实数a 满足条件, 则只需f (-1)f (3)≤0即可.f (-1)f (3)=(1-3a +2+a -1)(9+9a -6+a -1)=4(1-a )(5a +1)≤0,所以a ≤-15或a ≥1.检验:(1)当f (-1)=0时a =1, 所以f (x )=x 2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1. 方程在[-1,3]上有两根,不合题意,故a ≠1. (2)当f (3)=0时a =-15,此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解得,x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a ≠-15.综上所述,a ∈(-∞,-15)∪(1,+∞).21.解 当a =0时,函数为f (x )=2x -3,其零点x =32不在区间[-1,1]上.当a ≠0时,函数f (x )在区间[-1,1]分为两种情况: ①函数在区间[-1,1]上只有一个零点,此时:⎩⎪⎨⎪⎧Δ=4-8a -3-a ≥0f -1·f 1=a -5a -1≤0或⎩⎪⎨⎪⎧Δ=4-8a -3-a =0-1≤-12a ≤1,解得1≤a ≤5或a =-3-72.②函数在区间[-1,1]上有两个零点,此时⎩⎪⎨⎪⎧Δ>0-1<-12a <1f -1f 1≥0,即⎩⎪⎨⎪⎧8a 2+24a +4>0-1<-12a<1a -5a -1≥0.解得a ≥5或a <-3-72.综上所述,如果函数在区间[-1,1]上有零点,那么实数a 的取值范围为(-∞,-3-72]∪[1,+∞). 22.解 (1)依题意,得y =⎩⎪⎨⎪⎧9+a ,0<x ≤m , ①9+n x -m +a ,x >m .②其中0<a ≤5.(2)∵0<a ≤5,∴9<9+a ≤14.由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米.将⎩⎪⎨⎪⎧x =4,y =17和⎩⎪⎨⎪⎧x =5,y =23分别代入②,得⎩⎪⎨⎪⎧17=9+n 4-m +a , ③23=9+n 5-m +a .④③-④,得n =6.代入17=9+n (4-m )+a ,得a =6m -16. 又三月份用水量为2.5立方米,若m <2.5,将⎩⎪⎨⎪⎧x =2.5,y =11代入②,得a =6m -13,这与a =6m -16矛盾.∴m ≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量.将⎩⎪⎨⎪⎧x =2.5,y =11代入①,得11=9+a ,由⎩⎪⎨⎪⎧a =6m -16,11=9+a ,解得⎩⎪⎨⎪⎧a =2,m =3.∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m =3,n =6,a =2.。

新版高一数学必修第一册第三章全部配套练习题(含答案和解析)

新版高一数学必修第一册第三章全部配套练习题(含答案和解析)

新版高一数学必修第一册第三章全部配套练习题(含答案和解析)3.1.1 函数的概念基 础 练巩固新知 夯实基础1.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了2.若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )3.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2)D .[1,+∞)4.已知函数f (x )的定义域为[-1,2),则函数f (x -1)的定义域为( )A .[-1,2)B .[0,2)C .[0,3)D .[-2,1)5.函数y =5x +4x -1的值域是( )A .(-∞,5)B .(5,+∞)C .(-∞,5)∪(5,+∞)D .(-∞,1)∪(1,+∞) 6.函数y =x +1的值域为( )A .[-1,+∞)B .[0,+∞)C .(-∞,0]D .(-∞,-1]7.已知函数f (x )=x +1x,则f (2)+f (-2)的值是( )A .-1B .0C .1D .2 8.下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2x D .f (x )=x 2-9x -3,g (x )=x +39.求下列函数的定义域:(1)f (x )=1x +1; (2)y =x 2-1+1-x 2; (3)y =2x +3; (4)y =x +1x 2-1.10.求下列函数的值域:(1)y =2x +1,x ∪{1,2,3,4,5}; (2)y =x 2-4x +6,x ∪[1,5); (3)y =3-5x x -2; (4)y =x -x +1.能 力 练综合应用 核心素养11.已知等腰∪ABC 的周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,此函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5}D.⎩⎨⎧x ⎪⎪⎭⎬⎫52<x <5 12.函数f (x )=1x 2+1(x ∪R )的值域是( )A .(0,1)B .(0,1]C .[0,1)D .[0,1]13.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上 14.函数y =3-2x -x 2+14-x 2的定义域为____________________(用区间表示).15.函数y =1x -2的定义域是A ,函数y =x 2+2x -3的值域是B ,则A ∩B =________________(用区间表示).16.若函数f (2x -1)的定义域为[0,1),则函数f (1-3x )的定义域为________. 17.若函数y =ax 2+2ax +3的值域为[0,+∞),则a 的取值范围是________. 18.已知函数f (x )=x 21+x 2.(1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值. (2)求证:f (x )+f ⎝⎛⎭⎫1x 是定值.(3)求f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019的值.19.已知函数y =mx 2-6mx +m +8的定义域是R ,求实数m 的取值范围.20.已知函数f (x )=3-x +1x +2的定义域为集合A ,B ={x |x <a }. (1)求集合A ;(2)若A ∪B ,求a 的取值范围;(3)若全集U ={x |x ≤4},a =-1,求∪U A 及A ∩(∪U B ).【参考答案】1. C 解析 根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∪A ,可以是x →x ,x ∪A ,还可以是x →x 2,x ∪A .2. B 解析 A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},C 中图象不表示函数关系,D 中值域不是N ={y |0≤y ≤2}.3. A 解析 由题意知,要使函数有意义,需满足⎩⎪⎨⎪⎧x -1≥0,x -2≠0即x ≥1且x ≠2.4. C 解析 ∪f (x )的定义域为[-1,2),∪-1≤x -1<2,得0≤x <3,∪f (x -1)的定义域为[0,3).5. C 解析 ∪y =5x +4x -1=5(x -1)+9x -1=5+9x -1,且9x -1≠0,∪y ≠5,即函数的值域为(-∞,5)∪(5,+∞).6. B 解析 由于x +1≥0,所以函数y =x +1的值域为[0,+∞).7. B 解析 f (2)+f (-2)=2+12-2-12=0.8. B 解析 A 、C 、D 的定义域均不同.9. 解 (1)要使函数有意义,即分式有意义,则x +1≠0,x ≠-1.故函数的定义域为{x |x ≠-1}.(2)要使函数有意义,则⎩⎪⎨⎪⎧ x 2-1≥0,1-x 2≥0,即⎩⎪⎨⎪⎧x 2≥1,x 2≤1.所以x 2=1,从而函数的定义域为{x |x =±1}={1,-1}. (3)函数y =2x +3的定义域为{x |x ∪R }.(4)因为当x 2-1≠0,即x ≠±1时,x +1x 2-1有意义,所以原函数的定义域是{x |x ≠±1,x ∪R }.10. 解 (1)∪x ∪{1,2,3,4,5},∪(2x +1)∪{3,5,7,9,11},即所求函数的值域为{3,5,7,9,11}.(2)y =x 2-4x +6=(x -2)2+2. ∪x ∪[1,5),∪其图象如图所示, 当x =2时,y =2;当x =5时,y =11. ∪所求函数的值域为[2,11).(3)函数的定义域为{x |x ≠1},y =3-5x x -2=-5(x -2)+7x -2=-5-7x -2,所以函数的值域为{y |y ≠-5}.(4)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域为{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是y =t 2-1-t =⎝⎛⎭⎫t -122-54,又t ≥0,故y ≥-54,所以函数的值域为{y |y ≥-54}. 11. D 解析 ∪ABC 的底边长显然大于0,即y =10-2x >0,∪x <5,又两边之和大于第三边,∪2x >10-2x ,x >52,∪此函数的定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫52<x <5.12. B 解析 由于x ∪R ,所以x 2+1≥1,0<1x 2+1≤1,即0<y ≤1.13. C 解析 当a 在f (x )定义域内时,有一个交点,否则无交点.14. [-1,2)∪(2,3] 解析 使根式3-2x -x 2有意义的实数x 的集合是{x |3-2x -x 2≥0}即{x |(3-x )(x +1)≥0}={x |-1≤x ≤3},使分式14-x 2有意义的实数x 的集合是{x |x ≠±2},所以函数y =3-2x -x 2+14-x 2的定义域是{x |-1≤x ≤3}∩{x |x ≠±2}={x |-1≤x ≤3,且x ≠2}.15. [0,2)∪(2,+∞) 解析 要使函数式y =1x -2有意义,只需x ≠2,即A ={x |x ≠2};函数y =x 2+2x -3=(x +1)2-4≥0,即B ={y |y ≥0},则A ∩B ={x |0≤x <2或x >2}.16. ⎝⎛⎦⎤0,23 解 因为f (2x -1)的定义域为[0,1),即0≤x <1,所以-1≤2x -1<1.所以f (x )的定义域为[-1,1).所以-1≤1-3x <1,解得0<x ≤23.所以f (1-3x )的定义域为⎝⎛⎦⎤0,23. 17. [3,+∞) 解析 函数y =ax 2+2ax +3的值域为[0,+∞),则函数f (x )=ax 2+2ax +3的值域要包括0,即最小值要小于等于0.则{ a >0,Δ=4a 2-12a ≥0,解得a ≥3.所以a 的取值范围是[3,+∞).18. 解 (1)因为f (x )=x 21+x 2,所以f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1,f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝⎛⎭⎫1x =1,所以f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1,…,f (2019)+f ⎝⎛⎭⎫12019=1. 所以f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019=2018. 19. 解 ∪当m =0时,y =8,其定义域是R .∪当m ≠0时,由定义域为R 可知,mx 2-6mx +m +8≥0对一切实数x 均成立,于是有⎩⎪⎨⎪⎧m >0,Δ=(-6m )2-4m (m +8)≤0,解得0<m ≤1.由∪∪可知,m ∪[0,1]. 20. 解 (1)使3-x 有意义的实数x 的集合是{x |x ≤3},使1x +2有意义的实数x 的集合是{x |x >-2}. 所以,这个函数的定义域是{x |x ≤3}∩{x |x >-2}={x |-2<x ≤3}.即A ={x |-2<x ≤3}. (2)因为A ={x |-2<x ≤3},B ={x |x <a }且A ∪B ,所以a >3.(3)因为U ={x |x ≤4},A ={x |-2<x ≤3},所以∪U A =(-∞,-2]∪(3,4]. 因为a =-1,所以B ={x |x <-1},所以∪U B =[-1,4],所以A ∩∪U B =[-1,3].3.1.2 函数的表示法基 础 练巩固新知 夯实基础1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速行驶.与以上事件吻合得最好的图象是( )2.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -33.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ∪[-1,0],x 2+1,x ∪0,1],则函数f (x )的图象是( )4.已知函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如图的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f [g (2)]的值为( )A .3B .2C .1D .0 5.函数f (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A.RB.[0,+∞)C.[0,3]D.{x |0≤x ≤2或x =3} 6.设f (x )=⎩⎪⎨⎪⎧x +1,x >0,1,x =0,-1,x <0,则f (f (0))等于( )A.1B.0C.2D.-17.已知f (2x +1)=3x -2且f (a )=4,则a 的值为________.8.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.9.已知二次函数f (x )满足f (0)=0,且对任意x ∪R 总有f (x +1)=f (x )+x +1,求f (x ).10 (1)已知f (x +1x )=x 2+1x2,求f (x )的解析式.(2)已知f (x )满足2f (x )+f (1x )=3x ,求f (x )的解析式.(3)已知f (x )+2f (-x )=x 2+2x ,求f (x )的解析式.能 力 练综合应用 核心素养11.如果f ⎝⎛⎭⎫1x =x1-x ,则当x ≠0,1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1 12.已知x ≠0时,函数f (x )满足f (x -1x )=x 2+1x 2,则f (x )的表达式为( )A .f (x )=x +1x (x ≠0) B .f (x )=x 2+2(x ≠0)C .f (x )=x 2(x ≠0)D .f (x )=(x -1x)2(x ≠0)13.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≤0,-2x ,x >0,则使函数值为5的x 的值是( )A.-2或2B.2或-52C.-2D.2或-2或-5214.若f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -3 15.已知f (x -1)=x 2,则f (x )的解析式为( )A .f (x )=x 2+2x +1B .f (x )=x 2-2x +1C .f (x )=x 2+2x -1D .f (x )=x 2-2x -116.已知f (n )=⎩⎪⎨⎪⎧n -3,n ≥10,f f n +5,n <10,则f (8)=________.17.已知函数y =f (x )满足f (x )=2f (1x )+x ,则f (x )的解析式为____________.18. 已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域.19.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.【参考答案】1. C 解析 先分析小明的运动规律,再结合图象作出判断.距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.2. B 解析 设f (x )=kx +b (k ≠0),∪2f (2)-3f (1)=5,2f (0)-f (-1)=1,∪⎩⎪⎨⎪⎧ k -b =5k +b =1,∪⎩⎪⎨⎪⎧k =3b =-2,∪f (x )=3x -2. 3. A 解析 当x =-1时,y =0,排除D ;当x =0时,y =1,排除C ;当x =1时,y =2,排除B. 4. B 解析 由函数g (x )的图象知,g (2)=1,则f [g (2)]=f (1)=2.5. D 解析 当0≤x ≤1时,f (x )∪[0,2],当1<x <2时,f (x )=2,当x ≥2时,f (x )=3, ∪值域是{x |0≤x ≤2或x =3}.6. C7. 5 解析 ∪f (2x +1)=3x -2=32(2x +1)-72,∪f (x )=32x -72,∪f (a )=4,即32a -72=4,∪a =5.8. 解 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∪⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∪f (x )=2x +7. 9. 解 设f (x )=ax 2+bx +c (a ≠0),∪f (0)=c =0,∪f (x +1)=a (x +1)2+b (x +1)+c =ax 2+(2a +b )x +a +b , f (x )+x +1=ax 2+bx +x +1=ax 2+(b +1)x +1.∪⎩⎪⎨⎪⎧2a +b =b +1,a +b =1. ∪⎩⎨⎧a =12,b =12.∪f (x )=12x 2+12x .10. 解 (1)∪f (x +1x )=x 2+1x 2=(x +1x )2-2,且x +1x ≥2或x +1x ≤-2,∪f (x )=x 2-2(x ≥2或x ≤-2).(2)∪2f (x )+f (1x )=3x ,∪把∪中的x 换成1x ,得2f (1x )+f (x )=3x .∪, ∪×2-∪得3f (x )=6x -3x ,∪f (x )=2x -1x (x ≠0).(3)以-x 代x 得:f (-x )+2f (x )=x 2-2x .与f (x )+2f (-x )=x 2+2x 联立得:f (x )=13x 2-2x .11. B 解析 令1x =t ,则x =1t ,代入f ⎝⎛⎭⎫1x =x 1-x ,则有f (t )=1t1-1t =1t -1,故选B. 12. B 解析 ∪f (x -1x )=x 2+1x 2=(x -1x)2+2,∪f (x )=x 2+2(x ≠0).13. C14. B 解析 设f (x )=ax +b ,由题设有⎩⎪⎨⎪⎧ 2(2a +b )-3(a +b )=5,2(0·a +b )-(-a +b )=1.解得⎩⎪⎨⎪⎧a =3,b =-2.所以选B.15. A 解析 令x -1=t ,则x =t +1,∪f (t )=f (x -1)=(t +1)2=t 2+2t +1,∪f (x )=x 2+2x +1.16. 7 解析 因为8<10,所以代入f (n )=f (f (n +5)),即f (8)=f (f (13));因为13>10,所以代入f (n )=n -3,得f (13)=10,故得f (8)=f (10)=10-3=7.17. f (x )=-x 2+23x (x ≠0) 解析 ∪f (x )=2f (1x )+x ,∪∪将x 换成1x ,得f (1x )=2f (x )+1x .∪由∪∪消去f (1x ),得f (x )=-23x -x3,即f (x )=-x 2+23x(x ≠0).18.解 (1)∪当0≤x ≤2时,f (x )=1+x -x 2=1;∪当-2<x <0时,f (x )=1+-x -x2=1-x .所以f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.(2)函数f (x )的图象如图所示.(3)由函数f (x )的图象知,f (x )在(-2,2]上的值域为[1,3).19 .解 因为对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1). 又f (0)=1,∪f (x )=x (x +1)+1=x 2+x +1.3.2.1 第1课时 函数的单调性基 础 练巩固新知 夯实基础1.函数f (x )的定义域为(a ,b ),且对其内任意实数x 1,x 2均有(x 1-x 2)(f (x 1)-f (x 2))<0,则f (x )在(a ,b )上( ) A .增函数B .减函数C .不增不减函数D .既增又减函数2.若函数f (x )在区间(a ,b )上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,b )∪(b ,c )上( )A .必是增函数B .必是减函数C .是增函数或减函数D .无法确定单调性3.如果函数f (x )在[a ,b ]上是增函数,那么对于任意的x 1,x 2∪[a ,b ](x 1≠x 2),下列结论中不正确的是( ) A.f x 1-f x 2x 1-x 2>0B .(x 1-x 2)[f (x 1)-f (x 2)]>0C .若x 1<x 2,则f (a )<f (x 1)<f (x 2)<f (b ) D.x 1-x 2f x 1-f x 2>0 4.对于函数y =f (x ),在给定区间上有两个数x 1,x 2,且x 1<x 2,使f (x 1)<f (x 2)成立,则y =f (x )( )A .一定是增函数B .一定是减函数C .可能是常数函数D .单调性不能确定5.下列函数中,在(-∞,0]内为增函数的是( ) A .y =x 2-2 B .y =3xC .y =1+2xD .y =-(x +2)26.已知函数f (x )=x 2+bx +c 的图象的对称轴为直线x =1,则( )A .f (-1)<f (1)<f (2)B .f (1)<f (2)<f (-1)C .f (2)<f (-1)<f (1)D .f (1)<f (-1)<f (2)7.若函数f (x )=2x 2-mx +3,当x ∪[-2,+∞)时是增函数,当x ∪(-∞,-2)时是减函数,则f (1)=________.8.已知函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5,x ≤1,2a x ,x >1是R 上的减函数,则实数a 的取值范围是 。

人教版高中数学必修第一册第三单元《函数概念与性质》检测(答案解析)(2)

人教版高中数学必修第一册第三单元《函数概念与性质》检测(答案解析)(2)

一、选择题1.已知()2xf x x =+,[](),M a b a b =<,(){}4,N yy f x x M ==∈∣,则使得MN 的实数对(),a b 有( )A .0个B .1个C .2个D .3个2.函数2()1sin 12xf x x ⎛⎫=-⎪+⎝⎭的图象大致形状为( ). A . B .C .D .3.定义在R 上的奇函数()f x 满足()20210f =且对任意的正数a ,b (ab ),有()()0f a f b a b -<-,则不等式()0f x x<的解集是( )A .()()2021,02021,-+∞B .()()2021,00,2021-C .()(),20212021,-∞-+∞D .()(),20210,2021-∞-4.已知函数()f x 是定义在1,2⎛⎫+∞ ⎪⎝⎭上的单调函数,且11()()2f x f f x x ⎡⎤+=⎢⎥⎣⎦,则(1)f 的值为( ) A .1B .2C .3D .45.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4等于( ) A .-6 B .6 C .-8D .86.函数()21x f x x-=的图象大致为( )A .B .C .D .7.已知函数()2sin tan 1cos a x b xf x x x +=++,若()10100f =,则()10f -=( )A .100-B .98C .102-D .1028.若函数2()|2|f x x a x =+-在(0,)+∞上单调递增,则实数a 的取值范围是( ) A .[]4,0- B .(],0-∞C .(],4-∞-D .(,4][0,)-∞-+∞9.已知函数2,1()1,1x ax x f x ax x ⎧-+≤=⎨->⎩,若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .2a <-或2a > B .2a > C .22a -<< D .2a <10.已知()2()ln ,(,)f x x ax b x a b R =++⋅∈,当0x >时()0f x ≥,则实数a 的取值范围为( ) A .20a -≤< B .1a ≥- C .10a -<≤ D .01a <≤11.函数3e exx x y -=+(其中e 是自然对数的底数)的图象大致为( ) A . B .C .D .12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则()()()()2132020f f f f +++=( )A .50B .0C .2D .-201813.已知定义在R 上的函数()f x 满足:(1)(2)()f x f x -=;(2)(2)(2)f x f x +=-;(3)12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->.则(2019),(2020),(2021)f f f 的大小关系是( )A .(2021)(2020)(2019)f f f >>B .(2019)(2020)(2021)f f f >>C .(2020)(2021)(2019)f f f >>D .(2020)(2019)(2021)f f f >>14.现有下列四个结论中,其中正确结论的个数是( ) ①幂函数()k yx k Q =∈的图象与函数1y x =的图象至少有两个交点;②函数()30xy k k =⋅>(k 为常数)的图象可由函数3xy =的图象经过平移得到;③函数11(0)312xy x x ⎛⎫=+≠⎪-⎝⎭是偶函数; ④函数21lg ||x y x +=无最大值,也无最小值;A .1个B .2个C .3个D .4个15.若()21f x ax x a =+++在()2,-+∞上是单调递增函数,则a 的取值范围是( ) A .1(,]4-∞B .1(0,]4C .1[0,]4D .1[,)4+∞二、填空题16.已知函数()y f x =,对任意x ∈R ,都有()()1f x f x a ⋅+=(a 为非零实数),且当[)0,1x ∈时,()2xf x =,则()2021f =___________.17.已知a R ∈,函数229()f x x a a x=++-在区间[3,1]--上的最大值10,则a 的取值范围是__________.18.记号{}max ,m n 表示m ,n 中取较大的数,如{}max 1,22=.已知函数()f x 是定义域为R 的奇函数,且当0x >时,()222max ,4x f x x x a a ⎧⎫=-+-⎨⎬⎩⎭.若0x <时,()f x 的最大值为1,则实数a 的值是_________.19.已知等差数列{}n a 满足:20a >,40a <,数列的前n 项和为n S ,则42S S 的取值范围是__________.20.若函数()f x 在定义域D 内的某区间M 上是增函数,且()f x x在M 上是减函数,则称()f x 在M 上是“弱增函数”.已知函数()()24g x x a x a =+-+在(]0,2上是“弱增函数”,则实数a 的值为______. 21.如果函数f (x )=(2)1,1,1xa x x a x -+<⎧⎨≥⎩满足对任意12x x ≠,都有()()1212f x f x x x -->0成立,那么实数a 的取值范围是________.22.函数()ln f x x x x =+的单调递增区间是_______.23.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___. 24.定义在()0,∞+上的函数()f x ,满足对于任意正实数x ,y 恒有()()()f xy f x f y =+,且()31f =,如果对任意的1x ,()20,x ∈+∞,当12x x ≠时,都有()()()12120x x f x f x -⋅->⎡⎤⎣⎦,则不等式()()82f x f x +-<的解集是_________.25.已知函数()31x xx a ef x e -++=+是奇函数,则a =__________. 26.已知定义在()0,∞+上的函数()f x 的导函数为()f x ',若对于任意0x >都有()()3f x f x x '<,且()44f =,则不等式()31016f x x -<的解集为________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 先判断函数()2xf x x =+是奇函数,且在R 上单调递增;根据题中条件,得到()()44f a a f b b a b ⎧=⎪=⎨⎪<⎩,求解,即可得出结果. 【详解】 因为()2xf x x =+的定义域为R ,显然定义域关于原点对称, 又()()22x xf x f x x x --==-=--++, 所以()f x 是奇函数, 当0x ≥时,()21222x x f x x x x ===-+++显然单调递增;所以当0x <时,()2xf x x =-+也单调递增; 又()00f =,所以函数()2xf x x =+是连续函数; 因此()2xf x x =+在R上单调递增; 当[],x M a b ∈=时,()()()44,4y f x f a f b =∈⎡⎤⎣⎦,因为(){}4,N yy f x x M ==∈∣, 所以为使M N ,必有()()44f a af b b a b ⎧=⎪=⎨⎪<⎩,即4242aa ab b b a b⎧=⎪+⎪⎪=⎨+⎪⎪<⎪⎩,解得22a b =-⎧⎨=⎩或20a b =-⎧⎨=⎩或2a b =⎧⎨=⎩, 即使得M N 的实数对(),a b 有()2,2-,()2,0-,()0,2,共3对.故选:D. 【点睛】 关键点点睛:求解本题的关键在于先根据函数解析式,判断函数()f x 是奇函数,且在R 上单调递增,得出[],x M a b ∈=时,()4y f x =的值域,列出方程,即可求解.2.B解析:B【分析】首先判断函数的奇偶性,再判断0πx <<时,函数值的正负,判断得选项. 【详解】因为2()1sin 12x f x x ⎛⎫=- ⎪+⎝⎭,所以12()sin 12xxf x x -=⋅+, ()()()2221sin 1sin 1212x x xf x x x -⎛⎫⨯⎛⎫-=--=-- ⎪ ⎪++⎝⎭⎝⎭()()21221sin 12x x x ⎛⎫+- ⎪=-- ⎪+⎝⎭221sin 1sin 1212xx x x ⎛⎫⎛⎫=--=- ⎪ ⎪++⎝⎭⎝⎭()f x =,所以函数是偶函数,关于y 轴对称,排除C ,D , 令()0f x =,则21012x-=+或sin 0x =,解得()x k k Z π=∈,而0πx <<时,120x -<,120x +>,sin 0x >,此时()0f x <.故排除A.故选:B . 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.C解析:C 【分析】首先判断函数在()0,∞+的单调性,然后根据函数是奇函数,可知函数在(),0-∞的单调性和零点,最后结合函数的零点和单调性,求解不等式. 【详解】对任意的正数a ,b (ab ),有()()0f a f b a b-<-,()f x ∴在()0,∞+上单调递减,定义在R 上的奇函数()f x 满足()20210f =,()f x ∴在(),0-∞单调递减,且()()202120210f f -=-=,()0f x x <等价于()00x f x >⎧⎨<⎩ 或()00x f x <⎧⎨>⎩, 解得:2021x >或2021x <-, 所以不等式解集是()(),20212021,-∞-+∞.故选:C 【点睛】方法点睛:一般利用函数奇偶性和单调性,解抽象不等式包含以下几点: 若函数是奇函数,首先确定函数在给定区间的单调性,然后将不等式转化为()()12f x f x <的形式,最后运用函数的单调性去掉“f ”,转化为一般不等式求解;若函数是偶函数,利用偶函数的性质()()()f x f x f x -==,将不等式()()12f x f x <转化为()()12f x f x <,再利用函数在[)0,+∞的单调性,去掉“f ”,转化为一般不等式求解.4.A解析:A 【分析】采用赋值法,在11()()2f x f f x x ⎡⎤+=⎢⎥⎣⎦中,分别令1x =和1x a =+,联立两个式子,根据函数的单调性可解. 【详解】解:根据题意知,设(1)0f a =≠, 令1x =,则[]1(1)(1)12f f f +=,则()112af a +=,()112f a a+=, 令1x a =+,则11(1))21(1f a f f a a ⎡⎤+++=⎢⎥⎣⎦+, 所以()11121f a f a a ⎛⎫+==⎪+⎝⎭, 又因为函数()f x 是定义在1,2⎛⎫+∞ ⎪⎝⎭上的单调函数, 所以11121a a +=+,2210a a --=,所以1a =或12a =-(舍去),()11f =.故选:A. 【点睛】思路点睛:抽象函数求函数值问题一般是换元法或者赋值法,再结合函数的性质解方程即可.5.C解析:C【分析】由奇函数f (x )满足f (x -4)=-f (x )可推出周期为8,对称轴为2x =,画出函数大致图象,由图象分析f (x )=m 的根的分布情况即可 【详解】f (x )在R 上是奇函数,所以f (x -4)=-f (x )=f (-x ),令4x x =-得()()8f x f x -=,故()f x 周期为8,即()()()4(4)x f f x f f x x =+==---,即()()4f x f x -=,函数对称轴为2x =,画出大致图象,如图:由图可知,两个根关于6x =-对称,两个根关于2x =对称,设1234x x x x <<<, 则12346212224x x x x +=-⨯=-+=⨯=,,故12348x x x x +++=-, 故选:C 【点睛】结论点睛:本题考查由函数的奇偶性,周期性,对称性求根的分布问题,常用以下结论: (1)()()()()1f x f x a f x f x a =-+=±+,,则()f x 的周期为2T a =;(2)()()2f x f a x =-,则函数的对称轴为x a =.6.D解析:D 【分析】分析函数()f x 的奇偶性及其在区间()0,∞+上的单调性,由此可得出合适的选项. 【详解】函数()21x f x x -=的定义域为{}0x x ≠,()()()2211x x f x f x x x----===-, 函数()f x 为偶函数,其图象关于y 轴对称,排除B 、C 选项;当0x >时,()211x f x x x x-==-,因为y x =,1y x =-在区间()0,∞+上都是增函数,所以函数()f x 在()0,∞+上单调递增,排除A 选项, 故选:D. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左、右位置;从函数的值域,判断图象的上、下位置;(2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 利用上述方法排除、筛选选项.7.D解析:D 【分析】令()()21g x f x x =--,根据奇偶性定义可判断出()g x 为奇函数,从而可求得()()10101g g -=-=,进而求得结果.【详解】令()()2sin tan 1cos a x b xg x f x x x+=--=()()()()()sin tan sin tan cos cos a x b x a x b xg x g x x x-+---∴-===--()g x ∴为奇函数又()()210101011g f =--=- ()()10101g g ∴-=-=即()()2101011f ----= ()10102f ∴-=本题正确选项:D 【点睛】本题考查利用函数的奇偶性求解函数值的问题,关键是能够通过构造函数的方式得到奇函数,利用奇函数的定义可求得对应位置的函数值.8.A解析:A 【分析】将()f x 写成分段函数的形式,根据单调性先分析每一段函数需要满足的条件,同时注意分段点处函数值关系,由此求解出a 的取值范围. 【详解】因为2()|2|f x x a x =+-,所以222,2()2,2x ax a x f x x ax a x ⎧+-≥=⎨-+<⎩, 当()212f x x ax a =+-在[)2,+∞上单调递增时,22a-≤,所以4a ≥-, 当()222f x x ax a =-+在()0,2上单调递增时,02a≤,所以0a ≤, 且()()12224f f ==,所以[]4,0a ∈-, 故选:A. 【点睛】思路点睛:根据分段函数单调性求解参数范围的步骤: (1)先分析每一段函数的单调性并确定出参数的初步范围; (2)根据单调性确定出分段点处函数值的大小关系; (3)结合(1)(2)求解出参数的最终范围.9.D解析:D 【分析】若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则说明()f x 在R 上不单调,分0a =,0a <和0a >三种情况讨论求解. 【详解】若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则说明()f x 在R 上不单调,当0a =时,2,1()1,1x x f x x ⎧-≤=⎨->⎩,图象如图,满足题意;当0a <时,函数2y x ax =-+的对称轴02ax =<,其图象如图,满足题意;当0a >时,函数2y x ax =-+的对称轴02ax =>,其图象如图,要使()f x 在R 上不单调,则只要满足12a<,解得2a <,即02a <<.综上,2a <.故选:D.【点睛】本题考查分段函数的单调性的应用及二次函数的性质的应用,得出()f x 在R 上不单调是解题的关键.10.B解析:B【分析】讨论01x <<、1x =、1x >确定2()g x x ax b =++的函数值符号,根据二次函数的性质求a 的取值范围即可.【详解】当0x >时,()()2ln 0x a x x f b x ++⋅=≥, ∵01x <<时,ln 0x <,即需20x ax b ++≤成立;1x =时,ln 0x =,()0f x ≥恒成立;1x >时,ln 0x >,即需20x ax b ++≥成立;∴对于函数2()g x x ax b =++,在(0,1)上()0g x ≤,在(1,)+∞上()0g x ≥, ∴2(1)1040(0)0g a b a b g b =++=⎧⎪∆=->⎨⎪=≤⎩解得1a ≥-,故选:B【点睛】思路点睛:令2()g x x ax b =++,即()()ln f x g x x =⋅.(0,)+∞上讨论x :由()0f x ≥,根据ln x 符号确定()g x 函数值的符号.由()g x 对应区间的函数值符号,结合二次函数性质求参数范围.11.A解析:A【分析】由函数的奇偶性排除B ;由0x >的函数值,排除C ;由当x →+∞时的函数值,确定答案.【详解】由题得函数的定义域为R , 因为3()()x xx f x f x e e ---==-+,所以函数是奇函数,所以排除B ; 当0x >时,()0f x >,所以排除C ; 当x →+∞时,()0f x →,所以选A .故选:A【点睛】方法点睛:根据函数的解析式找图象,一般先找图象的差异,再用解析式验证得解. 12.B解析:B【分析】由奇函数和(1)(1)f x f x +=-得出函数为周期函数,周期为4,然后计算出(3),(2),(4)f f f 后可得结论.【详解】由函数()f x 是定义域为(,)-∞+∞的奇函数,所以()()f x f x =--,且(0)0f =, 又由(1)(1)f x f x -=+,即(2)()()f x f x f x +=-=-,进而可得()(4)f x f x =+,所以函数()f x 是以4为周期的周期函数,又由(1)2f =,可得(3)(1)(1)2f f f =-=-=-,(2)(0)0f f ==,(4)(0)0f f ==, 则(1)(2)(3)(4)0f f f f +++=,所以(1)(2)(3)(2020)505[(1)(2)(3)(4)]0f f f f f f f f ++++=⨯+++=. 故选:B .【点睛】关键点睛:本题考查利用函数的周期性求函数值,解决本题的关键是由函数是奇函数以及(1)(1)f x f x -=+得出函数是周期为4的周期函数,进而可求出结果.13.B解析:B【分析】根据已知可得函数()f x 的图象关于直线1x =对称,周期为4,且在[]1,3上为增函数,得出()()20193f f =,()()()202002f f f ==,()()20211f f =,根据单调性即可比较(2019),(2020),(2021)f f f 的大小.【详解】解:∵函数()f x 满足:(2)()f x f x -=,故函数的图象关于直线1x =对称;(2)(2)f x f x +=-,则()()4f x f x +=,故函数的周期为4;12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->,故函数在[]1,3上为增函数; 故()()20193f f =,()()()202002f f f ==,()()20211f f =,而()()()321f f f >>,所以(2019)(2020)(2021)f f f >>.故选:B.【点睛】本题考查函数的基本性质的应用,考查函数的对称性、周期性和利用函数的单调性比较大小,考查化简能力和转化思想.14.A解析:A【分析】①举反例说明命题为假;②应该是伸缩变换,可以判断出命题为假;③由奇偶函数的定义判断处函数为偶函数,可得命题为真;④将函数变形,由均值不等式的性质可得最小值,可得命题为假.【详解】解:①取幂函数2y x ,显然与1y x =仅有一个交点,所以①不正确; ②函数()30x y k k =⋅>(k 为常数)的图象可由函数3x y =的图象经过伸缩得到,所以②不正确;③设()y f x =,由()()()3111,0312231x x x x f x x x +⎛⎫=+=≠ ⎪--⎝⎭,定义域关于原点对称, 则()()()()()()3131231231x x x x x x f x f x ---++-===--,()f x ∴是偶函数,故③正确;④函数215lg lg ||||||x y x x x ⎛⎫+==+ ⎪⎝⎭, 而lg y u =在定义域上单调递增,所以函数21lg ||x y x +=有最小值无最大值,所以④不正确.故选:A .【点睛】本题考查指对幂函数的性质,属于基础题.15.C解析:C【分析】先考虑a 是否为零,然后再分一次函数和二次函数分别考虑.【详解】当0a =时,则()1f x x =+,显然在()2,-+∞上递增;当0a ≠时,则()21f x ax x a =+++是二次函数,因为()f x 在()2,-+∞上递增,则对称轴122x a =-≤-且0a >,解得:10,4a ⎛⎤∈ ⎥⎝⎦;综上:a 的取值范围是1[0,]4, 故选C.【点睛】 本题考查根据单调区间求解参数范围问题,难度一般.对于形如()2f x ax bx c =++的函数,一定要明确:并不一定是二次函数,可能会出现0a =的情况,所以要分类讨论.二、填空题16.【分析】推导出函数是周期为的周期函数可得出再由可求得结果【详解】当时则对任意都有(为非零实数)则由可得所以函数是周期为的周期函数因此故答案为:【点睛】方法点睛:函数的三个性质:单调性奇偶性和周期性在 解析:a【分析】推导出函数()f x 是周期为2的周期函数,可得出()()20211f f =,再由()01f =可求得结果.【详解】当[)0,1x ∈时,()2x f x =,则()0021f ==, 对任意x ∈R ,都有()()1f x f x a ⋅+=(a 为非零实数),则()()10f f a ⋅=,()1f a ∴=,由()()1f x f x a ⋅+=可得()()21f x f x a +⋅+=,()()2f x f x ∴+=,所以,函数()f x 是周期为2的周期函数,因此,()()20211f f a ==.故答案为:a .【点睛】方法点睛:函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,且主要有以下几种命题角度;(1)函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性相结合,此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解;(3)周期性、奇偶性与单调性相结合,解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.17.【分析】求出的范围后根据绝对值的性质根据最大值得不等关系可得的范围【详解】时当且仅当时等号成立又或时所以而的最大值为10所以的最大值为所以解得故答案为:【点睛】关键点点睛:本题考查函数的最值掌握绝对 解析:[8,)-+∞【分析】 求出229x x+的范围后根据绝对值的性质根据最大值得不等关系,可得a 的范围. 【详解】[3,1]x ∈--时,2[1,9]x ∈,2296x x +≥=,当且仅当23x =时等号成立, 又1x =-或3x =-时,22910x x +=,所以229610a x a a x+≤++≤+, 而()f x 的最大值为10,所以229x a x ++的最大值为10a +, 所以100610a a a +≥⎧⎨+≤+⎩,解得8a ≥-. 故答案为:[8,)-+∞.【点睛】关键点点睛:本题考查函数的最值.掌握绝对值的性质是解题关键.当0a b >≥时,a b >,当0a b 时,a b <,当0a b >>时,0a b +>,则a b >,0a b +<时,a b <.18.【分析】首先将时函数写成分段函数的形式并求函数的最小值根据奇函数的性质可知时的最小值是建立方程求【详解】当时解得:此时令解得此时所以时函数又因为此时是定义在上的奇函数所以图象关于原点对称时函数的最小解析:±【分析】首先将0x >时,函数()f x 写成分段函数的形式,并求函数的最小值,根据奇函数的性质可知0x >时的最小值是1-,建立方程求a【详解】 当0x >时,22240x x x a a -+-+≥,解得:202x a <≤,此时()22x f x x a=-+,令22240x x x a a-+-+<,解得22x a >,此时()24f x x a =-,所以0x >时,函数()222224,2,02x a x a f x x x x a a⎧-≥⎪=⎨-<≤⎪⎩,又因为此时()f x 是定义在R 上的奇函数,所以图象关于原点对称,0x ∴>时,函数的最小值是-1,当22x a ≥时,函数单调递增,()222min 242f x a a a =-=-, 当202x a <≤时,()222222124x a a f x x x a a ⎛⎫=-=--+ ⎪⎝⎭, 函数的()()22min 22f x f a a ==-,所以0x >时,函数的最小值是22a -,即221a -=-,解得:a =故答案为:2±【点睛】思路点睛:本题主要考查分段函数与函数性质的综合应用,首先根据新定义,正确写出函数()f x 的表达式,这是本题最关键的一点,然后就转化为分段函数求最值问题. 19.【分析】根据题意可得到把转化为关于的函数即可求出范围【详解】由题意可得:据此可得:则令结合等差数列前n 项和公式有:令则据此可知函数在上单调递减即的取值范围是故答案为:【点睛】关键点点睛:本题根据等差 解析:6(2,)5- 【分析】 根据题意可得到131a d -<<-,把42S S 转化为关于()13,1a t d=∈--的函数,即可求出范围. 【详解】 由题意可得:121410,0030a d a a d a a d ><⎧⎪=+>⎨⎪=+<⎩,据此可得:13d a d -<<-,则131a d -<<-, 令()13,1a t d=∈--,结合等差数列前n 项和公式有: 111142434464622122122a d S a d t S a d t a d ⨯+++===⨯+++, 令()()463121t f t t t +=-<<-+,则()2(21)4422121t f t t t ++==+++, 据此可知函数()f t 在()3,1--上单调递减, ()1242f -=-=-,()4632615f -=+=-+, 即42S S 的取值范围是62,5⎛⎫- ⎪⎝⎭. 故答案为:6(2,)5-【点睛】 关键点点睛:本题根据等差数列的条件,求出首项与公差的关系,看作一个整体t ,将问题转化为关于t 的函数,利用函数的单调性求解,体现了转化思想,考查了运算能力,属于中档题.20.4【分析】由在上的单调性求出a 的一个范围再令则在上是减函数分类讨论根据的单调性求参数a 的范围两范围取交集即可得解【详解】由题意可知函数在上是增函数解得令则在上是减函数①当时在上为增函数不符合题意;② 解析:4【分析】由()g x 在(]0,2上的单调性求出a 的一个范围,再令()()f x h x x=,则()h x 在(]0,2上是减函数,分类讨论根据()h x 的单调性求参数a 的范围,两范围取交集即可得解.【详解】由题意可知函数()()24g x x a x a =+-+在(]0,2上是增函数, 402a -∴≤,解得4a ≤, 令()()4f x a x a x x h x +==+-,则()h x 在(]0,2上是减函数, ①当0a ≤时,()h x 在(]0,2上为增函数,不符合题意;②当0a >时,由对勾函数的性质可知()h x在上单调递减,2≥,解得4a ≥,又4a ≤,4a ∴=.故答案为:4【点睛】本题考查函数的单调性、一元二次函数的单调性,属于中档题.21.【分析】先由条件判断出在R 上是增函数所以需要满足和单调递增并且在处对应的值大于等于对应的值解出不等式组即可【详解】对任意都有>0所以在R 上是增函数所以解得故实数a 的取值范围是故答案为:【点睛】本题考解析:3,22⎡⎫⎪⎢⎣⎭【分析】先由条件判断出()y f x =在R 上是增函数,所以需要满足(2)1y a x =-+和x y a = 单调递增,并且在1x =处x y a =对应的值大于等于(2)1y a x =-+对应的值,解出不等式组即可.【详解】对任意12x x ≠,都有()()1212f x f x x x -->0,所以()y f x =在R 上是增函数,所以201(2)11a a a a ->⎧⎪>⎨⎪-⨯+≤⎩,解得322a ≤<, 故实数a 的取值范围是3,22⎡⎫⎪⎢⎣⎭. 故答案为:3,22⎡⎫⎪⎢⎣⎭. 【点睛】本题考查含有参数的分段函数根据单调性求参数范围问题,需要满足各部分单调并且在分段处的函数值大小要确定,属于中档题.22.【分析】求出函数的定义域并求出该函数的导数并在定义域内解不等式可得出函数的单调递增区间【详解】函数的定义域为且令得因此函数的单调递增区间为故答案为【点睛】本题考查利用导数求函数的单调区间在求出导数不解析:()2,e -+∞【分析】求出函数()y f x =的定义域,并求出该函数的导数,并在定义域内解不等式()0f x '>,可得出函数()y f x =的单调递增区间.【详解】函数()ln f x x x x =+的定义域为()0,∞+,且()ln 2f x x '=+,令()0f x '>,得2x e ->.因此,函数()ln f x x x x =+的单调递增区间为()2,e -+∞,故答案为()2,e -+∞. 【点睛】本题考查利用导数求函数的单调区间,在求出导数不等式后,得出的解集应与定义域取交集可得出函数相应的单调区间,考查计算能力,属于中等题.23.-1【解析】试题【解析】试题因为2()y f x x =+是奇函数且(1)1f =,所以, 则,所以. 考点:函数的奇偶性. 24.【分析】由对任意的当时都有可知该函数是单调增函数再结合定义域且将转化为两函数值的大小比较问题最终列出关于的不等式求解【详解】解:因为对于任意正实数恒有且可化为:因为对任意的当时都有故在上单调递增所以 解析:()8,9【分析】由“对任意的1x ,2(0,)x ∈+∞,当12x x ≠时,都有1212()[()()]0x x f x f x -->”可知该函数是单调增函数,再结合“定义域、()()()f xy f x f y =+,且(3)1f =,将()(8)2f x f x +-<转化为两函数值的大小比较问题,最终列出关于x 的不等式求解.【详解】解:因为对于任意正实数x ,y 恒有()()()f xy f x f y =+,且(3)1f =,()(8)2f x f x +-<可化为:[(8)](3)(3)(9)f x x f f f -<+=.因为对任意的1x ,2(0,)x ∈+∞,当12x x ≠时,都有1212()[()()]0x x f x f x -->,故()f x 在(0,)+∞上单调递增,所以080(8)9x x x x >⎧⎪->⎨⎪-<⎩,解得89x <<.故答案为:(8,9).【点睛】本题考查抽象函数的性质,此例主要是利用单调性研究不等式问题的解,属于中档题. 25.【分析】利用奇函数的定义进行计算即可【详解】由函数是奇函数可知恒成立即解得故答案为:【点睛】本题考查函数奇偶性定义的应用属于基础题 解析:1-【分析】利用奇函数的定义()()0f x f x -+=进行计算即可.【详解】由函数()31x x x a ef x e -++=+是奇函数可知()()0f x f x -+=恒成立, 即3311x x x x x a x a e e e e---+++++++220x x a e e -+==+,解得1a =-. 故答案为:1-本题考查函数奇偶性定义的应用,属于基础题.26.【分析】设函数利用导数结合可得在上单调递减将化为可解得结果【详解】即为设函数则所以在上单调递减又因为所以不等式可化为即所以故解集为故答案为:【点睛】本题考查了构造函数利用导数判断单调性考查了利用函数 解析:()4,+∞【分析】设函数()()3f x g x x =,利用导数结合()()3f x f x x '<可得()g x 在()0,∞+上单调递减,将()31016f x x -<化为()()4g x g <可解得结果. 【详解】 ()()3f x f x x '<即为()()30xf x f x '-<,设函数()()3f x g x x=, 则()()()()()3264330f x x f x x xf x f x g x x x''⋅-⋅-'==<,所以()g x 在()0,∞+上单调递减,又因为()44f =,所以()()3414416f g ==,不等式()31016f x x -<可化为()3116f x x <,即()()4g x g <,所以4x >,故解集为()4,+∞. 故答案为:()4,+∞.【点睛】本题考查了构造函数,利用导数判断单调性,考查了利用函数的单调性解不等式,属于中档题.。

