八年级数学综合试题
沪科版八年级数学上册试题 期末综合测试卷(含解析)
期末综合测试卷一.选择题(共10小题,满分30分,每小题3分)1.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0)B.(1,4)C.(5,4)D.(5,0)2.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是图中的( )A.B.C.D.3.如图,在△ABC中,已知点D,E,F分别为BC,AD,EC的中点,且S=12cm2,则阴影ΔABC部分面积S=( )cm2.A.1B.2C.3D.44.如图,顺次连接同一平面内A,B,C,D四点,已知∠A=40°,∠C=20°,∠ADC=120°,若∠ABC的平分线BE经过点D,则∠ABE的度数为()A.25°B.30°C.35°D.40°5.如图,点P是∠AOB内部一点,点P′,P″分别是点P关于OA,OB的对称点,且P′P″=8cm,则△PMN的周长为()A.5cm B.6cm C.7cm D.8cm6.如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DE∥AC交AB于点E,若AB=8,则DE 的长度是()A.6B.2C.3D.47.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t 之间的函数关系如图所示.下列说法中正确的有( )①A、B两地相距120千米;②出发1小时,货车与小汽车相遇③出发1.5小时,小汽车比货车多行驶了60千米;④小汽车的速度是货车速度的2倍.A .1个B .2个C .3个D .4个8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右、向上、向右、向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n ,则△O A 3A 2022的面积是( )A .504m 2B .10092m 2C .505m 2D .10112m 29.在平面直角坐标系xOy 中,点A (0,2),B (a ,0),C (m ,n ),其中m >a ,a <1,n >0,若△ABC 是等腰直角三角形,且AB =BC ,则m 的取值范围是( )A .0<m <2B .2<m <3C .m <3D .m >310.已知:如图,在△ABC ,△ADE 中,∠BAC =∠DAE =90° ,AB =AC ,AD=AE ,点C 、D 、E 三点在同一直线上,连接BD ,BE ;以下四个结论:①BD=CE ;②∠ACE +∠DBC =45°;③BD ⊥CE ;④∠BAE +∠DAC =180° ;其中结论正确的个数有( )A .1B .2C .3D .4二.填空题(共6小题,满分18分,每小题3分)11.已知AB ∥x 轴,A 的坐标为(3,-2),并且AB=4,则点B 的坐标是____________.12.函数y =(k −1)x −3(k 是常数,k ≠1)的图象上有两个点A (x 1,y 1),B (x 2,y 2),且(x 1−x 2)(y 1−y 2)<0,则k 的取值范围为______.13.在平面直角坐标系中,点A (2,m )在直线y =−2x +1上,点A 关于y 轴对称的点B 恰好落在直线y =kx +1上,则k 的值为___.14.如图,ΔABC 中,∠ACB =90°,AC =6,BC =8.点P 从A 点出发沿A →C →B 路径向终点B点运动;点Q从B点出发沿B→C→A路径向终点A点运动.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动.在某时刻,分别过P和Q作PE⊥l 于E,QF⊥l于F.点P运动________秒时,ΔPEC与ΔQFC全等.15.如图,已知∠MON=30°,点A1,A2,A3,……在射线ON上,点B1,B2,B3,……在射线OM上,ΔA1B1A2,ΔA2B2A3,ΔA3B3A4,……均为等边三角形,若O A1=2,则ΔA6B6A7的边长为___________.16.如图,在四边形ABCD中,AC是四边形的对角线,∠CAD=30°,过点C作CE⊥AB于点E,∠B=2∠BAC,∠ACD+∠BAC=60°,若AB的长度比CD的长度多2,则BE的长为_______________.三.解答题(共9小题,满分72分)17.(6分)已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式|a+b−c|+|b−a−c|=_______.(2)若∠B=∠A+18°,∠C=∠B+18°,求△ABC的各内角度数;18.