圆柱与圆锥(第二课时)
苏教版六年级数学下册第二单元知识点归纳
第二单元(圆柱和圆锥)知识点归纳 第一课时:1. 圆柱的特点:上下两个面是相同的圆形,圆柱的侧面是曲面,上下一样粗。
2. 圆锥有一个顶点,一个底面和一个侧面,底面是一个圆,侧面是一个曲面。
3. 围成圆柱的面还有一个曲面,叫做圆柱的侧面,圆柱的两个底面之间的距离叫做圆柱的高,圆柱有无数条高。
4. 以圆锥的顶点到底面圆心的距离是圆锥的高,圆锥有一条高。
第二课时:1. 圆柱的侧面积=底面周长(π×R )×高2. 圆柱的底面积(S )=π×r 23. 圆柱的表面积=侧面积+底面积×2第四课时1.圆柱的体积=底面积×高第五课时1. 体积是以外面量的,容积是以里面量的,容器的体积比它的容积大2. 圆柱的高不变,直径、半径扩大几倍,体积扩大原来体积的平方倍。
第六课时:1.圆锥的体积=底面积×高×13 ,不能忘记13。
第七课时:1.很多题目都会用等底等高的圆柱和圆锥的体积之间的关系去求圆柱和圆锥的体积。
(体积之和是几份?找准总份数、体积之差是几份,然后找到对应量,最后用总份数对应的量÷总份数=一份对应的量)2.圆锥的体积也是与它等底等高的长方体体积的1 33.已知圆锥的体积,要先求出和这个圆锥等底等高的圆柱的体积乘3,再除以底面积,最后求出高。
与求体积除以3相反。
培优:1.一个圆锥形容器里倒了一半高度的水,高是容器的一半,水面底面半径就是容器底面半径的一半,即12,则设容器的高度为h,水面高度为12h,所以得出结论:水面高是容器的一半,水面底面积是容器底面积的14;水的体积则是圆锥容器的18。
2.往圆柱形容器里加水,水的体积=底面积(水)×高(水),容器的容积=底面积(容)×高(容),因为底面积(水)和底面积(容)是一样的,则可以把底面积看成a,转化成:水的体积=a×高(水),容器的容积= a×高(容),所以,水的体积占容器容积水的体积容器的容积=a×高(水)a×高(容)=高(水)高(容),(根据分数的性质,分子和分母同时除以相同的数),所以水的体积占容器容积的比就是水面的高度占容器高度的比。
六年级下数学说课稿圆锥的体积_西师版
六年级下数学说课稿圆锥的体积_西师版《圆锥的体积》说课一、教材分析1、说课内容:《圆锥的体积》,西师版小学数学六年级下册第二单元《圆柱和圆锥》中《圆锥》的第二课时。
2、教材简析:圆锥是小学几何初步知识最后一个单元的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上又学习的一种新的立体图形,也是在此基础上的又一个延伸,同时为学生以后系统学习立体几何知识打下基础。
按编者意图《圆锥》(含“圆锥的认识”和“圆锥的体积”)新课为一课时,但我认为这样教学内容太多,时间不够充分,不能保证较好的教学效果,所以这部分内容我采用了两课时进行教学,先用《圆锥的认识》做准备和铺垫,再单独完成《圆锥的体积》教学,这样有利于更好地把握和突破教学重难点,使学生学习效果更明显。
3、教学重难点及关键:本课重点是能正确运用公式计算圆锥的体积,并能解决简单的实际问题。
教学难点是理解圆锥体积公式的推导考、讨论交流、归纳总结等活动探索理解圆锥的体积计算公式,充分展示数学知识的形成过程,发挥学生的主体作用,让学生积极主动地参与学习的全过程。
培养学生的动手操作能力和数学思维能力,使学生人人都能获得必要的数学,人人都能得到不同的发展。
三、教学流程本节课我设计了以下五个教学环节:即提出猜想、实验操作、讨论归纳、练习应用、质疑提高提出猜想:先出示复习题(幻灯片2),让学生口算圆柱的体积,回忆圆柱的有关知识和圆柱的体积体积计算公式,为本课的学习做好铺垫。
接着出示圆锥(幻灯片3),让学生猜一猜怎样计算圆锥的体积,对学生的猜想不急于做出评价。
通过交流使学生得到两点认识:①我们可以通过实验进行探索。
②圆锥体积可能与它的底面积和高有关。
实验操作:先展示幻灯片4-45,介绍等底等高的圆柱和圆锥,这是本课的重要前提和铺垫。
接着学生4-6人分组实验,1-2人共同操作,用等底等高的圆锥形容器装满水倒入圆柱形容器中。
全体成员观察思考:①实验中的圆锥形和圆柱形容器有什么关系?②倒了几次水刚好把圆柱形容器装满?③通过实验你发现了什么?3、讨论归纳:针对以上实验和问题,让学生先在小组内讨论,再进行全班交流。
【一课一练】人教版小学数学六年级下册第三单元《圆柱与圆锥)》-第2课时圆柱的表面积(二)-附答案