人教高中数学必修1第三章练习题及答案

人教高中数学必修1第三章练习题及答案

第三章练习一 、选择题1.函数()y f x =的图像在[],a b 内是连续的曲线,若()()0f a f b ⋅<,则函数()y f x =在区间(),a b 内A 只有一个零点B 至少有一个零点C 无零点D 无法确定 2.函数()ln 26f x x x =+-的零点一定位于下列哪个区间 A ()1,2 B ()2,3 C ()3,4 D ()5,63.()3123f x ax a =+-在[]1,1-上存在0x ,使()()0001f x x =≠± ,则a 的取值范围是 A (),2-∞ B ()2,+∞ C (),2-∞- D ()2,-+∞4.某商品降价10%,欲恢复原价,则应提价A 10%B 20%C 11%D 1119%5.方程1312xx ⎛⎫= ⎪⎝⎭有解0x ,则0x 在下列哪个区间A ()1,0-B ()0,1C ()1,2D ()2,3 6.若函数()24f x x x a =++没有零点,则实数a 的取值范围是A 4a <B 4a >C 4a ≤D 4a ≥7.将进价为60元/个的商品按90元/个售出,能卖400个。

已知该商品每个涨价1元,销售量就减少20个,为了赚得最大利润,售价应定为A 70 元/个B 75元/个C 80元/个D 85元/个8.某企业制定奖励条例,对企业产品的销售取得优异成绩的员工实行奖励,奖励金额(元)是()()()500f n k n n =-(其中n 为年销售额),而()()()()0.350010000.4100020000.52000n k n n n ≤≤⎧⎪=<<⎨⎪≤⎩,一员工获得400元的奖励,那么该员工一年的销售额为A 800B 1000C 1200D 1500二 填空题9.函数()232f x x x =-+-的两个零点是 .10.光线通过一块玻璃时,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后的强度为y ,则y 关于x 的函数关系式为 . 11.某债券市场发行三种债券:P 种面值为100元,一年到期本息和为103元;Q 种面值为50元,一年到期51.4元;R 种面值20元,一年到期20.5元。

人教版高中数学选择性必修第一册-第3章-圆锥曲线的方程 单元测试卷(含解析)

人教版高中数学选择性必修第一册-第3章-圆锥曲线的方程 单元测试卷(含解析)

第3章 圆锥曲线的方程单元测试卷(原卷版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为( )A .4 B .-4C .-14D.142.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的标准方程为( )A.x 23+y 2=1B.x 23+y 22=1C.x 29+y 28=1D.y 29+x 28=13.直线l :y =k (x -2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为( )A .1 B .-1C .1或-1 D .1或-1或04.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为( )A.52 B.5C.52D .55.设a ,b ∈R ,a ≠b 且ab ≠0,则方程bx -y +a =0和方程ax 2-by 2=ab 在同一坐标系下的图象可能是( )6.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2 B .4C .6 D .87.如图,已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 的延长线与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ |=1,则双曲线的离心率是( )A .3 B .2C.3 D.28.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3) B .(1,4)C .(2,3) D .(2,4)二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知点F (1,0)为曲线C 的焦点,则曲线C 的方程可能为( )A .y 2=4x B .x 2=4yC.x 2cos 2θ+y 2sin 2θ=1(0<θ<π2)D.x 2cos 2θ-y 2sin 2θ=1(0<θ<π2)10.已知A ,B 为圆锥曲线E 的焦点,点C 在E 上,若△ABC 为等腰直角三角形,则E 的离心率可能为( )A.2-1B.22C.2D.2+111.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左、右焦点,且△F 1PF 2的面积为3,则下列说法正确的是( )A .P 点纵坐标为3B .∠F 1PF 2>π2C .△F 1PF 2的周长为4(2+1)D .△F 1PF 2的内切圆半径为32(2-1)12.已知A ,B 两点的坐标分别是(-1,0),(1,0),直线AP ,BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是( )A .当m =-1时,点P 的轨迹为圆(除去与x 轴的交点)B .当-1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线(除去与x 轴的交点)D .当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a ∈{-2,0,1,3},b ∈{1,2},则曲线ax 2+by 2=1为椭圆的概率是________.14.抛物线y 2=2px (p >0)的准线与双曲线x 2-y 24=1的两条渐近线所围成的三角形的面积为2,则p =________,抛物线焦点到双曲线渐近线的距离为________.(本题第一空2分,第二空3分)15.在椭圆x 2a 2+y 2b2=1(a >b >0)上,与两焦点张角为90°的点可能有________个(填出所有可能情况).16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知Q 点是双曲线x 2a 2-y 2b2=1(a ,b >0)上异于两顶点的一动点,F 1,F 2是双曲线的左、右焦点.从F 2向∠F 1QF 2的平分线作垂线F 2P ,垂足为P ,求P 点的轨迹方程.18.(12分)已知点P 到F 1(0,3),F 2(0,-3)的距离之和为4,设点P 的轨迹为C ,直线y =kx +1与轨迹C 交于A ,B 两点.(1)求轨迹C 的方程;(2)若|AB |=825,求k .19.(12分)已知直线l :y =x +m 与抛物线y 2=8x 交于A ,B 两点.(1)若|AB |=10,求m 的值;(2)若OA ⊥OB ,求m 的值.20.(12分)如图,已知抛物线C 1:y =14x 2,圆C 2:x 2+(y -1)2=1,过点P (t ,0)(t >0)作不过原点O 的直线PA ,PB 分别与抛物线C 1和圆C 2相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求△PAB 的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.21.(12分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左顶点为M (-2,0),离心率为22.(1)求椭圆Γ的方程;(2)过N (1,0)的直线AB 交椭圆Γ于A ,B 两点;当MA → ·MB →取得最大值时,求△MAB 的面积.22.(12分)已知曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)2倍.(1)求曲线C 的方程;(2)设曲线C 与x 轴正半轴交于点A 2,不垂直于x 轴的直线l 与曲线C 交于A ,B 两点(异于点A 2).若以AB 为直径的圆经过点A 2,试问直线l 是否过定点?若是,请求出该定点坐标;若不是,请说明理由.1.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是( )A.(14,94)B.(23,1)C.(12,23)D.(0,12)2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >b >0)有相同的左、右焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是( )A .m -a B.12(m -a )C .m 2-a 2D.m -a3.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433B.233C .3D .24.已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=15.【多选题】已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个顶点分别为A 1(-a ,0),A 2(a ,0),P ,Q 的坐标分别为(0,b ),(0,-b ),且四边形A 1PA 2Q 的面积为22,四边形A 1PA 2Q 的内切圆的周长为263π,则双曲线C 的方程为( )A.x 22-y 2=1B .x 2-y 22=1C.x 24-y 22=1 D.x 22-y 24=16.【多选题】我们通常称离心率是5-12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2分别为其左、右、上、下顶点,F 1,F 2分别为左、右焦点,P 为椭圆上一点,下列条件中能使椭圆C 为“黄金椭圆”的是( )A .|A 1F 1|·|F 2A 2|=|F 1F 2|2B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 27.【多选题】已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则( )A .mn >0时,方程表示椭圆B .mn <0时,方程表示双曲线C .n =0时,方程表示抛物线D .n >m >0时,方程表示焦点在x 轴上的椭圆8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则b a=________.9.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.10.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________.11.如图,已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于短半轴长的23,求椭圆的离心率.12.已知抛物线y 2=-4x 的焦点为F ,其准线与x 轴交于点M ,过M 作斜率为k 的直线l 与抛物线交于A ,B 两点,弦AB 的中点为P ,AB 的垂直平分线与x 轴交于E (x 0,0).(1)求k 的取值范围;(2)求证:x 0<-3.13.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC → ·DB → +AD → ·CB →=8,求k 的值.14.已知抛物线C 的顶点在原点O ,焦点与椭圆x 225+y 29=1的右焦点重合.(1)求抛物线C 的方程;(2)在抛物线C 的对称轴上是否存在定点M ,使过点M 的动直线与抛物线C 相交于P ,Q 两点时,有∠POQ =π2.若存在,求出M 的坐标;若不存在,请说明理由.15.如图所示,已知椭圆x 2a 2+y 2b2=1(a >b >0),A ,B 分别为其长、短轴的一个端点,F 1,F 2分别是其左、右焦点.从椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且AB → 与OM→是共线向量.(1)求椭圆的离心率e ;(2)设Q 是椭圆上异于左、右顶点的任意一点,求∠F 1QF 2的取值范围.第3章 圆锥曲线的方程单元测试卷(解析版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为( )A .4 B .-4C .-14D.14答案 C2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的标准方程为( )A.x 23+y 2=1B.x 23+y 22=1C.x 29+y 28=1D.y 29+x 28=1答案 C解析 因为△AF 1B 的周长为12,所以4a =12,所以a =3.又c a =13,所以c =1,b 2=8,所以C 的标准方程为x 29+y 28=1.3.直线l :y =k (x -2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为( )A .1 B .-1C .1或-1 D .1或-1或0答案 C解析 由题意可知直线l 恒过点(2,0),即双曲线的右焦点,双曲线的渐近线方程为y =±x .要使直线l 与双曲线只有一个公共点,则该直线与渐近线平行,所以k =±1.故选C.4.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为( )A.52 B.5C.52D .5答案 B解析 由已知可设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0).∴±a b =±12,∴b =2a ,∴b 2=4a 2,∴c 2-a 2=4a 2.∴c 2=5a 2,∴c 2a 2=5,∴e =c a=5.5.设a ,b ∈R ,a ≠b 且ab ≠0,则方程bx -y +a =0和方程ax 2-by 2=ab 在同一坐标系下的图象可能是( )答案 B解析 方程ax 2-by 2=ab变形为x 2b -y 2a =1,直线bx -y +a =0,即y =bx +a 的斜率为b ,纵截距为a .当a >0,b >0时,x 2b -y 2a=1表示焦点在x 轴上的双曲线,此时直线的斜率b >0,纵截距a >0,故C 错误;当a <0,b <0时,x 2b -y 2a=1表示焦点在y 轴上的双曲线,此时直线的斜率b <0,纵截距a <0,故D 错误;当a <0,b >0,且-a ≠b 时,x 2b -y 2a=1表示椭圆,此时直线的斜率b >0,纵截距a <0,故A 错误.故选B.6.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2 B .4C .6 D .8答案 B解析 由题意,不妨设抛物线方程为y 2=2px (p >0).由|AB |=42,|DE |=25,可取A (4p ,22),D (-p 2,5),设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p 24+5,得p =4.故选B.7.如图,已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 的延长线与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ |=1,则双曲线的离心率是( )A .3 B .2C.3 D.2答案 B解析 如图,记AF1,AF 2与△APF 1的内切圆分别相切于点N ,M ,则|AN |=|AM |,|PM |=|PQ |,|NF 1|=|QF 1|,又因为|AF 1|=|AF 2|,则|NF 1|=|AF 1|-|AN |=|AF 2|-|AM |=|MF 2|,因此|QF 1|=|MF 2|,则|PF 1|-|PF 2|=(|PQ |+|QF 1|)-(|MF 2|-|PM |)=|PQ |+|PM |=2|PQ |=2,即2a =2,则a =1.由|F 1F 2|=4=2c ,得c =2,所以双曲线的离心率e =c a=2.故选B.8.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3) B .(1,4)C .(2,3) D .(2,4)答案 D解析 如图,显然当直线l 的斜率不存在时,必有两条直线满足题意,当直线l 的斜率存在时,设斜率为k ,设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,M (x 0,y 0),则{y 12=4x 1,y 22=4x 2,两式相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2).由于x 1≠x 2,所以y 1+y 22·y 1-y 2x 1-x2=2⇒ky 0=2.①圆心为C (5,0),由CM ⊥AB ,得k ·y 0-0x 0-5=-1⇒ky 0=5-x 0.②由①②解得x 0=3,即点M 必在直线x =3上,将x 0=3代入y 2=4x ,得y 02=12⇒-23<y 0<23,因为点M 在圆(x -5)2+y 2=r 2(r >0)上,所以(x 0-5)2+y 02=r 2(r >0),r 2=y 02+4<12+4=16.因为斜率存在,所以y 0≠0,所以4<y 02+4<16⇒2<r <4.故选D.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知点F (1,0)为曲线C 的焦点,则曲线C 的方程可能为( )A .y 2=4x B .x 2=4yC.x 2cos 2θ+y 2sin 2θ=1(0<θ<π2)D.x 2cos 2θ-y 2sin 2θ=1(0<θ<π2)答案 AD解析 对于A ,y 2=4x ,抛物线的焦点为F (1,0),满足;对于B ,x 2=4y ,抛物线的焦点为F (0,1),不满足;对于C ,x 2cos 2θ+y 2sin 2θ=1(0<θ<π2),焦点为(±cos 2θ-sin 2θ,0)或(0,±sin 2θ-cos 2θ)或曲线表示圆不存在焦点,均不满足;对于D ,x 2cos 2θ-y 2sin 2θ=1(0<θ<π2),双曲线的右焦点为F (1,0),满足.10.已知A ,B 为圆锥曲线E 的焦点,点C 在E 上,若△ABC 为等腰直角三角形,则E 的离心率可能为( )A.2-1 B.22C.2D.2+1答案 ABD解析 若圆锥曲线E 为椭圆,不妨设椭圆方程为x 2a 2+y 2b2=1(a >b >0),设椭圆的离心率为e .因为△ABC 为等腰直角三角形,所以当AB 为斜边时,可以得到b =c =22a ,则e =c a =22;当AB 为直角边时,不妨令|AC |=|AB |=2c ,所以22c +2c =2a ,所以e =ca=2-1.若圆锥曲线E 为双曲线,不妨设双曲线方程为x 2a ′2-y 2b ′2=1(a ′>0,b ′>0),设双曲线的离心率为e ′.因为△ABC 为等腰直角三角形,所以AB 只能为直角边,不妨令AC ⊥AB ,则|AC |=|AB |=2c ,可以得到22c ′=2a ′+2c ′,则e ′=c ′a ′=2+1.故选ABD.11.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左、右焦点,且△F 1PF 2的面积为3,则下列说法正确的是( )A .P 点纵坐标为3B .∠F 1PF 2>π2C .△F 1PF 2的周长为4(2+1)D .△F 1PF 2的内切圆半径为32(2-1)答案 CD解析 设点P 的坐标为(x ,y ),由椭圆E :x 28+y 24=1,可知a 2=8,b 2=4,所以c 2=a 2-b 2=4,所以c =2,F 1(-2,0),F 2(2,0).因为△F 1PF 2的面积为3,所以12×2c ×|y |=12×4×|y |=3,得到y =±32,A 说法错误;将y =±32代入椭圆E 的方程,得到x 28+916=1,解得x =±142,不妨取P (142,32),因为PF 1→ ·PF 2→=(-2-142,-32)·(2-142,-32)=144-4+94>0,所以∠F 1PF 2为锐角,B 说法错误;因为a =22,所以|PF 1|+|PF 2|=42,所以△F 1PF 2的周长为4+42=4(2+1),C 说法正确;设△F 1PF 2的内切圆半径为r ,因为△F 1PF 2的面积为3,所以12×r ×4(2+1)=3,解得r =32(2-1),D 说法正确.故选CD.12.已知A ,B 两点的坐标分别是(-1,0),(1,0),直线AP ,BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是( )A .当m =-1时,点P 的轨迹为圆(除去与x 轴的交点)B .当-1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线(除去与x 轴的交点)D .当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)答案 ABD解析 设点P 的坐标为(x ,y )(x ≠±1),则直线AP 的斜率为k AP =y x +1,直线BP 的斜率为k BP=y x -1.因为k AP ·k BP =m ,所以yx +1·yx -1=m (x ≠±1),化简得到点P 的轨迹方程为x 2+y 2-m=1(x ≠±1),所以正确结论有A 、B 、D.故选ABD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a ∈{-2,0,1,3},b ∈{1,2},则曲线ax 2+by 2=1为椭圆的概率是________.答案 38解析 由题意,得(a ,b )共有8种不同情况,其中满足“曲线ax 2+by 2=1为椭圆”的有(1,2),(3,1),(3,2),共3种情况,由古典概型的概率公式,得所求概率P =38.14.抛物线y 2=2px (p >0)的准线与双曲线x 2-y 24=1的两条渐近线所围成的三角形的面积为2,则p =________,抛物线焦点到双曲线渐近线的距离为________.(本题第一空2分,第二空3分)答案 2 255解析 抛物线y 2=2px (p >0)的准线方程为x =-p2,双曲线x 2-y 24=1的两条渐近线方程分别为y =2x ,y =-2x ,这三条直线构成等腰三角形,其底边长为2p ,三角形的高为p 2,因此12×2p×p2=2,解得p =2.则抛物线焦点坐标为(1,0),且到直线y =2x 和y =-2x 的距离相等,均为|2-0|5=255.15.在椭圆x 2a 2+y 2b2=1(a >b >0)上,与两焦点张角为90°的点可能有________个(填出所有可能情况).答案 0或2或4解析 设该点为P (x ,y ),椭圆的左、右焦点分别为F 1(-c ,0),F 2(c ,0)(c >0),则|PF 1|=(x +c )2+y 2=(x +c )2+b 2(1-x 2a 2)=a +ex ,|PF 2|=a -ex .|PF 1|2+|PF 2|2=4a 2-2|PF 1|·|PF 2|=2a 2+2c 2a2x 2=4c 2.∴x 2=2a 2-a 4c 2=a 2(2c 2-a 2)c 2≥0.∴当a 2>2c 2时,该点不存在;当a 2≤2c 2时,该点存在,且当a 2=2c 2时这样的点有2个,当c 2<a 2<2c 2时有4个.16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是________.答案 52解析 利用渐近线与直线方程求出交点A ,B 的坐标,进而得出中点C 的坐标;由|PA |=|PB |可知,PC 与直线x -3y +m =0(m ≠0)垂直,利用斜率关系求出a ,b 的关系式.双曲线x 2a2-y 2b 2=1的渐近线方程为y =±b ax .由{y =bax ,x -3y +m =0,得A(am 3b -a ,bm3b -a).由{y =-bax ,x -3y +m =0,得B (-am a +3b ,bma +3b).所以AB 的中点C 的坐标为(a 2m9b 2-a 2,3b 2m 9b 2-a 2).设直线l :x -3y +m =0(m ≠0),因为|PA |=|PB |,所以PC ⊥l .所以k PC =-3,即3b 2m 9b 2-a 2a 2m9b 2-a 2-m=-3,化简得a 2=4b 2.在双曲线中,c 2=a 2+b 2=5b 2,所以e =c a=52.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知Q 点是双曲线x 2a 2-y 2b2=1(a ,b >0)上异于两顶点的一动点,F 1,F 2是双曲线的左、右焦点.从F 2向∠F 1QF 2的平分线作垂线F 2P ,垂足为P ,求P 点的轨迹方程.解析 如图,延长F 2P 交F 1Q 于点A ,连接OP ,则由角平分线的性质,知|AQ |=|F 2Q |.由三角形中位线性质,知|OP |=12|F 1A |.∴|OP |=12(|QF 1|-|QA |)=12(|QF 1|-|QF 2|).若点Q 在双曲线的左支上时,|OP |=12(|QF 2|-|QF 1|), 即|OP |=12×2a =a ,∴P 点的轨迹方程为x 2+y 2=a 2(y ≠0).18.(12分)已知点P 到F 1(0,3),F 2(0,-3)的距离之和为4,设点P 的轨迹为C ,直线y =kx +1与轨迹C 交于A ,B 两点.(1)求轨迹C 的方程;(2)若|AB |=825,求k .解析 (1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴长为2的椭圆,即a =2,c =3,b =22-(3)2=1,故轨迹C 的方程为x 2+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2).联立{x 2+y 24=1,y =kx +1,得(k 2+4)x 2+2kx -3=0,则Δ=4k 2+12(k 2+4)=16(k 2+3)>0,且x 1+x 2=-2kk 2+4,x 1x 2=-3k 2+4.则(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=16(k 2+3)(k 2+4)2,所以|AB |2=(1+k )2(x 1-x 2)2=(1+k )2·16(k 2+3)(k 2+4)2=12825,整理得(17k 2+53)(k 2-1)=0,解得k 2=1,所以k =±1.19.(12分)已知直线l :y =x +m 与抛物线y 2=8x 交于A ,B 两点.(1)若|AB |=10,求m 的值;(2)若OA ⊥OB ,求m 的值.解析 设A (x 1,y 1),B (x 2,y 2),(1)由{y =x +m ,y 2=8x ,得x 2+(2m -8)x +m 2=0,∴{Δ=(2m -8)2-4m 2>0,x 1+x 2=8-2m ,x 1x 2=m 2.由|AB |=2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=10.得m =716(m <2).(2)∵OA ⊥OB ,∴x 1x 2+y 1y 2=0.∴x 1x 2+(x 1+m )(x 2+m )=0.∴2x 1x 2+m (x 1+x 2)+m 2=0.∴2m 2+m (8-2m )+m 2=0.∴m 2+8m =0,m =0或m =-8.经检验得m =-8.20.(12分)如图,已知抛物线C 1:y =14x 2,圆C 2:x 2+(y -1)2=1,过点P (t ,0)(t >0)作不过原点O 的直线PA ,PB 分别与抛物线C 1和圆C 2相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求△PAB 的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.解析 (1)由题意知直线PA 的斜率存在,故可设直线PA 的方程为y =k (x -t ),由{y =k (x -t ),y =14x 2,消去y ,整理得x 2-4kx +4kt =0,由于直线PA 与抛物线相切,令Δ=0,得k =t .因此,点A 的坐标为(2t ,t 2).设圆C 2的圆心为D (0,1),点B 的坐标为(x 0,y 0),由题意知点B ,O 关于直线PD 对称,故{y 02=-x 02t +1,x 0t -y 0=0,解得{x 0=2t 1+t 2,y 0=2t 21+t 2.因此,点B 的坐标为(2t 1+t 2,2t 21+t 2).(2)由(1)知|AP |=t ·1+t 2,直线PA 的方程为tx -y -t 2=0.点B 到直线PA 的距离是d =t 21+t 2.设△PAB 的面积为S ,所以S =12|AP |·d =t 32.21.(12分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左顶点为M (-2,0),离心率为22.(1)求椭圆Γ的方程;(2)过N (1,0)的直线AB 交椭圆Γ于A ,B 两点;当MA → ·MB →取得最大值时,求△MAB 的面积.解析 (1)由已知a =2,ca =22,得c =2,∴a 2-b 2=2,即4-b 2=2,∴b 2=2,∴椭圆Γ的方程为x 24+y 22=1.(2)当直线AB 与x 轴重合时,MA → ·MB →=0.当直线AB 与x 轴不重合时,设直线AB 的方程为x =ty +1,A (x 1,y 1),B (x 2,y 2),则MA →=(x 1+2,y 1),MB →=(x 2+2,y 2).由{x =ty +1,x 24+y 22=1,得(t 2+2)y 2+2ty -3=0.显然Δ>0,∴y 1+y 2=-2t t 2+2,y 1y 2=-3t 2+2.∴MA → ·MB →=(x 1+2)(x 2+2)+y 1y 2=(ty 1+3)(ty 2+3)+y 1y 2=(t 2+1)y 1y 2+3t (y 1+y 2)+9=(t 2+1)·-3t 2+2+3t ·-2tt 2+2+9=-3-3t 2-6t 2t 2+2+9=-9t 2-3t 2+2+9=15t 2+2≤152,∴MA → ·MB →的最大值为152.此时t =0,直线AB 的方程为x =1.综上可知MA → ·MB →的最大值为152.联立{x =1,x 24+y 22=1,解得{x =1,y =62或{x =1,y =-62,不妨令A (1,62),B (1,-62),∴|AB |=6,又|MN |=3,∴S △MAB =12|MN |·|AB |=12×3×6=362.22.(12分)已知曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)2倍.(1)求曲线C 的方程;(2)设曲线C 与x 轴正半轴交于点A 2,不垂直于x 轴的直线l 与曲线C 交于A ,B 两点(异于点A 2).若以AB 为直径的圆经过点A 2,试问直线l 是否过定点?若是,请求出该定点坐标;若不是,请说明理由.解析 (1)∵曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)的距离的2倍,∴|x -2|=2·(x -1)2+y 2,化简,得x 22+y 2=1,即曲线C 是椭圆,其方程为x 22+y 2=1.(2)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),由{y =kx +m ,x 22+y 2=1,得(1+2k 2)x 2+4mkx +2m 2-2=0,∴Δ=(4mk )2-4(1+2k 2)(2m 2-2)>0,即2k 2+1>m 2,x 1+x 2=-4mk 1+2k 2,x 1x 2=2m 2-21+2k 2.∵y 1=kx 1+m ,y 2=kx 2+m ,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=k 2·2m 2-21+2k 2+mk ·-4mk1+2k 2+m 2=m 2-2k 21+2k 2.∵点A 2(2,0)在以AB 为直径的圆上,∴AA 2⊥BA 2,即AA 2→ ·B A 2→=0.又AA 2→ =(2-x 1,-y 1),BA 2→=(2-x 2,-y 2),∴(2-x 1,-y 1)·(2-x 2,-y 2)=0,即(2-x 1)(2-x 2)+y 1y 2=2-2(x 1+x 2)+x 1x 2+y 1y 2=0,∴2+2·4mk1+2k 2+2m 2-21+2k 2+m 2-2k 21+2k 2=0,化简得2k 2+42mk +3m 2=0,即(2k +m )(2k +3m )=0,∴2k +m =0或2k +3m =0.当2k +m =0时,直线l :y =k (x -2)过定点(2,0),即过点A 2(2,0),不满足题意;当2k +3m =0时,直线l 的方程可化为y =k (x -23),过定点(23,0).综上,直线l 过定点(23,0).1.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是( )A.(14,94)B.(23,1)C.(12,23)D.(0,12)答案 C解析 由题意知B (c ,b 2a ),∴k =b 2ac +a =a -c a=1-e ,∴13<1-e <12,∴12<e <23.故选C.2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >b >0)有相同的左、右焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是( )A .m -a B.12(m -a )C .m 2-a 2D.m -a答案 A解析 不妨取P 在双曲线的右支上,则{|PF 1|+|PF 2|=2m ,|PF 1|-|PF 2|=2a ,解得|PF 1|=m +a ,|PF 2|=m -a .∴|PF 1|·|PF 2|=(m +a )(m -a )=m -a .3.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433 B.233C .3 D .2答案 A解析 利用椭圆、双曲线的定义和几何性质求解.设|PF 1|=r 1,|PF 2|=r 2(r 1>r 2),|F 1F 2|=2c ,椭圆长半轴长为a 1,双曲线实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2,由(2c )2=r 12+r 22-2r 1r 2cosπ3,得4c 2=r 12+r 22-r 1r 2.由{r 1+r 2=2a 1,r 1-r 2=2a 2,得{r 1=a 1+a 2,r 2=a 1-a 2.∴1e 1+1e 2=a 1+a 2c=r 1c .令m =r 12c 2=4r 12r 12+r 22-r 1r2=41+(r 2r 1)2-r2r 1=4(r 2r 1-12)2 +34,当r 2r 1=12时,m max =163,∴(r 1c )max =433.即1e 1+1e 2的最大值为433.4.已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=1答案 D解析 根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b2x ,x 2+y 2=4得x A =44+b 2,y A =2b 4+b 2,故四边形ABCD 的面积为4x A y A =32b4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1.故选D.5.【多选题】已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个顶点分别为A 1(-a ,0),A 2(a ,0),P ,Q 的坐标分别为(0,b ),(0,-b ),且四边形A 1PA 2Q 的面积为22,四边形A 1PA 2Q 的内切圆的周长为263π,则双曲线C 的方程为( )A.x 22-y 2=1B .x 2-y 22=1C.x 24-y 22=1D.x 22-y 24=1答案 AB解析 因为A 1(-a ,0),A 2(a ,0),P (0,b ),Q (0,-b ),所以|A 1A 2|=2a ,|PQ |=2b ,所以|A 1P |=|A 2Q |=|A 1Q |=|A 2P |=a 2+b 2=c .又四边形A 1PA 2Q 的面积为22,所以4×12ab =22,即ab=2.记四边形A 1PA 2Q 的内切圆的半径为r ,则2πr =263π,解得r =63,所以2cr =22,所以c =3.又c 2=a 2+b 2=3,所以{a =2,b =1或{a =1,b =2,所以双曲线C 的方程为x 22-y 2=1或x 2-y 22=1.故选AB.6.【多选题】我们通常称离心率是5-12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2分别为其左、右、上、下顶点,F 1,F 2分别为左、右焦点,P 为椭圆上一点,下列条件中能使椭圆C 为“黄金椭圆”的是( )A .|A 1F 1|·|F 2A 2|=|F 1F 2|2B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 2答案 BD解析 ∵椭圆C :x 2a 2+y 2b2=1(a >b >0),∴A 1(-a ,0),A 2(a ,0),B 1(0,b ),B 2(0,-b ),F 1(-c ,0),F 2(c ,0).对于A ,若|A 1F 1|·|F 2A 2|=|F 1F 2|2,则(a -c )2=(2c )2,∴a -c =2c ,∴e =13,不符合题意,故A 错误;对于B ,若∠F 1B 1A 2=90°,则|A 2F 1|2=|B 1F 1|2+|B 1A 2|2,∴(a +c )2=a 2+a 2+b 2,∴c 2+ac -a 2=0,∴e 2+e -1=0,解得e =5-12或e =-5-12(舍去),符合题意,故B 正确;对于C ,若PF 1⊥x 轴,且PO ∥A 2B 1,则P (-c ,b 2a),∵k PO =kA 2B 1,∴b 2a-c =b-a ,解得b =c ,又a 2=b 2+c 2,∴e =c a =c 2c =22,不符合题意,故C 错误;对于D ,若四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 2,即四边形A 1B 2A 2B 1的内切圆的半径为c ,则由菱形面积公式可得ab =c a 2+b 2,∴c 4-3a 2c 2+a 4=0,∴e 4-3e 2+1=0,解得e 2=3+52(舍去)或e 2=3-52,∴e =5-12,故D 正确.故选BD.7.【多选题】已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则( )A .mn >0时,方程表示椭圆B .mn <0时,方程表示双曲线C .n =0时,方程表示抛物线D .n >m >0时,方程表示焦点在x 轴上的椭圆答案 BD解析 mx 2+ny 2=1表示椭圆的充要条件是m >0,n >0,A 不正确;mx 2+ny 2=1表示双曲线的充要条件是mn <0,B 正确;当n =0时,mx 2=1不表示抛物线,C 不正确;mx 2+ny 2=1表示焦点在x 轴上的椭圆的充要条件是n >m >0,D 正确.故选BD.8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.答案 2+1思路分析 根据正方形的边长及O 为AD 的中点,求出点C ,F 的坐标,将两点坐标代入抛物线方程列式求解.解析 ∵正方形ABCD 和正方形DEFG 的边长分别为a ,b ,O 为AD 的中点,∴C (a2,-a ),F (a2+b ,b ).又∵点C ,F 在抛物线y 2=2px (p >0)上,∴{a 2=pa ,b 2=2p (a 2+b ),解得ba=2+1.9.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.答案 x 2+32y 2=1思路分析 根据题意,求出点B 的坐标代入椭圆方程求解.解析 设点B 的坐标为(x 0,y 0).∵x 2+y 2b 2=1,∴F 1(-1-b 2,0),F 2(1-b 2,0).∵AF 2⊥x 轴,∴A (1-b 2,b 2).∵|AF 1|=3|F 1B |,∴AF 1→ =3F 1B →.∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0).∴x 0=-51-b 23,y 0=-b 23.∴点B 的坐标为(-51-b 23,-b 23).将B (-51-b 23,-b 23)代入x 2+y 2b 2=1,得b 2=23.∴椭圆E 的方程为x 2+32y 2=1.10.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________.答案 ±1解析 设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2).由{y 2=4x ,y =k (x +1),得k 2x 2+2(k 2-2)x +k 2=0.∴x 1+x 2=-2(k 2-2)k 2.∴x 1+x 22=-k 2-2k 2=-1+2k 2,y 1+y 22=2k ,即Q (-1+2k 2,2k).又|FQ |=2,F (1,0),∴(-1+2k 2-1)2 +(2k)2=4,解得k =±1.11.如图,已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于短半轴长的23,求椭圆的离心率.解析 方法一:根据题图设焦点坐标为F 1(-c ,0),F 2(c ,0),M 是椭圆上一点,依题意设M点坐标为(c ,23b ).在Rt △MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2,即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理,得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a ,所以b 2a 2=49.所以e 2=c 2a 2=a 2-b 2a2=1-b 2a 2=59,所以e =53.方法二:设M (c ,23b ),代入椭圆方程,得c 2a 2+4b 29b 2=1,所以c 2a 2=59,所以c a =53,即e =53.12.已知抛物线y 2=-4x 的焦点为F ,其准线与x 轴交于点M ,过M 作斜率为k 的直线l与抛物线交于A ,B 两点,弦AB 的中点为P ,AB 的垂直平分线与x 轴交于E (x 0,0).(1)求k 的取值范围;(2)求证:x 0<-3.解析 (1)由y 2=-4x ,可得准线x =1,从而M (1,0).设l 的方程为y =k (x -1),联立{y =k (x -1),y 2=-4x ,得k 2x 2-2(k 2-2)x +k 2=0.∵A ,B 存在,∴Δ=4(k 2-2)2-4k 4>0,∴-1<k <1.又k ≠0,∴k ∈(-1,0)∪(0,1).(2)证明:设P (x 3,y 3),A (x 1,y 1),B (x 2,y 2),可得x 3=x 1+x 22=k 2-2k 2,y 3=k(x 1+x 22-1)=-2kk2=-2k.即直线PE 的方程为y +2k =-1k (x -k 2-2k 2).令y =0,x 0=-2k2-1.∵k 2∈(0,1),∴x 0<-3.13.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC → ·DB → +AD → ·CB →=8,求k 的值.解析 (1)设F (-c ,0),由ca=33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b3.于是26b 3=433,解得b =2.又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组{y =k (x +1),x 23+y 22=1,消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC → ·DB → +AD → ·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1)=6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.14.已知抛物线C 的顶点在原点O ,焦点与椭圆x 225+y 29=1的右焦点重合.(1)求抛物线C 的方程;(2)在抛物线C 的对称轴上是否存在定点M ,使过点M 的动直线与抛物线C 相交于P ,Q 两点时,有∠POQ =π2.若存在,求出M 的坐标;若不存在,请说明理由.解析 (1)椭圆x 225+y 29=1的右焦点为(4,0),所以抛物线C 的方程为y 2=16x .(2)设点M (a ,0)(a ≠0)满足题设,当PQ 的斜率存在时,PQ 的方程为y =k (x -a ),则联立{y 2=16x ,y =k (x -a )⇒k 2x 2-2(ak 2+8)x +a 2k 2=0,则x 1+x 2=2(ak 2+8)k 2,x 1x 2=a 2.设P (x 1,y 1),Q (x 2,y 2),则由∠POQ =π2,得x 1x 2+y 1y 2=0.从而x 1x 2+k 2(x 1-a )(x 2-a )=0⇒a 2-16a =0⇒a =16,若PQ 的方程为x =a ,代入抛物线方程得y =±4a ,当∠POQ =π2时,a =4a ,即a =16,所以存在满足条件的点M (16,0).15.如图所示,已知椭圆x 2a 2+y 2b2=1(a >b >0),A ,B 分别为其长、短轴的一个端点,F 1,F 2分别是其左、右焦点.从椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且AB → 与OM→是共线向量.(1)求椭圆的离心率e ;(2)设Q 是椭圆上异于左、右顶点的任意一点,求∠F 1QF 2的取值范围.解析 (1)设M (x M ,y M ),∵F 1(-c ,0),∴x M =-c ,y M =b 2a ,∴k OM =-b 2ac .由题意知k AB =-b a,∵OM → 与AB →是共线向量,∴-b 2ac =-ba,∴b =c ,∴a =2c ,∴e =22.(2)设|F 1Q |=r 1,|F 2Q |=r 2,∠F 1QF 2=θ,则r 1+r 2=2a .又|F 1F 2|=2c ,∴由余弦定理,得cos θ=r 12+r 22-4c 22r 1r 2=(r 1+r 2)2-2r 1r 2-4c 22r 1r 2=a 2r 1r 2-1≥a 2(r 1+r 22)2-1=0,当且仅当r 1=r 2时等号成立,∴cos θ≥0,∴θ∈(0,π2]..。