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作∠CBA的角平分线BD,交AC于点D(保留作图痕迹,不要求写作法和证明);(2)在上图中,若BD=10cm,求DC的长19.(6分)已知△ABC三个顶点坐标分别为A(2,5),B(-1,2),C(4,0),在直角坐标系中,正方形网格的单位长度为1.(1)若△ABC内部一点P(a,b),直角坐标系中有点P'(a−3,b−5),请平移△ABC,使点P与点P'重合,画出平移后的△A'B'C';(2)直接写出△A'B'C'的三个顶点的坐标;(3)求出△ABC在平移过程中扫过的面积.20.(8分)已知一次函数y 1=ax+6和y 2=﹣x+b 的图象交于点P (1,2),与坐标轴的交点分别是A 、B 、C 、D .(1)直接写出方程组{ax −y =−6y +x =b的解;(2)求△PCD 的面积;(3)请根据图象直接写出当y 1>y 2时x 的取值范围.21.(8分)如图,在△ABC 中,已知∠1=∠2,BE =CD .(1)证明:AB=AC;(2)AB=5,AE=2,求CE的长.22.(9分)A校和B校分别有库存电脑12台和6台,现决定支援给C校10台和D校8台,从A校运一台电脑到C校的运费是40元,到D校是80元;从B校运一台电脑到C校的运费是30元,到D校是50元.设A校运往C校的电脑为x台,总运费为W元.(1)写出W关于x的函数关系式;(2)从A、B两校调运电脑到C、D两校有多少种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?23.(9分)如图1,在ΔABC中,过点B作BD⊥AB,且BD=AB,连接CD.(问题原型)(1)若∠ACB=90°,且AC=BC=8,过点D作的ΔBCD的BC边上的高DE,易证△ABC≌△BDE,从而得到ΔBCD的面积为______.(变式探究)(2)如图2,若∠ACB=90°,BC=a,用含a的代数式表示△BCD的面积,并说明理由.(拓展应用)(3)如图3,若AB=AC,BC=16,则△BCD的面积为______.24.(10分)(1)如图①,在四边形ABCD中,AB=AD,∠B=∠ADC=90°. E、F分别是BC、CD 上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法:延长FD到点G,使DG=BE.连接AG.先证明△ABE≌△ADG,再证△AEF≌△AGF,可得出结论,他的结论应是.【灵活运用】(2)如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°, F、F分别是BC、CD上的点.且EF=BE+FD,上述结论是否仍然成立?请说明理由.【延伸拓展】(3)如图③,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD.若点E在CB的延长线上,点F在CD的延长线上,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.25.(10分)如图,△ABC为等边三角形,点D是△ABC外一点,连接AD,BD,CD,AB与CD 相交于点G,且∠DAC+∠DBC=180°.图1 图2(1)请求出∠ADB的度数;(2)请写出AD,BD,CD之间的数量关系,并说明理由;(3)如图2,点E为CD的中点,连接BE并延长,交AC于点F,当BF与CD的夹角∠FEC=60°时,△ABC的面积为12,直接写出△CEF的面积.答案解析一.选择题1.D【分析】根据“横坐标右移加,左移减;纵坐标上移加,下移减”的规律求解即可.【详解】解:将点P(3,2)向右平移2个单位长度得到(5,2),再向下平移2个单位长度,所得到的点坐标为(5,0).故选:D.2.C【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【详解】解:注水量一定,即随着时间的变化,水面高度变化的快慢不同,与所给容器的底面积有关.A.容器的底面积大,中,小,则函数图象的走势是平缓,稍陡,陡,故此选项不符合题意;B.容器的底面积小,大,中,则函数图象的走势是陡,平缓,稍陡,故此选项不符合题意;C.容器的底面积中,大,小,则函数图象的走势是稍陡,平缓,陡,故此选项符合题意;D.容器的底面积小,中,大,则函数图象的走势是陡,稍陡,平缓,故此选项不符合题意;故选:C.3.C【分析】根据三角形面积公式由点D为BC的中点得到SΔABD =SΔADC=12SΔABC=6,同理得到SΔEBD=SΔEDC=12SΔABD=3,则SΔBEC=6,然后再由点F为EC的中点得到SΔBEF=12SΔBEC=3.