第2课时圆柱的表面积(二)◆基础知识达标1.把一个圆柱体切割后拼成一个近似的长方体,这个长方体的表面积比原来()A.增加了B.不变C.减少了2.下面()是圆柱的展开图。
A.B.C.D.3.把一个圆柱体的侧面展开得到一个长4分米,宽为3分米的长方形,这个圆柱体的侧面积是()平方分米.A.12B.50.24C.150.72D.12.56 4.从下面的材料中选择能正好做成圆柱的材料,应选()。
A.A B C B.A D E C.A B D5.圆柱的底面周长是18.84分米,高4分米,它的表面积是()A.75.36平方分米B.56.52平方分米C.28.26平方分米D.131.88平方分米6.圆柱的底面直径和高都是8厘米,这个圆柱的表面积是()平方厘米。
A.100.48B.301.44C.200.96D.251.2 7.一个圆柱形纸筒,它的底面直径是1分米,高是3.14分米,它的侧面展开图是()A.长方形B.正方形C.平行四边形8.把一个圆柱的侧面展开,刚好可以得到一个正方形,这个圆柱的底面直径和高的比是()。
A.1:1B.1:πC.1:d D.3:4 9.圆柱的底面半径扩大到原来的2倍,高不变,体积扩大到原来的倍.10.一个圆柱形鼓,底面直径是6分米,高是2分米,它的侧面由铝皮围成,上、下底面蒙的是羊皮。
做一个这样的鼓,需要铝皮平方分米,羊皮平方分米。
◆课后能力提升11.一个圆柱的侧面积是188.4dm2,底面半径是2dm。
它的高是dm。
12.一个圆柱的底面直径是4分米,高是0.5分米,它的侧面积是平方分米;它的表面积是平方分米。
13.一个圆柱的底面直径是8厘米,高为1分米,这个圆柱的表面积是平方厘米。
14.一个底面直径是5米、深2米的圆柱形水池,如果在水池的四周和底部都抹上水泥,抹水泥的面积是平方米。
15.一个圆柱的底面半径是3分米,高是4分米,它的表面积是平方分米。
16.把一个圆柱沿直径分割成若干等分(如图),拼成一个近似的长方体,近似的长方体的宽是2厘米,高是5厘米,这个圆柱体的侧面积是.表面积cm218.一个圆柱形状的蓄水池,直径是40米,深4米.在池内的侧面和池底抹一层水泥,抹水泥的面积是19.一个长方形的长是4cm,宽是3cm,以这个长方形的长为轴旋转一周,得到的立体图形是.这个立体图形的底面积是cm2,表面积是cm2. 20.一个圆柱的底面直径是4cm,高是15cm,它的侧面积是cm2,表面积是cm2.第2课时圆柱的表面积(二)◆基础知识达标1.把一个圆柱体切割后拼成一个近似的长方体,这个长方体的表面积比原来()A.增加了B.不变C.减少了【答案】A2.下面()是圆柱的展开图。
2021_2022学年新教材高中数学第8章立体几何初步8.1第2课时圆柱圆锥圆台球与简单组合体的结构
(2)在旋转过程中观察平面图形的各边所形成的轨迹,应利用空 间想象能力,或亲自动手做出平面图形的模型来分析旋转体的形 状.
(3)要熟练掌握各类旋转体的结构特征.
[跟进训练] 2.如图所示的平面图形从上往下依次由等腰三角 形、圆、半圆、矩形、等腰梯形拼接形成,若将它绕直 线l旋转形成一个组合体,试分析该组合体由哪些简单几 何体构成. [解] 易知得到的组合体从上到下依次为圆锥、球、半球、圆 柱、圆台.
[跟进训练] 3.一圆锥的母线长为6 cm,底面半径为3 cm,把该圆锥截一圆 台,截得圆台的母线长为4 cm,则圆台的另一底面半径为________ cm. 1 [作轴截面如图, 则3r=6-6 4=13,所以r=1 cm.]
当堂达标·夯基础
1.圆柱的母线长为10,则其高等于(
A.5
B.10
AB [A正确,圆柱的底面是圆面; B正确,如图所示,经过圆柱任意两条母线的截 面是一个矩形面; C不正确,圆台的母线延长相交于一点; D不正确,夹在圆柱两个平行于底面的截面间的几何体才是旋 转体.]
类型2 简单组合体的结构特征 【例2】 (对接教材P103例2)如图①②所示的图形绕虚线旋转一 周后形成的立体图形分别是由哪些简单几何体组成的?
第பைடு நூலகம்章 立体几何初步
8.1 基本立体图形 第2课时 圆柱、圆锥、圆台、球与
简单组合体的结构特征
学习任务 1.了解圆柱、圆锥、圆台、球的定义.
核心素养 通过学习有关旋转
2.掌握圆柱、圆锥、圆台、球的结构特
体的结构特征,培
征.(重点)
养直观想象、逻辑
3.认识简单组合体的结构特征,了解简单组 推理、数学运算的
[解] 旋转后的图形如图所示.其中图①是由一个圆柱O1O2和 两个圆台O2O3,O3O4组成的;图②是由一个圆锥O5O4,一个圆柱 O3O4及一个圆台O1O3中挖去圆锥O2O1组成的.