新人教版高中数学必修第一册第三章章末检测试卷

新人教版高中数学必修第一册第三章章末检测试卷

三、填空题(本大题共4小题,每小题5分,共20分) 13.已知 f(x)=xg2-x,3,x<x0>0, 是奇函数,则 f(-3)=__-__6____,f(g(-3)) =__-__3_3___.
因 为 函 数 f(x) 是 奇 函 数 , 所 以 f( - 3) = g( - 3) = - f(3) = - 6 , 所 以 f(g(-3))=f(-6)=-f(6)=-33.
B.f(-1)<f -32<f(-2)
√D.f(-2)<f -32<f(-1)
∵f(x)在(-∞,-1]上单调递增,且-2<-32<-1,∴f(-2)<f -32<f(-1).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
6.若f(x)是偶函数且在[0,+∞)上单调递增,又f(-2)=1,则不等式f(x-1)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
选项C,函数是开口向下的二次函数,且在区间(-∞,0]上单调递增, 令f(x)=-x2, 若是闭函数,则一定有ffba==ba,, 即--ab22==ab,, 解得满足新定义的 闭区间是[-1,0],此时 a=-1,b=0,所以 C 正确;
1
1
所以f(x)=x 2,所以f(2)=22 2 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
5.若函数f(x)在(-∞,-1]上单调递增,则下列关系式中成立的是
A.f -23<f(-1)<f(-2) C.f(-2)<f(-1)<f -23

最新人教版高中数学必修第一册第三单元《函数概念与性质》测试卷(含答案解析)

最新人教版高中数学必修第一册第三单元《函数概念与性质》测试卷(含答案解析)

一、选择题⋅=(a为大于0的常数)的点P的1.已知,A B是平面内两个定点,平面内满足PA PB a轨迹称为卡西尼卵形线,它是以发现土星卫星的天文学家乔凡尼·卡西尼的名字命名.当-,(1,0),且1,A B坐标分别为(1,0)a=时,卡西尼卵形线大致为()A.B.C.D.2.定义在()0,∞+上的函数()f x 满足()()()f xy f x f y =+,当0x y <<时,都有()()f x f y >,且112f ⎛⎫= ⎪⎝⎭,则不等式()()32f x f x -+-≥-的解集为( )A .[)1,0-B .[)4,0-C .(]3,4D .[)(]1,03,4-3.设函数21,2()7,2x x f x x x ⎧-≤⎪=⎨-+>⎪⎩,若互不相等的实数a ,b ,c 满足()()()f a f b f c ==,则222a b c ++的取值范围是( ) A .()8,9B .()65,129C .()64,128D .()66,1304.设函数()f x 是定义R 在上的偶函数,且对任意的x ∈R 恒有(1)(1)f x f x +=-,已知当[0,1]x ∈时,1()2x f x -=,若32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,()60.7c f =,则,,a b c 的大小关系是( ) A .a b c >> B .a c b >> C .b a c >>D .c b a >>5.已知幂函数()(1)n f x a x =-的图象过点(2,8),且(2)(12)f b f b -<-,则b 的取值范围是( ) A .(0,1)B .(1,2)C .(,1)-∞D .(1,)+∞6.已知定义在R 上的函数()f x ,满足()()()3f m n f m f n +=+-,且0x >时,()3f x <,则下列说法不正确的是( )A .()()6f x f x +-=B .()y f x =在R 上单调递减C .若()10f =,()()22190f x x f x ++--->的解集()1,0-D .若()69f =-,则123164f ⎛⎫= ⎪⎝⎭7.函数()32241x xxx y -=+的部分图像大致为( )A .B .C .D .8.设函数()f x 的定义域为R ,()()112f x f x +=,当(]0,1x ∈时,()()1f x x x =-.若存在[),x m ∈+∞,使得()364f x =有解,则实数m 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .3,2⎛⎤-∞ ⎥⎝⎦C .9,4⎛⎤-∞ ⎥⎝⎦D .11,4⎛⎤-∞ ⎥⎝⎦9.已知()f x 是R 上的奇函数,且对x ∈R ,有()()2f x f x +=-,当()0,1x ∈时,()21x f x =-,则()2log 41f =( )A .40B .2516C .2341D .412310.若函数2()|2|f x x a x =+-在(0,)+∞上单调递增,则实数a 的取值范围是( ) A .[]4,0- B .(],0-∞C .(],4-∞-D .(,4][0,)-∞-+∞11.已知()2()ln ,(,)f x x ax b x a b R =++⋅∈,当0x >时()0f x ≥,则实数a 的取值范围为( ) A .20a -≤<B .1a ≥-C .10a -<≤D .01a <≤12.设函数1,()0,x D x x ⎧=⎨⎩为有理数为无理数,则下列结论正确的是( ) A .()D x 的值域为[0,1] B .()D x 是偶函数C .()(3.14)D D π>D .()D x 是单调函数13.函数24()x f x -=是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数14.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则()()()()2132020f f f f +++=( )A .50B .0C .2D .-201815.若函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,,当[],1x m m ∈+时,不等式()()2-<+f m x f x m 恒成立,则实数m 的取值范围是( )A .(),4-∞-B .(),2-∞-C .()2,2-D .(),0-∞二、填空题16.设()xf x a x =+,若()36f =,则不等式()()21f x f x ->的解集为____________.17.已知定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,则不等式(1)01f x x +≥-的解集为___________. 18.已知函数()()23log 440f x ax x =-+>在x ∈R 上恒成立,则a 的取值范围是_________.19.已知函数()y f x =是定义域为R 的奇函数,满足()()11f x f x -=+,若()11f =,则()()()()12350f f f f +++⋯+=__________.20.设12{21 2}33k ∈--,,,,,若(1 0)(0 1)x ∈-,,,且||k x x >,则k 取值的集合是___________.21.已知函数2()2f x x x =-,()2(0)g x ax a =+>,若对任意1[1,2]x ∈-,总存在2[1,2]x ∈-,使得()()12f x g x =,则实数a 的取值范围是_____.22.已知函数()cos ,0sin ,0x x f x x x ππ-≤<⎧=⎨≤≤⎩给出下列三个结论:①()f x 是偶函数; ②()f x 有且仅有3个零点; ③()f x 的值域是[]1,1-. 其中,正确结论的序号是______.23.设函数()f x 是定义在()0,∞+上的可导函数,其导函数为()f x ',且有()()2f x xf x x '+>,则不等式()()()220202020420x f x f ---≤的解集为______.24.设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +m ,则f (﹣1)=_______. 25.已知函数2421()349x x f x +-=-+,则(21)(2)8f x f x -++>的解集为__.26.已知甲、乙两地相距150 km ,某人开汽车以60 km/h 的速度从甲地到达乙地,在乙地停留一小时后再以50 km/h 的速度返回甲地,把汽车距甲地的距离s 表示为时间t 的函数,则此函数的表达式为__________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设(,)P x y 1=,代0x =排除C 、D ,通过奇偶性排除B. 【详解】 解:设(,)P x y因为PA PB a ⋅=,,A B 坐标分别为(1,0)-,(1,0),且1a =1=当0x =时,上式等式成立,即点(0,0)满足PA PB a ⋅=,故排除C 、D.当x -代替x 1== 即图形关于y 轴对称,排除B. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2.A解析:A 【分析】采用赋值法,令1x y ==求得()10f =,同理可求()21f =-,()42f =-; 化()()32f x f x -+-≥-为()()234f x x f -≥,再结合单调性解不等式得结果.【详解】令1x y ==,得()()121f f =即()10f =,令12x =,2y =则()()1122f f f ⎛⎫=+ ⎪⎝⎭得()21f =-,令2x y ==,()()()4222f f f =+=-,所以由()()32f x f x -+-≥-得()()234f x x f -≥;又因为函数()f x 的定义域为()0,∞+,且0x y <<时,都有()()f x f y >,所以203034x x x x ->⎧⎪->⎨⎪-≤⎩ 即0314x x x <⎧⎪<⎨⎪-≤≤⎩所以10x -≤<, 即不等式()()32f x f x -+-≥-的解集为[)1,0-. 故选:A 【点睛】思路点晴:抽象函数往往通过赋值法来解决问题.3.D解析:D 【分析】画出函数()f x 的图象,不妨令a b c <<,则222a b +=.结合图象可得67c <<,从而可得结果. 【详解】画出函数()f x 的图象如图所示.不妨令a b c <<,则1221a b -=-,则222a b +=. 结合图象可得67c <<,故67222c <<. ∴66222130a b c <++<.故选:D . 【点睛】数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有: 确定方程根的个数; 求参数的取值范围; 求不等式的解集; 研究函数性质.4.B解析:B 【分析】由(1)(1)f x f x +=-可得函数的周期为2,再利用周期和偶函数的性质将32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,转化使自变量在区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小 【详解】解:因为(1)(1)f x f x +=-,所以(2)()f x f x +=, 所以函数()f x 的周期为2,因为函数()f x 是定义R 在上的偶函数,所以331122222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()30.5(8)(0)b f f f -===,因为62100.70.72<<<,()f x 在[0,1]上单调递增, 所以61(0)(0.7)()2f f f <<, 所以b c a <<, 故选:B 【点睛】关键点点睛:此题考查函数周期性,单调性和奇偶性的应用,解题的关键是利用函数的周期将自变量转化到区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小,属于中档题5.C解析:C 【分析】先根据题意得幂函数解析式为3()f x x =,再根据函数的单调性解不等式即可得答案. 【详解】解:因为幂函数()(1)nf x a x =-的图像过点(2,8), 所以1128na -=⎧⎨=⎩,所以23a n =⎧⎨=⎩,所以3()f x x =, 由于函数3()f x x =在R 上单调递增,所以(2)(12)212f b f b b b -<-⇔-<-,解得:1b <. 故b 的取值范围是(,1)-∞. 故选:C. 【点睛】本题考查幂函数的定义,根据幂函数的单调性解不等式,考查运算求解能力,是中档题.本题解题的关键在于根据幂函数的系数为1待定系数求得解析式,进而根据单调性解不等式.6.D解析:D 【分析】构造函数()()3g x f x =-,验证函数()g x 的奇偶性可判断A 选项的正误;判断函数()g x 的单调性可判断B 选项的正误;利用函数()g x 的单调性解不等式()()22190f x x f x ++--->,可判断C 选项的正误;计算出()24g =-,求出116g ⎛⎫⎪⎝⎭的值,可求得116f ⎛⎫⎪⎝⎭的值,可判断D 选项的正误. 【详解】构造函数()()3g x f x =-,由()()()3f m n f m f n +=+-可得()()()g m n g m g n +=+. 对于A 选项,取0m n ==,可得()()020g g =,()00∴=g ,取n m =-,则()()()00g g m g m =+-=,()()g m g m ∴-=-,则函数()g x 为奇函数,所以,()()()()60g x g x f x f x +-=+--=,可得()()6f x f x +-=,A 选项正确; 对于B 选项,由已知条件可知,当0x >时,()()30g x f x =-<.任取1x 、2x R ∈且12x x >,所以,()()()()()1212120g x x g x g x g x g x -=+-=-<,()()12g x g x ∴<,所以,函数()()3g x f x =-为R 上的减函数,所以,函数()f x 为R 上的减函数,B 选项正确; 对于C 选项,()10f =,可得()()1133g f =-=-,由()()22190f x x f x ++--->,可得()()22130g x x g x ++--->,即()()()21311g x x g g +->=-=-,211x x ∴+-<-,可得20x x +<,解得10x -<<.C 选项正确; 对于D 选项,()()()()()663124232g f g g g =-=-=+=,()24g ∴=-,()()112214324216g g g g ⎛⎫⎛⎫=====- ⎪ ⎪⎝⎭⎝⎭,111316168fg ⎛⎫⎛⎫∴-==- ⎪ ⎪⎝⎭⎝⎭, 因此,123168f ⎛⎫= ⎪⎝⎭,D 选项错误. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.7.A解析:A 【分析】研究函数奇偶性和区间(的函数值的正负,利用排除法即得结果. 【详解】函数()33222()4122x x xxxx x x y f x ---===++,定义域为R , 对于任意的自变量x ,()333222()()222222x x x x x xx x x x x xf x f x -------===++-=-+++,故函数()y f x =是奇函数,图象关于原点中心对称,故CD 错误;又(32()2222x x xxx x x x x y f x ----===++,故(x ∈时,00,0,202x x x x x ->+>-+>,,即()0y f x =<,故A 正确,B 错误. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.8.D解析:D 【分析】 根据()()112f x f x +=,可知()()112f x f x =-,可得函数解析式并画出函数图象,由图象可得m 的取值范围. 【详解】 根据()()112f x f x +=,可知()()112f x f x =-, 又当(]0,1x ∈时,()()110,4f x x x ⎡⎤=-∈⎢⎥⎣⎦, 所以(]1,2x ∈时,(]10,1x -∈,()()111(1)(1)20,228f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]2,3x ∈时,(]11,2x -∈,()()111(1)(2)30,4416f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]3,4x ∈时,(]12,3x -∈,()()111(1)(3)40,2832f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦,即3()64f x <恒成立, 可画出函数图象,当(]2,3x ∈时,13(2)(3)464x x --=,解得94x =或114x =,故若存在[),x m ∈+∞,使得()364f x =有解,则实数114m ≤, 故选:D. 9.C解析:C【分析】由已知得(4)()f x f x +=,由对数函数性质估计出2log 41(5,6)∈,然后利用已知条件把自变量变小为2log 416(1,0)-∈-,再由奇函数定义可求得函数值.【详解】25log 416<<,()()()()()2222f x f x f x f x f x +=-⇒++=-+=⎡⎤⎣⎦,故()()()()2222log 41log 414log 4166log 41f f f f =-=--=-.∵()26log 410,1-∈,故()26log 41264236log 412114141f --=-=-=. 故选:C .【点睛】本题考查求函数值,方法是由已知条件得出函数的周期性,利用周期性和已知等式把函数自变量变小到(1,0)-上,然后由奇函数定义变到(0,1)上,从而由已知解析式求得函数值.10.A解析:A【分析】将()f x 写成分段函数的形式,根据单调性先分析每一段函数需要满足的条件,同时注意分段点处函数值关系,由此求解出a 的取值范围.【详解】因为2()|2|f x x a x =+-,所以222,2()2,2x ax a x f x x ax a x ⎧+-≥=⎨-+<⎩, 当()212f x x ax a =+-在[)2,+∞上单调递增时,22a -≤,所以4a ≥-, 当()222f x x ax a =-+在()0,2上单调递增时,02a ≤,所以0a ≤, 且()()12224f f ==,所以[]4,0a ∈-,故选:A.【点睛】思路点睛:根据分段函数单调性求解参数范围的步骤:(1)先分析每一段函数的单调性并确定出参数的初步范围;(2)根据单调性确定出分段点处函数值的大小关系;(3)结合(1)(2)求解出参数的最终范围.11.B解析:B【分析】讨论01x <<、1x =、1x >确定2()g x x ax b =++的函数值符号,根据二次函数的性质求a 的取值范围即可.【详解】当0x >时,()()2ln 0x a x x f b x ++⋅=≥, ∵01x <<时,ln 0x <,即需20x ax b ++≤成立;1x =时,ln 0x =,()0f x ≥恒成立;1x >时,ln 0x >,即需20x ax b ++≥成立;∴对于函数2()g x x ax b =++,在(0,1)上()0g x ≤,在(1,)+∞上()0g x ≥,∴2(1)1040(0)0g a b a b g b =++=⎧⎪∆=->⎨⎪=≤⎩解得1a ≥-,故选:B【点睛】思路点睛:令2()g x x ax b =++,即()()ln f x g x x =⋅.(0,)+∞上讨论x :由()0f x ≥,根据ln x 符号确定()g x 函数值的符号.由()g x 对应区间的函数值符号,结合二次函数性质求参数范围.12.B解析:B【分析】计算函数值域为{}0,1A 错误,根据偶函数定义知B 正确,()0D π=,(3.14)1D =,C 错误,()()011D D ==,故D 错误,得到答案.【详解】根据题意:()D x 的值域为{}0,1,A 错误;当x 为有理数时,x -为有理数,()()D x D x =-,当x 为无理数时,x -为无理数,()()D x D x =-,故函数为偶函数,B 正确;()0D π=,(3.14)1D =,C 错误;()()011D D ==,故D 错误.故选:B.【点睛】本题考查了分段函数的值域,奇偶性和单调性,意在考查学生对于函数性质的综合应用. 13.A解析:A【分析】首先求出函数的定义域,然后利用奇偶性定义判断即可.【详解】解:因为()|3|3f x x =+- 所以240330x x ⎧-≥⎪⎨+-≠⎪⎩解得22x -≤≤且0x ≠,故函数的定义域为[)(]2,00,2-,定义域关于原点对称,所以()f x x=,[)(]2,00,2x ∈-,又()()f x f x -===- 所以函数为奇函数;故选:A【点睛】本题考查函数的奇偶性的判断,判断函数的奇偶性按照两步:①求函数的定义域,判断定义域是否关于原点对称;②计算()f x -判断与()f x 之间的关系;14.B解析:B【分析】由奇函数和(1)(1)f x f x +=-得出函数为周期函数,周期为4,然后计算出(3),(2),(4)f f f 后可得结论.【详解】由函数()f x 是定义域为(,)-∞+∞的奇函数,所以()()f x f x =--,且(0)0f =, 又由(1)(1)f x f x -=+,即(2)()()f x f x f x +=-=-,进而可得()(4)f x f x =+,所以函数()f x 是以4为周期的周期函数,又由(1)2f =,可得(3)(1)(1)2f f f =-=-=-,(2)(0)0f f ==,(4)(0)0f f ==, 则(1)(2)(3)(4)0f f f f +++=,所以(1)(2)(3)(2020)505[(1)(2)(3)(4)]0f f f f f f f f ++++=⨯+++=. 故选:B .【点睛】关键点睛:本题考查利用函数的周期性求函数值,解决本题的关键是由函数是奇函数以及(1)(1)f x f x -=+得出函数是周期为4的周期函数,进而可求出结果.15.B解析:B【分析】先判断函数的单调性,然后解答不等式,在恒成立的条件下求出结果【详解】依题意得:函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,在x ∈R 上单调递减,因为()()2-<+f m x f x m ,所以2m x x m ->+,即2x m <,在[],1x m m ∈+上恒成立,所以2(1)m m +<,即2m <-,故选B .【点睛】本题考查了函数的单调性的应用,结合函数的单调性求解不等式,需要掌握解题方法二、填空题16.【分析】先由解出a 讨论的单调性利用函数单调性解不等式即可【详解】因为且所以解得在R 上单增可化为:解得:不等式的解集为故答案为:【点睛】利用单调性解不等式通常用于:(1)分段函数型不等式;(2)复合函解析:()1,+∞【分析】先由()36f =,解出a ,讨论()xf x a x =+的单调性,利用函数单调性解不等式即可. 【详解】因为()x f x a x =+,且()36f =,,所以33a =,解得1a =>.()(),ln 1x x f x f a x a x a =+∴=+'ln 0,ln 111,x x a a a a a >∴>∴>+,()x f x a x ∴=+在R 上单增.()()21f x f x ->可化为:21x x ->解得:1x >.不等式()()21f x f x ->的解集为()1,+∞故答案为:()1,+∞【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式;(2)复合函数型不等式;(3)抽象函数型不等式;(4)解析式较复杂的不等式;17.【分析】先由定义域为R 的奇函数在区间上为严格减函数且画出的草图结合图像对进行等价转化解不等式即可【详解】是定义域为R 的奇函数且在区间上为严格减函数有∴在区间上为严格减函数且可作出的草图:不等式可化为 解析:[]3,1--【分析】先由定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,画出()f x 的草图,结合图像对(1)01f x x +≥-进行等价转化,解不等式即可. 【详解】 ()f x 是定义域为R 的奇函数,且在区间(0,)+∞上为严格减函数,有()20f =,∴()f x 在区间(,0)-∞上为严格减函数且()20f =,可作出()f x 的草图:不等式(1)01f x x +≥-可化为: ()1010x f x ->⎧⎨+≥⎩或()1010x f x -<⎧⎨+≤⎩对于()1010x f x ->⎧⎨+≥⎩,当1x >时()12,10x f x +>+<,无解; 对于()1010x f x -<⎧⎨+≤⎩,当1x <时()12,10x f x +<+≤,由图像观察,210x -≤+≤ 解得:31x -≤≤-所以不等式(1)01f x x +≥-的解集为[]3,1--. 故答案为:[]3,1--【点睛】常见解不等式的类型:(1)解一元二次不等式用图像法或因式分解法;(2)分式不等式化为标准型后利用商的符号法则;(3)高次不等式用穿针引线法;(4)含参数的不等式需要分类讨论.18.【分析】由题意把函数在上恒成立转化为对上恒成立列不等式解得a 的范围【详解】恒成立即恒成立所以时显然不成立当时得所以故答案为:【点睛】(1)求参数的范围是常见题型之一处理的方法有两种:①不分离参数直接 解析:4,3⎛⎫+∞ ⎪⎝⎭【分析】由题意,把函数()()23log 440f x ax x =-+>在x ∈R 上恒成立转化为2430ax x -+>对x ∈R 上恒成立,列不等式解得a 的范围.【详解】()()23log 440f x x x α=-+>恒成立,即()2233log 44log 1430ax x ax x -+>⇔-+>恒成立,所以0a =时显然不成立.当0a ≠时()0Δ16120a a >⎧⎨=-<⎩得43a <,所以4,3a ⎛⎫∈+∞ ⎪⎝⎭. 故答案为:4,3⎛⎫+∞⎪⎝⎭ 【点睛】(1)求参数的范围是常见题型之一,处理的方法有两种:①不分离参数,直接求最大值或最小值,解不等式;②分离参数法.(2)解指、对数型的不等式,通常化为同底的结构,利用函数的单调性解不等式. 19.1【分析】据题意分析可得则有即函数是周期为4的周期函数结合奇函数的性质及周期可求【详解】因为所以所以即函数是周期为4的周期函数所以所以原式等于故答案为:【点睛】方法点睛:函数在定义域R 上满足可知函数 解析:1【分析】据题意,分析可得(2)()f x f x +=-,则有(4)(2)()f x f x f x +=-+=,即函数()f x 是周期为4的周期函数,结合奇函数的性质及周期可求.【详解】因为()()11f x f x -=+,所以(2)()()f x f x f x +=-=-,所以(4)(2)()f x f x f x +=-+=,即函数()f x 是周期为4的周期函数.所以()()()33411f f f f =-=-=-(),(4)(0)(2)0f f f ===, (1)(2)(3)(4)0f f f f +++=,所以原式等于()()()12(123(4))(49)(50)(49)(50)(1)(2)1f f f f f f f f f f +++++=+=+= 故答案为:1【点睛】方法点睛:函数在定义域R 上满足()()f a x f a x +=-,可知函数图象关于x a =对称,如果同时函数为奇函数,且关于直线x a =对称,可推出函数为周期函数.20.【分析】根据不能是奇函数排除和再利用幂函数的性质排除2即可得出【详解】若且则幂函数的图象一定在的上方故不可能为奇函数即不能取和当取时是偶函数故只需满足即可此时即则即则可取故取值的集合是故答案为:【点 解析:2{2 }3-, 【分析】根据k y x =不能是奇函数排除1-和13,再利用幂函数的性质排除2即可得出. 【详解】 若(1 0)(0 1)x ∈-,,,且||k x x >,则幂函数k y x =的图象一定在y x =的上方,故k y x =不可能为奇函数,即k 不能取1-和13, 当k 取22,,23-时,k y x =是偶函数,故只需满足(0 1)x ∈,即可, 此时k x x >,即11k x ->,则10k -<,即1k <,则k 可取22,3-,故k 取值的集合是2{2 }3-,. 故答案为:2{2 }3-,. 【点睛】本题考查幂函数的性质,解题的关键是正确理解幂函数的性质的特点,以及不同幂函数的图象特点. 21.【分析】由题可知在区间上函数的值域为值域的子集从而求出实数的取值范围【详解】函数的图象开口向上对称轴为时的最小值为最大值为的值域为为一次项系数为正的一次函数在上单调递增时的最小值为最大值为的值域为对 解析:[3,)+∞【分析】由题可知,在区间[]1,2-上函数1()f x 的值域为2()g x 值域的子集,从而求出实数a 的取值范围.【详解】函数()22f x x x =-的图象开口向上,对称轴为1x =, ∴[]11,2x ∈-时,()f x 的最小值为(1)1f =-,最大值为(1)3f -=,1()f x 的值域为[1,3]-.()2(0)g x ax a =+>为一次项系数为正的一次函数,在[]1,2-上单调递增,∴[]11,2x ∈-时,()g x 的最小值为(1)2g a -=-+,最大值为(2)22g a =+,2()g x 的值域为[2,22]a a -++.对任意1[1,2]x ∈-,总存在2[1,2]x ∈-,使得()()12f x g x =,∴在区间[]1,2-上,函数1()f x 的值域为2()g x 值域的子集,∴212230a a a -+≤-⎧⎪+≥⎨⎪>⎩解得3a ≥故答案为:[3,)+∞.【点睛】本题考查函数的值域,考查分析解决问题的能力,解题的关键是对“任意”、“存在”的正确理解,确定两个函数值域之间的关系.22.②③【分析】判断函数的奇偶性判断①;求出函数的零点判断②;函数的值域判断③【详解】函数①由于所以是非奇非偶函数所以①不正确;②可得所以函数有且仅有3个零点;所以②正确;③函数的值域是正确;正确结论的解析:②③【分析】判断函数的奇偶性判断①;求出函数的零点判断②;函数的值域判断③.【详解】函数()cos ,0sin ,0x x f x x x ππ-≤<⎧=⎨≤≤⎩, ①由于()()1,sin 0f f πππ-=-==,所以()f x 是非奇非偶函数,所以①不正确;②()0f x =,可得2x π=-,0x =,x π=,所以函数有且仅有3个零点;所以②正确;③函数()cos ,0sin ,0x x f x x x ππ-≤<⎧=⎨≤≤⎩,()f x 的值域是[]1,1-,正确; 正确结论的序号是:②③.故答案为:②③.【点睛】本小题主要考查函数的奇偶性、零点、值域.23.【分析】根据已知构造新函数利用导数求得函数的单调性根据函数的单调性列出不等式即可求解【详解】因为函数是定义在上的可导函数且有即设函数则所以函数在上单调递增又因为即所以则即的即不等式的解集为故答案为: 解析:(2020,2022]【分析】根据已知构造新函数,利用导数求得函数的单调性,根据函数的单调性,列出不等式,即可求解.【详解】因为函数()f x 是定义在()0,∞+上的可导函数,且有()()2f x xf x x '+>,即()()222xf x x f x x '+> 设函数()()2g x x f x =,则()()()220g x xf x x f x '=+>, 所以函数()g x 在()0,∞+上单调递增,又因为()()()220202020420x f x f ---≤,即()()()222020202022x f x f --≤, 所以(2020)(2)g x g -≤,则2020020202x x ->⎧⎨-≤⎩,即的20202022x <≤, 即不等式的解集为(2020,2022].故答案为:(2020,2022].【点睛】本题主要考查了函数的单调性的应用,其中解答中构造新函数,结合题设条件求得新函数的单调性,结合新函数的性质求解是解答的关键,着重考查构造思想,以及推理与运算能力.24.【分析】由函数是上的奇函数求得得到当时函数再由即可求解【详解】由题意因为函数是上的奇函数则解得即当时函数又由故答案为:【点睛】本题主要考查了函数的奇偶性的应用以及函数值的求解其中解答中熟练应用函数的 解析:3-【分析】由函数()f x 是R 上的奇函数,求得1m =-,得到当0x ≥时,函数()221x f x x =+-,再由()()11f f -=-,即可求解.【详解】由题意,因为函数()f x 是R 上的奇函数,则()002200f m =+⨯+=, 解得1m =-,即当0x ≥时,函数()221xf x x =+-, 又由()()111(2211)3f f -=-=-+⨯-=-. 故答案为:3-.【点睛】本题主要考查了函数的奇偶性的应用,以及函数值的求解,其中解答中熟练应用函数的奇偶性是解答的关键,着重考查了推理与运算能力,属于基础题.25.【分析】根据题意设则原不等式变形为分析函数的奇偶性以及单调性可得原不等式等价于解可得的取值范围即可得答案【详解】根据题意函数设则变形可得即;对于其定义域为则有即函数为奇函数;函数在上为增函数在上为减 解析:1(,)3-+∞ 【分析】根据题意,设2442()()433x x g x f x +-=-=-,则原不等式变形为(21)(2)0g x g x -++>,分析函数()g x 的奇偶性以及单调性可得原不等式等价于212x x ->--,解可得x 的取值范围,即可得答案.【详解】根据题意,函数 24244221()343349x x x x f x ++--=-+=-+,设2442()()433x x g x f x +-=-=-,则(21)(2)8f x f x -++>,变形可得(21)4(2)40f x f x --++->,即(21)(2)0g x g x -++>;对于2442()()433x x g x f x +-=-=-,其定义域为R , 则有24422442()33(33)()x x x x g x g x -+++--=-=--=-,即函数()g x 为奇函数; 函数243x y +=在R 上为增函数,423x y -=在R 上为减函数, 故函数2442()33x x g x +-=-在R 上为增函数,故(21)(2)0(21)(2)(21)(2)212g x g x g x g x g x g x x x -++>⇒->-+⇒->--⇒->--, 解可得13x >-, 即不等式的解集为1(3-,)+∞. 故答案为:1(3-,)+∞. 【点睛】本题考查函数的奇偶性与单调性的综合应用,注意分析函数()g x 的奇偶性与单调性,属于中档题.26.【分析】算出该人从甲地到乙地所用时间和从乙地返回到甲地所用时间即可得到本题函数的定义域将其分为三段再结合各个时间段上该人的运动状态可得汽车离甲地的距离距离(千米)与时间(小时)的函数表达式【详解】根解析:60,0 2.5,150,2.5 3.5,32550,3.5 6.5t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩【分析】算出该人从甲地到乙地所用时间和从乙地返回到甲地所用时间,即可得到本题函数的定义域,将其分为三段,再结合各个时间段上该人的运动状态,可得汽车离甲地的距离距离s (千米)与时间t (小时)的函数表达式.【详解】根据题意此人运动的过程分为三个时段,当0 2.5t ≤≤时,60s t =;当2.5 3.5t <<时,150s =;当3.5 6.5t ≤≤时,()15050 3.532550t t t =--=-.综上所述,60,0 2.5,150,2.5 3.5,32550,3.5 6.5.t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩故答案为60,0 2.5,150,2.5 3.5,32550,3.5 6.5.t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩【点睛】本题考查分段函数应用题,求函数表达式,着重考查基本初等函数的应用和分段函数的理解等知识,属于基础题.。