【详解】解:∵点D为BC的中点,∴SΔABD =SΔADC=12SΔABC=6,∵点E为AD的中点,∴SΔEBD =SΔEDC=12SΔABD=3,∴SΔBEC =SΔEBD+SΔEDC=6,∵点F为EC的中点,∴SΔBEF =12SΔBEC=3,即阴影部分的面积为3.故选:C.4.B【分析】首先根据三角形的外角性质得∠ADC=∠A+∠C+∠ABC,从而求出∠ABC,最后根据角平分线的定义即可解决问题.【详解】解:∵∠ADE=∠ABD+∠A,∠EDC=∠DBC+∠C,∴∠ADC=∠ADE+∠EDC=∠A+∠C+∠ABC,∴120∘=40∘+20∘+∠ABC,∴∠ABC=60∘,∵BE平分∠ABC,∴∠ABE=12∠ABC=30∘,故选:B.5.D【分析】根据点P′,P″分别是P关于OA,OB的对称点,得到PP′被OA垂直平分,PP″被OB垂直平分,根据线段垂直平分线的性质得到MP=MP′,NP=NP″,即可得出△PMN的周长.【详解】∵点P′,P″分别是P关于OA,OB的对称点,∴PP′被OA垂直平分,PP″被OB垂直平分,∴MP=MP′,NP=NP″,∴△PMN的周长=MN+MP+NP=MN+MP′+NP″=P′P″=8(cm).故选:D.6.D【分析】分别延长AC 、BD 交于点F ,根据角平分线的性质得到∠BAD=∠FAD ,证明△BAD ≌△FAD ,根据全等三角形的性质得到BD=DF ,根据平行线的性质得到BE=ED ,EA=ED ,进一步计算即可求解.【详解】解:分别延长AC 、BD 交于点F ,∵AD 平分∠BAC ,AD ⊥BD ,∴∠BAD=∠FAD ,∠ADB=∠ADF=90°,在△BAD 和△FAD 中,{∠BAD =∠FADAD =AD ∠ADB =∠ADF =90°,∴△BAD ≌△FAD (ASA ),∴∠ABD=∠F ,∵DE ∥AC ,∴∠EDB=∠F ,∠EDA=∠FAD ,∴∠ABD=∠EDB ,∠EDA=∠EAD ,∴BE=ED ,EA=ED ,∴BE=EA=ED ,∴DE=12AB=12×8=4,故选:D .7.D【分析】根据图象中t =0 时,s =120 可得A 、B 两地相距的距离,进而可判断①;根据图象中t =1 时,s =0可判断②;由图象t =1.5 和t =3的实际意义,得到货车和小汽车的速度,从而可判断④;根据路程=速度×时间分别计算出货车与小汽车出发1.5小时后的路程,进而可判断③,于是可得答案.【详解】解:由图象可知,当t=0时,货车、汽车分别在A、B两地,s=120,所以A、B两地相距120千米,故①正确;当t=1时,s=0,表示出发1小时,货车与小汽车相遇,故②正确;根据图象知,汽车行驶1.5小时达到终点A地,货车行驶3小时到达终点B地,故小汽车的速度为:120÷ 1.5=80(千米/小时),货车的速度为:120÷3=40(千米/小时),∴小汽车的速度是货车速度的2倍,故④正确;出发1.5小时货车行驶的路程为:1.5×40=60(千米),小汽车行驶1.5小时达到终点A 地,即小汽车1.5小时行驶路程为120千米,所以出发1.5小时,小汽车比货车多行驶了60千米,故③正确.∴正确的说法有①②③④四个.故选:D.8.B【分析】从O移动到A4作为一个循环,共移动了4次,水平向前移动了2m,则第2020次移动到A2020,此时移动了2020÷4=505个循环,水平向前移动了2×505=1010(m),点A2020的坐标(1010,0),则点A2022的坐标(1011,1),点A3的坐标(2,1),则A3A2022=1009(m),则△OA3A2023的底边为A3A2022,高为1m,则根据三角形面积公式就可以求得.【详解】解:从O移动到A4作为一个循环,共移动了4次,水平向前移动了2m,2023÷4=505…2,∴第2020次移动到A2020,此时移动了2020÷4=505个循环,水平向前移动了2×505=1010(m),∴点A2020的坐标(1010,0),∴点A2022的坐标(1011,1),∵点A3的坐标(2,1),则A3A2022=1009(m),∴△OA3A2022的面积是12×1×1009=10092m2,故选:B.9.B【分析】过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a ,即可求解.