圆柱和圆锥的体积(第二课时)
圆柱和圆锥的体积(第二课时)一、串联情境唤醒旧知。
1.谈话:同学们,上节课我们通过研究冰淇淋盒的体积问题,学会了如何求圆柱的体积。
你能说说如何求圆柱的体积吗?计算公式是怎样推出的?2.口答练习:你能借助公式计算下面圆柱的体积吗?(1)底面半径15厘米,高8厘米。
(2)底面直径6米,高18米。
【设计意图】:通过复习公式,唤起学生的回忆,为下面利用公式解决打下基础。
二、巧用公式,解决问题。
1.出示课后练习第3题。
在美国加利福尼亚洲发现了一棵高达142米的巨衫。
它的树干上下几乎一样粗,横截面周长约是38米。
师谈话:你能提出什么问题?生:树干的体积会是多大呢?师:知道了树干横截面的周长,该如何求体积呢?2.学生独立解答。
3.交流算法。
4.师生总结解决此类问题的步骤:(1)根据周长求出底面的半径。
(2)根据半径求出底面的面积。
(3)根据体积公式求出树干的体积。
【设计意图】:让学生明确已知圆柱底面周长,求圆柱体积的计算方法。
三、综合练习,统一公式。
1.出示课后练习第10题:计算下面图形的体积。
2.交流算法。
3.师谈话:你能把上面三种图形的体积公式统一成一个吗?引导发现:体积=底面积×高【设计意图】:通过计算,发现长方体、正方体、圆柱体的体积公式可以统一成一个,感受到它们之间的密切联系,有助于提高学生的综合实践能力。
四.拓展练习,提高能力。
1.出示练习第12题。
引导学生发现:体积相等、底面积也相等的圆柱和圆锥,圆锥的高是圆柱高的3倍。
2.出示练习13题。
(1)用62.8厘米的边长做圆柱形小桶的底面周长,47.1厘米的边长做圆柱小桶的高。
(2)用47.1厘米的边长做圆柱形小桶的底面周长,62.8厘米的边长做圆柱小桶的高。
3.课后思考:练习第14题。
【设计意图】:在拓展练习中提高学生的解决实际问题的能力。
课后反思:灵活解决圆柱的实际问题,还需要加强练习。
第三课时教学目标:在现实生活中,通过观察、操作、比较等活动,结合具体情境,理解圆锥体积的计算方法,并能解决简单的实际问题。
北师大版小学数学六年级下第1单元 圆柱与圆锥 单元整体备课教案第二课时《面的旋转》
第课时圆柱和圆锥的各部分名称1.认识圆柱和圆锥的直观图及各部分的名称,知道圆柱和圆锥的高、底面和侧面。
2.通过动手操作、观察的活动,学生能够正确测量圆柱体和圆锥体的高,体会测量方法,深化对高的认识。
【重点】掌握圆柱和圆锥体的各部分名称。
【难点】利用测量工具,测量圆柱和圆锥的高及掌握测量方法。
【教师准备】PPT课件,圆柱和圆锥模型。
【学生准备】测量工具(直尺、三角板等),圆柱和圆锥模型。
1.圆柱体和圆锥体是由什么图形旋转得到的?2.(PPT课件出示)你能说出下面的立体图形的高是多少吗?【参考答案】1.圆柱体是由长方形以一边为旋转轴旋转得到的;圆锥体是由直角三角形以其中一条直角边为轴进行旋转得到的。
2.长方体的高是5 cm,正方体的高也是5 cm。
[设计意图]通过复习旧知,为学习新知做铺垫,使学生很快进入有目的的探究状态。
方法一实际操作,导入新知。
师:同学们,在我们的数学王国中的几何部落,有很多的成员,我们已经认识了部分成员,它们今天也到我们课堂做客了,你们看……(老师拿出长方体和正方体)。
师:它们是谁?预设生:长方体和正方体。
师:你们能用测量工具测量出长方体的长、宽、高和正方体的棱长是多少吗?预设生:老师我们能够测量出长方体的长、宽、高和正方体的棱长。
师:那么谁愿意到展台前实际操作一下。
(老师指名,让学生到展台前进行测量,测量时让学生看到测量同学的方法和步骤,测量后向全体学生汇报测量结果,然后全体同学对错误方法进行纠正)师:在我们的生活中一切物体都是以体的形式存在,是体就占有空间,他们就有一定的高度,同学们再看看我手中昨天我们刚认识的这两个新的朋友:圆柱、圆锥,你们能用测量工具测量出它们的高度是多少吗?师:谁愿意试试看?(教师鼓励学生积极参与对于圆柱体的高的测量,学生没有什么难度,但圆锥体的高的测量对学生就有难度了,在测量圆锥体的高时,学生会有分歧,此时老师话题一转引入新知) 师:老师已经看出来了,同学们的意见有分歧,不统一,我们该如何来测量呢?今天老师就和同学们一起来探索一下新的正确的方法,好吗?(板书课题:圆柱和圆锥的各部分名称) [设计意图]通过谈话和具体操作,引导学生积极参与,使学生通过对长方体、正方体测量方法的回顾,引出圆锥体高的测量难题,通过教师语言的引导,使学生感知本节课的学习与测量有关,但又有什么关系呢?学生不知,给新知的探索带上了一层神秘的面纱,增强了学生的学习兴趣,从而激发学生的学习欲望。
六(下)数学教案第3讲~圆柱与圆锥2
六(下)数学教案第3讲~圆柱与圆锥2【知识精讲】圆柱与圆锥是小升初的必考点,也是六年级下学期非常重要的章节。
此章节属于立体几何专题中的一部分,圆柱和圆锥也会跟长方体正方体的专题相结合,在小升初考试中通常以填空、选择、应用题的形式出现。