(人教版A版最新)高中数学必修第一册 第三章综合测试02-答案

(人教版A版最新)高中数学必修第一册 第三章综合测试02-答案

1
1
f
(2)
f
(3)
f
(4)
f
(5)
f
2
f
3
f
4
f
5
f
(2)
f
2
f
(3)
f
3
高中数学 必修第一册 3 / 5
1
1
f
(4)
f
4
f
(5)
f
5
3
4
12
b
21.【答案】(1)解:依题意得
f f
(0) 0, 1 02
1
2

a
b
高中数学 必修第一册 2 / 5
(2)解:若 f x 为偶函数,则有 f (a) f (a) ,则由(1)得 a 0 ,从而 a 0 ,此时 f (x) x2 2 x 3
是偶函数. (3)解:由(2)知 f (x) x2 2 x 3 ,其图像如图所示,其单调递增区间是[1,0] 和[1, ) .
都有 f x2 f x1 >0 . 函数 f (x) 在 [1, ) 上单调递增,在 (,1) 上单调递减. f (a 1)≥f (2a) ,
x2 x1
a 11≥ 2a 1 ,1≤a≤1.
二、 13.【答案】4 14.【答案】1 15.【答案】[0, 4] 16.【答案】 (1,3)
【解析】当 x<3时, f (x) x2 6x (x 3)2 9≤9 , f x 在 (,3) 上递增,
19.【答案】(1)当 0<x≤10 时, f (x) 0.1x2 2.6x 43 0.1(x 13)2 59.9 ,故 f (x) 在 0<x≤10 时最
大值为 f (10) 0.1 (10 13)2 59.9 59 .当10<x≤16 时, f (x) 59 .当16<x≤30 时, f (x

最新人教版高中数学必修第一册第三单元《函数概念与性质》测试(有答案解析)(2)

最新人教版高中数学必修第一册第三单元《函数概念与性质》测试(有答案解析)(2)

一、选择题1.已知()f x 是R 上的奇函数,()g x 是R 上的偶函数,且32()()231f x g x x x x +=+++,则(1)(2)f g +=( )A .5B .6C .8D .102.函数2()1sin 12xf x x ⎛⎫=-⎪+⎝⎭的图象大致形状为( ). A . B .C .D .3.已知函数()x xf x e e -=-,则不等式()()2210f x f x +--<成立的一个充分不必要条件为( ) A .()2,1- B .()0,1 C .1,12⎛⎫-⎪⎝⎭D .()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭4.已知奇函数()f x 在区间[]2,3上单调递增,则()f x 在区间[]3,2--上( ) A .单调递增,且最大值为()2f - B .单调递增,且最大值为()3f - C .单调递减,且最大值为()2f -D .单调递减,且最大值为()3f -5.函数1x y x-=的值域是( ) A .11,22⎡⎤-⎢⎥⎣⎦ B .[]0,1C .10,2⎡⎤⎢⎥⎣⎦D .[)0,+∞6.函数()||f x x x a =-在区间(0,1)上既有最大值又有最小值,则实数a 的取值范围是( )A .[22,0)-B .(0,222]C .2,12⎡⎫⎪⎢⎪⎣⎭D .[222,1)-7.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是( )A .()11f x x =- B .()11f x x =- C .()211f x x =- D .()211f x x =+ 8.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( ) A .12B .1-C .±1D .12±9.已知函数2log (1),1,()1,1,x x f x x +≥⎧=⎨<⎩则满足(21)(31)f x f x +<-的实数x 的取值范围是( )A .2,3⎛⎫+∞ ⎪⎝⎭B .(2,)+∞C .2,23⎛⎫ ⎪⎝⎭D .()1,210.已知函数3()201920191x x f x x -=-++,则关于x 的不等式(21)(2)2f x f x -+>的解集为( ) A .1,4⎛⎫+∞⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,2⎛⎫+∞⎪⎝⎭11.已知函数()22x f x =-,则函数()y f x =的图象可能是( )A .B .C .D .12.函数()|3|3f x x =+-是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数13.设函数()()212131log 1313x xe e xf x x --=++++,则做得()()31f x f x ≤-成立的x 的取值范围是( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .11,,42⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭ D .11,42⎡⎤⎢⎥⎣⎦14.已知()22,02,0x x f x x x x ⎧-≥=⎨+<⎩,则不等式()()3f f x ≤的解集为( )A .](,3-∞-B .)3,⎡-+∞⎣C.(-∞D.)+∞15.若()21f x ax x a =+++在()2,-+∞上是单调递增函数,则a 的取值范围是( ) A .1(,]4-∞B .1(0,]4C .1[0,]4D .1[,)4+∞二、填空题16.已知a R ∈,函数229()f x x a a x =++-在区间[3,1]--上的最大值10,则a 的取值范围是__________.17.若函数()f x 在定义域D 内的某区间M 上是增函数,且()f x x在M 上是减函数,则称()f x 在M 上是“弱增函数”.已知函数()()24g x x a x a =+-+在(]0,2上是“弱增函数”,则实数a 的值为______.18.设函数()3,111,1x x f x x x x <⎧⎪=⎨-+≥⎪⎩,,则不等式()()26f x f x ->-的解集为____________.19.幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在()0,∞+上是减函数,则a m +=____.20.函数()22f x x x =-,[]2,2x ∈-的最大值为________.21.高斯,德国著名数学家、物理学家、天文学家,是近代数学奠基者之一,享有“数学王子”之称.函数[]y x =称为高斯函数,其中[]x 表示不超过实数x 的最大整数,当(]1.5,3x ∈-时,函数22x y ⎡-=⎤⎢⎥⎣⎦的值域为________. 22.如果方程24x +y |y |=1所对应的曲线与函数y =f (x )的图象完全重合,那么对于函数y =f (x )有如下结论: ①函数f (x )在R 上单调递减;②y =f (x )的图象上的点到坐标原点距离的最小值为1; ③函数f (x )的值域为(﹣∞,2]; ④函数F (x )=f (x )+x 有且只有一个零点. 其中正确结论的序号是_____.23.函数()ln f x x x x =+的单调递增区间是_______.24.设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +m ,则f (﹣1)=_______. 25.已知函数()f x =ln 2x x +,则()232f x -<的解集为_____.26.定义在()0,∞+上的函数()f x ,满足对于任意正实数x ,y 恒有()()()f xy f x f y =+,且()31f =,如果对任意的1x ,()20,x ∈+∞,当12x x ≠时,都有()()()12120x x f x f x -⋅->⎡⎤⎣⎦,则不等式()()82f x f x +-<的解集是_________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先由()f x 是R 上的奇函数,()g x 是R 上的偶函数,且32()()231f x g x x x x +=+++,得到32()()231f x g x x x x -+-=-+-+,求出()f x 和()g x ,再求(1)(2)f g +【详解】因为32()()231f x g x x x x +=+++,所以32()()231f x g x x x x -+-=-+-+.又()f x 是奇函数,()g x 是偶函数,所以32()()231f x g x x x x -+=-+-+,则32()23,()1f x x x g x x =+=+,故(1)(2)5510f g +=+=.故选:D 【点睛】 函数奇偶性的应用:(1)一般用()()f x f x =-或()()f x f x =-;(2)有时为了计算简便,我们可以对x 取特殊值: (1)(1)f f =-或(1)(1)f f =-.2.B解析:B【分析】首先判断函数的奇偶性,再判断0πx <<时,函数值的正负,判断得选项. 【详解】因为2()1sin 12x f x x ⎛⎫=- ⎪+⎝⎭,所以12()sin 12xxf x x -=⋅+, ()()()2221sin 1sin 1212x x xf x x x -⎛⎫⨯⎛⎫-=--=-- ⎪ ⎪++⎝⎭⎝⎭()()21221sin 12x x x ⎛⎫+- ⎪=-- ⎪+⎝⎭221sin 1sin 1212xx x x ⎛⎫⎛⎫=--=- ⎪ ⎪++⎝⎭⎝⎭()f x =,所以函数是偶函数,关于y 轴对称,排除C ,D , 令()0f x =,则21012x-=+或sin 0x =,解得()x k k Z π=∈,而0πx <<时,120x -<,120x +>,sin 0x >,此时()0f x <.故排除A.故选:B . 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.B解析:B 【分析】根据解析式可判断出()f x 是定义在R 的增函数且是奇函数,不等式可化为()()221f x f x <+,即得221x x <+,解出即可判断.【详解】可得()f x 的定义域为R ,x y e =和x y e -=-都是增函数,()f x ∴是定义在R 的增函数,()()x x f x e e f x --=-=-,()f x ∴是奇函数,则不等式()()2210f xf x +--<化为()()()2211f x f x f x <---=+,221x x ∴<+,解得112x -<<,则不等式成立的充分不必要条件应是1,12⎛⎫- ⎪⎝⎭的真子集, 只有B 选项满足. 故选:B. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,解题的关键是判断出()f x 是增函数且是奇函数,从而将不等式化为()()221f xf x <+求解.4.A解析:A 【分析】利用函数单调性的定义结合奇函数的基本性质可判断函数()f x 在区间[]3,2--上的单调性,进而可得出函数()f x 在区间[]3,2--上的最值. 【详解】任取1x 、[]23,2x ∈--且12x x <,即1232x x -≤<≤-,所以,2123x x ≤-<-≤, 因为函数()f x 在区间[]2,3上单调递增,则()()21f x f x -<-, 因为函数()f x 为奇函数,则()()21f x f x -<-,()()12f x f x ∴<, 因此,函数()f x 在区间[]3,2--上为增函数,最大值为()2f -,最小值为()3f -.故选:A. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.5.C解析:C 【分析】令t =,转化为21ty t =+,0t ≥,根据均值不等式求解即可. 【详解】令t =,则0t ≥,当0t =时,0y =, 当0t ≠时,2110112t y t t t <==≤=++,当且仅当1t =时,即2x =时等号成立, 综上102y ≤≤, 故选:C 【点睛】关键点点睛:注意含根号式子中,经常使用换元法,利用换元法可简化运算,本题注意均值不等式的使用,属于中档题.6.D解析:D 【分析】转化条件为22,(),x ax x af x x ax x a ⎧-≥=⎨-+<⎩,结合二次函数的图象与性质,作出分段函数的图象,数形结合结合可得()0112a a f f <<⎧⎪⎨⎛⎫≤ ⎪⎪⎝⎭⎩,即可得解. 【详解】由题意,函数22,(),x ax x af x x x a x ax x a⎧-≥=-=⎨-+<⎩,函数2y x ax =-+的图象开口朝下,对称轴为2a x =, 函数2y x ax =-的图象开口朝上,对称轴为2a x =, 当0a =时,22,0(),0x x f x x x ⎧≥=⎨-<⎩,函数在R 上单调递增,不合题意;当0a <时,作出函数图象,如图,易得函数在区间(0,1)上无最值; 当0a >,作出函数图象,如图,若要使函数()f x 在区间(0,1)上既有最大值又有最小值,则()0112a a f f <<⎧⎪⎨⎛⎫≤ ⎪⎪⎝⎭⎩即2201122a a a a <<⎧⎪⎨⎛⎫-≤-+⎪⎪⎝⎭⎩,解得2221a ≤<; 综上,实数a 的取值范围是[222,1).故选:D. 【点睛】关键点点睛:解决本题的关键是利用二次函数的性质作出分段函数()f x 的图象,结合图象数形结合即可得解.7.A解析:A 【分析】由图象知函数的定义域排除选项选项B 、D ,再根据()01f =-不成立排除选项C ,即可得正确选项.由图知()f x 的定义域为{}|1x x ≠±,排除选项B 、D ,又因为当0x =时,()01f =-,不符合图象()01f =,所以排除C , 故选:A 【点睛】思路点睛:排除法是解决函数图象问题的主要方法,根据函数的定义域、与坐标轴的交点、函数值的符号、单调性、奇偶性等,从而得出正确结果.8.C解析:C 【分析】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,计算可得()()()()()()()2,2,g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,再结合图像即可求出答案. 【详解】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,则()()221g x x axh x x ⎧=+⎪⎨=-⎪⎩, 则()()()()()()()()()()()2,2,g x g x h x f x g x h x g x h x h x g x h x ⎧≥⎪=++-=⎨<⎪⎩,由于函数()f x 的最小值为0,作出函数()(),g x h x 的大致图像,结合图像,210x -=,得1x =±, 所以1a =±. 故选:C 【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.9.B解析:B根据函数的解析式,得出函数的单调性,把不等式(21)(32)f x f x +<-,转化为相应的不等式组,即可求解. 【详解】由题意,函数2log (1),1()1,1x x f x x +≥⎧=⎨<⎩,可得当1x <时,()1f x =,当1≥x 时,函数()f x 在[1,)+∞单调递增,且()21log 21f ==, 要使得()()2131f x f x +<-,则2131311x x x +<-⎧⎨->⎩ ,解得2x >,即不等式()()2131f x f x +<-的解集为()2,+∞, 故选:B. 【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下: (1)根据函数的解析式,得出函数单调性; (2)合理利用函数的单调性,得出不等式组; (3)正确求解不等式组,得到结果.10.A解析:A 【分析】可知()f x 在R 上是单调递增函数,且()()2f x f x +-=,则不等式等价于(21)(2)f x f x ->-,解出即可.【详解】3()201920191x x f x x -=-++,()f x ∴在R 上是单调递增函数,()3201920191x x f x x ---=+-,()()2f x f x ∴+-=,则()()222f x f x -=-,(21)(2)2f x f x -+>,(21)2(2)(2)f x f x f x ->-=-∴,212x x ∴->-,解得14x >, 故不等式的解集为1,4⎛⎫+∞ ⎪⎝⎭. 故选:A. 【点睛】本题考查抽象函数不等式的求解,解题的关键是判断出函数的单调性,得出()()2f x f x +-=,将不等式化为(21)(2)f x f x ->-求解.11.B解析:B 【分析】先将函数化成分段函数的形式,再根据函数在不同范围上的性质可得正确的选项. 【详解】()22,12222,1x xxx f x x ⎧-≥=-=⎨-<⎩易知函数()y f x =的图象的分段点是1x =,且过点()1,0,()0,1,又()0f x ≥,故选:B . 【点睛】本题考查函数图象的识别,此类问题一般根据函数的奇偶性、单调性、函数在特殊点处的函数的符号等来判别,本题属于基础题.12.A解析:A 【分析】首先求出函数的定义域,然后利用奇偶性定义判断即可. 【详解】解:因为()f x =所以240330x x ⎧-≥⎪⎨+-≠⎪⎩解得22x -≤≤且0x ≠,故函数的定义域为[)(]2,00,2-,定义域关于原点对称,所以()f x x=,[)(]2,00,2x ∈-,又()()f x f x -===-所以函数为奇函数; 故选:A 【点睛】本题考查函数的奇偶性的判断,判断函数的奇偶性按照两步:①求函数的定义域,判断定义域是否关于原点对称;②计算()f x -判断与()f x 之间的关系;13.D解析:D 【分析】先判断()f x 是偶函数且在0,上递减,原不等式转化为31x x ≥-,再解绝对值不等式即可. 【详解】()()()211221133111log 13log 131313x x xxe e e e xxf x x x ---⎛⎫=+++=+++ ⎪++⎝⎭,()121311log 1,,313x xe e xy x y y -⎛⎫=+== ⎪+⎝⎭在0,上都递减所以()f x 在0,上递减,又因为()()()()121311log 1313x xe e xf x x f x ----⎛⎫-=+-++= ⎪+⎝⎭,且()f x 的定义域为R ,定义域关于原点对称, 所以()f x 是偶函数, 所以()()()()313131f x f x f x f x x x ≤-⇔≤-⇔≥-,可得113142x x x x -≤-≤⇒≤≤,x 的取值范围是11,42⎡⎤⎢⎥⎣⎦, 故选:D. 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.14.C解析:C 【分析】先解()3f t ≤,再由t 的范围求x 的范围. 【详解】0t ≥时,2()03f t t =-≤<满足题意,0t <时,2()23f t t t =+≤,31t -≤≤,∴30t -≤<综上满足()3f t ≤的t 的范围是3t ≥-,下面解不等式()3f x ≥-,0x ≥时,2()3f x x =-≥-,解得x ≤∴0x ≤≤, 0x <时,2()23f x x x =+≥-,2(1)20x ++≥,恒成立,∴0x <,综上x ≤故选:C 【点睛】思路点睛:本题考查解函数不等式,由于是分段函数,因此需要分类讨论,而原不等式是复合函数形式,因此解题时可把里层()f x 作为一个未知数t (相当于换元),求得()3f t ≥-的解,再由t 的范围求出()f x t =中t 的范围.分类讨论必须牢记,否则易出错.15.C解析:C 【分析】先考虑a 是否为零,然后再分一次函数和二次函数分别考虑. 【详解】当0a =时,则()1f x x =+,显然在()2,-+∞上递增;当0a ≠时,则()21f x ax x a =+++是二次函数,因为()f x 在()2,-+∞上递增,则对称轴122x a =-≤-且0a >,解得:10,4a ⎛⎤∈ ⎥⎝⎦;综上:a 的取值范围是1[0,]4,故选C. 【点睛】本题考查根据单调区间求解参数范围问题,难度一般.对于形如()2f x ax bx c =++的函数,一定要明确:并不一定是二次函数,可能会出现0a =的情况,所以要分类讨论.二、填空题16.【分析】求出的范围后根据绝对值的性质根据最大值得不等关系可得的范围【详解】时当且仅当时等号成立又或时所以而的最大值为10所以的最大值为所以解得故答案为:【点睛】关键点点睛:本题考查函数的最值掌握绝对 解析:[8,)-+∞【分析】 求出229x x+的范围后根据绝对值的性质根据最大值得不等关系,可得a 的范围. 【详解】[3,1]x ∈--时,2[1,9]x ∈,2296x x +≥=,当且仅当23x =时等号成立, 又1x =-或3x =-时,22910x x +=,所以229610a x a a x +≤++≤+, 而()f x 的最大值为10,所以229x a x++的最大值为10a +, 所以100610a a a +≥⎧⎨+≤+⎩,解得8a ≥-.故答案为:[8,)-+∞. 【点睛】关键点点睛:本题考查函数的最值.掌握绝对值的性质是解题关键.当0a b >≥时,a b >,当0a b 时,a b <,当0a b >>时,0a b +>,则a b >,0a b +<时,a b <.17.4【分析】由在上的单调性求出a 的一个范围再令则在上是减函数分类讨论根据的单调性求参数a 的范围两范围取交集即可得解【详解】由题意可知函数在上是增函数解得令则在上是减函数①当时在上为增函数不符合题意;②解析:4 【分析】由()g x 在(]0,2上的单调性求出a 的一个范围,再令()()f x h x x=,则()h x 在(]0,2上是减函数,分类讨论根据()h x 的单调性求参数a 的范围,两范围取交集即可得解. 【详解】由题意可知函数()()24g x x a x a =+-+在(]0,2上是增函数,402a -∴≤,解得4a ≤, 令()()4f x ax a xxh x +==+-,则()h x 在(]0,2上是减函数, ①当0a ≤时,()h x 在(]0,2上为增函数,不符合题意;②当0a >时,由对勾函数的性质可知()h x 在上单调递减,2≥,解得4a ≥,又4a ≤,4a ∴=.故答案为:4 【点睛】本题考查函数的单调性、一元二次函数的单调性,属于中档题.18.【分析】先判断函数是增函数于是可把函数不等式转化为自变量的关系进而可得原不等式的解集【详解】当时单调递增且;当时单调递增且所以函数在上单调递增于是等价于则解得故答案为:【点睛】本题考查函数单调性的判 解析:()2,3-【分析】先判断函数()f x 是增函数,于是可把函数不等式转化为自变量的关系,进而可得原不等式的解集. 【详解】当1x <时,()f x x =单调递增,且()1f x <; 当1≥x 时,31()1f x x x=-+单调递增,且()1f x ≥. 所以函数()f x 在R 上单调递增. 于是()()26f xf x ->-等价于26xx ->-,则260x x --<,()()320x x -+<,解得23x -<<.故答案为:()2,3-. 【点睛】本题考查函数单调性的判断与应用.遇到函数不等式问题,要利用单调性转化为自变量的关系再求解.判断分段函数的单调性,一定要关注对分段间隔点处的情况.19.3【分析】由幂函数为偶函数且在(0+∞)上是单调递减函数可得m2-2m-3<0且m2-2m-3为偶数m ∈Z 且解出即可【详解】∵幂函数为偶函数且在上是减函数∴且为偶数且解得12且只有时满足为偶数∴故答解析:3 【分析】由幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在(0,+∞)上是单调递减函数,可得m 2-2m -3<0,且m 2-2m -3为偶数,m ∈Z ,且1=1a -.解出即可. 【详解】∵幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在()0,∞+上是减函数,∴2230m m --<,且223m m --为偶数,m N ∈,且1=1a -. 解得13m -<<,0m =,1,2, 且=2a ,只有1m =时满足223=4m m ---为偶数. ∴1m =.3a m +=故答案为:3. 【点睛】本题考查幂函数的性质,根据幂函数性质求参数值,可根据幂函数性质列不等式和等式,求解即可,属于基础题.20.8【分析】首先画出的图象根据图象即可求出函数的最大值【详解】函数的图象如图所示:由图可知故答案为:【点睛】本题主要考查利用函数的图象求最值熟练画出函数图象为解题的关键属于中档题解析:8 【分析】首先画出()f x 的图象,根据图象即可求出函数的最大值. 【详解】函数()f x 的图象如图所示:由图可知,max ()(2)44=8f x f =-=+. 故答案为:8 【点睛】本题主要考查利用函数的图象求最值,熟练画出函数图象为解题的关键,属于中档题.21.【分析】根据高斯函数定义分类讨论求函数值【详解】则当时当时当时∴值域为故答案为:【点睛】本题考查新定义函数解题关键是理解新函数利用新函数定义分类讨论求解 解析:{}2,1,0--【分析】根据高斯函数定义分类讨论求函数值. 【详解】( 1.5,3]x ∈-,则21.750.52x --<≤, 当21.7512x --<<-时,222x y ⎡⎤=-⎢⎥⎣⎦-=, 当2102x --≤<时,122x y ⎡⎤=-⎢⎥⎣⎦-=, 当200.52x -≤≤时,022x y ⎡⎤=⎢⎥⎣⎦-=, ∴值域为{2,1,0}--. 故答案为:{2,1,0}--. 【点睛】本题考查新定义函数,解题关键是理解新函数,利用新函数定义分类讨论求解.22.②④【分析】根据题意画出方程对应的函数图象根据图像判断函数单调性值域最值以及函数零点个数的判断数形结合即可选择【详解】当y≥0时方程y|y|=1化为(y≥0)当y <0时方程y|y|=1化为(y <0)解析:②④ 【分析】根据题意,画出方程对应的函数图象,根据图像判断函数单调性、值域、最值以及函数零点个数的判断,数形结合即可选择. 【详解】当y ≥0时,方程24x +y |y |=1化为2214x y +=(y ≥0),当y <0时,方程24x +y |y |=1化为2214x y -=(y <0).作出函数f (x )的图象如图:由图可知,函数f (x )在R 上不是单调函数,故①错误; y =f (x )的图象上的点到坐标原点距离的最小值为1,故②正确; 函数f (x )的值域为(﹣∞,1],故③错误;双曲线2214x y -=的渐近线方程为y 12=±,故函数y =f (x )与y =﹣x 的图象只有1个交点, 即函数F (x )=f (x )+x 有且只有一个零点,故④正确. 故答案为:②④. 【点睛】本题考查函数单调性、值域以及零点个数的判断,涉及椭圆和双曲线的轨迹绘制,以及数形结合的数学思想,属综合中档题.23.【分析】求出函数的定义域并求出该函数的导数并在定义域内解不等式可得出函数的单调递增区间【详解】函数的定义域为且令得因此函数的单调递增区间为故答案为【点睛】本题考查利用导数求函数的单调区间在求出导数不解析:()2,e -+∞【分析】求出函数()y f x =的定义域,并求出该函数的导数,并在定义域内解不等式()0f x '>,可得出函数()y f x =的单调递增区间. 【详解】函数()ln f x x x x =+的定义域为()0,∞+,且()ln 2f x x '=+,令()0f x '>,得2x e ->.因此,函数()ln f x x x x =+的单调递增区间为()2,e -+∞,故答案为()2,e -+∞.【点睛】本题考查利用导数求函数的单调区间,在求出导数不等式后,得出的解集应与定义域取交集可得出函数相应的单调区间,考查计算能力,属于中等题.24.【分析】由函数是上的奇函数求得得到当时函数再由即可求解【详解】由题意因为函数是上的奇函数则解得即当时函数又由故答案为:【点睛】本题主要考查了函数的奇偶性的应用以及函数值的求解其中解答中熟练应用函数的 解析:3-【分析】由函数()f x 是R 上的奇函数,求得1m =-,得到当0x ≥时,函数()221x f x x =+-,再由()()11f f -=-,即可求解. 【详解】由题意,因为函数()f x 是R 上的奇函数,则()002200f m =+⨯+=,解得1m =-,即当0x ≥时,函数()221xf x x =+-,又由()()111(2211)3f f -=-=-+⨯-=-.故答案为:3-. 【点睛】本题主要考查了函数的奇偶性的应用,以及函数值的求解,其中解答中熟练应用函数的奇偶性是解答的关键,着重考查了推理与运算能力,属于基础题.25.【分析】可判断出函数在上单调递增将不等式化为可得出解出即可【详解】因为单增单增所以函数在区间上单增而==等价于所以即解得或即的解集为故答案为:【点睛】解函数不等式:首先根据函数的性质把不等式转化为的解析:(()2,3,2-【分析】可判断出函数()f x 在()0,∞+上单调递增, 将不等式化为()()231f x f -<,可得出2031x <-<,解出即可.【详解】因为ln y x =单增,2xy =单增,所以函数()f x 在区间()0,∞+上单增.而()1f =1ln12+=()22,32f x -<等价于()()231f x f -<,所以2031x <-<,即234x <<,解得2x -<<2x <<.即()232f x -<的解集为(()2,3,2-.故答案为:(()2,3,2-.【点睛】解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内26.【分析】由对任意的当时都有可知该函数是单调增函数再结合定义域且将转化为两函数值的大小比较问题最终列出关于的不等式求解【详解】解:因为对于任意正实数恒有且可化为:因为对任意的当时都有故在上单调递增所以 解析:()8,9【分析】由“对任意的1x ,2(0,)x ∈+∞,当12x x ≠时,都有1212()[()()]0x x f x f x -->”可知该函数是单调增函数,再结合“定义域、()()()f xy f x f y =+,且(3)1f =,将()(8)2f x f x +-<转化为两函数值的大小比较问题,最终列出关于x 的不等式求解.【详解】解:因为对于任意正实数x ,y 恒有()()()f xy f x f y =+,且(3)1f =, ()(8)2f x f x +-<可化为:[(8)](3)(3)(9)f x x f f f -<+=.因为对任意的1x ,2(0,)x ∈+∞,当12x x ≠时,都有1212()[()()]0x x f x f x -->,故()f x 在(0,)+∞上单调递增,所以080(8)9x x x x >⎧⎪->⎨⎪-<⎩,解得89x <<.故答案为:(8,9). 【点睛】本题考查抽象函数的性质,此例主要是利用单调性研究不等式问题的解,属于中档题.。

最新人教版高中数学必修第一册第三单元《函数概念与性质》检测卷(有答案解析)

最新人教版高中数学必修第一册第三单元《函数概念与性质》检测卷(有答案解析)