【详解】解:如图,过点C 作CD ⊥x 轴于D ,∵点A (0,2),∴AO =2,∵△ABC 是等腰直角三角形,且AB =BC ,∴∠ABC =90°=∠AOB =∠BDC ,∴∠ABO+∠CBD =90°∠ABO+∠BAO =90°,∴∠BAO =∠CBD ,在△AOB 和△BDC 中,{∠AOB =∠BDC∠BAO =∠CBD AB =BC,∴△AOB ≌△BDC (AAS ),∴AO =BD =2,BO =CD =n =a ,∴0<a <1,∵OD =OB+BD =2+a =m ,∴2<m <3,故选:B .10.D【分析】①由AB =AC ,AD =AE 利用等式的性质得到夹角相等,从而得出三角形ABD 与三角形ACE 全等,由全等三角形的对应边相等得到BD =CE ,本选项正确;②由三角形ABD 与三角形ACE 全等,得到一对角相等,由等腰直角三角形的性质得到∠ABD+∠DBC =45°,进而得到∠ACE +∠DBC =45° ,本选项正确;③再利用等腰直角三角形的性质及等量代换得到BD⊥CE,本选项正确;④利用周角减去两个直角可得答案;【详解】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD 即:∠BAD=∠CAE在△BAD和△CAE中{AB=AC∠BAD=∠CAEAD=AE∴△BAD≌△CAE(SAS)∴BD=CE,本选项正确;②∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°∴∠ABD+∠DBC=45°∵△BAD≌△CAE∴∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;③∵∠ABD+∠DBC=45°∴∠ACE+∠DBC=45°∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°即:BD⊥CE,本选项正确;④∵∠BAC=∠DAE=90°∴∠BAE+∠DAC=360°−90°−90°=180°,本此选项正确;故选:D.二.填空题11.(-1,-2)或(7,-2)##(7,-2)或(-1,-2)【分析】根据点B与点A的位置关系分类讨论,分别求解即可.【详解】解:∵AB∥x轴,A的坐标为(3,−2),并且AB=4,∴点B的纵坐标为−2,若点B在点A的左侧,则点B的坐标为(3-4,-2)=(-1,-2)若点B在点A的右侧,则点B的坐标为(3+4,-2)=(7,-2)故答案为:(-1,-2)或(7,-2).12.k<1【分析】先根据(x1−x2)(y1−y2)<0可得出{x1−x2>0y1−y2<0或{x1−x2<0y1−y2>0两种情况讨论求解即可.【详解】解:∵点A(x1,y1),B(x2,y2)在函数y=(k−1)x−3(k是常数,k≠1)的图象上,且(x1−x2)(y1−y2)<0,∴{x1−x2>0 y1−y2<0或{x1−x2<0 y1−y2>0∴函数值y随x的增大而减小,∴k−1<0解得,k<1故答案为:k<113.2【分析】根据直线y=−2x+1的解析式求出m,再求出点A关于y轴的对称点,再将对称点带入y=kx+1求出k.【详解】解:点A(2,m)在直线y=−2x+1上,∴m=−3,点 A(2,-3)关于y轴对称的点为(-2,-3),∴−3=−2k+1,∴k=2,故答案为:2.14.1或3.5或12【分析】根据题意分为五种情况,根据全等三角形的性质得出CP=CQ,代入得出关于t的方程,解方程即可.【详解】解:分为五种情况:①如图1,P在AC上,Q在BC上,则PC=6−t,QC=8−3t,∵PE⊥l,QF⊥l,∴∠PEC=∠QFC=90°,∵∠ACB=90°,∴∠EPC+∠PCE=90°,∠PCE+∠QCF=90°,∴∠EPC=∠QCF,∵ΔPCE≅ΔCQF,∴PC=CQ,即6−t=8−3t,t=1;②如图2,P在BC上,Q在AC上,则PC=t−6,QC=3t−8,∵由①知:PC=CQ,∴t−6=3t−8,t=1;t−6<0,即此种情况不符合题意;③当P、Q都在AC上时,如图3,CP=6−t=3t−8,t= 3.5;④当Q到A点停止,P在BC上时,如图4,AC=PC,t−6=6时,解得t=12.⑤P和Q都在BC上的情况不存在,因为P的速度是每秒1,Q的速度是每秒3;答:点P运动1或3.5或12秒时,以P、E、C为顶点的三角形上以O、F、C为顶点的三角形全等.故答案为:1或3.5或12.15.64【分析】由等边三角形的性质得到∠BA1A2=60°,A1B1=A1A2,再由三角形外角的性质求1出∠AB1O=30°,则A1B1=A1A2=O A1,同理得A2B2=A2A3=O A2=2O A1,A3B3=A3A4= 122⋅O A1,A4B4=A4A5=23⋅O A1,由此得出规律A n B n=A n A n+1=2n-1⋅O A1=2n,即可求解.