本讲主要内容:1、圆锥的体积计算;2、体积不变题;3、圆柱圆锥的倍比问题;4、不规则容器的容积知识点一、圆锥的体积计算例1、一个圆锥的体积是75.36立方分米,底面半径是2分米,高是()分米。
练1.1、手工课上,小薇带了一个棱长是6厘米的正方体橡皮泥。
(1)她把这个橡皮泥切成了完全相同的两块长方体,将其中的一小块用彩纸包好,小薇至少用了多少平方厘米的彩纸?(2)她将另一小块捏成了一个高为9厘米的圆锥形陀螺,这个陀螺的底面积是多少平方厘米?练1.2、有一块正方体木料,棱长总和是96厘米,把这块木料削成一个最大的圆锥,求削成的圆锥的体积是多少?练1.3、一个长6分米、宽5分米、高4分米的长方体加工成最大的圆柱,圆柱的体积是多少立方分米再削成最大的圆锥体积是多少立方分米?例2、“六一”儿童节,乐乐在家里特制巧克力蛋糕送给福利院小朋友(如图),蛋筒的底面直径是6厘米,高是10厘米,做30个这样的蛋筒,大约需要多少升巧克力原料?(得数保留整数)练2.1、一种儿童玩具--陀螺(如右下图),上面是圆柱,下面是圆锥。
经过测试,只有当圆柱直径3厘米,高4厘米,圆锥的高是圆柱的高的43,旋转时才能又快又稳,试问这个陀螺的体积有多少。
(得数保留整立方厘米数)练2.2、如图,直角三角形绕直角边旋转一周后得到的立体图形是( ),它的体积最大是( )立方厘米。
练2.3、下图是一个直角三角形。
AC 边上的高是多少厘米?(请先在图中画出高,并计算)再算一算,以AC 为轴旋转一周形成的立体图形的体积是多少立方厘米?知识点二、体积不变问题例3、把一个底面积是6.28平方厘米,高是9厘米的圆柱体铁块熔铸成一个底面积是18.84平方厘米的圆锥体。
六年级数学下册第二单元 圆柱与圆锥(2)
第二章圆柱与圆锥(2)姓名:一、填空。
1、一个圆柱底面半径是3厘米,高5厘米,侧面积是( )平方厘米,表面积是( )平方厘米,体积是( )立方厘米,与它等底等高的圆锥的体积是( )立方厘米。
2、圆锥形的一堆沙,底面积是4.8平方米,高2.5米,这堆沙共( )立方米。
3、将一张长30厘米,宽18厘米的长方形白纸卷成一个圆柱,这个圆柱的侧面积是( )平方厘米。
4、一个圆锥的体积是15立方分米,高是3分米,底面积是( )平方分米。
5、一个圆柱的底面半径扩大2倍,高缩小2倍,它的侧面积( ),体积()。
6、等底等高的一个圆柱和一个圆锥的体积的和是80立方分米,这个圆柱的体积是( )立方分米,这个圆锥的体积是( )立方分米。
7、将一张长4厘米,宽3厘米的长方形纸以一条边为轴旋转一周,得到一个圆柱体,这个圆柱的体积是( )立方厘米。
8、把一个圆柱沿底面半径切开,等分后再拼成一个近似长方体,这个长方体长12.56厘米,高10厘米,这个圆柱的体积是()立方厘米。
9、圆柱的高是圆锥高的3倍,圆柱的底面半径与圆锥底面半径的比是1:2,圆柱和圆锥的体积比是()。
10、一个圆锥的底面直径是8厘米,高12厘米,沿底面直径将它切成两个完全相等的部分,表面积增加()平方厘米。
二、判断。
1、塑料圆柱形容器的容积和体积一样大。
……………………………()2、等底等高的圆柱和长方体的体积相等。
…………………………()3、圆锥的侧面展开图是一个三角形。
…………………………()4、用直角三角形绕一条直角边旋转一周得到的图形是圆锥。
………()三、选择。
1、一个圆柱体切拼成一个近似长方体后,( )A 表面积不变,体积不变;B 表面积变大,体积不变;C 表面积变大,体积变大。
2、在下图中,以直线为轴旋转,可以得出圆柱体的是( ),得出圆锥体的是( )。
A BC D3、右图是等底等高的圆锥和圆柱,从不同方向看会看到不同的形状。
从上面看到的形状是( ),从左面看到的形状是( ) 。
圆柱和圆锥的体积2
圆柱和圆锥的体积(2)班级: 姓名:【例1】 如图所示,在一个底面直径为16厘米,高为30厘米的圆柱内,挖去两 个分别以圆柱底面为底面、有公共顶点的两个圆锥,求这两个圆锥的体积和。
【例2】 一块长方形塑料板(如右图),利用图中的阴影部分刚好能做成一个圆柱 形油桶(接头处忽略不计),求这个油桶的体积。
【例3】 有一个高为6厘米,底面半径为4厘米的圆柱形容器里装满了水。
现在 把长15厘米的圆柱形铁棒垂直插入,使铁棒的底面与容器的底面接触,这时一部分水从容器中溢出。
当把铁棒从水中拿出后,容器中的水面高度为4厘米,求圆柱形铁棒的体积。
【例4】甲、乙两个圆柱形容器的高相等,内侧直径分别为12厘米和16厘米。
把甲容器中的酒精全部倒入乙容器中,则酒精的深度比容器高的41还高5厘米,那么容器的高是多少?【例5】 在一个底面直径为13厘米的容器中,放入等底等高的一根圆柱形钢材和一个圆锥形铁块,水面上升了10厘米,但是水没有溢出来,圆柱有41露出水面,圆锥完全浸没水中,圆锥的体积是多少?【例6】把一个长、宽、高分别为8分米、7分米、6分米的长方体,削成一个最大的圆柱,圆柱的体积是多少立方分米?【例7】一个长方体木块,长50厘米,宽40厘米,高30厘米,将其加工成一个最大的圆锥形木块,圆锥形木块的体积是多少立方厘米?【例8】有A 、B 两个圆柱体的容器,从里面量得A 、B 容器的底面周长分别为62.8厘米、31.4厘米,A 、B 内分别盛有4厘米和29厘米深的水。