一、选择题1.已知m R ∈,若函数()||x m f x e +=对任意x ∈R 满足()()20212120f x f x -=-,则不等式()1ln ln 2f x f ex ⎛⎫+≥ ⎪⎝⎭的解集是( ) A .[)1,,e e⎛⎤-∞⋃+∞ ⎥⎝⎦B .1,e e ⎡⎤⎢⎥⎣⎦C .[)10,,e e⎛⎤+∞ ⎥⎝⎦D .[),e +∞2.奇函数()f x 在(0)+∞,内单调递减且(2)0f =,则不等式(1)()0x f x +<的解集为( ) A .()()(),21,02,-∞--+∞ B .()()2,12,--+∞C .()(),22,-∞-+∞D .()()(),21,00,2-∞--3.意大利著名天文学家伽利略曾错误地猜测链条自然下垂时的形状是抛物线.直到1690年,雅各布·伯努利正式提出该问题为“悬链线”问题并向数学界征求答案.1691年他的弟弟约翰·伯努利和菜布尼兹、惠更斯三人各自都得到了正确答案,给出悬链线的数学表达式——双曲余弦函数:()cosh x f x c a c a =+=2xxa ae e a -++⋅(e 为自然对数的底数).当0c ,1a =时,记(1)p f =-,12m f ⎛⎫= ⎪⎝⎭,(2)n f =,则p ,m ,n 的大小关系为( ).A .p m n <<B .n m p <<C .m p n <<D .m n p <<4.已知幂函数2242()(1)mm f x m x -+=-在(0,)+∞上单调递增,函数()2xg x t =-,任意1[1,6)x ∈时,总存在2[1,6)x ∈使得()()12f x g x =,则t 的取值范围是( )A .128t <<B .128t ≤≤C .28t >或1t <D .28t ≥或1t ≤5.若函数()f x 同时满足:①定义域内存在实数x ,使得()()0f x f x ⋅-<;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.下列函数中是“DM 函数”的为( )A .()3f x x =B .()sin f x x =C .()1x f x e-=D .()ln f x x =6.设函数()f x 的定义域为R ,()()112f x f x +=,当(]0,1x ∈时,()()1f x x x =-.若存在[),x m ∈+∞,使得()364f x =有解,则实数m 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .3,2⎛⎤-∞ ⎥⎝⎦C .9,4⎛⎤-∞ ⎥⎝⎦D .11,4⎛⎤-∞ ⎥⎝⎦7.函数()21x f x x-=的图象大致为( )A .B .C .D .8.已知函数()3()log 91xf x x =++,则使得()2311log 10f x x -+-<成立的x 的取值范围是( )A .20,2⎛⎫ ⎪ ⎪⎝⎭B .(,0)(1,)-∞⋃+∞C .(0,1)D .(,1)-∞9.已知()f x 是R 上的奇函数,且对x ∈R ,有()()2f x f x +=-,当()0,1x ∈时,()21x f x =-,则()2log 41f =( )A .40B .2516C .2341D .412310.定义在[]1,1-的函数()f x 满足下列两个条件:①任意的[1,1]x ∈-都有()()f x f x -=-;②任意的,[0,1]m n ∈,当m n ≠,都有()()0f m f n m n-<-,则不等式(12)(1)0f x f x -+-<的解集是( )A .10,2⎡⎫⎪⎢⎣⎭B .12,23⎛⎤⎥⎝⎦C .11,2⎡⎫-⎪⎢⎣⎭D .20,3⎡⎫⎪⎢⎣⎭11.已知函数()()2lg 1f x x x =-+,若函数()f x 在开区间()(),1t t t +∈R 上恒有最小值,则实数t 的取值范围为( ). A .3111,,2222⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭ B .1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭ C .11,22⎛⎫-⎪⎝⎭ D .13,22⎛⎫⎪⎝⎭12.已知函数()22x f x =-,则函数()y f x =的图象可能是( )A .B .C .D .13.若函数()f x 满足()()a f x b a b ≤≤<,定义b a -的最小值为()f x 的值域跨度,则是下列函数中值域跨度不为2的是( ) A .2()23f x x x =-++B .||()2x f x -= C .24()4xf x x =+D .()|1|||f x x x =+-14.函数24()|3|3x f x x -=+-是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数15.已知()22,02,0x x f x x x x ⎧-≥=⎨+<⎩,则不等式()()3f f x ≤的解集为( )A .](,3-∞-B .)3,⎡-+∞⎣C .(3-∞D .)3,+∞二、填空题16.已知函数()f x 为定义在R 上的奇函数,且对于12,[0,)x x ∀∈+∞,都有()()()221112210x f x x f x x x x x ->≠-,且(3)2f =,则不等式6()f x x>的解集为___________.17.设()xf x a x =+,若()36f =,则不等式()()21f x f x ->的解集为____________.18.已知定义在R 上的偶函数()f x 满足:()()4f x f x +=-,对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,且()10f =,则不等式()0f x >在[2019,2023]上的解集为______.19.已知定义域为N 的函数()y f x =满足()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()5f =___________.20.对于正整数k ,设函数[][]()k f x kx k x =-,其中[]a 表示不超过a 的最大整数,设24()()()g x f x f x =+,则()g x 的值域为_________.21.已知定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数,如果(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,则实数a 的取值范围是________22.设12{21 2}33k ∈--,,,,,若(1 0)(0 1)x ∈-,,,且||k x x >,则k 取值的集合是___________.23.已知函数()()()2421log 1a x ax x f x x x ⎧-+<⎪=⎨≥⎪⎩,在区间(),-∞+∞上是减函数,则a 的取值范围为______ . 24.设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.25.已知11()x x f x e e x --=-+,则不等式()(63)2f x f x +-≤的解集是________. 26.定义在R 上的偶函数()f x 满足()()2f x f x +=-,且在[]2,0-上是减函数,下面是关于()f x 的判断:①()f x 是以2为周期的函数;②()0f 是函数的最大值;③()f x 在[]2,3上是减函数;④()f x 的图像关于直线2x =对称.其中正确的命题的序号是____________(注:把你认为正确的命题的序号都填上)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先判断函数为偶函数,根据奇偶性求得0m =,将原不等式化为ln x e e ≥,等价于ln 1x ≥,进而可得答案.【详解】设2021x t -=,()()()()20212120f x f x f t f t -=-⇒=-,所以()||x m f x e+=是偶函数,则||||x m x m e e +-+=恒成立,即()()2240x m x m x m x m mx +=-+⇔+=-+⇔=对任意x ∈R 恒成立, 所以0m =⇒()||x f x e =,因为11lnln ln x x x-==-, 所以()1ln ln2f x f e x ⎛⎫+≥ ⎪⎝⎭即为()()ln ln 2f x f x e +-≥, ()()ln 2ln 2ln xf x e f x e ee ≥⇒≥⇒≥,因为xy e =为增函数,所以可得ln 1x ≥,则ln 1x ≥或ln 1x ≤-, 解得x e ≥或10x e<≤, 即不等式()1ln ln 2f x f e x ⎛⎫+≥ ⎪⎝⎭的解集是[)10,,e e ⎛⎤+∞ ⎥⎝⎦,故选:C. 【点睛】方法点睛:已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由()()+0f x f x -= 恒成立求解,(2)偶函数由()()0f x f x --= 恒成立求解;二是利用特殊值:奇函数一般由()00f = 求解,偶函数一般由()()110f f --=求解,用特殊法求解参数后,一定要注意验证奇偶性.2.A解析:A 【分析】由已知可作出函数的大致图象,结合图象可得到答案. 【详解】因为函数()f x 在(0)+∞,上单调递减,(2)0f =, 所以当(02)x ∈,时,()0f x >,当(2)x ∈+∞,,()0f x <, 又因为()f x 是奇函数,图象关于原点对称,所以()f x 在()0-∞,上单调递减,(2)0f -=, 所以当(20)x ∈-,时,()0f x <,当2()x ∈-∞-,时,()0f x >, 大致图象如下,由(1)()0x f x +<得10()0x f x +>⎧⎨<⎩或10()0x f x +<⎧⎨>⎩,解得2x >,或10x -<<,或2x <-, 故选:A. 【点睛】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出()f x 的大致图象,考查了学生分析问题、解决问题的能力.3.C解析:C 【分析】先利用导数证明函数()f x 在区间0,上单调递增,再结合单调性比较大小即可.【详解】由题意知,()2x x e e f x -+=,21()22x x x xe e ef x e--+-'== 当0x >时,()0f x '>,即函数()f x 在区间0,上单调递增1(1)(1)2e ef f -+-==10122<<<,1(1)(2)2f f f ⎛⎫∴<< ⎪⎝⎭,即m p n << 故选:C 【点睛】关键点睛:解决本题的关键是利用导数证明函数()f x 的单调性,再结合单调性比较大小.4.B解析:B 【分析】先根据幂函数定义解得m ,再根据单调性进行取舍,根据任意存在性将问题转化为对应函数值域包含问题,最后根据函数单调性确定对应函数值域,根据值域包含关系列不等式解得结果. 【详解】由题意22(1)1420m m m ⎧-=⎨-+>⎩,则0m =,即()2f x x =,当[)11,6x ∈时, ()[)11,36f x ∈,又当[)21,6x ∈时, ()[)22,64g x t t ∈--,∴216436t t -≤⎧⎨-≥⎩,解得128t ≤≤,故选:B . 【点睛】对于方程任意或存在性问题,一般转化为对应函数值域包含关系,即1212,,()()()x x f x g x y f x ∀∃=⇒=的值域包含于()y g x =的值域; 1212,,()()()x x f x g x y f x ∃∃=⇒=的值域与()y g x =的值域交集非空.5.A解析:A 【分析】根据题意函数定义域关于原点对称且函数值有正有负,且为定义域内的单调递增函数,通过此两点判定即可. 【详解】解:由定义域内存在实数x 有()()0f x f x ⋅-<,可得函数定义域关于原点对称且函数值有正有负,排除D 、C.由②得“DM 函数”为单调递增函数,排除B. 故选:A 【考点】确定函数单调性的四种方法: (1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接; (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.6.D解析:D 【分析】 根据()()112f x f x +=,可知()()112f x f x =-,可得函数解析式并画出函数图象,由图象可得m 的取值范围. 【详解】根据()()112f x f x +=,可知()()112f x f x =-, 又当(]0,1x ∈时,()()110,4f x x x ⎡⎤=-∈⎢⎥⎣⎦,所以(]1,2x ∈时,(]10,1x -∈,()()111(1)(1)20,228f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]2,3x ∈时,(]11,2x -∈,()()111(1)(2)30,4416f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]3,4x ∈时,(]12,3x -∈,()()111(1)(3)40,2832f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦,即3()64f x <恒成立, 可画出函数图象,当(]2,3x ∈时,13(2)(3)464x x --=,解得94x =或114x =, 故若存在[),x m ∈+∞,使得()364f x =有解,则实数114m ≤,故选:D.7.D解析:D 【分析】分析函数()f x 的奇偶性及其在区间()0,∞+上的单调性,由此可得出合适的选项. 【详解】函数()21x f x x -=的定义域为{}0x x ≠,()()()2211x x f x f x x x----===-, 函数()f x 为偶函数,其图象关于y 轴对称,排除B 、C 选项;当0x >时,()211x f x x x x-==-,因为y x =,1y x =-在区间()0,∞+上都是增函数,所以函数()f x 在()0,∞+上单调递增,排除A 选项, 故选:D. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左、右位置;从函数的值域,判断图象的上、下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 利用上述方法排除、筛选选项.8.C解析:C 【分析】令21t x x =-+,则3()1log 10f t -<,从而33log (91)1log 10tt ++-<,即可得到133log (91)log (91)1t t ++<++,然后构造函数3()log (91)t g t t =++,利用导数判断其单调性,进而可得23114x x ≤-+<,解不等式可得答案 【详解】令21t x x =-+,则221331()244t x x x =-+=-+≥, 3()1log 10f t -<,所以33log (91)1log 10tt ++-<, 所以133log (91)log (91)1t t ++<++,令3()log (91)tg t t =++,则9ln 929'()11(91)ln 391t tt t g t ⨯=+=+++,所以90t >,所以'()0g t >, 所以()g t 在3[,)4+∞单调递增, 所以由()(1)g t g <,得314t ≤<,所以23114x x ≤-+<,解得01x <<, 故选:C 【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得133log (91)log (91)1t t ++<++,再构造函数3()log (91)tg t t =++,利用函数的单调性解不等式.9.C解析:C 【分析】由已知得(4)()f x f x +=,由对数函数性质估计出2log 41(5,6)∈,然后利用已知条件把自变量变小为2log 416(1,0)-∈-,再由奇函数定义可求得函数值. 【详解】25log 416<<,()()()()()2222f x f x f x f x f x +=-⇒++=-+=⎡⎤⎣⎦,故()()()()2222log 41log 414log 4166log 41f f f f =-=--=-.∵()26log 410,1-∈,故()26log 41264236log 412114141f --=-=-=. 故选:C . 【点睛】本题考查求函数值,方法是由已知条件得出函数的周期性,利用周期性和已知等式把函数自变量变小到(1,0)-上,然后由奇函数定义变到(0,1)上,从而由已知解析式求得函数值.10.D解析:D 【分析】根据题意先判断函数()f x 的奇偶性与单调性,然后将不等式变形得(12)(1)f x f x -<-,再利用单调性和定义域列出关于x 的不等式求解. 【详解】根据题意,由①知函数()f x 为奇函数,由②知函数()f x 在[0,1]上为减函数,所以可得函数()f x 在[]1,1-是奇函数也是减函数,所以不等式(12)(1)0f x f x -+-<,移项得(12)(1)f x f x -<--,变形(12)(1)f x f x -<-,所以11121x x -≤-<-≤,得203x ≤<. 故选:D. 【点睛】 本题考查的是函数单调性与奇偶性的综合问题,需要注意:(1)判断奇偶性:奇函数满足()()f x f x -=-;偶函数满足()()f x f x -=;(2)判断单调性:增函数()[]1212()()0x x f x f x -->;1212()()0f x f x x x ->-; 减函数:()[]1212()()0x x f x f x --<;1212()()0f x f x x x -<-; (3)列不等式求解时需要注意定义域的问题.11.A解析:A 【分析】根据函数的奇偶性和单调性,求出最小值取得的条件,结合开区间位置求解参数的取值范围. 【详解】由题210x x -+>恒成立,所以()()2lg 1f x x x =-+定义域为R ,()()()()2lg 1f x x x f x -=---+=,所以()()2lg 1f x xx =-+为定义在R 上的偶函数,当220,11x y x x x x ≥=-+=-+在10,2⎡⎤⎢⎥⎣⎦单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭单调递增,所以()()2lg 1f x x x =-+在10,2⎡⎤⎢⎥⎣⎦单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭单调递增, 在1,2⎛⎤-∞- ⎥⎝⎦单调递减,在1,02⎡⎤-⎢⎥⎣⎦单调递增,1122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,所以函数()()2lg 1f x x x =-+在12x =和12x =-处均取得最小值,若函数()f x 在开区间()(),1t t t +∈R 上恒有最小值, 则112t t <-<+或112t t <<+, 解得:3111,,2222t ⎛⎫⎛⎫∈--- ⎪ ⎪⎝⎭⎝⎭故选:A12.B解析:B 【分析】先将函数化成分段函数的形式,再根据函数在不同范围上的性质可得正确的选项. 【详解】()22,12222,1x xxx f x x ⎧-≥=-=⎨-<⎩易知函数()y f x =的图象的分段点是1x =,且过点()1,0,()0,1,又()0f x ≥,故选:B . 【点睛】本题考查函数图象的识别,此类问题一般根据函数的奇偶性、单调性、函数在特殊点处的函数的符号等来判别,本题属于基础题.13.B解析:B 【分析】根据函数解析式,利用根式非负性、绝对值的区间讨论、分式的性质求值域,即可判断正确选项. 【详解】A 选项:22023(1)44x x x ≤-++=--+≤,所以0()2f x ≤≤,值域跨度为2;B 选项:||0x -≤,所以0()1f x <≤,值域跨度不为2;C 选项:当0x =时()0f x =;当0x >时,244()144x f x x x x ==≤=++;当0x <时,244()144()()x f x x x x ==-≥=-+-+-;故1()1f x -≤≤,值域跨度为2;D 选项:1,0()21,101,1x f x x x x ≥⎧⎪=+-≤<⎨⎪-<-⎩,故1()1f x -≤≤,值域跨度为2;故选:B 【点睛】本题考查了根据解析式求值域,注意根式、指数函数、对勾函数、绝对值的性质应用,属于基础题.14.A解析:A 【分析】首先求出函数的定义域,然后利用奇偶性定义判断即可. 【详解】解:因为()f x =所以240330x x ⎧-≥⎪⎨+-≠⎪⎩解得22x -≤≤且0x ≠,故函数的定义域为[)(]2,00,2-,定义域关于原点对称,所以()f x =,[)(]2,00,2x ∈-,又()()f x f x -===-所以函数为奇函数; 故选:A 【点睛】本题考查函数的奇偶性的判断,判断函数的奇偶性按照两步:①求函数的定义域,判断定义域是否关于原点对称;②计算()f x -判断与()f x 之间的关系;15.C解析:C 【分析】先解()3f t ≤,再由t 的范围求x 的范围. 【详解】0t ≥时,2()03f t t =-≤<满足题意,0t <时,2()23f t t t =+≤,31t -≤≤,∴30t -≤<综上满足()3f t ≤的t 的范围是3t ≥-,下面解不等式()3f x ≥-,0x ≥时,2()3f x x =-≥-,解得x ≤∴0x ≤≤,0x <时,2()23f x x x =+≥-,2(1)20x ++≥,恒成立,∴0x <,综上x ≤故选:C 【点睛】思路点睛:本题考查解函数不等式,由于是分段函数,因此需要分类讨论,而原不等式是复合函数形式,因此解题时可把里层()f x 作为一个未知数t (相当于换元),求得()3f t ≥-的解,再由t 的范围求出()f x t =中t 的范围.分类讨论必须牢记,否则易出错.二、填空题16.【分析】令可得是上的增函数根据为奇函数可得为偶函数且在上是减函数分类讨论的符号将变形后利用的单调性可解得结果【详解】令则对于都有所以是上的增函数因为函数为定义在R 上的奇函数所以所以所以是定义在R 上的 解析:(3,0)(3,)-⋃+∞【分析】令()()g x xf x =,可得()g x 是[0,)+∞上的增函数,根据()f x 为奇函数可得()g x 为偶函数,且在(,0)-∞上是减函数,分类讨论x 的符号,将6()f x x>变形后,利用()g x 的单调性可解得结果. 【详解】令()()g x xf x =,则对于12,[0,)x x ∀∈+∞,都有211221()()0()g x g x x x x x ->≠-,所以()g x 是[0,)+∞上的增函数,因为函数()f x 为定义在R 上的奇函数,所以()()f x f x -=-,所以()()()()g x xf x xf x g x -=--==,所以()g x 是定义在R 上的偶函数,所以()g x 在(,0)-∞上是减函数,当0x >时,6()f x x>化为()63(3)xf x f >=,即()(3)g x g >,因为()g x 是[0,)+∞上的增函数,所以3x >, 当0x <时,6()f x x>化为()6xf x <,因为()f x 为奇函数,且(3)2f =,所以(3)(3)2f f -=-=-,所以()6xf x <化为()3(3)(3)g x f g <--=-,因为()g x 在(,0)-∞上是减函数,所以30x -<<,综上所述:6()f x x>的解集为(3,0)(3,)-⋃+∞. 故答案为:(3,0)(3,)-⋃+∞【点睛】关键点点睛:构造函数()()g x xf x =,利用()g x 的奇偶性和单调性求解是解题关键.17.【分析】先由解出a 讨论的单调性利用函数单调性解不等式即可【详解】因为且所以解得在R 上单增可化为:解得:不等式的解集为故答案为:【点睛】利用单调性解不等式通常用于:(1)分段函数型不等式;(2)复合函 解析:()1,+∞【分析】先由()36f =,解出a ,讨论()xf x a x =+的单调性,利用函数单调性解不等式即可.【详解】因为()xf x a x =+,且()36f =,,所以33a =,解得1a =>.()(),ln 1x x f x f a x a x a =+∴=+'ln 0,ln 111,x x a a a a a >∴>∴>+,()x f x a x ∴=+在R 上单增. ()()21f x f x ->可化为:21x x ->解得:1x >.不等式()()21f x f x ->的解集为()1,+∞ 故答案为:()1,+∞ 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式;(2)复合函数型不等式;(3)抽象函数型不等式;(4)解析式较复杂的不等式;18.【分析】先分析得到函数在上单调递减周期再得到当时即得解【详解】因为对当时所以在上单调递减而由偶函数得当时;又可得周期因为所以当时;于是的解集为故答案为:【点睛】方法点睛:对于函数的问题的研究一般从函 解析:(2019,2021)【分析】先分析得到函数()f x 在[0,2]上单调递减,周期4T=,再得到当(1,1)x ∈-时,()0f x >,即得解.【详解】因为对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,所以()f x 在[0,2]上单调递减,而()10f =, 由偶函数得当(1,1)x ∈-时,()0f x >; 又()()()4f x f x f x +=-=可得周期4T =,因为[2019,2023]x ∈,所以当(2019,2021)x ∈时,()0f x >; 于是()0f x >的解集为(2019,2021). 故答案为:(2019,2021) 【点睛】方法点睛:对于函数的问题的研究,一般从函数的单调性、奇偶性和周期性入手,再研究求解.19.9【分析】判断自变量的范围根据分段函数的解析式逐步求解即可解答过程要注意避免出现计算错误【详解】由题知故答案为:9【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对解析:9 【分析】判断自变量的范围,根据分段函数的解析式,逐步求解即可,解答过程要注意避免出现计算错误. 【详解】由题知,()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,()()()()()()()510,555101028f f f f f f f <∴=+==-=,()()()()()()(85)13811321128190,1f f f f f f f +<∴===-==-=,故答案为:9. 【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰. 当出现(())f f a 的形式时,应从内到外依次求值.20.【分析】先由题中条件得到讨论四种情况再判断的周期性即可得出结果【详解】由题意当时此时;当时此时;当时此时;当时此时;又所以是以为周期的函数因此的值域为故答案为:【点睛】关键点点睛:求解本题的关键在于 解析:{}0,1,3,4【分析】先由题中条件,得到[][][]()246g x x x x =+-,讨论10,4x ⎡⎫∈⎪⎢⎣⎭,11,42x ⎡⎫∈⎪⎢⎣⎭,13,24x ⎡⎫∈⎪⎢⎣⎭,3,14x ⎡⎫∈⎪⎢⎣⎭四种情况,再判断()g x 的周期性,即可得出结果. 【详解】由题意,[][][][][][][]()2244246g x x x x x x x x =-+-=+-, 当10,4x ⎡⎫∈⎪⎢⎣⎭时,120,2x ⎡⎫∈⎪⎢⎣⎭,[)40,1x ∈,此时()0000g x =+-=; 当11,42x ⎡⎫∈⎪⎢⎣⎭时,12,12x ⎡⎫∈⎪⎢⎣⎭,[)41,2x ∈,此时()0101g x =+-=; 当13,24x ⎡⎫∈⎪⎢⎣⎭时,321,2x ⎡⎫∈⎪⎢⎣⎭,[)42,3x ∈,此时()1203g x =+-=; 当3,14x ⎡⎫∈⎪⎢⎣⎭时,32,12x ⎡⎫∈⎪⎢⎣⎭,[)43,4x ∈,此时()1304g x =+-=; 又[][][][][][](1)224461224466g x x x x x x x +=+++-+=+++--[][][]246()x x x g x =+-=,所以()g x 是以1为周期的函数,因此()g x 的值域为{}0,1,3,4. 故答案为:{}0,1,3,4 【点睛】关键点点睛:求解本题的关键在于根据一个单位区间内,x 的不同取值,确定[]x ,[]2x ,[]4x 的不同取值情况,结合函数的周期性,即可求解.21.【分析】根据偶函数在对称区间上单调性相反结合已知可得在R 上是增函数进而可将对于任意恒成立转化为对任意都成立进而可得最后结合函数的单调性可得实数a 的取值范围【详解】因为定义在R 上的偶函数在上是严格增函解析:31,22⎡⎤-⎢⎥⎣⎦【分析】根据偶函数在对称区间上单调性相反结合已知可得()y f x =在R 上是增函数,进而可将(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,转化为12ax +≤对任意[]1,2x ∈都成立,进而可得31a x x-≤≤,最后结合函数的单调性可得实数a 的取值范围 【详解】因为定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数, 因为(1)(2)f ax f +≤对任意[]1,2x ∈都成立,所以12ax +≤对任意[]1,2x ∈都成立, 即212ax -≤+≤对任意[]1,2x ∈都成立,变形可得31a x x-≤≤, 由函数3y x=-在[]1,2为增函数,1y x =在[]1,2上为减函数,故31max min a x x ⎛⎫⎛⎫-≤≤ ⎪⎪⎝⎭⎝⎭,所以31,22a ⎡⎤∈-⎢⎥⎣⎦.故答案为:31,22⎡⎤-⎢⎥⎣⎦.【点睛】关键点睛:本题的解题关键是由函数为偶函数得出12ax +≤,进而结合单调性求出a 的取值范围.22.【分析】根据不能是奇函数排除和再利用幂函数的性质排除2即可得出【详解】若且则幂函数的图象一定在的上方故不可能为奇函数即不能取和当取时是偶函数故只需满足即可此时即则即则可取故取值的集合是故答案为:【点解析:2{2 }3-, 【分析】根据k y x =不能是奇函数排除1-和13,再利用幂函数的性质排除2即可得出. 【详解】若(10)(0 1)x ∈-,,,且||k x x >,则幂函数ky x =的图象一定在y x =的上方,故ky x =不可能为奇函数,即k 不能取1-和13, 当k 取22,,23-时,ky x =是偶函数,故只需满足(0 1)x ∈,即可, 此时k x x >,即11k x ->,则10k -<,即1k <,则k 可取22,3-,故k 取值的集合是2{2 }3-,. 故答案为:2{2 }3-,. 【点睛】本题考查幂函数的性质,解题的关键是正确理解幂函数的性质的特点,以及不同幂函数的图象特点.23.【分析】根据题意讨论时是二次函数在对称轴对称轴左侧单调递减时是对数函数在时单调递减;再利用端点处的函数值即可得出满足条件的的取值范围【详解】解:由函数在区间上是减函数当时二次函数的对称轴为在对称轴左 解析:1324a ≤≤ 【分析】根据题意,讨论1x <时,()f x 是二次函数,在对称轴对称轴左侧单调递减,1x 时,()f x 是对数函数,在01a <<时单调递减;再利用端点处的函数值即可得出满足条件的a 的取值范围. 【详解】解:由函数242(1)()(1)a x ax x f x log x x ⎧-+<=⎨⎩在区间(,)-∞+∞上是减函数,当1x <时,2()42f x x ax =-+,二次函数的对称轴为2x a =, 在对称轴左侧单调递减,21a ∴,解得12a; 当1x 时,()log a f x x =,在01a <<时单调递减; 又2142log 1a a -+, 即34a;综上,a 的取值范围是1324a . 故答案为:1324a . 【点睛】本题考查了分段函数的单调性问题,也考查了分类讨论思想的应用问题,属于中档题.24.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注解析:1(,)4-+∞【解析】 由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞.【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.25.【分析】先构造函数得到关于对称且单调递增再结合对称性与单调性将不等式转化为即可求解【详解】构造函数那么是单调递增函数且向左移动一个单位得到的定义域为且所以为奇函数图象关于原点对称所以图象关于对称不等 解析:[2,)+∞【分析】先构造函数111()()1(1)x x g x f x e x e --=-=-+-,得到()g x 关于(1,0)对称,且单调递增,再结合对称性与单调性将不等式()(63)2f x f x +- 转化为34x x -即可求解. 【详解】构造函数111()()1(1)x x g x f x e x e --=-=-+-,那么()g x 是单调递增函数,且向左移动一个单位得到1()(1)xx h x g x e x e=+=-+, ()h x 的定义域为R ,且1()()x x h x e x h x e-=--=-, 所以()h x 为奇函数,图象关于原点对称,所以()g x 图象关于(1,0)对称. 不等式()(63)2f x f x +- 等价于()1(63)10f x f x -+--, 等价于()(63)0()[2(63)](34)g x g x g x g x g x +-∴--=-,结合()g x 单调递增可知342x x x -∴, 所以不等式()(63)2f x f x +- 的解集是[2,)+∞. 故答案为:[2,)+∞. 【点睛】本题主要考查函数的奇偶性和单调性的应用,考查函数的对称性的应用,意在考查学生对这些知识的理解掌握水平.26.③④【分析】根据函数的周期性及对称性判断各个选项即可得解;【详解】解:所以函数是以4为周期的函数故①错误;偶函数在上是减函数在上是增函数在上最小值为是以4为周期的函数是函数的最小值故②错误;在上是减解析:③④ 【分析】根据函数的周期性及对称性判断各个选项即可得解; 【详解】 解:(2)()f x f x +=-,(4)(2)()f x f x f x ∴+=-+=,所以函数()f x 是以4为周期的函数,故①错误;偶函数()f x 在[2-,0]上是减函数,()f x ∴在[0,2]上是增函数,∴在[2-,2]上,最小值为(0)f ,()f x 是以4为周期的函数,(0)f ∴是函数的最小值,故②错误;()f x 在[2-,0]上是减函数,()f x ∴在[2,4]上是减函数,故③正确; (2)()(2)f x f x f x -+=--=+,()f x ∴的图象关于直线2x =对称,即④正确.故答案为:③④. 【点睛】本题考查函数的周期性,偶函数在对称区间上单调性相反这一结论,考查学生分析解决问题的能力,属于中档题.。

最新人教版高中数学必修一:第三章单元质量评估 Word版含答案

最新人教版高中数学必修一:第三章单元质量评估 Word版含答案

最新人教版数学精品教学资料第三章单元质量评估时限:120分钟 满分:150分一、选择题(每小题5分,共60分)1.若函数y =f (x )在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( )A .若f (a )f (b )>0,则不存在实数c ∈(a ,b )使得f (c )=0B .若f (a )f (b )<0,则只存在一个实数c ∈(a ,b ),使得f (c )=0C .若f (a )f (b )>0,则有可能存在实数c ∈(a ,b )使得f (c )=0D .若f (a )f (b )<0,则有可能不存在实数c ∈(a ,b )使得f (c )=0 2.函数y =f (x )在区间(-2,2)上的图象是连续的,且方程f (x )=0在(-2,2)上仅有一个实根0,则f (-1)·f (1)的值( )A .大于0B .小于0C .等于0D .无法确定3.若函数f (x )在[a ,b ]上的图象为连续不断的一条曲线,且同时满足f (a )f (b )<0,f (a )·f (a +b 2)>0,则( )A .f (x )在[a ,a +b2]上有零点 B .f (x )在[a +b2,b ]上有零点 C .f (x )在[a ,a +b2]上无零点 D .f (x )在[a +b2,b ]上无零点4.函数f (x )=1-x ln x 的零点所在的区间是( ) A .(0,12) B .(12,1) C .(1,2)D .(2,3)5.设f (x )=3x +3x -8,若用二分法求方程3x +3x -8=0在区间(1,2)内的近似解的过程中得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根所在的区间为( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定6.若函数f (x )=x 2+3x +2,且f (a )>f (b )>0,则函数f (x )的区间(a ,b )内( )A .一定无零点B .一定有零点C .可能有两个零点D .至多有一个零点7.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗中盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H 是圆锥形漏斗中液面下落的高度,则H 与下落时间t (分钟)的函数关系表示的图象可能是( )8.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况在这段时间内,该车每100千米平均耗油量为( ) A .6升 B .8升 C .10升D .12升9.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-110.设a 是函数f (x )=2x -log 12x 的零点,若x 0>a ,则( ) A .f (x 0)=0 B .f (x 0)>0C .f (x 0)<0D .f (x 0)的符号不确定11.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x .则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2,-7,1,3}D .{-2-7,1,3}12.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R .若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( )A .(74,+∞) B .(-∞,74) C .(0,74)D .(74,2) 答案1.C 当零点在区间(a ,b )内时,f (a )f (b )>0也可能成立,因此A 不正确,C 正确;若y =f (x )满足零点存在性定理的两个条件,则在该区间内必存在零点,但个数不能确定,故B ,D 都不正确.2.D 由题意,知f (x )在(-1,1)上有零点0,该零点可能是变号零点,也可能是不变号零点,∴f (-1)·f (1)的符号不确定,如f (x )=x 2,f (x )=x .3.B 由f (a )f (b )<0,f (a )f (a +b 2)>0可知f (a +b2)f (b )<0,根据零点存在性定理可知f (x )在[a +b2,b ]上有零点. 4.C 由于f (1)=1-ln1=1>0,f (2)=1-2ln2=lne -ln4<0,由零点存在性定理可知所求区间为(1,2).5.B ∵f (1)<0,f (1.5)>0,f (1.25)<0,∴f (1.5)·f (1.25)<0,因此方程的根所在的区间为(1.25,1.5).6.C 根据二次函数的图象可知选项C 正确.7.B 由于所给的圆锥形漏斗上口大于下口,当时间取12t 时,漏斗中液面下落的高度不会达到漏斗高度的12,对比四个选项的图象可知选B.8.B 因为第一次(即5月1日)把油加满,而第二次把油加满加了48升,即汽车行驶35 600-35 000=600千米耗油48升,所以每100千米的耗油量为8升,选B.9.D 设年平均增长率为x ,原生产总值为a ,则(1+p )(1+q )a =a (1+x )2,解得x =(1+p )(1+q )-1,故选D.10.B 如图所示,画出函数y =2x 与y =log 12x 的图象,可知当x 0>a 时,2x0>log 12x 0,故f (x 0)>0.11.D 当x ≥0时,函数g (x )的零点即方程f (x )=x -3的根,由x 2-3x =x -3,解得x =1或3.当x <0时,由f (x )是奇函数得-f (x )=f (-x )=x 2-3(-x ),即f (x )=-x 2-3x .由f (x )=x -3得x =-2-7(正根舍去).故选D.12.D 函数y =f (x )-g (x )恰有4个零点,即方程f (x )-g (x )=0,即b =f (x )+f (2-x )有4个不同的实数根,即直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点.又y =f (x )+f (2-x )=⎩⎪⎨⎪⎧x 2+x +2,x <0,2,0≤x ≤2,x 2-5x +8,x >2,作出该函数的图象如图所示,由图可得,当74<b <2时,直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点,故函数y =f (x )-g (x )恰有4个零点时,b 的取值范围是(74,2).———————————————————————————— 二、填空题(每小题5分,共20分)13.已知定义在R 上的函数f (x )的图象是连续不断的,且有如下部分对应值表:14.用二分法求函数f (x )的一个零点,其参考数据如下:为________.15.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是________小时.16.设函数f (x )=⎩⎪⎨⎪⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1.若f (x )恰有2个零点,则实数a 的取值范围是________.三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)(1)判断函数f (x )=x 3-x -1在区间[-1,2]上是否存在零点;(2)求函数y =x +2x -3的零点.18.(12分)若函数f (x )为定义在R 上的奇函数,且当x >0时,f (x )=ln x +2x -6,试判断函数f (x )的零点个数.答案13.3解析:由已知数据可知f (2)f (3)<0,f (3)f (4)<0,f (4)f (5)<0,所以函数在区间(2,3),(3,4),(4,5)内各至少有1个零点,则函数至少有3个零点.14.1.562 5(答案不唯一)解析:由参考数据知,f (1.562 5)≈0.003>0,f (1.556 25)≈-0.029<0,即f (1.556 25)·f (1.562 5)<0,又1.562 5-1.556 25=0.006 25<0.01,∴f (x )的一个零点的近似值可取为1.562 5.15.24解析:由题意得⎩⎪⎨⎪⎧e b=192,e 22k +b =48,即⎩⎨⎧e b=192,e 11k =12,所以该食品在33℃的保鲜时间是y =e33k +b=(e 11k )3·e b=(12)3×192=24(小时).16.[12,1)∪[2,+∞)解析:当a ≥1时,要使f (x )恰有2个零点,需满足21-a ≤0,即a ≥2,所以a ≥2;当a <1时,要使f (x )恰有2个零点,需满足⎩⎪⎨⎪⎧a <1≤2a ,21-a >0,解得12≤a <1.综上,实数a 的取值范围为[12,1)∪[2,+∞).17.解:(1)∵f (-1)=-1<0,f (2)=5>0,f (-1)f (2)<0.∴f (x )在[-1,2]上存在零点.(2)x +2x -3=x 2-3x +2x =(x -1)(x -2)x ,解方程x +2x -3=0,即(x -1)(x -2)x=0,可得x =1或x =2.∴函数y =x +2x -3的零点为1,2. 18.解:方法一:当x <0时,-x >0,f (-x )=ln(-x )-2x -6,又f (x )为奇函数,所以f (x )=-f (-x )=-ln(-x )+2x +6.故函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧ln x +2x -6,x >00,x =0-ln (-x )+2x +6,x <0令f (x )=0易得函数f (x )有3个零点.方法二:当x >0时,在同一坐标系中作出函数y =ln x 和y =6-2x 的图象如图所示,易知两函数图象只有1个交点,即当x >0时,函数f (x )有1个零点.由f (x )为定义在R 上的奇函数,可知f (0)=0,且图象关于原点对称,则当x <0时,函数f (x )有1个零点.综上可知,f (x )在R 上有3个零点.———————————————————————————— 19.(12分)已知二次函数f (x )=x 2+bx +c ,且方程f (x )+4=0有唯一解x =1.(1)求函数f (x )的解析式;(2)若函数f (x )在区间[a ,a +4]上存在零点,求实数a 的取值范围.(12分)某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(mg)与时间t(h)之间近似满足如图所示的曲线.(1)写出服药后y与t之间的函数关系式y=f(t);(2)据进一步测定:每毫升血液中含药量不少于0.25 mg时,对治疗疾病有效,求服药一次治疗疾病有效的时间.答案19.解:(1)方程f (x )+4=0有唯一解x =1,即一元二次方程x 2+bx +c +4=0有唯一解x =1,则⎩⎪⎨⎪⎧ b 2-4(c +4)=0,b +c +5=0,⇒⎩⎪⎨⎪⎧b =-2,c =-3, 所以f (x )=x 2-2x -3.(2)结合(1)易知函数f (x )的零点为-1,3.当-1∈[a ,a +4]时,-5≤a ≤-1;当3∈[a ,a +4]时,-1≤a ≤3.故实数a 的取值范围为[-5,3].20.解:(1)当0≤t <1时 ,y =4t ;当t ≥1时,y =⎝ ⎛⎭⎪⎫12t -a 此时M (1,4)在曲线上, 故4=⎝ ⎛⎭⎪⎫121-a ,解得a =3,即y =⎝ ⎛⎭⎪⎫12t -3. 故y =f (t )=⎩⎨⎧4t ,0≤t <1,⎝ ⎛⎭⎪⎫12t -3,t ≥1. (1)因为f (t )≥0.25,则⎩⎨⎧ 4t ≥0.25,⎝ ⎛⎭⎪⎫12t -3≥0.25. 解得⎩⎨⎧ t ≥116,t ≤5,所以116≤t ≤5,因此服药一次治疗疾病有效的时间为5-116=41516(h).————————————————————————————21.(12分)设f(x)为定义在R上的偶函数,当x≥0时,f(x)=-(x -2)2+2.(1)求函数f(x)在R上的解析式;(2)在直角坐标系中画出函数f(x)的图象;(3)若方程f(x)-k=0有四个解,求实数k的取值范围.22.(12分)人们对声音有不同的感觉,这与它的强度I(单位:W/m2)有关系.但在实际测量时,常用声音的强度水平L1(单位:dB)表示,它满足公式:L1=10×lg II0(L1≥0,其中I0=1×10-12W/m2,这是人们平均能听到的最小强度,是听觉的开端).根据以上材料,回答下列问题:(1)树叶沙沙声的强度是1×10-12W/m2,耳语声的强度是1×10-10W/m2,恬静的无线电广播声的强度是1×10-8W/m2,试分别求出它们的强度水平;(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50 dB以下,试求声音的强度I的范围是多少?答案21.解:(1)由于f (x )为定义在R 上的偶函数,则f (-x )=f (x ), 若x <0,则-x >0,f (x )=f (-x )=-(-x -2)2+2=-(x +2)2+2,则f (x )=⎩⎪⎨⎪⎧-(x -2)2+2,x ≥0,-(x +2)2+2,x <0. (2)图象如图所示:(3)由于方程f (x )-k =0的解就是函数y =f (x )的图象与直线y =k 的交点的横坐标,观察函数y =f (x )的图象可知,当-2<k <2时,函数y =f (x )的图象与直线y =k 有四个交点,即方程f (x )-k =0有四个解.22.解:(1)由题意可知,树叶沙沙声的强度是I 1=1×10-12W/m 2,则I 1I 0=1,所以LI 1=10×lg1=0,即树叶沙沙声的强度水平为0 dB. 耳语声的强度是I 2=1×10-10W/m 2,则I 2I 0=102,所以LI 2=10×lg102=20,即耳语声的强度水平为20 dB.恬静的无线电广播声的强度是I 3=1×10-8 W/m 2,则I 3I 0=104,所以LI 3=10×lg104=40,即恬静的无线电广播声的强度水平为40 dB.(2)由题意知,0≤L1<50,即0≤10×lg II0<50,所以1≤II0<105,即10-12≤I<10-7.所以小区内公共场所的声音的强度I的范围为大于或等于10-12W/m2,同时应小于10-7W/m2.。

人教版高中数学必修第一册第三单元《函数概念与性质》测试卷(包含答案解析)(2)

人教版高中数学必修第一册第三单元《函数概念与性质》测试卷(包含答案解析)(2)