【详解】解:∵ΔAB1A2为等边三角形,1∴∠BA1A2=60°,A1B1=A1A2,1∴∠AB1O=∠B1A1A2-∠MON=60°-30°=30°,1∴∠AB1O=∠MON,1∴AB1=O A1,1∴AB1=A1A2=O A1,1同理可得AB2=A2A3=O A2=2O A1,2∴AB3=A3A4=O A3=2O A2=22⋅O A1,3A4B4=A4A5=O A4=2O A3=23⋅O A1,…∴AB n=A n A n+1=2n-1⋅O A1=2n,n∴ΔAB6A7的边长:A6B6=26=64,6故答案为:64.16.1【分析】在AE上截取EF=BE,连接CF,则CE垂直平分BF,结合题意推出AF=CF,过点F作FM ⊥AC,交AC于点M,过点C作CN⊥AD,交AD的延长线于点N,则有∠AMF=∠N=90°,AC=2AM,进而得出AM=CN,根据题意及三角形外角性质推出∠MAF=∠NCD,利用ASA判定△AFM ≌△CDN,根据全等三角形的性质得到AF=CD,结合题意即可得解.【详解】解:在AE上截取EF=BE,连接CF,∵CE⊥AB,∴CE垂直平分BF,∴BC=FC,∴∠B=∠BFC,∵∠B=2∠BAC,∴∠BFC=2∠BAC,∵∠BFC=∠BAC+∠ACF,∴∠ACF=∠BAC ,∴AF=CF ,过点F 作FM ⊥AC ,交AC 于点M ,过点C 作CN ⊥AD ,交AD 的延长线于点N ,则有∠AMF=∠N=90°,AC=2AM ,∵∠CAD=30°,∠N=90°,∴AC=2CN ,∴AM=CN ,∵∠ACD+∠BAC=60°,∴∠ACD=60°-∠BAC ,∴∠CDN=∠ACD+∠CAD=60°-∠BAC+30°=90°-∠BAC ,∴∠NCD=90°-∠CDN=90°-(90°-∠BAC )=∠BAC ,∴∠MAF=∠NCD ,在△AFM 和△CDN 中,{∠MAF =∠NCDAM =CN ∠AMF =∠N,∴△AFM ≌△CDN (ASA ),∴AF=CD ,∵AB 的长度比CD 的长度多2,∴AB- CD=AB- AF=2BE=2,∴BE=1,故答案为:1.三.解答题17.(1)解:∵在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,∴a +b >c ,b −a <c ,∴a +b −c >0,b −a −c <0,∴|a +b −c|+|b −a −c|=a +b −c −(b −a −c )=a +b −c −b +a +c=2a,故答案为:2a;(2)解:∵∠B=∠A+18°,∠C=∠B+18°,∴∠C=∠A+18°+18°=∠A+36°,∵∠A+∠B+∠C=180°,∴∠A+∠A+18°+∠A+36°=180°,解得∠A=42°,故∠B=42°+18°=60°,∠C=60°+18°=78°,故△ABC的各内角度数分别为42°,60°,78°.18.(1)如图所示:(2)∵△ABC中,∠C=90°,∠A=30°∴∠ABC=90°-∠A=90°-30°=60°∵BD平分∠ABC∴∠DBC=12×60∘=30∘∵△DBC中,∠C=90°,∠CBD=30°∴CD=12BD=12×10=5cm答:CD长5cm19.(1)解:由题意可知,只需要将点A、B、C的坐标分别向左平移3个单位长度,向下平移5个单位长度,画出图形即可,△A'B'C'如图所示:(2)解:坐标内同一个图形中点的坐标的平移方式一致,故A'(−1,0),B'(−4,−3),C'(1,−5)(3)解:如图,△ABC在平移过程中扫过的面积为△ABC的面积与四边形B B'C'C的面积和,即8×10−2×12×3×5−12×2×5−3×3−12×3×3−12×2×5=41.5,即△ABC在平移过程中扫过的面积为41.520.(1)解:∵一次函数y1=ax+6和y2=﹣x+b的图象交于点P(1,2),∴方程组{ax −y =−6y +x =b 的解为{x =1y =2;(2)∵一次函数y 1=ax+6和y 2=﹣x+b 的图象交于点P (1,2),∴{a+6=2−1+b =2 ,解得{a =−4b =3 ,∴y 1=﹣4x+6,y 2=﹣x+3,当y =0时,0=﹣4x +6,解得x =32,当y =0时,0=﹣x+3,解得x =3,∴C (32,0),D (3,0),∴CD =32,∴S △PCD =12×32×2=32.即△PCD 的面积为32;(3)根据图象可知当在P 点左边时y 1>y 2,∴y 1>y 2时x 的取值范围为x <1.21.(1)证明:在△ABE 和△ACD 中,∵{∠A =∠A∠1=∠2BE =CD,∴△ABE ≌△ACD ,∴AB =AC .(2)解:∵△ABE ≌△ACD ,∴AB =AC ,∵AB =5,AE =2,∴CE =AC -AE =5-2=3.22.(1)解:设A校运往C校的电脑为x台,则A校运往D校的电脑为(12−x)台,从B校运往C校的电脑为(10−x)台,运往D校的电脑为8−(12−x)=(x−4)台,由题意得,W=40x+80(12−x)+30(10−x)+50(x−4),=−20x+1060,由{12−x≥010−x≥0x−4≥0解得4≤x≤10,所以,W=1060−20x(4≤x≤10);(2)∵4≤x≤10∴0≤x−4≤6共有7种调运方案,即B到D的可以是0,1,2,3,4,5,6这7种情况.