现将B 容器的一些水倒入A 容器,使得两个容器的水一样深,问这时水深为多少厘米?【例9】圆柱形容器中装有一些水,容器底面半径5厘米,容器高20厘米,水深10厘米,现将一根底面半径1厘米,高15厘米的圆柱形铁棒垂直插入容器,使铁棒底面与容器底面接触,这时水深多少厘米?【例10】两个相同的圆锥形容器中各盛一些水(如下图)水深都是圆锥高的一半。
那么,甲容器中的水的体积是乙容器中水的几倍?【思维拓展训练】1.一个正方体的体积是225立方厘米,一个圆锥的底面半径和高都等于该正方体的棱长。
8.1 基本立体图形(第2课时)圆柱、圆锥、圆台、球与简单组合体的结构特征
得的圆台的上、下底面的半径分别为 ,4 ,过轴作截面,如图所示.则
∆’ ’
∼
∆,’
=4
’
.所以
=
’ ’
4
,所以
4+
解得 = 12(),即圆台的母线长为12 .
=
4
,即
4
4+
=
1
,
4
练习
变3.如图所示,已知一个圆台的上、下底面半径分别是1 ,2 ,截得圆台
思考1:圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到.圆台是
否也可以由平面图形旋转得到?如果可以,由什么平面图形旋转得到?如何
旋转?
圆柱是由以直角梯形的直角腰所在直线为旋转轴,其余三边旋转一周形成的
面围成的旋转体叫做圆台.
新知探索
如图,半圆以它的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,
新知探索
现实世界中的物体表示的几何体,除柱体、锥体、台体和球等简单几何体外,
还有大量的几何体是由简单几何体组合而成的,这些几何体称作简单组合体.
图1
图2
简单组合体的构成有两种基本形式,一种是由简单几何体拼接而成,如图1中的物
体表示的几何体;一种是由简单几何体截去或挖去一部分而成,如图2中的几何体.
间所连线段的长;③空间中到定点的距离等于定长的所有点构成的曲面是球面.
其中准确说法的序号是______.
答案:①③.
例析
例2.如图中的(1),以直角梯形的下底所在直线为轴,其余三边旋转一
周形成的面围成一个几何体.说出这个几何体的结构特征.
解:几何体如图(2)所示,其中 ⊥ ,垂足为.
(4)画圆柱、圆锥、圆台、球的图.
【一课一练】人教版小学数学六年级下册第三单元《圆柱与圆锥)》-第2课时圆柱的表面积(一)-附答案
第2课时圆柱的表面积(一)◆基础知识达标1.一个圆柱的侧面展开图是一个正方形,这个圆柱的底面直径与高的比是()。
A.1:2πB.1:πC.2:πD.π:1 2.一个圆柱,底面周长是25.12厘米,高是8厘米,如果沿底面直径垂直切开,它的截面是()。
A.长方形B.正方形C.三角形D.圆3.将圆柱的侧面展开,将得不到()A.平行四边形B.长方形C.梯形D.正方形4.一个边长是31.4厘米的正方形纸片,围成一个圆柱体的侧面(接头处不重叠),这个圆柱体的底面半径是()A.10厘米B.5厘米C.20厘米D.15厘米5.一个底面圆周长为12.56cm,高为5cm的圆柱,它的表面积为()。
A.87.92B.75.36C.62.8D.37.68 6.下面各图是圆柱的展开图的是()。
A.B.C.D.7.把一个圆柱的侧面展开,不可以得到一个()。
A.正方形B.长方形C.平行四边形D.梯形8.一段圆柱形钢材的底面半径为1cm,高为5cm,把3段这样的圆柱形钢材焊接成一个圆柱,表面积减少了()cm2。
A.25.12B.12.56C.6.289.做一个油桶,求至少需要多少平方米的铁皮是求它的()。
A.体积B.侧面积C.表面积10.一个底面直径和高相等的圆柱,在侧面沿高展开后得到一个()。
A.梯形B.平行四边形C.长方形D.正方形◆课后能力提升11.一个圆柱的侧面积是1256cm2,底面半径是10cm,它的高是()cm.A.5B.10C.20D.40 12.圆柱的侧面展开图是一个正方形,那么这个圆柱的高是它底面半径的()倍。
A.3.14B.πC.6.28D.2π13.两块同样的长方形纸板,卷成形状不同的圆柱(接头处不重叠),并装上两个底面,那么制成的两个圆柱体()。
A.底面积一定相等B.侧面积一定相等C.表面积一定相等D.体积一定相等14.圆柱的高不变,底面半径扩大到原来的2倍,圆柱的侧面积就扩大到原来的()。
A.4倍B.2倍C.6倍15.把圆柱体的侧面展开.不可能得到()。
苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第2课时)
(2)l=4h+4d+15=4(20+30)+15=215cm
教学新知
练一练:一个用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个半径 2米的半圆形。
(1)搭建这个大棚大约要用多少 平方米的塑料薄膜?