一、选择题1.定义在()0,∞+上的函数()f x 满足()()()f xy f x f y =+,当0x y <<时,都有()()f x f y >,且112f ⎛⎫= ⎪⎝⎭,则不等式()()32f x f x -+-≥-的解集为( )A .[)1,0-B .[)4,0-C .(]3,4D .[)(]1,03,4-2.意大利著名天文学家伽利略曾错误地猜测链条自然下垂时的形状是抛物线.直到1690年,雅各布·伯努利正式提出该问题为“悬链线”问题并向数学界征求答案.1691年他的弟弟约翰·伯努利和菜布尼兹、惠更斯三人各自都得到了正确答案,给出悬链线的数学表达式——双曲余弦函数:()coshxf x c a c a =+=2xx aae e a -++⋅(e 为自然对数的底数).当0c ,1a =时,记(1)p f =-,12m f ⎛⎫= ⎪⎝⎭,(2)n f =,则p ,m ,n 的大小关系为( ).A .p m n <<B .n m p <<C .m p n <<D .m n p <<3.对于实数a 和b ,定义运算“*”:,,,.b a b a b a a b ≤⎧*=⎨>⎩设()f x x =,()224g x x x =--+,则()()()M x f x g x =*的最小值为( )A .0B .1C .2D .34.已知()f x 为奇函数,且当0x >时,()2f x x =-,则1()2f -的值为( )A .52- B .32- C .32D .525.已知函数(1)f x +为偶函数,()f x 在区间[1,)+∞上单调递增,则满足不等式(21)(3)f x f x ->的x 的解集是( )A .31,5⎛⎫- ⎪⎝⎭B .3(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭C .1(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .11,5⎛⎫- ⎪⎝⎭6.定义在R 上的奇函数()f x 满足()10f =,且对任意的正数a 、b (ab ),有()()0f a f b a b -<-,则不等式()202f x x -<-的解集是( )A .()()1,12,-+∞B .()(),13,-∞-+∞C .()(),13,-∞+∞ D .()(),12,-∞-+∞7.已知函数()2sin tan 1cos a x b xf x x x +=++,若()10100f =,则()10f -=( )A .100-B .98C .102-D .1028.函数f (x )的值域为( ) A .[-43,43] B .[-43,0] C .[0,1]D .[0,43] 9.已知函数()3()log 91xf x x =++,则使得()2311log 10f x x -+-<成立的x 的取值范围是( ) A.0,2⎛⎫⎪ ⎪⎝⎭B .(,0)(1,)-∞⋃+∞C .(0,1)D .(,1)-∞10.已知函数3()201920191x x f x x -=-++,则关于x 的不等式(21)(2)2f x f x -+>的解集为( )A .1,4⎛⎫+∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭11.函数1()lg f x x=+ ) A .(0,2] B .(0,2) C .(0,1)(1,2]⋃D .(,2]-∞12.设函数()()212131log 1313x xe e xf x x --=++++,则做得()()31f x f x ≤-成立的x 的取值范围是( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .11,,42⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭ D .11,42⎡⎤⎢⎥⎣⎦13.若函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,,当[],1x m m ∈+时,不等式()()2-<+f m x f x m 恒成立,则实数m 的取值范围是( )A .(),4-∞-B .(),2-∞-C .()2,2-D .(),0-∞14.现有下列四个结论中,其中正确结论的个数是( ) ①幂函数()k yx k Q =∈的图象与函数1y x =的图象至少有两个交点;②函数()30xy k k =⋅>(k 为常数)的图象可由函数3xy =的图象经过平移得到;③函数11(0)312xy x x ⎛⎫=+≠⎪-⎝⎭是偶函数; ④函数21lg ||x y x +=无最大值,也无最小值;A .1个B .2个C .3个D .4个15.函数2222(1)ln 2(1)x y x x +=-⋅+的部分图象是( )A .B .C .D .二、填空题16.已知函数()()23log 440f x ax x =-+>在x ∈R 上恒成立,则a 的取值范围是_________.17.已知a R ∈,函数229()f x x a a x =++-在区间[3,1]--上的最大值10,则a 的取值范围是__________.18.定义在[0,)+∞上的函数()y f x =满足:(1)(2)0f =;(2)当02x <<时,()0f x ≠;(3)任意的,0x y >总有()(())()f x y f x f y f y +=⋅⋅成立.则1(3)2f f ⎛⎫+= ⎪⎝⎭__________.19.函数22y x x c =--在[]0,a 上的最大值为b ,则b a -最小值为__________.20.已知函数()()11xf x x x =>-,())2g x x x ≥,若存在函数()(),F x G x 满足:()()()()()(),G x F x f x g x g x f x =⋅=,学生甲认为函数()(),F x G x 一定是同一函数,乙认为函数()(),F x G x 一定不是同一函数,丙认为函数()(),F x G x 不一定是同一函数,观点正确的学生是_________.21.设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +m ,则f (﹣1)=_______. 22.设函数()f x 在定义域(0,+∞)上是单调函数,()()0,,xx f f x e x e ⎡⎤∀∈+∞-+=⎣⎦,若不等式()()f x f x ax '+≥对()0,x ∈+∞恒成立,则实数a 的取值范围是______. 23.函数()f x 是定义在R 上的偶函数,且()21f =-,对任意的x ∈R 都有()()2f x f x =--,则()2020f =_________.24.已知函数()()()()22sin 1R f x x x x x a a =--++∈在区间[]1,3-上的最大值与最小值的和为18,则实数a 的值为______.25.已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为__________. 26.已知函数1()22x x f x =-,则满足()()2560f x x f -+>的实数x 的取值范围是________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】采用赋值法,令1x y ==求得()10f =,同理可求()21f =-,()42f =-; 化()()32f x f x -+-≥-为()()234f x x f -≥,再结合单调性解不等式得结果.【详解】令1x y ==,得()()121f f =即()10f =,令12x =,2y =则()()1122f f f ⎛⎫=+ ⎪⎝⎭得()21f =-,令2x y ==,()()()4222f f f =+=-,所以由()()32f x f x -+-≥-得()()234f x x f -≥;又因为函数()f x 的定义域为()0,∞+,且0x y <<时,都有()()f x f y >,所以203034x x x x ->⎧⎪->⎨⎪-≤⎩ 即0314x x x <⎧⎪<⎨⎪-≤≤⎩所以10x -≤<, 即不等式()()32f x f x -+-≥-的解集为[)1,0-. 故选:A 【点睛】思路点晴:抽象函数往往通过赋值法来解决问题.2.C解析:C 【分析】先利用导数证明函数()f x 在区间0,上单调递增,再结合单调性比较大小即可.【详解】由题意知,()2x x e e f x -+=,21()22x x x xe e ef x e--+-'== 当0x >时,()0f x '>,即函数()f x 在区间0,上单调递增1(1)(1)2e ef f -+-==10122<<<,1(1)(2)2f f f ⎛⎫∴<< ⎪⎝⎭,即m p n << 故选:C 【点睛】关键点睛:解决本题的关键是利用导数证明函数()f x 的单调性,再结合单调性比较大小.3.B解析:B 【分析】由题意可得()()()()()()()()()g x f x g x M x f x g x f x f x g x ⎧≤⎪=*=⎨>⎪⎩,通过解不等式得出()()2241,1,2x x x M x x x ⎧⎤--+∈⎪⎥⎪⎣⎦=⎨⎛-⎪∈-∞⋃+∞ ⎪ ⎝⎭⎩,作出函数()M x 的图象,根据函数图象可得答案. 【详解】由条件有()()()()()()()()()g x f x g x M x f x g x f x f x g x ⎧≤⎪=*=⎨>⎪⎩当0x ≥时,()224g x x x x =--+≥,得到01x ≤≤, 即01x ≤<时,()()f x g x <,当1x >时,()()f x g x > 当0x <时,()224g x x x x =--+≤-,得117x --≤即当117x --≤时,()()f x g x >,当1170x --<<时,()()f x g x <所以()()211724,1117,1,x x x M x x x ⎧⎡⎤----+∈⎪⎢⎥⎪⎣⎦=⎨⎛⎫--⎪∈-∞⋃+∞ ⎪⎪ ⎪⎝⎭⎩作出函数()M x 的图象,如图所示,由图可得,当1x =时,()M x 有最小值1 故选:B4.C解析:C 【分析】根据函数为奇函数可知1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,然后根据0x >时()f x 的解析式可求解出12f ⎛⎫⎪⎝⎭的值,则12f ⎛⎫- ⎪⎝⎭的值可求. 【详解】因为()f x 为奇函数,所以1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭, 又因为1132222f ⎛⎫=-=- ⎪⎝⎭,所以113222f f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭, 故选:C.关键点点睛:解答本题的关键是利用奇偶性的定义将计算12f ⎛⎫- ⎪⎝⎭的值转化为计算12f ⎛⎫⎪⎝⎭的值,从而根据已知条件完成求解.5.A解析:A 【分析】根据题意,分析可得()f x 的图象关于直线1x =对称,结合函数的单调性可得(21)(3)f x f x ->等价于|22||31|x x ->-,两边平方解得x 的取值范围,即可得答案.【详解】因为函数(1)f x +为偶函数,所以(1)y f x =+的图象关于直线0x =对称, 因为(1)y f x =+的图象向右平移1个单位得到()y f x =的图象, 则()y f x =的图象关于直线1x =对称, 又因为()f x 在区间[1,)+∞上单调递增, 所以()f x 在区间(],1-∞上单调递减,所以()f x 的函数值越大,自变量与1的距离越大, ()f x 的函数值越小,自变量与1的距离越小,所以不等式(21)(3)f x f x ->等价于|22||31|x x ->-, 两边平方()()()()2222315310x x x x ->-⇒-+<, 解得315x -<<, 即不等式的解集为31,5⎛⎫- ⎪⎝⎭. 故选:A . 【点睛】方法点睛:函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.6.C解析:C 【分析】易知函数()f x 在()0,∞+上单调递减,令2t x =-,将不等式()0f t t<等价为()00t f t >⎧⎨<⎩或()00t f t <⎧⎨>⎩,进一步求出答案.∵对任意的正数a 、b (ab ),有()()0f a f b a b-<-,∴函数()f x 在()0,∞+上单调递减, ∴()f x 在(),0-∞上单调递减. 又∵()10f =,∴()()110f f -=-= 令2t x =-所以不等式()0f t t <等价为()00t f t >⎧⎨<⎩或()00t f t <⎧⎨>⎩∴1t >或1t <-, ∴21x ->或21x -<-, ∴3x >或1x <,即不等式的解集为()(),13,-∞⋃+∞. 故选:C. 【点睛】本题考查抽象函数的单调性和奇偶性以及不等式的知识点,考查逻辑思维能力,属于基础题.7.D解析:D 【分析】令()()21g x f x x =--,根据奇偶性定义可判断出()g x 为奇函数,从而可求得()()10101g g -=-=,进而求得结果.【详解】令()()2sin tan 1cos a x b xg x f x x x+=--=()()()()()sin tan sin tan cos cos a x b x a x b xg x g x x x-+---∴-===--()g x ∴为奇函数又()()210101011g f =--=- ()()10101g g ∴-=-=即()()2101011f ----= ()10102f ∴-=本题正确选项:D 【点睛】本题考查利用函数的奇偶性求解函数值的问题,关键是能够通过构造函数的方式得到奇函数,利用奇函数的定义可求得对应位置的函数值.8.C【解析】令cos ,[0,π]x θθ=∈,则sin 1()()cos 2f xg θθθ-==-的几何意义是单位圆(在x 轴及其上方)上的动点(cos ,sin )M θθ与点(2,1)A 连线的斜率k ,由图象,得01k ≤≤,即函数()f x 的值域为[0,1],故选C.点睛:本题考查利用三角代换、直线的斜率公式求函数的值域,解决本题的关键有两个,21x -sin 1cos 2θθ--的形式联想到过两点的直线的斜率公式,充分体现了代数、三角函数、解析几何间的有机结合.9.C解析:C 【分析】令21t x x =-+,则3()1log 10f t -<,从而33log (91)1log 10tt ++-<,即可得到133log (91)log (91)1t t ++<++,然后构造函数3()log (91)t g t t =++,利用导数判断其单调性,进而可得23114x x ≤-+<,解不等式可得答案 【详解】令21t x x =-+,则221331()244t x x x =-+=-+≥, 3()1log 10f t -<,所以33log (91)1log 10tt ++-<,所以133log (91)log (91)1t t ++<++,令3()log (91)tg t t =++,则9ln 929'()11(91)ln 391t tt t g t ⨯=+=+++,所以90t >,所以'()0g t >, 所以()g t 在3[,)4+∞单调递增, 所以由()(1)g t g <,得314t ≤<,所以23114x x ≤-+<,解得01x <<, 故选:C 【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得133log (91)log (91)1t t ++<++,再构造函数3()log (91)tg t t =++,利用函数的单调性解不等式.10.A解析:A 【分析】可知()f x 在R 上是单调递增函数,且()()2f x f x +-=,则不等式等价于(21)(2)f x f x ->-,解出即可.【详解】3()201920191x x f x x -=-++,()f x ∴在R 上是单调递增函数,()3201920191x x f x x ---=+-,()()2f x f x ∴+-=,则()()222f x f x -=-,(21)(2)2f x f x -+>,(21)2(2)(2)f x f x f x ->-=-∴,212x x ∴->-,解得14x >, 故不等式的解集为1,4⎛⎫+∞ ⎪⎝⎭. 故选:A. 【点睛】本题考查抽象函数不等式的求解,解题的关键是判断出函数的单调性,得出()()2f x f x +-=,将不等式化为(21)(2)f x f x ->-求解. 11.C解析:C 【分析】对数的真数大于零,分母不为零,偶次根式要求被开方式大于等于零,依据以上三点,列不等式求解. 【详解】欲使函数有意义,则0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,即012x x x >⎧⎪≠⎨⎪≤⎩解得()(]0,11,2x ∈⋃故选:C . 【点睛】方法点睛:该题考查的是有关求函数定义域的问题,在求解的过程中,注意: (1)对数要求真数大于0; (2)分式要求分母不等于0; (3)偶次根式要求被开方式大于等于0.12.D解析:D 【分析】先判断()f x 是偶函数且在0,上递减,原不等式转化为31x x ≥-,再解绝对值不等式即可. 【详解】()()()211221133111log 13log 131313x x xxe e e e xxf x x x ---⎛⎫=+++=+++ ⎪++⎝⎭,()121311log 1,,313x xe e xy x y y -⎛⎫=+== ⎪+⎝⎭在0,上都递减所以()f x 在0,上递减,又因为()()()()121311log 1313x xe e xf x x f x ----⎛⎫-=+-++= ⎪+⎝⎭,且()f x 的定义域为R ,定义域关于原点对称, 所以()f x 是偶函数, 所以()()()()313131f x f x f x f x x x ≤-⇔≤-⇔≥-,可得113142x x x x -≤-≤⇒≤≤,x 的取值范围是11,42⎡⎤⎢⎥⎣⎦, 故选:D. 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.13.B解析:B 【分析】先判断函数的单调性,然后解答不等式,在恒成立的条件下求出结果 【详解】依题意得:函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,在x ∈R 上单调递减, 因为()()2-<+f m x f x m ,所以2m x x m ->+,即2x m <,在[],1x m m ∈+上恒成立,所以2(1)m m +<,即2m <-,故选B . 【点睛】本题考查了函数的单调性的应用,结合函数的单调性求解不等式,需要掌握解题方法14.A解析:A 【分析】①举反例说明命题为假;②应该是伸缩变换,可以判断出命题为假;③由奇偶函数的定义判断处函数为偶函数,可得命题为真; ④将函数变形,由均值不等式的性质可得最小值,可得命题为假. 【详解】 解:①取幂函数2y x ,显然与1y x=仅有一个交点,所以①不正确;②函数()30xy k k =⋅>(k 为常数)的图象可由函数3xy =的图象经过伸缩得到,所以②不正确;③设()y f x =,由()()()3111,0312231x xxx f x x x +⎛⎫=+=≠ ⎪--⎝⎭,定义域关于原点对称, 则()()()()()()3131231231x x x x x x f x f x ---++-===--,()f x ∴是偶函数,故③正确;④函数215lg lg ||||||x y x x x ⎛⎫+==+ ⎪⎝⎭, 而lg y u =在定义域上单调递增,所以函数21lg ||x y x +=有最小值无最大值,所以④不正确. 故选:A . 【点睛】本题考查指对幂函数的性质,属于基础题.15.C解析:C 【详解】函数()()22221ln 21x y x x +=-⋅+是偶函数,排除AD;且222222(1)2,02(1)x x x x ++≥+∴≤+ 当01,0,10.x y x y <<>==时当时, 排除B,选C.点睛:这个题目考查的是由函数的解析式画函数的图象;一般这种题目是排除法来做的;先找函数的定义域,值域,看是否和解析式相符;再看函数的对称性,奇偶性,看两者是否相符;还有可以判断函数的极限值.二、填空题16.【分析】由题意把函数在上恒成立转化为对上恒成立列不等式解得a 的范围【详解】恒成立即恒成立所以时显然不成立当时得所以故答案为:【点睛】(1)求参数的范围是常见题型之一处理的方法有两种:①不分离参数直接解析:4,3⎛⎫+∞ ⎪⎝⎭【分析】由题意,把函数()()23log 440f x ax x =-+>在x ∈R 上恒成立转化为2430ax x -+>对x ∈R 上恒成立,列不等式解得a 的范围. 【详解】()()23log 440f x x x α=-+>恒成立,即()2233log 44log 1430ax x ax x -+>⇔-+>恒成立,所以0a =时显然不成立.当0a ≠时()0Δ16120a a >⎧⎨=-<⎩得43a <,所以4,3a ⎛⎫∈+∞ ⎪⎝⎭. 故答案为:4,3⎛⎫+∞ ⎪⎝⎭【点睛】(1)求参数的范围是常见题型之一,处理的方法有两种:①不分离参数,直接求最大值或最小值,解不等式;②分离参数法.(2)解指、对数型的不等式,通常化为同底的结构,利用函数的单调性解不等式.17.【分析】求出的范围后根据绝对值的性质根据最大值得不等关系可得的范围【详解】时当且仅当时等号成立又或时所以而的最大值为10所以的最大值为所以解得故答案为:【点睛】关键点点睛:本题考查函数的最值掌握绝对 解析:[8,)-+∞【分析】 求出229x x+的范围后根据绝对值的性质根据最大值得不等关系,可得a 的范围. 【详解】[3,1]x ∈--时,2[1,9]x ∈,2296x x +≥=,当且仅当23x =时等号成立, 又1x =-或3x =-时,22910x x +=,所以229610a x a a x+≤++≤+, 而()f x 的最大值为10,所以229x a x ++的最大值为10a +, 所以100610a a a +≥⎧⎨+≤+⎩,解得8a ≥-.故答案为:[8,)-+∞. 【点睛】关键点点睛:本题考查函数的最值.掌握绝对值的性质是解题关键.当0a b >≥时,a b >,当0a b 时,a b <,当0a b >>时,0a b +>,则a b >,0a b +<时,a b <.18.【分析】先令求得再令可得结合已知条件可得从而可得答案【详解】解:令则由得因为所以令则因为当时;所以所以所以所以故答案为:【点睛】关键点点睛:此题考查抽象函数求值问题解题的关键是结合已知条件正确赋值令解析:43【分析】先令1,2x y ==,求得(3)0f =,再令31,22x y ==,可得311(())()(2)222f f f f ⋅=,结合已知条件可得1()2f ,从而可得答案 【详解】解:令1,2x y ==,则由()(())()f x y f x f y f y +=⋅⋅得((2))(2)(12)f f f f ⋅=+, 因为(2)0f =,所以(3)0f =,令31,22x y ==,则311(())()(2)222f f f f ⋅=, 因为(2)0f =,当02x <<时,()0f x ≠;所以31(())0(2)22f f f ==, 所以31()222f =,所以14()23f =, 所以14(3)23f f ⎛⎫+= ⎪⎝⎭ 故答案为:43【点睛】关键点点睛:此题考查抽象函数求值问题,解题的关键是结合已知条件正确赋值,令31,22x y ==,则311(())()(2)222f f f f ⋅=,由(2)0f =,当02x <<时,()0f x ≠,可得31()222f =,从而得14()23f = 19.【分析】对称轴是因此的最大值在中取得然后分类讨论当时在中取得时在中取得求出然后作差根据不等式的性质求得的最大值【详解】设的对称轴是显然的最大值在中取得当时时此时若即时若时若时若即时时取等号若即时时取解析:32-【分析】22()2(1)1g x x x c x c =--=---,对称轴是1x =,因此()g x 的最大值在(0)g ,(1)g ,()g a 中取得.然后分类讨论,当02a <<时,在(0)g ,(1)g 中取得,2a ≥时,在(1)g ,()g a 中取得.求出b ,然后作差b a -,根据不等式的性质求得b a -的最大值. 【详解】设22()2(1)1g x x x c x c =--=---,(0)g c =-,(1)1g c =--,2()2g a a a c =--,()g x 的对称轴是1x =,显然()y g x =的最大值在(0)g ,(1)g ,()g a 中取得.当02a <<时,10c --≥,1c ≤-时,(0)b g c c ==-=-,此时b a c a -=--121>-=-,10c --<,若1c c --≤-,即112c -<≤-时,(0)b g c c ==-=-,13222b ac a -=-->-=-, 若1c c -->-,12c >-时,(1)111b g c c c ==--=+=+,1311222b ac a -=+->--=-,若2a ≥时,若212c a a c --≤--,即2212a a c --≤时,22()22b g a a a c a a c ==--=--,222221(2)3333222a a ab a a ac a a -----=--≥--=≥-,2a =时取等号,若212c a a c -->--,即2212a a c -->时,(1)11b gc c ==--=+1c =+,222141311222a a a ab ac a a ---+-=+->+-=≥-,2a =时取等号.综上所述,b a -的最小值是32-. 故答案为:32-. 【点睛】方法点睛:本题考查绝对值的最大值问题,解题关键是求出最大值b ,方法是分类讨论,由于有绝对值符号,引入二次函数2()2g x x x c =--后确定b 只能在(0)g ,(1)g ,()g a 中取得.然后分类讨论求得最大值.才可以作差b a -得其最小值.20.甲【分析】由题意求出的解析式依据两函数为同一函数的条件:定义域和对应关系相同即可得出结论【详解】解得所以故答案为:甲【点睛】本题主要考查两函数为同一函数的条件:定义域和对应关系相同;正确求出两函数的解析:甲 【分析】由题意求出()(),F x G x 的解析式,依据两函数为同一函数的条件:定义域和对应关系相同,即可得出结论. 【详解】()()11xf x x x =>-,())2g x x =≥, ()()11xf x x x ∴=>-, ())21x F x x x ∴==≥-,()()()G x g x f x =, ())21G x x x x ∴=≥-, 解得())2G x x =≥,所以()())2F x G x x ==≥.故答案为:甲 【点睛】本题主要考查两函数为同一函数的条件:定义域和对应关系相同;正确求出两函数的解析式和定义域是求解本题的关键;属于易错题;21.【分析】由函数是上的奇函数求得得到当时函数再由即可求解【详解】由题意因为函数是上的奇函数则解得即当时函数又由故答案为:【点睛】本题主要考查了函数的奇偶性的应用以及函数值的求解其中解答中熟练应用函数的 解析:3-【分析】由函数()f x 是R 上的奇函数,求得1m =-,得到当0x ≥时,函数()221x f x x =+-,再由()()11f f -=-,即可求解. 【详解】由题意,因为函数()f x 是R 上的奇函数,则()002200f m =+⨯+=,解得1m =-,即当0x ≥时,函数()221xf x x =+-,又由()()111(2211)3f f -=-=-+⨯-=-.故答案为:3-. 【点睛】本题主要考查了函数的奇偶性的应用,以及函数值的求解,其中解答中熟练应用函数的奇偶性是解答的关键,着重考查了推理与运算能力,属于基础题.22.【分析】先利用换元法求出然后再用分离变量法借助函数的单调性解决问题【详解】解:由题意可设则∵∴∴∴∴由得∴对恒成立令则由得∴在上单调递减在单调递增∴∴故答案为:【点睛】本题主要考查利用导数研究函数的 解析:(],21e -∞-【分析】先利用换元法求出()f x ,然后再用分离变量法,借助函数的单调性解决问题. 【详解】解:由题意可设()xf x e x t -+=,则()xf x e x t =-+,∵()xf f x e x e ⎡⎤-+=⎣⎦,∴()ttf t e t t e e =-+==,∴1t =,∴()1xf x e x =-+,∴()1xf x e '=-,由()()f x f x ax '+≥得11x x e x e ax -++-≥,∴21x e a x≤-对()0,x ∈+∞恒成立,令()21xe g x x =-,()0,x ∈+∞,则()()221'x e x g x x-=, 由()'0g x =得1x =,∴()g x 在()0,1上单调递减,在()1,+∞单调递增, ∴()()121g x g e ≥=-, ∴21a e ≤-,故答案为:(],21e -∞-. 【点睛】本题主要考查利用导数研究函数的最值,考查利用函数的单调性解决恒成立问题,属于中档题.23.1【分析】根据题意由函数的奇偶性分析可得进而可得即函数是周期为4的周期函数据此可得(4)(2)即可得答案【详解】根据题意函数是定义在上的偶函数对任意的都有则即函数是周期为4的周期函数故答案为:1【点解析:1 【分析】根据题意,由函数的奇偶性分析可得()(2)f x f x =--,进而可得()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,据此可得(2020)(44504)f f f =+⨯=(4)f =-(2),即可得答案.【详解】根据题意,函数()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()(2)f x f x =--,则()(2)f x f x =--,∴()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,(2020)(44504)(4)(2)1f f f f =+⨯==-=,故答案为:1 【点睛】本题考查抽象函数的求值,涉及函数的奇偶性、周期性的性质以及应用,注意分析函数的周期.24.8【分析】利用换元法令则所以原函数变为令则函数为奇函数且推出进而求出的值【详解】令则所以原函数变为令则函数为奇函数且所以所以因为为奇函数所以所以所以故答案为:8【点睛】此题考查函数的奇偶性的应用考查解析:8 【分析】利用换元法令1t x =-,则[]2,2t ∈-,所以原函数变为()21sin 1y t t t a =-+++,令()()21sin g t t t t =-+,[]2,2t ∈-,则函数g t 为奇函数且()1y g t a =++,推出()()max min 0g t g t +=,()()max min 2218g t g t a +=+=,进而求出a 的值【详解】令1t x =-,则[]2,2t ∈-,所以原函数变为()21sin 1y t t t a =-+++,令()()21sin g t t t t =-+,[]2,2t ∈-,则函数g t 为奇函数且()1y g t a =++,所以()()max max 1f x g t a =++,()()min min 1f x g t a =++, 所以()()()()max min max min 22f x f x g t g t a +=+++. 因为g t 为奇函数,所以()()max min 0g t g t +=,所以()()max min 2218g t g t a +=+=,所以8a =.故答案为:8 【点睛】此题考查函数的奇偶性的应用,考查换元法的应用,属于基础题25.【解析】当时由即则即当时由得解得则当时不等式的解为则由为偶函数当时不等式的解为即不等式的解为或则由或解得:或即不等式的解集为点睛:本题是一道关于分段函数的应用的题目考查了不等式的求解以及函数的图象问 解析:4712{|}3443x x x ≤≤≤≤或 【解析】当102x ⎡⎤∈⎢⎥⎣⎦,时,由()1 2f x =,即1 2cos x π= 则 3x ππ=,即1 3x =当12x >时,由()1 2f x =,得121?2x -=,解得3 4x = 则当0x ≥时,不等式()12f x ≤的解为1334x ≤≤ 则由()f x 为偶函数∴当0x <时,不等式()12f x ≤的解为3143x -≤≤-即不等式()12f x ≤的解为1334x ≤≤或3143x -≤≤- 则由13134x ≤-≤或31143x -≤-≤- 解得:4734x ≤≤或1243x ≤≤ 即不等式()112f x -≤的解集为4712{|}3443x x x ≤≤≤≤或 点睛:本题是一道关于分段函数的应用的题目,考查了不等式的求解以及函数的图象问题.先求出当0x ≥时,不等式()12f x ≤的解,然后利用函数的奇偶性求出整个定义域()12f x ≤的解,即可得到结论. 26.【分析】根据题意由奇函数的定义可得函数为奇函数由函数单调性的性质可得函数在上为减函数;据此可得解可得的取值范围即可得答案【详解】解:根据题意函数即函数为奇函数又由在上为减函数在上增函数与则函数在上为 解析:(2,3)【分析】根据题意,由奇函数的定义可得函数()f x 为奇函数,由函数单调性的性质可得函数()f x 在R 上为减函数;据此可得()()()22560(5)6f x x f f x x f -+>⇒->-22(5)(6)56f x x f x x ⇒->-⇒-<-,解可得x的取值范围,即可得答案. 【详解】解:根据题意,函数1()22x x f x =-,11()2(2)()22x xx xf x f x ---=-=--=-,即函数()f x 为奇函数, 又由12x y =在R 上为减函数,2x y =-在R 上增函数与,则函数()f x 在R 上为减函数, 则()()2560f x x f -+>()2(5)6f x x f ∴->-2(5)(6)f x x f ∴->- 256x x ∴-<-,解可得:23x <<, 即x 的取值范围为(2,3); 故答案为:(2,3) 【点睛】本题考查函数的奇偶性与单调性的综合应用,关键是得到关于x 的不等式,属于基础题.。

高中数学必修第一册第三章综合测试02含答案解析

高中数学必修第一册第三章综合测试02含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数1()3f x x =+-的定义域为( ) A .(3,0]-B .(3,1]-C .[1,3)(3,)-+∞D .[1,3)-2.设()f x 是定义在R 上的奇函数,当0x 时,2()2f x x x =-,则(1)f -=( ) A .3-B .1-C .1D .33.已知函数(1)y f x =+的定义域为[2,6]-,则函数(34)y f x =-的定义域是( ) A .[1,1]-B .[3,5]-C .35,44⎡⎤-⎢⎥⎣⎦D .13,22⎡⎤-⎢⎥⎣⎦4.函数2,01,()2,12,3,2x x y f x x x ⎧⎪==⎨⎪⎩<< 的值域是( )A .RB .[0,)+∞C .[0,3]D .[0,2][3]5.函数111y x -=+-的图像是下列选项中的( )ABCD6.已知2m -<,点()()()1231,,,,1,m y m y m y -+都在二次函数22y x x =--的图像上,则( ) A .123y y y <<B .231y y y <<C .132y y y <<D .312y y y <<7.已知函数2()68f x x x =-+在[1,]a 上的最小值为()f a ,则实数a 的取值范围为( ) A .(1,3]B .(1,)+∞C .(1,5)D .[3,5]8.函数2()(2)1f x ax a x =+++是偶函数,则函数的单调递增区间为( ) A .[0,)+∞B .(,0]-∞C .(,)-∞+∞D .[1,)+∞9.函数2()(1)1f x mx m x =+-+在区间(,1]-∞上为减函数,则m 的取值范围为( )A .10,3⎛⎤ ⎥⎝⎦B .10,3⎡⎫⎪⎢⎣⎭C .10,3⎡⎤⎢⎥⎣⎦D .10,3⎛⎫ ⎪⎝⎭10.已知对于任意两个实数x ,y ,都有()()()f x y f x f y +=+成立.若(3)2f -=,则(2)f 等于( )A .12-B .12 C .43 D .43- 11.设函数()f x 满足对任意的m ,n (m ,n 为正整数)都有()()()f m n f m f n += 且(1)2f =,则(2)(3)(2 019)...(1)(2)(2 018)f f f f f f +++( ) A .2 019B .2 018C .4 036D .4 03812.若x ∈R ,()f x 是22y x =-,y x =这两个函数中的较小者,则()f x 的最大值为( ) A .2B .1C .1-D .无最大值二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.若函数2(1)2()1a x a f x x a -+-=+-为奇函数,则实数a =__________.14.已知1)f x +=+()f x =__________.15.已知函数()2|1|f x x x a =-+-,若函数()y f x =有且仅有两个零点,则实数a 的取值范围是__________.16.已知函数29,3()6,3x f x x x x ⎧=⎨-+⎩,<,则不等式()22(34)f x x f x --<的解集是__________.三、解答题(本大题共6小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知函数()bf x ax x=+的图像经过点(1,1)A ,(2,1)B -. (1)求函数()f x 的解析式;(2)判断函数()f x 在(0,)+∞上的单调性并用定义证明.18.(12分)已知()f x 是定义在R 上的奇函数,当0x 时,2()2f x x x m =-+. (1)求实数m 的值及(3)f -的值;(2)求函数()f x 的解析式并在图3-7-1中画出函数()f x 的大致图像.19.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,实际出厂单价不低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数()P f x =的解析式.(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?(=-工厂售出一个零件的利润实际出厂单价成本)20.(12分)已知函数2()2(1)421f x m x mx m =+++-. (1)如果函数()f x 的一个零点为0,求m 的值; (2)当函数()f x 有两个零点时,求m 的取值范围;(3)当函数()f x 有两个零点,且其中一个大于1,一个小于1时,求m 的取值范围.21.设2()22f x x ax =-+,当[1,)x ∈-+∞时,()f x a ≥恒成立,求a 的取值范围.22.(12分)函数2()1ax bf x x+=+是定义在(1,1)-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭ (1)求函数()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上是增函数; (3)解不等式(1)()0f t f t -+<.第三章综合测试答案解析一、1.【答案】C2.【答案】B3.【答案】A4.【答案】D【解析】作出()y f x =的图像,如图所示.由图像知,()f x 的值域是[0,2]{3} .故选D . 5.【答案】A【解析】当0x =时,11201y -=+=-,故排除B,D ;当2x =时,1111021y -=+=-+=-,故排除C .故选A .6.【答案】A【解析】因为2(1)1y x =-++,所以22y x x =--在(,1]-∞-上是增函数,在[1,)-+∞上是减函数.因为2m -<,所以111m m m -+-<<<,所以(1)()(1)f m f m f m -+<<,即123y y y <<故选A7.【答案】A【解析】因为22()68(3)1f x x x x =-+=--,所以函数的图像开口向上,对称轴为直线3x =.因为函数2()68f x x x =-+在[1,]a 上的最小值为()f a ,所以13a <≤.故选A .8.【答案】B【解析】因为函数()f x 是偶函数,所以()()f x f x -=,所以22(2)1(2)1ax a x ax a x -++=+++,即(2)0a x +=对于任意实数x 恒成立,所以20a +=,解得2a =-.所以2()21f x x =-+,其单调递增区间为(,0]-∞.故选B .9.【答案】C【解析】当0m =时,()1f x x =-,满足在区间(,1]-∞上为减函数.当0m ≠时,因为2()(1)1f x mx m x =+-+的图像的对称轴为直线12m x m -=,且函数在区间(,1]-∞上为减函数,所以0112m m m⎧⎪-⎨⎪⎩> ,解得103m <≤.综上,103m .故选C .10.【答案】D【解析】令0x y ==,则(00)(0)(0)f f f +=+,则(0)0f =.令3x =,3y =-,则(0)(3)(3)f f f =+-,且(3)2f -=,则(3)2f =-. 因为(3)(1)(2)f f f =+,(2)(1)(1)f f f =+,所以(3)3(1)f f =,所以2(1)3f =-,4(2)3f =-.故选D .11.【答案】C【解析】因为函数()f x 满足对任意的m ,n (m ,n 为正整数)都有()()()f m n f m f n += 且(1)2f =,所以(1)()(1)f m f m f += .即(1)(1)2()f m f f m +==. 所以(2)(3)(2 019)... 2 018(1) 4 036(1)(2)(2 018)f f f f f f f +++==. 12.【答案】B【解析】由题意知22,21,(),21,x x x f x x x ⎧--=⎨-⎩或<<()f x 的图像如图所示,由图可知1x =时,max ()1f x =.故选B . 二、13.【答案】1【解析】1:因为()f x 为奇数,所以()()f x f x -=-对定义域内任意x 都成立, 所以22(1)2(1)2011a x a a x a x a x a --+--+-+=-+-+-对定义域内的任意x 恒成立, 所以()22(1)0,2(2)10,a a a --=⎧⎪⎨--=⎪⎩解得1a =. 解析2:由210x a +-≠解得21x a ≠-, 所以()f x 的定义域为{}2|1x x a ∈≠-R .因为()f x 是奇函数,所以()f x 的定义域关于原点对称,所以210a -=,解得1a =±.若1a =-,则1()1f x -=,符合题意; 若1a =-,则23()x f x x--=,不符合题意.所以1a =.14.【答案】21(1)x x -【解析】因为21)111)1f x x +=+=++-=+-,所以2()1(1)f x x x =- .15.【答案】(1,)+∞【解析】函数()f x 有且仅有两个零点,即函数2|1|y x x =-+与y a =的图像有且仅有两个交点.分别作出y a =与32,1,2,1x x y x x -⎧=⎨-+⎩≥<的图像,易知当1a >时,两函数的图像有两个不同的交点.故实数a 的取值范围是(1,)+∞.16.【答案】(1,3)【解析】当3x <时,22()6(3)99f x x x x =-+=--+<,()f x 在(,3)-∞上单调递增.由()()2234f x x f x --<,得2234,343,x x x x ⎧--⎨-⎩<<或223,343,x x x ⎧-⎨-⎩<≥ 解得14,7,3x x ⎧⎪⎨⎪⎩<<<或13,7,3x x -⎧⎪⎨⎪⎩<<≥ 即13x <<,所以解集为(1,3).三、17.【答案】解:(1)由()f x 的图像过点A ,B ,得1,21,2a b ba +=⎧⎪⎨+=-⎪⎩解得1,2.a b =-⎧⎨=⎩ 所以2()(0)f x x x x=-+≠.(2)函数()f x 在(0,)+∞上为减函数.证明如下: 设任意12,(0,)x x ∈+∞,且12x x <.()()12121222f x f x x x x x ⎛⎫⎛⎫-=-+--+ ⎪ ⎪⎝⎭⎝⎭∴()()()2121211212222x x x x x x x x x x -=-+-=-+()()2112122x x x x x x -+=.12,(0,)x x ∈+∞∵,120x x ∴>,1220x x +>.12x x ∵<,210x x -∴>.()()120f x f x -∴>,即()()12f x f x >.∴函数2()f x x x=-+在(0,)+∞上为减函数. 18【答案】解:(1)因为()f x 是定义在R 上的奇函数,当0x 时,22f x x x m =-+(),即函数()f x 在0x =处有意义,由00f =() 得0m =.由函数()f x 为奇函数得2333233f f -=-=--⨯=-()()(). (2)由(1)知当0x ≥时,22f x x x =-().当0x <时,0x ->,则2222f x x x x x -=---=+()()().因为函数f x ()为奇函数,所以f x f x -=-()(),即()22f x x x -=+,所以22f x x x =--().综上()222,0,2,0.x x x f x x x x ⎧-⎪=⎨--⎪⎩≥<函数()f x 的大致图像如图所示.19.【答案】解:(1)设每个零件的实际出厂单价恰好降为51元时,一次订购量为0x 个,则060511005500.02x -=+=(个). (2)当0100x <≤时,60P =;当100550x <<时,()600.021006250x P x =--=-; 当550x ≥时,51P =,所以()()()()600100,62100550,,5051550,x x P f x x x x ⎧⎪⎪==-∈⎨⎪⎪⎩N <≤<<≥(3)设销售商一次订购量为x 时,工厂获得的利润为L 元,则()()()()2200100,4022100550,,5011550,x x x L P x x x x x x ⎧⎪⎪=-=-∈⎨⎪⎪⎩N <≤<<≥当500x =时, 6 000L =;当 1 000x =时,11 000L =.所以当销售商一次订购500个零件时,该厂获利6000元,订购1000个零件时,利润为11000元. 20.【答案】解:(1)由(0)210f m =-=,得12m =. (2)因为函数()f x 有两个零点,所以方程()0f x =有两个不相等的实数根,所以2(1)0m +≠, 且21642(1)(21)0A m m m =-⨯+->,解得1m ≠-且1m <. 所以m 的取值范围为(,1)(1,1)-∞-- .(3)当()f x 有两个零点,且其中一个大于1,一个小于1时,结合二次函数的图像,有2(1)0,(1)0,m f +⎧⎨⎩><或2(1)0,(1)0,m f +⎧⎨⎩<>解得118m --<<. 所以a 的取值范围为11,8⎛⎫-- ⎪⎝⎭.21.【答案】解:当[1,)x ∈-+∞时,()f x a 恒成立,即在[)1,-+∞上min ()f x a ,222()22()2f x x ax x a a =-+=-+-,[1,)x ∈-+∞.①当1a -<时,()f x 在[1,)-+∞上是单调增函数,则min ()(1)23f x f a =-=+,高中数学 必修第一册 6 / 6所以23a a +≥,所以31a --≤<.②当1a -≥时,()f x 在x a =时取最小值,min 2()()2f x f a a ==-,所以22a a -≥,所以21a -≤≤.又因为1a -≥,所以11a -≤≤.综上,a 的取值范围为[-3,1].22.【答案】(1)解:依题意得(0)0,12,25f f =⎧⎪⎨⎛⎫= ⎪⎪⎝⎭⎩即0,22,1514b a b =⎧⎪⎪+⎨=⎪+⎪⎩ 解得10a b =⎧⎨=⎩,所以2()1x f x x =+. (2)证明:任取1211x x -<<<,则()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++. 因为1211x x -<<<,所以130x x -<,2110x +>,2210x +>.又1211x x -<<,所以1210x x ->.所以()()120f x f x -<,即()()12f x f x <.所以()f x 在(1,1)-上是增函数.(3)解:(1)()0f t f t -+<,即(1)()()f t f t f t --=-<. 因为()f x 在(1,1)-上是增函数,所以111t t ---<<<,解得102t <<, 所以取不等式的解集为1|02t t ⎧⎫⎨⎬⎩⎭<<.。