(3)∵k=−20<0,∴W随x的增大而减小,∴当x=10时,W最小,最小值为:−20×10+1060=860元.答:总运费最低方案:A校给C校10台,给D校2台,B校给C校0台,给D校6台,最低运费是860元.23.解:(1)∵在△ABC中,∠ACB=90°,过点B作BD⊥AB且过点D作的△BCD的BC边上的高DE,∴∠DEB=∠ACB =∠ABD =90°∴∠ABC+∠DBE =90°∵∠DBE+∠BDE =90°∴∠ABC =∠BDE .在Rt △ABC 与Rt △BDE 中,{∠ACB =∠DEB ∠ABC =∠BDE AB =BD ∴Rt △ABC ≌Rt △BDE(AAS),DE =CB =8∴S ΔBCD =12CB ⋅DE =12×8×8=32故答案为:32(2)S ΔBCD =12a 2理由:过点D 作DE ⊥CB 延长线于点E ∴∠DEB=∠ACB =90°∵BD ⊥AB ,∠1+∠2=90°∵∠2+∠A =90°∴∠A =∠1.在Rt △ABC 与Rt △BDE 中,{∠ACB =∠DEB ∠A =∠1AB =BD ∴Rt △ABC ≌Rt △BDE(AAS),DE =CB =a ∴S ΔBCD =12CB ⋅DE =12a 2(3)如图3中,∵AB =AC∴BF =12BC =12×8=4.过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E,∴∠AFB=∠E =90°,∴∠FAB+∠ABF =90°.∵∠ABD=90°,∴∠ABF+∠DBE =90°,∴∠FAB =∠EBD .在△AFB 和△BED 中,{∠AFB =∠E∠FAB =∠EBD AB =BD,∴△AFB ≌△BED(AAS),∴BF =DE =4.∵S △BCD =12BC ⋅DE ,∴S △BCD =12×8×4=16∴△BCD 的面积为16.故答案为:1624.解:(1)∠BAE+∠FAD=∠EAF .理由:如图1,延长FD 到点G ,使DG=BE ,连接AG,∵∠B=∠ADF=90°,∠ADG=∠ADF=90°,∴∠B=∠ADG=90°,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;故答案为:∠BAE+∠FAD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°−1∠DAB.2证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=180°−1∠DAB.225.(1)解:∵四边形ACBD,∴∠DAC+∠DBC+∠ADB+∠ACB=360°.∵△ABC为等边三角形,∴∠ACB=60°.又∵∠DAC +∠DBC =180°,∴∠ADB =120°.(2)AD +BD =CD ,理由如下:如图,延长BD 至点H ,使得DH =AD ,连接AH .∵由(1)可知∠ADB =120°,∴∠ADH =60°.又∵DH =AD ,∴△ADH 为等边三角形.∴∠HAD =60°.AD =AH =DH .∵△ABC 为等边三边形,∴∠HAD +∠DAB =∠BAC +∠DAB .即∠HAB =∠DAC .在△HAB 与△DAC 中,{AH =AD ∠HAB =∠DAC AB =AC ∴△HAB ≅△DAC(SAS),∴CD =BH .又∵BH =BD +DH =BD +AD ,∴AD +BD =CD .(3)由(1)可知∠ABD=∠ACG,∵∠DGB=∠AGC,∴∠BDG=∠CAG=60°,∵∠CEF=∠BED=60°,∴△BDE是等边三角形,∴BE=DE,∵DE=EC,∴BE=EC,∵∠BEC=120°,∴∠EBC=∠ECB=30°,∵∠ABC=∠ACB=60°,∴∠ABF=∠CBF=30°,∠ACE=∠BCE=30°,∵BA=BC,∴BF⊥AC,AF=CF,∴EC=2EF,∴BE=2EF,∵△ABC 的面积为12,∴S△CEF =13S△BCF=16S△ABC=2.。
八年级下数学综合试题(中考精选,带详解)