(1)V=sh=4²π×3.5=175.84(m³) 175.84m³=175.84t (2)S=2πrh+πr²=2×3.14×4×3.5+3.14×4²=138.16(m²)
教学新知
试一试:一个圆柱形蛋糕盒,底面半径是15厘米,高是20厘米。 (1)做这个蛋糕盒大约要用硬纸板多少平方厘米? (2)用彩带捆扎这个蛋糕盒(如下图),至少需要彩带多少厘米?
18.84dm
2m
282.6cm² 157cm³
244.92dm² 282.6dm³
37.68m² 15.7m³
教学新知
算一算:一个圆柱形油桶,从里面量,底面直径是40厘米,高是50厘米。 (1)它的容积是多少升? (2)如果1升柴油重0.85千克,这个油桶可装柴油多少千克? (3)做这样一个油桶,至少需要铁皮多少平方分米?(得数保留一位
教学新知
思考: (1)把圆钢竖着拉出水面8厘米,水面下降了 4厘米,你
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
教学新知
六年级数学下册【典型例题系列】典型例题系列之第一单元圆柱与圆锥基础篇(二)(解析版)(北师大)
六年级数学下册典型例题系列之第一单元圆柱与圆锥基础篇(二)(解析版)编者的话:《六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第一单元圆柱与圆锥基础篇(二)。
本部分内容主要是圆柱与圆锥体积的基本计算和应用,内容相对简单,多偏向于公式的运用和简单的转化,建议作为必须掌握内容进行讲解,一共划分为十一个考点,欢迎使用。
【考点一】圆柱体积的意义及体积公式。
【方法点拨】圆柱体积的意义和计算公式(1)意义∶一个圆柱所占空间的大小,叫做这个圆柱的体积。
(2)计算公式的字母表达式∶如果用V表示圆柱的体积,用S表示圆柱的底面积,用h表示圆柱的高,则圆柱的体积=底面积×高,用字母表示为V=Sh=πr2h。
【典型例题】一根圆柱形柱子的底面半径为2m,高为5m。
你能算出它的体积吗?(π取3.14)解析:3.14×22×5=62.8(m³)答:柱子的体积为62.8m3。
【对应练习1】一个圆柱的底面直径是6分米,高是20分米,求圆柱的体积。
解析:半径:6÷2=3(分米)S底:3.14×32=28.26(平方分米)V:28.26×20=565.2(立方分米)答:圆柱的体积是565.2立方分米。
【对应练习2】挖一个圆柱形蓄水池,从里面量,底面周长是25.12米,深是2.4米,池内水面距底面0.8米。
蓄水池内现有水多少立方米?解析:半径:25.12÷3.14÷2=4(米)S底:3.14×42=50.24(平方米)h:0.8米V:50.24×0.8=40.192(吨)答:略。
新人教A版高中数学必修2课件:8.1 第二课时 圆柱、圆锥、圆台、球与简单组合体的结构特征
矩形的一边 所在直线
以直角三角形 的一条直角边 所在直线
以直角梯形的直角 腰所在直线
以半圆的直 径所在直线
[典例 1] 下列说法正确的是
()
A.圆锥的底面是圆面,侧面是曲面
B.用一张扇形的纸片可以卷成一个圆锥
C.一个物体上、下两个面是相等的圆面,那么它一定是一个圆柱
D.球面上四个不同的点一定不在同一平面内
解:因为△ABC 为等边三角形, 所以 BC=6,所以 l=2π×3=6π. 根据底面圆的周长等于展开后扇形的弧长,得:6α=6π. 故 α=π,则 ∠B′AC=π2, 所以 B′P= 36+9=3 5(m), 所以小猫所经过的最短路程是 3 5 m.
∴dd11+ -dd22= =13, 此方程组无解.
分析以上解题过程是否正确,若不正确,你能找出错因吗?
提示:平行截面有两种情况:在球心的两侧或同侧,以上解答漏掉一种情况. 正解如下: (1)平行截面在球心的同侧时,如图. 由(d1-d2)(d1+d2)=3.又 d1-d2=1, ∴d1+d2=3.∴dd11+ -dd22= =31, , 解得dd12= =21, . ∴R= r21+d21= 5+4=3,即球的半径等于 3. (2)同错解.故所求球的半径等于 3.
【对点练清】 1.若将本例选项 B 中的平面图形旋转一周,试说出它形成的几何体的结构特征.
解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转 后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的 几何体如图所示.通过观察可知,该几何体是由一个圆锥、一 个圆台和一个圆柱自上而下拼接而成的.
2.描述下列几何体的结构特征.