最新人教版高中数学必修第一册第三单元《函数概念与性质》测试题(包含答案解析)(2)

最新人教版高中数学必修第一册第三单元《函数概念与性质》测试题(包含答案解析)(2)

一、选择题1.已知定义域为R 的函数()f x 在[)2,+∞单调递减,且(4)()0f x f x -+=,则使得不等式()2(1)0f x x f x +++<成立的实数x 的取值范围是( ) A .31x -<<B .1x <-或3x >C .3x <-或1x >D .1x ≠-2.已知m R ∈,若函数()||x m f x e +=对任意x ∈R 满足()()20212120f x f x -=-,则不等式()1ln ln 2f x f e x ⎛⎫+≥ ⎪⎝⎭的解集是( ) A .[)1,,e e⎛⎤-∞⋃+∞ ⎥⎝⎦B .1,e e ⎡⎤⎢⎥⎣⎦C .[)10,,e e⎛⎤+∞ ⎥⎝⎦D .[),e +∞3.定义在R 偶函数()f x 满足()()22f x f x -=-+,对[]12,0,4x x ∀∈,12x x ≠,都有()()12120f x f x x x ->-,则有( )A .()()()192120211978f f f =<B .()()()192119782021f f f <<C .()()()192120211978f f f <<D .()()()202119781921f f f <<4.设()f x 为定义在R 上的函数,函数()1f x +是奇函数.对于下列四个结论:①()10f =;②()()11f x f x -=-+; ③函数()f x 的图象关于原点对称; ④函数()f x 的图象关于点()1,0对称; 其中,正确结论的个数为( ) A .1 B .2C .3D .45.奇函数()f x 在(0)+∞,内单调递减且(2)0f =,则不等式(1)()0x f x +<的解集为( )A .()()(),21,02,-∞--+∞ B .()()2,12,--+∞C .()(),22,-∞-+∞D .()()(),21,00,2-∞-- 6.已知奇函数()f x 在区间[]2,3上单调递增,则()f x 在区间[]3,2--上( )A .单调递增,且最大值为()2f -B .单调递增,且最大值为()3f -C .单调递减,且最大值为()2f -D .单调递减,且最大值为()3f -7.函数()f x 对于任意x ∈R ,恒有()12f x f x ⎛⎫<+ ⎪⎝⎭,那么( ) A .可能不存在单调区间 B .()f x 是R 上的增函数 C .不可能有单调区间D .一定有单调区间8.定义在R 上的奇函数()f x 满足()20210f =且对任意的正数a ,b (ab ),有()()0f a f b a b -<-,则不等式()0f x x<的解集是( )A .()()2021,02021,-+∞B .()()2021,00,2021-C .()(),20212021,-∞-+∞D .()(),20210,2021-∞-9.已知函数f (x )=|x |+ln|x |,若f (3a -1)>f (1),则实数a 的取值范围是( ) A .a <0B .23a >C .023a <<D .a <0或23a >10.函数()23f x x =-( )A .3⎡⎤⎣⎦B .[]1,5C .2,3⎡⎣D .3⎡⎣11.已知2()log (1)f x x =-,若()2120f x x -+-<,则x 的取值范围为( )A .(,0)(1,)-∞⋃+∞B .⎝⎭C .115,01,22⎛⎫⎛+ ⎪⎪⎝⎭⎝⎭D .(1,0)(1,2)-12.已知函数2log (1),1,()1,1,x x f x x +≥⎧=⎨<⎩则满足(21)(31)f x f x +<-的实数x 的取值范围是( )A .2,3⎛⎫+∞ ⎪⎝⎭B .(2,)+∞C .2,23⎛⎫ ⎪⎝⎭D .()1,213.定义在[]1,1-的函数()f x 满足下列两个条件:①任意的[1,1]x ∈-都有()()f x f x -=-;②任意的,[0,1]m n ∈,当m n ≠,都有()()0f m f n m n-<-,则不等式(12)(1)0f x f x -+-<的解集是( )A .10,2⎡⎫⎪⎢⎣⎭B .12,23⎛⎤⎥⎝⎦C .11,2⎡⎫-⎪⎢⎣⎭D .20,3⎡⎫⎪⎢⎣⎭14.已知定义在R 上的函数()f x 满足()(2)f x f x =-,()()0f x f x +-=,且在[0,1]上有1()4xf x ⎛⎫= ⎪⎝⎭,则(2020.5)f =( )A .116-B .116C .14D .1215.若()21f x ax x a =+++在()2,-+∞上是单调递增函数,则a 的取值范围是( ) A .1(,]4-∞B .1(0,]4C .1[0,]4D .1[,)4+∞二、填空题16.设()xf x a x =+,若()36f =,则不等式()()21f x f x ->的解集为____________.17.已知定义在R 上的偶函数()f x 满足:()()4f x f x +=-,对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,且()10f =,则不等式()0f x >在[2019,2023]上的解集为______.18.已知定义域为N 的函数()y f x =满足()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()5f =___________.19.已知函数()()23log 440f x ax x =-+>在x ∈R 上恒成立,则a 的取值范围是_________.20.设函数()f x 在(,0)(0,)-∞+∞上满足()()0f x f x ,在(0,)+∞上对任意实数12x x ≠都有1212()(()())0x x f x f x -->成立,又(3)0f -=,则(1)()0x f x -<的解是___________.21.已知a R ∈,函数229()f x x a a x=++-在区间[3,1]--上的最大值10,则a 的取值范围是__________.22.已知定义在R 上的奇函数()y f x =满足(1)(1)f x f x -=+,且当(0,1)x ∈时,3()24x f x =-,则12(log 25)f =________.23.已知11()x x f x e e x --=-+,则不等式()(63)2f x f x +-≤的解集是________. 24.幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在()0,∞+上是减函数,则a m +=____.25.如果方程24x +y |y |=1所对应的曲线与函数y =f (x )的图象完全重合,那么对于函数y =f (x )有如下结论:①函数f (x )在R 上单调递减;②y =f (x )的图象上的点到坐标原点距离的最小值为1; ③函数f (x )的值域为(﹣∞,2];④函数F (x )=f (x )+x 有且只有一个零点.其中正确结论的序号是_____.26.已知函数()()()()22sin 1R f x x x x x a a =--++∈在区间[]1,3-上的最大值与最小值的和为18,则实数a 的值为______.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由(4)()0f x f x -+=得到()f x 关于(2,0)对称,再由()f x 在[)2,+∞单调递减得到()f x 在R 上单调递减,利用单调性可得答案. 【详解】(4)()0f x f x -+=,则()f x 关于(2,0)对称,因为()f x 在[)2,+∞单调递减,所以()f x 在R 上单调递减, 所以(1)(3)f x f x +=--,由()2(1)0f x x f x +++<得()2(3)0f x x f x +--<, 所以()2(3)f x x f x +<-,所以23x x x +>-,解得1x >或3x <-. 故选:C . 【点睛】思路点睛:利用函数的单调性和奇偶性比较函数值大小的思路: (1)先根据奇偶性将自变量转变至同一单调区间; (2)根据单调性比较同一单调区间内的函数值的大小关系;(3)再结合奇偶性即可判断非同一单调区间的函数值大小,由此得到结果.2.C解析:C 【分析】先判断函数为偶函数,根据奇偶性求得0m =,将原不等式化为ln x e e ≥,等价于ln 1x ≥,进而可得答案.【详解】设2021x t -=,()()()()20212120f x f x f t f t -=-⇒=-, 所以()||x m f x e+=是偶函数,则||||x m x m e e +-+=恒成立,即()()2240x m x m x m x m mx +=-+⇔+=-+⇔=对任意x ∈R 恒成立, 所以0m =⇒()||x f x e =,因为11lnln ln x x x-==-, 所以()1ln ln2f x f e x ⎛⎫+≥ ⎪⎝⎭即为()()ln ln 2f x f x e +-≥, ()()ln 2ln 2ln xf x e f x e ee ≥⇒≥⇒≥,因为xy e =为增函数,所以可得ln 1x ≥,则ln 1x ≥或ln 1x ≤-, 解得x e ≥或10x e<≤, 即不等式()1ln ln 2f x f e x ⎛⎫+≥ ⎪⎝⎭的解集是[)10,,e e ⎛⎤+∞ ⎥⎝⎦,故选:C. 【点睛】方法点睛:已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由()()+0f x f x -= 恒成立求解,(2)偶函数由()()0f x f x --= 恒成立求解;二是利用特殊值:奇函数一般由()00f = 求解,偶函数一般由()()110f f --=求解,用特殊法求解参数后,一定要注意验证奇偶性.3.B解析:B 【分析】首先判断函数的周期,并利用周期和偶函数的性质化简选项中的函数值,再比较大小. 【详解】()()22f x f x -=-+,()()4f x f x ∴+=-,即()()8f x f x +=, ()f x ∴的周期8T =,由条件可知函数在区间[]0,4单调递增,()()()1921240811f f f =⨯+=,()()()()()202125285533f f f f f =⨯+==-=,()()()1978247822f f f =⨯+=,函数在区间[]0,4单调递增,()()()123f f f ∴<<, 即()()()192119782021f f f <<. 故选:B【点睛】结论点睛:本题的关键是判断函数是周期函数,一般涉及周期的式子包含()()f x a f x +=,则函数的周期是a ,若函数()()f x a f x +=-,或()()1f x a f x +=,则函数的周期是2a ,或是()()f x a f x b -=+,则函数的周期是b a +. 4.C解析:C 【分析】令()()1g x f x =+,①:根据()00g =求解出()1f 的值并判断;②:根据()g x 为奇函数可知()()g x g x -=-,化简此式并进行判断;根据()1y f x =+与()y f x =的图象关系确定出()f x 关于点对称的情况,由此判断出③④是否正确. 【详解】令()()1g x f x =+,①因为()g x 为R 上的奇函数,所以()()0010g f =+=,所以()10f =,故正确; ②因为()g x 为R 上的奇函数,所以()()g x g x -=-,所以()()11f x f x -+=-+,即()()11f x f x -=-+,故正确;因为()1y f x =+的图象由()y f x =的图象向左平移一个单位得到的,又()1y f x =+的图象关于原点对称,所以()y f x =的图象关于点()1,0对称,故③错误④正确,所以正确的有:①②④, 故选:C. 【点睛】结论点睛:通过奇偶性判断函数对称性的常见情况:(1)若()f x a +为偶函数,则函数()y f x =的图象关于直线x a =对称; (2)若()f x a +为奇函数,则函数()y f x =的图象关于点(),0a 成中心对称.5.A解析:A 【分析】由已知可作出函数的大致图象,结合图象可得到答案. 【详解】因为函数()f x 在(0)+∞,上单调递减,(2)0f =, 所以当(02)x ∈,时,()0f x >,当(2)x ∈+∞,,()0f x <,又因为()f x 是奇函数,图象关于原点对称,所以()f x 在()0-∞,上单调递减,(2)0f -=, 所以当(20)x ∈-,时,()0f x <,当2()x ∈-∞-,时,()0f x >, 大致图象如下,由(1)()0x f x +<得10()0x f x +>⎧⎨<⎩或10()0x f x +<⎧⎨>⎩,解得2x >,或10x -<<,或2x <-, 故选:A. 【点睛】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出()f x 的大致图象,考查了学生分析问题、解决问题的能力.6.A解析:A 【分析】利用函数单调性的定义结合奇函数的基本性质可判断函数()f x 在区间[]3,2--上的单调性,进而可得出函数()f x 在区间[]3,2--上的最值. 【详解】任取1x 、[]23,2x ∈--且12x x <,即1232x x -≤<≤-,所以,2123x x ≤-<-≤, 因为函数()f x 在区间[]2,3上单调递增,则()()21f x f x -<-, 因为函数()f x 为奇函数,则()()21f x f x -<-,()()12f x f x ∴<, 因此,函数()f x 在区间[]3,2--上为增函数,最大值为()2f -,最小值为()3f -.故选:A. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.7.A解析:A 【分析】根据题意,举出两个满足()12f x f x ⎛⎫<+ ⎪⎝⎭的例子,据此分析选项可得答案. 【详解】根据题意,函数()f x 对于任意x ∈R ,恒有()12f x f x ⎛⎫<+ ⎪⎝⎭, 则()f x 的解析式可以为:()2,1 1.51,0.510,00.5x f x x x ⎧⎪<≤⎪⎪=<≤⎨⎪<≤⎪⎪⎩,满足()12f x f x ⎛⎫<+ ⎪⎝⎭,不是增函数,没有单调区间,也可以为()f x x =,满足()12f x f x ⎛⎫<+ ⎪⎝⎭, 是增函数,其递增区间为R ,则()f x 可能存在单调区间,也可能不存在单调区间, 则A 正确;BCD 错误; 故选:A. 【点睛】关键点睛:本题考查函数单调性的定义,构造反例是解决本题的关键.8.C解析:C 【分析】首先判断函数在()0,∞+的单调性,然后根据函数是奇函数,可知函数在(),0-∞的单调性和零点,最后结合函数的零点和单调性,求解不等式. 【详解】对任意的正数a ,b (ab ),有()()0f a f b a b-<-,()f x ∴在()0,∞+上单调递减,定义在R 上的奇函数()f x 满足()20210f =,()f x ∴在(),0-∞单调递减,且()()202120210f f -=-=, ()0f x x <等价于()00x f x >⎧⎨<⎩ 或()00x f x <⎧⎨>⎩, 解得:2021x >或2021x <-, 所以不等式解集是()(),20212021,-∞-+∞.故选:C 【点睛】方法点睛:一般利用函数奇偶性和单调性,解抽象不等式包含以下几点: 若函数是奇函数,首先确定函数在给定区间的单调性,然后将不等式转化为()()12f x f x <的形式,最后运用函数的单调性去掉“f ”,转化为一般不等式求解;若函数是偶函数,利用偶函数的性质()()()f x f x f x -==,将不等式()()12f x f x <转化为()()12f x f x <,再利用函数在[)0,+∞的单调性,去掉“f ”,转化为一般不等式求解.9.D解析:D 【分析】根据函数为偶函数可转化为(|31|)(1)f a f ->,利用单调性求解即可. 【详解】()||ln ||f x x x =+的定义域为(,0)(0,)-∞+∞,关于原点对称,又()||ln ||()f x x x f x -=-+-=, 所以()||ln ||f x x x =+为偶函数, 当0x >时,()ln f x x x =+为增函数, 又(31)(1)f a f ->可化为(|31|)(1)f a f ->, 所以|31|1a ->,所以311a ->或311a -<-, 解得23a >或0a <, 故选:D 【点睛】本题主要考查了函数的奇偶性,函数的单调性,绝对值不等式的解法,属于中档题.10.A解析:A 【详解】由()232x 3f x x =-=-2680x x -+-≥,解得[]2,4.x ∈令()2t 231x 3x =----,则()21x 323x t --=--.,即为()2y 1x 3=--和y 23x t =--两函数图象有交点,作出函数图象,如图所示:由图可知,当直线和半圆相切时t 最小,当直线过点A(4,0)时,t 最大. 3t 114-=+,解得35t =±35t =-当直线过点A(4,0)时,2430t ⨯--=,解得t 5=.所以t 35,5⎡⎤∈⎣⎦,即() 35,5f x ⎡⎤∈⎣⎦.故选A.11.C解析:C 【分析】首先判断函数的单调性和定义域,再解抽象不等式. 【详解】函数()f x 的定义域需满足210240x x x ->⎧⎨-+≥⎩,解得:1x >,并且在区间()1,+∞上,函数单调递增,且()22f =, 所以()()()2212012f x x f x x f -+-<⇔-+<,即221112x x x x ⎧-+>⎨-+<⎩,解得:151x +<<150x -<<.故选:C 【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.12.B解析:B 【分析】根据函数的解析式,得出函数的单调性,把不等式(21)(32)f x f x +<-,转化为相应的不等式组,即可求解.【详解】由题意,函数2log (1),1()1,1x x f x x +≥⎧=⎨<⎩, 可得当1x <时,()1f x =,当1≥x 时,函数()f x 在[1,)+∞单调递增,且()21log 21f ==,要使得()()2131f x f x +<-,则2131311x x x +<-⎧⎨->⎩ ,解得2x >, 即不等式()()2131f x f x +<-的解集为()2,+∞,故选:B.【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下:(1)根据函数的解析式,得出函数单调性;(2)合理利用函数的单调性,得出不等式组;(3)正确求解不等式组,得到结果.13.D解析:D【分析】根据题意先判断函数()f x 的奇偶性与单调性,然后将不等式变形得(12)(1)f x f x -<-,再利用单调性和定义域列出关于x 的不等式求解.【详解】根据题意,由①知函数()f x 为奇函数,由②知函数()f x 在[0,1]上为减函数,所以可得函数()f x 在[]1,1-是奇函数也是减函数,所以不等式(12)(1)0f x f x -+-<,移项得(12)(1)f x f x -<--,变形(12)(1)f x f x -<-,所以11121x x -≤-<-≤,得203x ≤<. 故选:D.【点睛】 本题考查的是函数单调性与奇偶性的综合问题,需要注意:(1)判断奇偶性:奇函数满足()()f x f x -=-;偶函数满足()()f x f x -=;(2)判断单调性:增函数()[]1212()()0x x f x f x -->;1212()()0f x f x x x ->-; 减函数:()[]1212()()0x x f x f x --<;1212()()0f x f x x x -<-; (3)列不等式求解时需要注意定义域的问题.14.D解析:D【分析】由已知条件可知()f x 为奇函数且周期为4,利用函数的周期,结合其区间解析式即可求(2020.5)f 的值.【详解】由()()0f x f x +-=知:()()f x f x -=-,即()f x 为奇函数,∵()(2)f x f x =-,有(2)()()f x f x f x +=-=-,∴(4)(2)()f x f x f x +=-+=,故()f x 为周期为4的函数,在[0,1]上有1()4xf x ⎛⎫= ⎪⎝⎭,所以121111(2020.5)(4505)()()2242f f f =⨯+===, 故选:D【点睛】本题考查了函数的性质,根据函数的奇偶性、周期性以及区间解析式求函数值,属于基础题. 15.C解析:C【分析】先考虑a 是否为零,然后再分一次函数和二次函数分别考虑.【详解】当0a =时,则()1f x x =+,显然在()2,-+∞上递增;当0a ≠时,则()21f x ax x a =+++是二次函数,因为()f x 在()2,-+∞上递增,则对称轴122x a =-≤-且0a >,解得:10,4a ⎛⎤∈ ⎥⎝⎦;综上:a 的取值范围是1[0,]4, 故选C.【点睛】 本题考查根据单调区间求解参数范围问题,难度一般.对于形如()2f x ax bx c =++的函数,一定要明确:并不一定是二次函数,可能会出现0a =的情况,所以要分类讨论.二、填空题16.【分析】先由解出a 讨论的单调性利用函数单调性解不等式即可【详解】因为且所以解得在R 上单增可化为:解得:不等式的解集为故答案为:【点睛】利用单调性解不等式通常用于:(1)分段函数型不等式;(2)复合函 解析:()1,+∞【分析】先由()36f =,解出a ,讨论()xf x a x =+的单调性,利用函数单调性解不等式即可. 【详解】因为()x f x a x =+,且()36f =,,所以33a =,解得1a =>.()(),ln 1x x f x f a x a x a =+∴=+'ln 0,ln 111,x x a a a a a >∴>∴>+,()x f x a x ∴=+在R 上单增.()()21f x f x ->可化为:21x x ->解得:1x >.不等式()()21f x f x ->的解集为()1,+∞故答案为:()1,+∞【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式;(2)复合函数型不等式;(3)抽象函数型不等式;(4)解析式较复杂的不等式;17.【分析】先分析得到函数在上单调递减周期再得到当时即得解【详解】因为对当时所以在上单调递减而由偶函数得当时;又可得周期因为所以当时;于是的解集为故答案为:【点睛】方法点睛:对于函数的问题的研究一般从函 解析:(2019,2021)【分析】先分析得到函数()f x 在[0,2]上单调递减,周期4T =,再得到当(1,1)x ∈-时,()0f x >,即得解.【详解】因为对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-, 所以()f x 在[0,2]上单调递减,而()10f =,由偶函数得当(1,1)x ∈-时,()0f x >;又()()()4f x f x f x +=-=可得周期4T=,因为[2019,2023]x ∈,所以当(2019,2021)x ∈时,()0f x >;于是()0f x >的解集为(2019,2021).故答案为:(2019,2021)【点睛】方法点睛:对于函数的问题的研究,一般从函数的单调性、奇偶性和周期性入手,再研究求解. 18.9【分析】判断自变量的范围根据分段函数的解析式逐步求解即可解答过程要注意避免出现计算错误【详解】由题知故答案为:9【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对 解析:9【分析】判断自变量的范围,根据分段函数的解析式,逐步求解即可,解答过程要注意避免出现计算错误.【详解】由题知,()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩, ()()()()()()()510,555101028f f f f f f f <∴=+==-=,()()()()()()(85)13811321128190,1f f f f f f f +<∴===-==-=, 故答案为:9.【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰. 当出现(())f f a 的形式时,应从内到外依次求值.19.【分析】由题意把函数在上恒成立转化为对上恒成立列不等式解得a 的范围【详解】恒成立即恒成立所以时显然不成立当时得所以故答案为:【点睛】(1)求参数的范围是常见题型之一处理的方法有两种:①不分离参数直接 解析:4,3⎛⎫+∞ ⎪⎝⎭【分析】由题意,把函数()()23log 440f x ax x =-+>在x ∈R 上恒成立转化为2430ax x -+>对x ∈R 上恒成立,列不等式解得a 的范围.【详解】()()23log 440f x x x α=-+>恒成立,即()2233log 44log 1430ax x ax x -+>⇔-+>恒成立,所以0a =时显然不成立.当0a ≠时()0Δ16120a a >⎧⎨=-<⎩得43a <,所以4,3a ⎛⎫∈+∞ ⎪⎝⎭. 故答案为:4,3⎛⎫+∞⎪⎝⎭ 【点睛】(1)求参数的范围是常见题型之一,处理的方法有两种:①不分离参数,直接求最大值或最小值,解不等式;②分离参数法.(2)解指、对数型的不等式,通常化为同底的结构,利用函数的单调性解不等式. 20.【分析】根据已知条件判断函数的奇偶性与单调性作出函数的草图等价于或根据函数图像解不等式【详解】由函数定义域及可知函数为奇函数在上对任意实数都有成立函数在上为增函数又函数为奇函数函数在为增函数又则作出 解析:()()3,01,3- 【分析】根据已知条件判断函数的奇偶性与单调性作出函数的草图,(1)()0x f x -<等价于1()0x f x >⎧⎨<⎩或1()0x f x <⎧⎨>⎩,根据函数图像解不等式. 【详解】由函数()f x 定义域及()()0f x f x ,可知函数()f x 为奇函数,()f x 在(0,)+∞上对任意实数12x x ≠都有1212()(()())0x x f x f x -->成立,∴函数()f x 在(0,)+∞上为增函数,又函数()f x 为奇函数,∴函数()f x 在(,0)(0,)-∞+∞为增函数,又(3)0f -=,则(3)0f =, 作出函数草图如图所示:(1)()0x f x -<⇒1()0x f x >⎧⎨<⎩或1()0x f x <⎧⎨>⎩, 根据()f x 的图像可知(1)()0x f x -<的解为:(3,0)(1,3)-.故答案为:(3,0)(1,3)-21.【分析】求出的范围后根据绝对值的性质根据最大值得不等关系可得的范围【详解】时当且仅当时等号成立又或时所以而的最大值为10所以的最大值为所以解得故答案为:【点睛】关键点点睛:本题考查函数的最值掌握绝对 解析:[8,)-+∞【分析】 求出229x x+的范围后根据绝对值的性质根据最大值得不等关系,可得a 的范围. 【详解】 [3,1]x ∈--时,2[1,9]x ∈,2222996x x x x +≥⨯=,当且仅当23x =时等号成立, 又1x =-或3x =-时,22910x x +=,所以229610a x a a x +≤++≤+, 而()f x 的最大值为10,所以229x a x ++的最大值为10a +,所以100610a a a +≥⎧⎨+≤+⎩,解得8a ≥-. 故答案为:[8,)-+∞.【点睛】关键点点睛:本题考查函数的最值.掌握绝对值的性质是解题关键.当0a b >≥时,a b >,当0a b 时,a b <,当0a b >>时,0a b +>,则a b >,0a b +<时,a b <.22.【分析】由对称性奇偶性得出周期性然后再结合周期性和奇偶性进行计算【详解】因为则又函数为奇函数所以所以是周期函数周期为4又所以故答案为:【点睛】结论点睛:本题考查函数的奇偶性对称性周期性函数具有两个对 解析:1316-【分析】由对称性、奇偶性得出周期性,然后再结合周期性和奇偶性进行计算.【详解】因为(1)(1)f x f x -=+,则()(2)f x f x =-,又函数为奇函数, 所以()()(2)(2)(4)f x f x f x f x f x =--=-+=--=+,所以()f x 是周期函数,周期为4. 又125log 254-<<-, 所以111122222252525(log 25)(4log 25)(log )(log )(log )161616f f f f f =+==--=-225log 163253132416416⎛⎫=--=-+=- ⎪⎝⎭. 故答案为:1316-. 【点睛】 结论点睛:本题考查函数的奇偶性、对称性、周期性.函数()f x 具有两个对称性时,就具有周期性.(1)()f x 的图象关于点(,0)m 对称,又关于直线x n =对称,则()f x 是周期函数,4m n -是它的一个周期;(2)()f x 的图象关于点(,0)m 对称,又关于点(,0)n (m n ≠)对称,则()f x 是周期函数,2m n -是它的一个周期;(3)()f x 的图象关于直线x m =对称,又关于直线xn =(m n ≠)对称,则()f x 是周期函数,2m n -是它的一个周期.23.【分析】先构造函数得到关于对称且单调递增再结合对称性与单调性将不等式转化为即可求解【详解】构造函数那么是单调递增函数且向左移动一个单位得到的定义域为且所以为奇函数图象关于原点对称所以图象关于对称不等 解析:[2,)+∞【分析】 先构造函数111()()1(1)x x g x f x e x e --=-=-+-,得到()g x 关于(1,0)对称,且单调递增,再结合对称性与单调性将不等式()(63)2f x f x +- 转化为34x x -即可求解.【详解】 构造函数111()()1(1)x x g x f x e x e --=-=-+-,那么()g x 是单调递增函数, 且向左移动一个单位得到1()(1)x x h x g x e x e =+=-+, ()h x 的定义域为R ,且1()()x x h x e x h x e-=--=-, 所以()h x 为奇函数,图象关于原点对称,所以()g x 图象关于(1,0)对称.不等式()(63)2f x f x +- 等价于()1(63)10f x f x -+--,等价于()(63)0()[2(63)](34)g x g x g x g x g x +-∴--=-,结合()g x 单调递增可知342x x x -∴,所以不等式()(63)2f x f x +- 的解集是[2,)+∞.故答案为:[2,)+∞.【点睛】本题主要考查函数的奇偶性和单调性的应用,考查函数的对称性的应用,意在考查学生对这些知识的理解掌握水平.24.3【分析】由幂函数为偶函数且在(0+∞)上是单调递减函数可得m2-2m-3<0且m2-2m-3为偶数m ∈Z 且解出即可【详解】∵幂函数为偶函数且在上是减函数∴且为偶数且解得12且只有时满足为偶数∴故答解析:3【分析】由幂函数()()2231m m f x a x --=-(),a m N ∈为偶函数,且在(0,+∞)上是单调递减函数,可得m 2-2m -3<0,且m 2-2m -3为偶数,m ∈Z ,且1=1a -.解出即可.【详解】∵幂函数()()2231m m f x a x --=-(),a m N ∈为偶函数,且在()0,∞+上是减函数, ∴2230m m --<,且223m m --为偶数,m N ∈,且1=1a -.解得13m -<<,0m =,1,2,且=2a ,只有1m =时满足223=4m m ---为偶数.∴1m=.3a m+=故答案为:3.【点睛】本题考查幂函数的性质,根据幂函数性质求参数值,可根据幂函数性质列不等式和等式,求解即可,属于基础题.25.②④【分析】根据题意画出方程对应的函数图象根据图像判断函数单调性值域最值以及函数零点个数的判断数形结合即可选择【详解】当y≥0时方程y|y|=1化为(y≥0)当y<0时方程y|y|=1化为(y<0)解析:②④【分析】根据题意,画出方程对应的函数图象,根据图像判断函数单调性、值域、最值以及函数零点个数的判断,数形结合即可选择.【详解】当y≥0时,方程24x+y|y|=1化为2214xy+=(y≥0),当y<0时,方程24x+y|y|=1化为2214xy-=(y<0).作出函数f(x)的图象如图:由图可知,函数f(x)在R上不是单调函数,故①错误;y=f(x)的图象上的点到坐标原点距离的最小值为1,故②正确;函数f(x)的值域为(﹣∞,1],故③错误;双曲线2214xy-=的渐近线方程为y12=±,故函数y=f(x)与y=﹣x的图象只有1个交点,即函数F(x)=f(x)+x有且只有一个零点,故④正确.故答案为:②④.【点睛】本题考查函数单调性、值域以及零点个数的判断,涉及椭圆和双曲线的轨迹绘制,以及数形结合的数学思想,属综合中档题.26.8【分析】利用换元法令则所以原函数变为令则函数为奇函数且推出进而求出的值【详解】令则所以原函数变为令则函数为奇函数且所以所以因为为奇函数所以所以所以故答案为:8【点睛】此题考查函数的奇偶性的应用考查 解析:8【分析】利用换元法令1t x =-,则[]2,2t ∈-,所以原函数变为()21sin 1y t t t a =-+++,令()()21sin g t t t t =-+,[]2,2t ∈-,则函数g t 为奇函数且()1y g t a =++,推出()()max min 0g t g t +=,()()max min 2218g t g t a +=+=,进而求出a 的值【详解】令1t x =-,则[]2,2t ∈-,所以原函数变为()21sin 1y t t t a =-+++, 令()()21sin g t t t t =-+,[]2,2t ∈-,则函数g t 为奇函数且()1y g t a =++, 所以()()max max 1f x g t a =++,()()min min 1f x g t a =++,所以()()()()max min max min 22f x f x g t g t a +=+++.因为g t 为奇函数,所以()()max min 0g t g t +=,所以()()max min 2218g t g t a +=+=,所以8a =.故答案为:8【点睛】此题考查函数的奇偶性的应用,考查换元法的应用,属于基础题。

人教版高中数学必修第一册第三单元《函数概念与性质》测试题(有答案解析)(2)

人教版高中数学必修第一册第三单元《函数概念与性质》测试题(有答案解析)(2)