一.选择题(共15小题)1.一个正方形的对角线长为2cm,则它的面积是()A.2cm2B.4cm2C.6cm2D.8cm22.如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动到点A停止,设点P运动路程为x,△ABP 的面积为y,如果y关于x的函数图象如图(2)所示,则矩形ABCD的面积是()A. 10 B. 16 C. 20 D. 363.若方程x2﹣5x=0的一个根是a,则a2﹣5a+2的值为()A.﹣2 B. 0 C. 2 D. 44.(2010•鞍山)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x<k1x+b的解集为()A. x<﹣1 B. x>﹣1 C. x>2 D. x<25.(2009•烟台)如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b <0的解集为()A. x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<06.(2009•遂宁)已知整数x满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,则m 的最大值是()A. 1 B. 2 C. 24 D.﹣97.(2007•玉溪)下列图形中阴影部分面积相等的是()A.①②B.②③C.①④D.③④8.(2012•孝感)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2其中正确的结论有()A. 1个B. 2个C. 3个D. 4个9.(2012•天津)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE 为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.10.(2012•沈阳)正方形内有一点A,到各边的距离从小到大依次是1、2、3、4,则正方形的周长是() A. 10 B. 20 C. 24 D. 2511.(2012•陕西)如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A. 75°B. 65°C. 55°D. 50°12.(2012•黄冈)若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形13.(2012•襄阳)如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠014.(2011•随州)下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A. 0个B. 1个C. 2个D. 3个15.(2011•天津)下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定二.解答填空题(共1小题)16.如图,在等腰梯形ABCD中,AD∥BC,∠B=45°,AD=6,AB=,点E在BC的延长线上,∠E=30°,则BE的长为_________.三.解答题(共14小题)17.(2011•厦门)已知关于x的方程x2﹣2x﹣2n=0有两个不相等的实数根.(1)求n的取值范围;(2)若n<5,且方程的两个实数根都是整数,求n的值.18.(2012•珠海)如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.19.(2012•湛江)如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A 的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?20.如图①,在平面直角坐标系中,已知△ABC是等边三角形,点B的坐标为(12,0),动点P在线段AB上从点A向点B以每秒个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在x轴上.(1)当t为何值时,点M与点O重合;(2)求点P坐标和等边△PMN的边长(用t的代数式表示);(3)如果取OB的中点D,以OD为边在△AOB内部作如图②所示的矩形ODEF,点E在线段AB上.设等边△PMN 和矩形ODEF重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.21.已知:如图,在△ABC中,∠BAD=∠ACB,∠ABC的平分线交AD于E,AE=CF,连接EF.求证:BC=AB+EF.22.已知:如图,在正方形ABCD中,E、F分别是BC、DC边上的点,且AE⊥EF于点E.(1)延长EF交正方形ABCD的外角平分线CP于点P,试判断AE与EP的大小关系,并说明理由;(2)在AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.23.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为_________,线段CF、BD的数量关系为_________;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.24.