2.如图所示,有一个底面半径为 1,高为 2 的圆柱体,在 A 点 处有一只蚂蚁,现在这只蚂蚁要围绕圆柱表面由 A 点爬到 B 点,问蚂蚁爬行的最短距离是多少? 解:把圆柱的侧面沿 AB 剪开,然后展开成为平面图 形——矩形,如图所示,连接 AB′,则 AB′即为 蚂蚁爬行的最短距离. ∵AA′为底面圆的周长,∴AA′=2π×1=2π. 又 AB=A′B′=2, ∴AB′= A′B′2+AA′2= 4+2π2=2 1+π2, 即蚂蚁爬行的最短距离为 2 1+π2.
《圆锥的体积》说课稿
《圆锥的体积》说课稿各位领导、各位同仁:大家好!今天我说课的内容是《六年级数学》(人教版)下册第二单元《圆柱和圆锥》中的第二课时《圆锥的体积》。
本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。
一、说教材1、教材分析“圆锥的体积”教学是在学生学习了立体图形——长方体、正方体、圆柱体的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。
教材突出了探索体积计算公式的过程,引导学生在装沙或装米的实验基础上进行公式推导。
通过观察,比较,分析,推理,概括和抽象,自主发现圆锥的体积计算公式,进一步积累数学活动经验.经历数学化的过程,获得解决问题的方法.2、学情分析学生以前学习了长方体、正方体,在此前又学了由曲面和圆围成的立体图形——圆柱,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。
通过前一节《圆锥的认识》,学生对圆锥的特征也有了一些了解,对学生来说,求体积并非陌生的新知识,只是像圆锥这样学生认为不规则几何体的图形,求体积有困难。
对于六年级的学生来说, 绝大多数学生的动手实践能力比较强,有一定的空间观念基础,但公式的推导过程却比较抽象、枯燥,对于他们来说该部分内容是一个难点。
同时对于圆锥体积计算的实际运用,从以往的经验判断,学生对3倍的关系难以理解,教师应帮助学生理解。
3、教学目标知识与技能目标:通过学生参与实验,从而推导出圆锥体积的计算公式,并运用公式计算圆锥的体积;解决一些有关圆锥体积的实际问题。
过程与方法目标:通过实验推导圆锥体积公式的过程,增强学生的实践操作能力,并培养学生观察、比较、分析、总结归纳的学习方法。
情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。
4、教学重难点教学重点:理解和掌握公式,能正确运用公式解决实际问题教学难点:圆锥体积公式的推导过程5、教具、学具准备教具:一个圆柱、2个与圆柱等底、等高的圆锥、沙子;学生自制的圆柱及各类型的圆锥若干、三角尺、直尺二、说教法在公式推导阶段,为了打破枯燥无味的公式推导过程,在教授本节课时,结合小学生的认知规律,以引导法、实验法、观察法,探索法为主,以讨论法、练习法为辅,实现教学目标。
苏教版六年级下数学第二单元《圆柱与圆锥》说课稿四篇
《圆锥的认识》说课稿尊敬的各位领导、老师大家好:今天我说课的内容是课标实验教材六年级上册的《圆锥的认识》。
下面我主要从目标、评价和学习这三个方面来说本节课。
一、目标首先是学习目标的制定,我主要依据学材、学情、课标这几个方面。
基于学材的分析本节内容选自九年级义务教育课程标准实验教材(人教版)六年级下册第二章第二小节第一部分《圆锥的认识》。
这一部分是在学生掌握了圆和圆柱的相关知识的基础之上而安排的内容。
我们要想认识圆锥,进一步学习有关它的知识,首先要了解它的特征。
因此教材把它安排在这一部分内容的第一节,为下面学习起到一个良好的铺垫作用。
由于圆柱与圆锥的知识是密切相关的,因而教材把圆锥的认识安排圆柱的认识之后,为学习圆锥的特征以及体积起到了一个桥梁的作用。
因此,我将圆锥的特征作为本节课的学习重点。
基于学情的分析由于已经是六年级的学生了,他们的主动性和能动性已经有较大的提高,能够有意识的去主动探索未知世界。
同时,他们的思维能力、分析问题的意识和能力也有明显的提高;动手操作能力、语言表达能力有所发展。
所以在教学时适宜让学生主动思考,合作交流,动手实践,让学生在具体情境中亲自体验感知圆锥的特征。
另外,要鼓励学生主动参与、动手操作、发挥自己的聪明才智,能根据具体情况想出多种测量高的方法。
通过以上分析,我认为本节课的学习难点是圆锥的高的测量方法。
基于课标的分析,课标对于本节课的阐述与分析,在这里不再赘述。
学习目标:基于以上几个方面,我制定了本节课的学习目标,大家请看:目标1、借助生活中的实物或模型,会说出圆锥的各部分名称,会正确地辨认圆锥,会举例说明生活中哪些物体是圆锥形。
目标2、结合问题情境,通过指一指、画一画、量一量、说一说等活动,会说出圆锥体的大小与底面的大小有关,会正确测量圆锥的高。
目标3、通过动手操作、观察交流等活动,会说出圆锥侧面展开后是一个扇形,并能说出圆锥是由三角形旋转得到的以及三角形各部分与圆锥的关系。
教案5-圆柱、圆锥和球(二)
即圆锥的高 h=4 厘米 所以, V
PO
1 32 4 12 3
答:这个圆锥的体积为12 厘米 3
半圆以其直径所在的直线为旋转轴进行旋 转,观察旋转一周所形成的几何体(如图 10−68)
A
讲授教
O C
讲解分析 学法
R
B
巩固 所学 知识, 激发 学习 兴趣
15
图10−68
2
【新知识】 以半圆的直径所在的直线为旋转轴旋转 一周,所形成的曲面叫做球面(如图 10−68) .球面围成的几何体叫做球体,简称 球. 半圆的圆心叫做球心,半圆的半径叫做 球的半径. 经常用表示球心的字母来表示球, 如图 10−68 中所示的球记作球 O.