一、选择题1.函数()32241x xxx y -=+的部分图像大致为( )A .B .C .D .2.若函数()f x 同时满足:①定义域内存在实数x ,使得()()0f x f x ⋅-<;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.下列函数中是“DM 函数”的为( )A .()3f x x =B .()sin f x x =C .()1x f x e-=D .()ln f x x =3.已知函数(1)f x +为偶函数,()f x 在区间[1,)+∞上单调递增,则满足不等式(21)(3)f x f x ->的x 的解集是( )A .31,5⎛⎫- ⎪⎝⎭B .3(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭C .1(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .11,5⎛⎫- ⎪⎝⎭4.已知函数()312xx f x x x e e=-+-+,其中e 是自然对数的底数,若()()2120f a f a -+≤则实数a 的取值范围是( )A .11,2⎡⎤-⎢⎥⎣⎦B .[]1,2-C .(]1,1,2⎡⎫-∞-+∞⎪⎢⎣⎭D .(][),21,-∞-+∞5.已知定义在R 上的奇函数()f x 满足:当[]0,1x ∈时,()31x f x =-,则()1f -=( ) A .2B .1C .-2D .-16.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数的图像的特征,如函数()1sin 2f x x x =-的图像大致是( ) A . B .C .D .7.已知定义在R 上的连续奇函数()f x 的导函数为()f x ',当0x >时,()()0f x f x x'+>,则使得()()()2213310xf x x f x +-->成立的x 的取值范围是( )A .()1,+∞B .()11,1,5⎛⎫-+∞ ⎪⎝⎭C .1,15⎛⎫⎪⎝⎭D .(),1-∞8.已知函数()2sin tan 1cos a x b xf x x x +=++,若()10100f =,则()10f -=( )A .100-B .98C .102-D .1029.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}{},x x m =即.在此基础上给出下列关于函数的四个命题:①11()22f -=;②(3.4)0.4f =-;③11()()44f f -<;④()y f x =的定义域是R ,值域是11,22⎡⎤-⎢⎥⎣⎦;则其中真命题的序号是 ( ) A .①②B .①③C .②④D .③④第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案10.已知函数()3()log 91xf x x =++,则使得()2311log 10f x x -+-<成立的x 的取值范围是( ) A.0,2⎛⎫⎪ ⎪⎝⎭B .(,0)(1,)-∞⋃+∞C .(0,1)D .(,1)-∞11.已知()f x 是R 上的奇函数,且对x ∈R ,有()()2f x f x +=-,当()0,1x ∈时,()21x f x =-,则()2log 41f =( )A .40B .2516C .2341D .412312.设函数1,()0,x D x x ⎧=⎨⎩为有理数为无理数,则下列结论正确的是( )A .()D x 的值域为[0,1]B .()D x 是偶函数C .()(3.14)D D π>D .()D x 是单调函数13.函数()|3|3f x x =+-是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数14.下列各组函数表示同一函数的是( ) A.()f x =2()f x =B .,0(),0x x f x x x ≥⎧=⎨-<⎩与()||g t t =C .()f x =()g x =.()1f x x 与2()1x g x x=-15.下列函数中,在[)1,+∞上为增函数的是 A .()22y x =-B .1y x =-C .11y x =+ D .()21y x =-+二、填空题16.已知函数()f x 为定义在R 上的奇函数,且对于12,[0,)x x ∀∈+∞,都有()()()221112210x f x x f x x x x x ->≠-,且(3)2f =,则不等式6()f x x>的解集为___________.17.已知函数()f x 是定义在R 上的奇函数,当x ≥0时,()()1f x x x =+.则函数的解析式为__________18.已知定义在R 上的偶函数()f x 在区间[)0,+∞内单调递减,且()10f -=,则使不等式(1)0f x x+≤成立的x 的取值范围是_________. 19.设函数()()333f x x x x R =-+∈.已知0a >,且()()()()2f x f a x b x a -=--,b R ∈,则ab =______.20.已知函数()f x 为定义在R 上的奇函数,对任意x ∈R 都有(3)()f x f x +=-,当3,02x ⎡⎤∈-⎢⎥⎣⎦时,()2f x x =-,则(100)f 的值为_______. 21.设函数()3,111,1x x f x x x x <⎧⎪=⎨-+≥⎪⎩,,则不等式()()26f x f x ->-的解集为____________.22.设函数2()21k f x x x =-+(120191,,1,2,3,,2019k x k k k +⎡⎤∈-=⎢⎥⎣⎦)的值域依次是1232019,,,,A A A A ,则1232019A A A A ⋂⋂⋂⋂=__________.23.函数()22f x x x =-,[]2,2x ∈-的最大值为________.24.定义在R 上的偶函数()f x 满足(1)()f x f x +=-,且当[1,0)x ∈-时1()2xf x ⎛⎫= ⎪⎝⎭则()2log 8f =_________.25.定义在R 上的偶函数()f x 满足()()2f x f x +=-,且在[]2,0-上是减函数,下面是关于()f x 的判断:①()f x 是以2为周期的函数;②()0f 是函数的最大值;③()f x 在[]2,3上是减函数;④()f x 的图像关于直线2x =对称.其中正确的命题的序号是____________(注:把你认为正确的命题的序号都填上) 26.设函数()()21ln 11f x x x=+-+,则使得()()12f x f x >-成立的x 的取值范围为_____________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】研究函数奇偶性和区间(的函数值的正负,利用排除法即得结果. 【详解】函数()33222()4122x x xxxx x x y f x ---===++,定义域为R , 对于任意的自变量x ,()333222()()222222x x x x x xx x x x x xf x f x -------===++-=-+++,故函数()y f x =是奇函数,图象关于原点中心对称,故CD 错误;又(32()2222x x x xx x x x x y f x ----===++,故(x ∈时,00,0,202x x x x x ->+>-+>,,即()0y f x =<,故A 正确,B 错误. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.2.A解析:A 【分析】根据题意函数定义域关于原点对称且函数值有正有负,且为定义域内的单调递增函数,通过此两点判定即可. 【详解】解:由定义域内存在实数x 有()()0f x f x ⋅-<,可得函数定义域关于原点对称且函数值有正有负,排除D 、C.由②得“DM 函数”为单调递增函数,排除B. 故选:A 【考点】确定函数单调性的四种方法: (1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接; (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.3.A解析:A 【分析】根据题意,分析可得()f x 的图象关于直线1x =对称,结合函数的单调性可得(21)(3)f x f x ->等价于|22||31|x x ->-,两边平方解得x 的取值范围,即可得答案.【详解】因为函数(1)f x +为偶函数,所以(1)y f x =+的图象关于直线0x =对称, 因为(1)y f x =+的图象向右平移1个单位得到()y f x =的图象, 则()y f x =的图象关于直线1x =对称, 又因为()f x 在区间[1,)+∞上单调递增, 所以()f x 在区间(],1-∞上单调递减,所以()f x 的函数值越大,自变量与1的距离越大, ()f x 的函数值越小,自变量与1的距离越小,所以不等式(21)(3)f x f x ->等价于|22||31|x x ->-, 两边平方()()()()2222315310x x x x ->-⇒-+<, 解得315x -<<, 即不等式的解集为31,5⎛⎫- ⎪⎝⎭. 故选:A . 【点睛】方法点睛:函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.4.C解析:C 【分析】求导判断函数()312xxf x x x e e =-+-+的单调性,再利用定义判断函数的奇偶性,根据单调性与奇偶性求解即可. 【详解】根据题意,()2132xxf x x e e '=-+--,因为当且仅当0x =时,()213220x x f x x e e -'=-+-≤-=,所以函数()f x 在R 上单调递减;又()3311()220x xx xf x f x x x e x x e e e ---+=-++-+-+=,所以函数()f x 为奇函数,()()2120f a f a -+≤,则()()212f a f a -≤-,因为函数()f x 为奇函数,()()212f a f a -≤-,又因为函数()f x 在R 上单调递减,所以212a a -≥-,可得1a ≤-或12a ≥. 故选:C. 【点睛】对于求值或范围的问题,一般先利用导数得出区间上的单调性,再利用定义判断奇偶性,再利用其单调性脱去函数的符号“f ”,转化为解不等式组的问题,若()f x 为偶函数,则()()()f x f x f x -==.5.C解析:C 【分析】由()f x 为奇函数,结合已知区间的解析式即可求10x -≤≤时()f x 的解析式,进而求()1f -即可.【详解】∵()f x 在R 上是奇函数, ∴令10x -≤≤,则[0,1]x -∈, 由题意,有()31()xf x f x --=-=-,∴1()13x f x =-,故()111123f --=-=-, 故选:C 【点睛】关键点点睛:利用函数奇偶性,求对称区间上的函数解析式,然后代入求值.6.A解析:A 【分析】由判断函数()f x 的奇偶性以及利用导数得出区间0,3π⎛⎫⎪⎝⎭的单调性即可判断. 【详解】()()()111sin sin sin ()222f x x x x x x x f x ⎛⎫-=---=-+=--=- ⎪⎝⎭则函数()f x 在R 上为奇函数,故排除B 、D.()1cos2f x x '=-,当0,3x π⎛⎫∈ ⎪⎝⎭时,1cos 2x >,即0fx所以函数()f x 在区间0,3π⎛⎫⎪⎝⎭上单调递减,故排除C故选:A 【点睛】本题主要考查了函数图像的识别,属于中档题.7.C解析:C 【分析】根据0x >时()()0f x f x x'+>可得:()()0xf x f x '+>;令()()g x xf x =可得函数在()0,∞+上单调递增;利用奇偶性的定义可证得()g x 为偶函数,则()g x 在(),0-∞上单调递减;将已知不等式变为()()231g x g x >-,根据单调性可得自变量的大小关系,解不等式求得结果. 【详解】当0x >时,()()0f x f x x'+> ()()0xf x f x '∴+>令()()g x xf x =,则()g x 在()0,∞+上单调递增()f x 为奇函数 ()()()()g x xf x xf x g x ∴-=--== ()g x ∴为偶函数则()g x 在(),0-∞上单调递减()()()2213310xf x x f x ∴+-->等价于()()231g x g x >-可得:231x x >-,解得:115x << 本题正确选项:C 【点睛】本题考查函数奇偶性和单调性的综合应用问题,关键是能够构造函数,根据导函数的符号确定所构造函数的单调性,并且根据奇偶性的定义得到所构造函数的奇偶性,从而将函数值的大小关系转变为自变量之间的比较.8.D解析:D 【分析】令()()21g x f x x =--,根据奇偶性定义可判断出()g x 为奇函数,从而可求得()()10101g g -=-=,进而求得结果.【详解】令()()2sin tan 1cos a x b xg x f x x x+=--=()()()()()sin tan sin tan cos cos a x b x a x b xg x g x x x-+---∴-===--()g x ∴为奇函数又()()210101011g f =--=- ()()10101g g ∴-=-=即()()2101011f ----= ()10102f ∴-=本题正确选项:D 【点睛】本题考查利用函数的奇偶性求解函数值的问题,关键是能够通过构造函数的方式得到奇函数,利用奇函数的定义可求得对应位置的函数值.9.B解析:B 【解析】111()(1)222f -=---= ;111()(0)444f -=--=-,111()(0)444f =-=,所以11()()44f f -<; (3.4) 3.430.4f =-=;()y f x = 的定义域是R ,值域是11(,]22- ,所以选B.点睛:解决新定义问题,关键是明确定义含义,正确运用定义进行运算.对于抽象的概念,可先列举一些具体的数值进行理解与归纳.本题易错点在区间端点是否可取上,难点在于整数的确定.10.C解析:C 【分析】令21t x x =-+,则3()1log 10f t -<,从而33log (91)1log 10tt ++-<,即可得到133log (91)log (91)1t t ++<++,然后构造函数3()log (91)t g t t =++,利用导数判断其单调性,进而可得23114x x ≤-+<,解不等式可得答案 【详解】令21t x x =-+,则221331()244t x x x =-+=-+≥, 3()1log 10f t -<,所以33log (91)1log 10tt ++-<, 所以133log (91)log (91)1t t ++<++,令3()log (91)tg t t =++,则9ln 929'()11(91)ln 391t tt t g t ⨯=+=+++,所以90t >,所以'()0g t >, 所以()g t 在3[,)4+∞单调递增,所以由()(1)g t g <,得314t ≤<, 所以23114x x ≤-+<,解得01x <<, 故选:C 【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得133log (91)log (91)1t t ++<++,再构造函数3()log (91)tg t t =++,利用函数的单调性解不等式.11.C解析:C 【分析】由已知得(4)()f x f x +=,由对数函数性质估计出2log 41(5,6)∈,然后利用已知条件把自变量变小为2log 416(1,0)-∈-,再由奇函数定义可求得函数值. 【详解】25log 416<<,()()()()()2222f x f x f x f x f x +=-⇒++=-+=⎡⎤⎣⎦,故()()()()2222log 41log 414log 4166log 41f f f f =-=--=-.∵()26log 410,1-∈,故()26log 41264236log 412114141f --=-=-=. 故选:C . 【点睛】本题考查求函数值,方法是由已知条件得出函数的周期性,利用周期性和已知等式把函数自变量变小到(1,0)-上,然后由奇函数定义变到(0,1)上,从而由已知解析式求得函数值.12.B解析:B 【分析】计算函数值域为{}0,1A 错误,根据偶函数定义知B 正确,()0D π=,(3.14)1D =,C 错误,()()011D D ==,故D 错误,得到答案. 【详解】根据题意:()D x 的值域为{}0,1,A 错误; 当x 为有理数时,x -为有理数,()()D x D x =-,当x 为无理数时,x -为无理数,()()D x D x =-,故函数为偶函数,B 正确; ()0D π=,(3.14)1D =,C 错误;()()011D D ==,故D 错误.故选:B.【点睛】本题考查了分段函数的值域,奇偶性和单调性,意在考查学生对于函数性质的综合应用. 13.A解析:A【分析】首先求出函数的定义域,然后利用奇偶性定义判断即可.【详解】解:因为()|3|3f x x =+- 所以240330x x ⎧-≥⎪⎨+-≠⎪⎩解得22x -≤≤且0x ≠,故函数的定义域为[)(]2,00,2-,定义域关于原点对称,所以()f x x=,[)(]2,00,2x ∈-,又()()f x f x x-==-=- 所以函数为奇函数;故选:A【点睛】本题考查函数的奇偶性的判断,判断函数的奇偶性按照两步:①求函数的定义域,判断定义域是否关于原点对称;②计算()f x -判断与()f x 之间的关系;14.B解析:B【分析】根据同一函数的概念及判定方法,分别求得两函数的定义域与对应法则,逐项判定,即可求解.【详解】对于A 中,函数()f x =R ,函数2()f x =的定义域为[0,)+∞,两函数的定义域不同,所以不是同一函数;对于B 中,函数,0(),0x x f x x x ≥⎧=⎨-<⎩与,0(),0t t g t t t t ≥⎧==⎨-<⎩定义域与对应法则都相同,所以两函数是同一函数;对于C 中,函数()f x =210x -≥,解得1x ≤-或1≥x ,即函数()f x 的定义域为(,1][1,)-∞-+∞,函数()g x =1010x x +≥⎧⎨-≤⎩,解得11x -≤≤,即函数()g x 的定义域为[]1,1-,两函数的定义域不同,所以不是同一函数;对于D 中,函数()1f x x 的定义域为R ,函数2()1x g x x=-的定义域为(,0)(0,)-∞+∞,两函数的定义域不同,所以不是同一函数.故选:B.【点睛】本题主要考查了同一函数的概念及判定,其中解答中熟记两个函数是同一函数的判定方法是解答得关键,着重考查推理与判定能力,属于基础题.15.B解析:B【解析】对于A ,函数()22y x =-的图象是抛物线,对称轴是x =2,当x <2时是减函数,x >2时是增函数,∴不满足题意;对于B ,函数1,111,1x x y x x x -≥⎧=-=⎨-<⎩,∴当1≥x 时,是增函数,x <1时,是减函数,∴满足题意;对于C ,函数11y x =+,当x <−1,x >−1时,函数是减函数,∴不满足题意; 对于D ,函数()21y x =-+的图象是抛物线,对称轴是x =−1,当x >−1时是减函数,x <−1时是增函数,∴不满足题意;故选B.二、填空题16.【分析】令可得是上的增函数根据为奇函数可得为偶函数且在上是减函数分类讨论的符号将变形后利用的单调性可解得结果【详解】令则对于都有所以是上的增函数因为函数为定义在R 上的奇函数所以所以所以是定义在R 上的 解析:(3,0)(3,)-⋃+∞【分析】令()()g x xf x =,可得()g x 是[0,)+∞上的增函数,根据()f x 为奇函数可得()g x 为偶函数,且在(,0)-∞上是减函数,分类讨论x 的符号,将6()f x x>变形后,利用()g x 的单调性可解得结果.【详解】令()()g x xf x =,则对于12,[0,)x x ∀∈+∞,都有211221()()0()g x g x x x x x ->≠-, 所以()g x 是[0,)+∞上的增函数, 因为函数()f x 为定义在R 上的奇函数,所以()()f x f x -=-,所以()()()()g x xf x xf x g x -=--==,所以()g x 是定义在R 上的偶函数,所以()g x 在(,0)-∞上是减函数,当0x >时,6()f x x>化为()63(3)xf x f >=,即()(3)g x g >,因为()g x 是[0,)+∞上的增函数,所以3x >,当0x <时,6()f x x>化为()6xf x <,因为()f x 为奇函数,且(3)2f =,所以(3)(3)2f f -=-=-,所以()6xf x <化为()3(3)(3)g x f g <--=-,因为()g x 在(,0)-∞上是减函数,所以30x -<<, 综上所述:6()f x x>的解集为(3,0)(3,)-⋃+∞. 故答案为:(3,0)(3,)-⋃+∞ 【点睛】关键点点睛:构造函数()()g x xf x =,利用()g x 的奇偶性和单调性求解是解题关键. 17.【分析】设得到化简即得解【详解】设所以因为函数是定义在R 上的奇函数所以所以所以函数的解析式为故答案为:【点睛】方法点睛:求奇偶函数在对称区间的解析式一般利用代入法求解析式解析:(1)0()=(1)0x x x f x x x x +≥⎧⎨-<⎩【分析】设0,x <得到()2f x x x -=-+,化简即得解. 【详解】设0,0x x <∴->,所以()()21f x x x x x -=--=-+, 因为函数()f x 是定义在R 上的奇函数,所以()2f x x x -=-+, 所以()2(1)f x x x x x =-+=-. 所以函数的解析式为(1)0()=(1)0x x x f x x x x +≥⎧⎨-<⎩. 故答案为:(1)0()=(1)0x x x f x x x x +≥⎧⎨-<⎩【点睛】方法点睛:求奇偶函数在对称区间的解析式,一般利用代入法求解析式.18.【分析】先由定义域为R 的偶函数在区间内单调递减且画出的草图结合图象对进行等价转化解不等式即可【详解】由题意可知在区间内为增函数函数的图象可看作是由的图象向左平移1个单位长度得到的作出和的大致图象如图 解析:[)()2,00,-⋃+∞【分析】先由定义域为R 的偶函数()f x 在区间[)0,+∞内单调递减,且()10f -=,画出()f x 的草图,结合图象对(1)0f x x +≤进行等价转化,解不等式即可. 【详解】由题意可知()f x 在区间(),0-∞内为增函数,函数()1y f x =+的图象可看作是由()y f x =的图象向左平移1个单位长度得到的,作出()y f x =和()1y f x =+的大致图象,如图所示.不等式(1)0f x x+≤可化为: ()010x f x <⎧⎨+≥⎩,当0x <时()10f x +≥,观察图象,得20x -≤<; ()010x f x >⎧⎨+≤⎩,当0x >时()10f x +≤,观察图象,得0x >; 所以不等式的解集为[)()2,00,-⋃+∞故答案为:[)()2,00,-⋃+∞.【点睛】常见解不等式的类型:(1)解一元二次不等式用图象法或因式分解法;(2)分式不等式化为标准型后利用商的符号法则;(3)高次不等式用穿针引线法;(4)含参数的不等式需要分类讨论.19.【分析】先将进行因式分解再与比较利用对应系数相等可得关于的方程即可得的值即可求解【详解】因为所以因为所以对任意的恒成立所以不恒为所以展开整理可得:所以解得:或(舍)所以故答案为:【点睛】关键点点睛: 解析:2-【分析】先将()()f x f a -进行因式分解再与()()2x b x a --比较,利用对应系数相等可得关于,a b 的方程,即可得,a b 的值,即可求解.【详解】因为()()333f x x x x R =-+∈, 所以()()()()333333333f x f a x x a a x a x a -=-+----=-+, ()()()()222233x ax a x ax x a x a x a a ⎡⎤---==+-++-⎣+⎦, 因为()()()()2f x f a x b x a -=--, 所以()()()2223x ax a x b x x a a ⎡⎤-=⎣-⎦++--,对任意的x 恒成立, 所以x a -不恒为0,所以()()223x ax a x b x a ++-=-- 展开整理可得:()23ax a a b x ab +-=-++, 所以()23a a b a ab ⎧=-+⎨-=⎩ 解得:12a b =⎧⎨=-⎩或12a b =-⎧⎨=⎩(舍), 所以()122ab =⨯-=-,故答案为:2-.【点睛】关键点点睛:本题解题的关键是将()()f x f a -进行因式分解,由x a -不恒为0,得出()()223x ax a x b x a ++-=--利用待定系数法可求,a b 的值.20.【分析】本题首先可根据得出函数是周期为的周期函数则然后根据函数是奇函数得出最后根据当时求出的值即可得出结果【详解】因为所以即函数是周期为的周期函数则因为函数为定义在上的奇函数所以因为当时所以故答案为 解析:2【分析】本题首先可根据(3)()f x f x +=-得出函数()f x 是周期为6的周期函数,则(100)(4)(1)f f f ==-,然后根据函数()f x 是奇函数得出(1)(1)f f -=-,最后根据当3,02x ⎡⎤∈-⎢⎥⎣⎦时()2f x x =-求出(1)f -的值,即可得出结果.【详解】因为(3)()f x f x +=-,所以(6)(3)f x f x +=-+,即(6)()f x f x +=,函数()f x 是周期为6的周期函数,则(100)(6164)(4)f f f =⨯+=,(4)(1)f f =-,因为函数()f x 为定义在R 上的奇函数,所以(1)(1)f f -=-, 因为当3,02x ⎡⎤∈-⎢⎥⎣⎦时()2f x x =-,所以(1)2(1)2f -=-⨯-=, 故答案为:2.【点睛】关键点点睛:本题考查函数周期性的判断与应用,考查函数奇偶性的应用,若函数()f x 满足()()f x f x k =+,则函数()f x 是周期为k 的周期函数,奇函数满足()()f x f x -=-,考查化归与转化思想,是中档题.21.【分析】先判断函数是增函数于是可把函数不等式转化为自变量的关系进而可得原不等式的解集【详解】当时单调递增且;当时单调递增且所以函数在上单调递增于是等价于则解得故答案为:【点睛】本题考查函数单调性的判 解析:()2,3-【分析】先判断函数()f x 是增函数,于是可把函数不等式转化为自变量的关系,进而可得原不等式的解集.【详解】当1x <时,()f x x =单调递增,且()1f x <;当1≥x 时,31()1f x x x=-+单调递增,且()1f x ≥. 所以函数()f x 在R 上单调递增. 于是()()26f x f x ->-等价于26x x ->-,则260x x --<,()()320x x -+<,解得23x -<<.故答案为:()2,3-.【点睛】本题考查函数单调性的判断与应用.遇到函数不等式问题,要利用单调性转化为自变量的关系再求解.判断分段函数的单调性,一定要关注对分段间隔点处的情况.22.【分析】求出二次函数的对称轴判断函数的最小值与最大值然后求解值域的交集即可【详解】函数的对称轴为开口向上所以函数的最小值为函数()的值域依次是它们的最小值都是函数值域中的最大值为:当即时此时所以值域解析:2220190,1010⎡⎤⎢⎥⎣⎦【分析】求出二次函数的对称轴,判断函数的最小值与最大值,然后求解值域的交集即可.【详解】函数()221k f x x x =-+的对称轴为1x =,开口向上,所以函数的最小值为()10f =, 函数2()21k f x x x =-+(120191,,1,2,3,,2019k x k k k +⎡⎤∈-=⎢⎥⎣⎦)的值域依次是 1232019,,,,A A A A ,它们的最小值都是0, 函数值域中的最大值为:当12019111k k k +⎛⎫--=-⎪⎝⎭,即1010k =时,此时111010x =-, 所以,值域中的最大值中的最小值为22112019111101010101010f ⎛⎫⎛⎫⎛⎫-=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以,212320************,1010A A A A A ⎡⎤==⎢⎥⎣⎦. 故答案为:2220190,1010⎡⎤⎢⎥⎣⎦. 【点睛】本题考查二次函数的性质,函数的最值,考查分析问题解决问题的能力,涉及集合的交集计算,属于基础题.23.8【分析】首先画出的图象根据图象即可求出函数的最大值【详解】函数的图象如图所示:由图可知故答案为:【点睛】本题主要考查利用函数的图象求最值熟练画出函数图象为解题的关键属于中档题解析:8【分析】首先画出()f x 的图象,根据图象即可求出函数的最大值.【详解】函数()f x 的图象如图所示:由图可知,max ()(2)44=8f x f =-=+.故答案为:8【点睛】本题主要考查利用函数的图象求最值,熟练画出函数图象为解题的关键,属于中档题. 24.2【分析】利用确定函数的周期再结合偶函数性质求值【详解】用x+1代换x 得即f(x+2)=f(x)f(x)为周期函数T=2又是偶函数所以故答案为:2【点睛】本题考查由函数的周期性和奇偶性求函数值属于中解析:2【分析】利用()()1f x f x +=-确定函数的周期,再结合偶函数性质求值.【详解】用x +1代换x ,得[]()()(1)+1(+1)f x f x f x f x +=-=--=⎡⎤⎣⎦,即f (x +2)=f (x ),f (x )为周期函数,T =2,又 2log 83=, ()f x 是偶函数,所以()()()()121log 831122f f f f -⎛⎫===-== ⎪⎝⎭, 故答案为:2.【点睛】本题考查由函数的周期性和奇偶性求函数值,属于中档题.函数()f x 若满足()()f x a f x +=-,1()()f x a f x +=等时,则此函数为周期函数,且2a 是它的一个周期. 25.③④【分析】根据函数的周期性及对称性判断各个选项即可得解;【详解】解:所以函数是以4为周期的函数故①错误;偶函数在上是减函数在上是增函数在上最小值为是以4为周期的函数是函数的最小值故②错误;在上是减 解析:③④【分析】根据函数的周期性及对称性判断各个选项即可得解;【详解】解:(2)()f x f x +=-,(4)(2)()f x f x f x ∴+=-+=,所以函数()f x 是以4为周期的函数,故①错误;偶函数()f x 在[2-,0]上是减函数,()f x ∴在[0,2]上是增函数,∴在[2-,2]上,最小值为(0)f ,()f x 是以4为周期的函数,(0)f ∴是函数的最小值,故②错误;()f x 在[2-,0]上是减函数,()f x ∴在[2,4]上是减函数,故③正确;(2)()(2)f x f x f x -+=--=+,()f x ∴的图象关于直线2x =对称,即④正确. 故答案为:③④.【点睛】本题考查函数的周期性,偶函数在对称区间上单调性相反这一结论,考查学生分析解决问题的能力,属于中档题.26.【分析】根据条件判断函数的奇偶性和单调性结合函数的奇偶性和单调性的性质将不等式进行转化求解即可【详解】则是偶函数当函数为增函数则等价与所以平方得所以所以即不等式的解集为故答案为:【点睛】本题主要考查 解析:113x x ⎧⎫<<⎨⎬⎩⎭【分析】根据条件判断函数的奇偶性和单调性,结合函数的奇偶性和单调性的性质将不等式进行转化求解即可.【详解】()()()()2211ln 1ln 111f x x x f x x x-=+--=+-=++,则()f x 是偶函数, 当0x ≥函数()f x 为增函数,则()()12f x f x >-等价与()()12f x f x >-, 所以12x x >-,平方得22144x x x -+>, 所以23410x x -+<,所以1 13x <<,即不等式的解集为113xx ⎧⎫<<⎨⎬⎩⎭, 故答案为:113xx ⎧⎫<<⎨⎬⎩⎭. 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性是解决本题的关键,难度中等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年必修一第三章专题训练卷函数的应用(二)后附答案注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1) A .()8,9B .()9,10C .()12,13D .()14,152.若函数f (x )在[a ,b ]上连续,且同时满足f (a )·f (b )<0,()02a b f a f +⎛⎫⋅> ⎪⎝⎭.则( ) A .f (x )在,2a b a +⎡⎤⎢⎥⎣⎦上有零点 B .f (x )在,2a b b +⎡⎤⎢⎥⎣⎦上有零点C .f (x )在,2a b a +⎡⎤⎢⎥⎣⎦上无零点D .f (x )在,2a b b +⎡⎤⎢⎥⎣⎦上无零点3.三个变量y 1,y 2,y 3随着变量x 的变化情况如下表:则关于x A .y 1,y 2,y 3B .y 2,y 1,y 3C .y 3,y 2,y 1D .y 1,y 3,y 24.下列图象所表示的函数中,能用二分法求零点的是( )5.对于函数f (x )在定义域内用二分法的求解过程如下:f (2014)<0,f (2015)<0,f (2016)>0,则下列叙述正确的是( ) A .函数f (x )在(2014,2015)内不存在零点 B .函数f (x )在(2015,2016)内不存在零点C .函数f (x )在(2015,2016)内存在零点,并且仅有一个D .函数f (x )在(2014,2015)内可能存在零点 6.已知x 0是函数()121x f x x=+-的一个零点.若()101,x x ∈,()20,x x ∈+∞, 则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x2)>0 C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>07.二次函数f (x )=ax 2+bx +c (x ∈R)的部分对应值如下表:A .(-3,-1)和(2,4)B .(-3,-1)和(-1,1) C .(-1,1)和(1,2)D .(-∞,-3)和(4,+∞)8.某研究小组在一项实验中获得一组关系y 、t 之间的数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y 与t 之间关系( )A .y =2tB .y =2t 2C .y =t 3D .y =log 2t此卷只装订不密封班级 姓名 准考证号 考场号 座位号9.某厂原来月产量为a ,一月份增产10%,二月份比一月份减产10%,设二月份产量为b ,则( ) A .a >bB .a <bC .a =bD .无法判断10.设a ,b ,k 是实数,二次函数f (x )=x 2+ax +b 满足:f (k -1)与f (k )异号,()1f k +与f (k )异号.在以下关于f (x )的零点的说法中,正确的是( ) A .该二次函数的零点都小于k B .该二次函数的零点都大于kC .该二次函数的两个零点之间差一定大于2D .该二次函数的零点均在区间(k -1,k +1)内11.若函数f (x )=x 3-x -1在区间[]1,1.5内的一个零点附近函数值用二分法逐次计算列表如下A .1.2B .1.3125C .1.4375D .1.2512.已知三个函数f (x )=2x+x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a ,b ,c , 则( ) A .a <b <c B .a <c <bC .b <a <cD .c <a <b二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若函数y =mx 2+x -2没有零点,则实数m 的取值范围是________. 14.已知二次函数f (x )=x 2+x +a (a >0),若f (m )<0,则在(m ,m +1)上函数零点的个数是________.15.已知y =x (x -1)(x +1)的图象如图所示.令f (x )=x (x -1)(x +1)+0.01,则下列关于f (x )=0的解叙述正确的是________.①有三个实根; ②x >1时恰有一实根; ③当0<x <1时恰有一实根; ④当-1<x <0时恰有一实根;⑤当x <-1时恰有一实根(有且仅有一实根).16.某工程由A 、B 、C 、D 四道工序完成,完成它们需用的时间依次2、5、x 、4天,四道工序的先后顺序及相互关系是:A 、B 可以同时开工;A 完成后,C 可以开工;B 、C 完成后,D 可以开工,若完成该工程总时间数为9天,则完成工序C 需要的天数x 最大为________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)设函数()[)()222,1,2,,1x x f x x x x ⎧-∈+∞⎪=⎨-∈-∞⎪⎩,求函数()()14g x f x =-的零点.18.(12分) 已知二次函数()()2,f x x bx c b c =++∈R ,若()()12f f -=,且函数()y f x x =-的值域为[)0,+∞.(1)求函数()f x 的解析式;(2)若函数()2x g x k =-,当[]1,2x ∈时,记()()f x g x ,的值域分别为A B A B A =,,, 求实数k 的值.19.(12分)已知函数()()3lg ,23lg 3,2x x f x x x ⎧≥⎪⎪=⎨⎪-<⎪⎩,若方程f (x )=k 无实数解,求k 的取值范围.20.(12分)某公司从1999年的年产值100万元,增加到10年后2009年的500万元,如果每年产值增长率相同,则每年的平均增长率是多少?(ln(1+x )≈x ,lg2=0.3,ln10=2.30)21.(12分)关于x的方程x2-2x+a=0,求a为何值时:(1)方程一根大于1,一根小于1;(2)方程一个根在(-1,1)内,另一个根在(2,3)内;(3)方程的两个根都大于零?22.(12分)一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?2018-2019学年必修一第三章训练卷函数的应用(二)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】当9x =时,lg91y =-;当10x =时,9111010y =-=, 即()1lg91010-⋅<,得函数在区间()9,10内存在零点.故选B . 2.【答案】B【解析】由已知,易得()02a b f b f +⎛⎫⋅< ⎪⎝⎭,因此f (x )在,2a b b +⎡⎤⎢⎥⎣⎦上一定有零点,但在其他区间上可能有零点,也可能没有零点.故选B . 3.【答案】C【解析】通过指数函数、对数函数、幂函数等不同函数模型的增长规律比较可知,对数函数的增长速度越来越慢,变量y 3随x 的变化符合此规律;指数函数的增长速度越来越快,y 2随x 的变化符合此规律;幂函数的增长速度介于指数函数与对数函数之间,y 1随x 的变化符合此规律,故选C . 4.【答案】C【解析】∵C 中零点左右两侧的函数值的符号相反.故选C . 5.【答案】D【解析】在区间(2015,2016)内零点的个数不确定,故B ,C 错误,在区间(2014,2015)内可能有零点,故选D . 6.【答案】B【解析】由于函数()1111g x x x ==---在()1,+∞上单调递增,函数h (x )=2x 在()1,+∞上单调递增,故函数f (x )=h (x )+g (x )在()1,+∞上单调递增,所以函数f (x )在()1,+∞上只有唯一的零点x 0,且f (x 1)<0,f (x 2)>0,故选B . 7.【答案】A【解析】∵f (-3)=6>0,f (-1)=-4<0,∴f (-3)·f (-1)<0.∵f (2)=-4<0,f (4)=6>0,∴f (2)·f (4)<0.∴方程ax 2+bx +c =0的两根所在的区间分别是(-3,-1)和(2,4).故选A . 8.【答案】D【解析】由点(2,1),(4,2),(8,4),故选D . 9.【答案】A【解析】∵()()1110%110%1100b a a ⎛⎫=+-=- ⎪⎝⎭,∴99100b a =⨯,∴b <a ,故选A . 10.【答案】D【解析】由题意得f (k -1)·f (k )<0,f (k )·f (k +1)<0,由零点的存在性定理可知, 在区间(k -1,k ),(k ,k +1)内各有一个零点,零点可能是区间内的任何一个值, 故D 正确. 11.【答案】B【解析】由于f (1.375)>0,f (1.3125)<0,且1.375-1.3125<0.1,故选B . 12.【答案】B 【解析】因为()1111022f -=-=-<,f (0)=1>0,所以f (x )的零点a ∈(-1,0); 因为g (2)=0,所以g (x )的零点b =2;因为11110222h ⎛⎫=-+=-< ⎪⎝⎭,h (1)=1>0,所以h (x )的零点1,12c ⎛⎫∈ ⎪⎝⎭.因此a <c <b .故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】1m<8-【解析】当m =0时,函数有零点,所以应有0180m m ∆≠⎧⎨=+<⎩,解得1m<8-.14.【答案】1【解析】设函数f (x )的两个零点为x 1,x 2,则x 1+x 2=-1,x 1·x 2=a . ∵121x x -=,又f (m )<0,∴f (m +1)>0.∴f (x )在(m ,m +1)上零点的个数是1. 15.【答案】①⑤【解析】f (x )的图象是将函数y =x (x -1)(x +1)的图象向上平移0.01个单位得到.故f (x )的图象与x 轴有三个交点,它们分别在区间(),1-∞-,10,2⎛⎫ ⎪⎝⎭和1,12⎛⎫⎪⎝⎭内,故只有①⑤正确. 16.【答案】3 【解析】如图,设工程所用总天数为f (x ),则由题意得: 当x ≤3时,f (x )=5+4=9, 当x >3时,f (x )=2+x +4=6+x , ∴()9,36,3x f x x x ≤⎧=⎨+>⎩, ∵工程所用总天数f (x )=9,∴x ≤3,∴x 最大值为3.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】98【解析】求函数()()14g x f x =-的零点,即求方程()104f x -=的根.当x ≥1时,由12204x --=得98x =; 当x <1时,由21204x x --=得x =(舍去)或x =. ∴函数()()14g x f x =-的零点是9818.【答案】(1)()21f x x x =-+;(2)1k =. 【解析】(1)因为()()12f f -=,所以1b =-,因为函数()()22211y f x x x x c x c =-=-+=-+-的值域为[)0,+∞,所以故101c c -=⇒=.所以()21f x x x =-+.(2)当[]1,2x ∈时,()21f x x x =-+递增,可得最小值为1,最大值为3, []1,3A ∴=,()2x g x k =-,当[]1,2x ∈时,()g x 递增,可得最小值为2k -,最大值为4k -,[]2,4B k k =--,由A B A =,有B A ⊆,所以21143k k k -≥⇒=-≤⎧⎨⎩. 19.【答案】3,lg 2⎛⎫-∞ ⎪⎝⎭.【解析】当32x ≥时,函数f (x )=lg x 是增函数,∴()3lg ,2f x ⎡⎤∈+∞⎢⎥⎣⎦; 当32x <时,函数f (x )=lg(3-x )是减函数,∴()3lg ,2f x ⎛⎫∈+∞ ⎪⎝⎭. 故()3lg ,2f x ⎡⎫∈+∞⎪⎢⎣⎭.要使方程无实数解,则3lg 2k <.故k 的取值范围是3,lg 2⎛⎫-∞ ⎪⎝⎭.20.【答案】16.1%.【解析】设每年年增长率为x ,则100(1+x )10=500,即(1+x )10=5, 两边取常用对数,得10·lg(1+x )=lg5, ∴()()lg510.7lg 1lg10lg2101010x +==-=. 又∵()()ln 1lg 1ln10x x ++=,∴ln(1+x )=lg(1+x )·ln10.∴()0.70.7ln 1ln10 2.300.16116.1%1010x +=⨯=⨯==. 又由已知条件:ln(1+x )≈x 得x ≈16.1%. 故每年的平均增长率约为16.1%.21.【答案】(1)a <1;(2)-3<a <0;(3)0<a <1.【解析】(1)设f (x )=x 2-2x +a ,(1)结合图象知,当方程一根大于1,一根小于1时,f (1)<0,得1-2+a <0,所以a <1.(2)由方程一个根在区间(-1,1)内,另一个根在区间(2,3)内, 得()()()()10102030f f f f ⎧->⎪<⎪⎨<⎪⎪>⎩,即30120440960a a a a +>⎧⎪-+<⎪⎨-+<⎪⎪-+>⎩,解得-3<a <0.(3)由方程的两个根都大于零,得()44000a f ∆=->⎧⎪⎨>⎪⎩,解得0<a <1.22.【答案】(1)110112⎛⎫- ⎪⎝⎭;(2)5年;(3)15年.【解析】(1)设每年砍伐面积的百分比为x (0<x <1),则()10112a x a -=,即()10112x -=.解得110112x ⎛⎫=- ⎪⎝⎭. (2)设经过m2, 则()1ma x -=,即11021122m⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,1102m =,解得m =5.故到今年为止,已砍伐了5年.(3)设从今年开始,以后砍伐了n 年,则n()1nx -.()114nx a -≥,即()1n x -≥,31021122n⎛⎫⎛⎫≥ ⎪ ⎪⎝⎭⎝⎭,3102n ≤,解得n ≤15.故今后最多还能砍伐15年.。

相关文档
最新文档