S球 4p R2 .
4 V球 p R3 . 3
其中,R 为球的半径. 例 5 球的大圆周长是 80 cm,求 这个球的表面积与体积各为多少? (保 留 4 个有效数字) 解 设球的半径为 R, 则大圆周长 为 2πR . 因为 所以 因此
S球 4p R2 4p ( 40 2 6400 ) p p
教学 要求
重点 难点
圆锥、球的结构特征及相关的计算 圆锥的侧面展开图 粉笔,尺,黑板,立体几何教具
教学 用品 教学 活动 流程
教学步骤与内容
教学组织 形式 提问
教学方 法
达成 目标 原有 知识 复习 初中 知识 复习 巩固 所学 知识, 激发 学习 兴趣
时间
复习
圆柱、圆锥的概念与相关的计算公式
提问
4
2
2 πR 80 ,
R
40 π
讲解为主
讲解详 细, 规范 解题步 骤
2.037 103 (cm ),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱与圆锥(第2课时)
教学内容:
义务教育课程标准实验教科书青岛版小学数学六年级下册17-18页教学目标:
1. 通过练习使学生进一步认识圆柱和圆锥的特点,进一步加深对它们区别的认识。
2. 通过动手操作,知道圆柱的侧面展开得到一个长方形,圆锥的侧面展开是一个扇形。
3. 发展空间观念,为下面学习表面积和体积做准备。
教学过程:
一、复习旧知:
谈话:同学们,上节课我们初步认识了圆柱圆锥,下面我们先来复习一下上节课的知识,再来做些练习。
1、圆柱和圆锥的特点是什么?它们各部分的名称是什么?
(点名让学生回答)
2、圆柱和圆锥的区别是什么?
(点名让学生回答)
3、动手操作延伸上节课内容,让学生拿出用纸做的圆柱和圆锥,然后沿着圆柱侧面的一条高剪开,沿着圆锥侧面的一条直线剪开,看看得到什么形状?
学生集体交流。
【设计意图】通过复习旧知,对上节课的知识进行回顾整理延伸,
起到很好的铺垫作用,便于学生更准确的进行下面的练习。
二、巩固练习:
1、填空。
(1)圆柱的上、下两个面叫做( ),它们是( )的两个圆。
(2)圆柱有一个()面,叫做侧面。
圆柱两底之间的()叫做高。
一个圆柱有()条高。
(3)圆柱的侧面沿着它的一条()展开,可以得到一个长方形。
它的长等于圆柱底面的(),宽等于圆柱的( )。
(4)把圆锥的侧面展开,可以得到一个()形。
(5)圆锥的底面是个(),侧面是个()。
从圆锥的()到()的距离是圆锥的高。
一个圆锥有()条高。
2、判断题。
(对的在括号内打“√”,错的在括号内打“×”。
)(1)圆柱的侧面展开图一定是长方形。
()(2)圆柱两底面之间的连线叫作圆柱的高。
()(3)如果一个圆柱的侧面展开是正方形,它的底面周长和高一定相等。
()
(4)圆柱圆锥的侧面展开都是长方形。
()
(5)圆柱和圆锥的高都有无数条。
()
【设计意图】以上练习是认识圆柱圆锥的基本练习,不同的题型,旨在拓宽学生的练习广度,使学生能灵活掌握圆柱圆锥的特征,会很快的区分他们,教师在授课时要注意学生做题的正确率,使大部分学生都能掌握这部分知识。
三、综合练习
1、17页第3题。
“连一连”。
学生自主连线,全班交流。
2、17页第4题。
学生读题后,教师让学生拿出准备好的长方形的纸卷成圆柱直筒,观察后学生自主解答问题,然后全班交流。
3、18页第5题。
学生读题后先想象一下,用手比划一下,然后再连线,最后全班交流。
4、18页第6题。
这是一道思考题,先让学生认真读题,弄明白丝带的长度与蛋糕盒的哪几部分有关系,然后再认真思考独立解决,全班交流。
【设计意图】综合练习是课本自主练习的题目,旨在拓宽学生知识面,使学生较全面的了解生活中常见的圆柱圆锥的全面特征,使学生感受到数学与生活的紧密联系,激发学生学习的兴趣。
四、全课总结
在今天的学习中,你有哪些收获呢?
通过今天的课,大家进一步认识了圆柱和圆锥,希望同学们以后都能像这节课一样这么认真、这么仔细学好以后的知识。
五、课后作业
P18课外实践:找一找生活中哪些物体的形状是圆柱或圆锥。
想办法测量它们的底面直径和高。
填入课本上的表中。
课后反思:通过练习使学生进一步认识圆柱和圆锥的特点,进一步加深对它们区别的认识。
通过动手操作,知道圆柱的侧面展开得到一个长方形,圆锥的侧面展开是一个扇形。
发展空间观念,为下面
学习表面积和体积做准备。