如图,平行四边形ABCD中,点E、F在对角线AC上,且AE=CF.请以F为一个端点和图中已标有的字母的某一点连成一线段,猜想并证明它和图中已有的某一条线段相等.25.(2008•重庆)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.26.(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.27.(2010•顺义区)如图,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=60°,AD=4,BC=6,求AB的长.28.(2010•顺义区)如图,直线l1:y=kx+b平行于直线y=x﹣1,且与直线l2:相交于点P(﹣1,0).(1)求直线l1、l2的解析式;(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B n,A n,…①求点B1,B2,A1,A2的坐标;②请你通过归纳得出点A n、B n的坐标;并求当动点C到达A n处时,运动的总路径的长?29.(2011•张家界)阅读材料:如果x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么,,.这就是著名的韦达定理.现在我们利用韦达定理解决问题:已知m与n是方程2x2﹣6x+3=0的两根(1)填空:m+n=_________,m•n=_________;(2)计算的值.30.(2011•十堰)请阅读下列材料:问题:已知方程x2+x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x所以x=.把x=代入已知方程,得()2+﹣1=0化简,得y2+2y﹣4=0故所求方程为y2+2y﹣4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式):(1)已知方程x2+x﹣2=0,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为:_________;(2)己知关于x的一元二次方程ax2+bx+c=0有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数.答案与评分标准一.选择题(共15小题)1.一个正方形的对角线长为2cm,则它的面积是()A.2cm2B.4cm2C.6cm2D.8cm2考点:正方形的性质。
沪科版数学八年级上学期全册综合测试试卷(含答案)
沪科版数学八年级上学期全册综合测试试卷(含答案)八年级数学试题时间:120分钟满分150分一、选择题(本题共10小题,每小题4分,满分40分)1.在平面直角坐标系中,点P(-1,4)一定在()A.第一象限B.第二象限 C.第三象限 D.第四象限2.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为() A.(-4,3) B.(-3,-4) C.(-3,4)D.(3,-4)3.一次函数y=﹣2x ﹣3不经过()%A .第一象限 B. 第二象限 C. 第三象限 D. 第四象限4.下列图形中,为轴对称图形的是()5.函数y=21x 的自变量x 的取值范围是() ]A .x ≠2 B. x <2 C. x ≥2 D. x >26在△ABC 中,∠A ﹦31∠B ﹦51∠C ,则△ABC 是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定7.如果一次函数y ﹦kx ﹢b 的图象经过第一象限,且与y 轴负半轴相交,那么() A. k ﹥0,b ﹥0 B. k ﹥0,b ﹤0 C. k ﹤0,b ﹥0D. k ﹤0, b ﹤08.如图,直线y ﹦kx ﹢b 交坐标轴于A ,B 两点,则不等式kx ﹢b ﹥0的解集是() A. x ﹥-2 B. x ﹥3 C. x ﹤-2 D. x ﹤3)9.如图所示,OD=OB,AD∥BC,则全等三角形有()A. 2对B. 3对C. 4对D. 5对|10. 两个一次函数y=-x+5和y=﹣2x+8的图象的交点坐标是()A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)二、填空题(本题共4小题,每小题5分,满分20分)11.通过平移把点A(2,-1)移到点A’(2,2),按同样的平移方式,点B(-3,1)移动到点B’,则点B’的坐标是.12.如图所示,将两根钢条A A’、B B’的中点O连在一起,使A A’、B B’可以绕着点O自由转动,就做成了一个测量工具,则A’ B’的长等于内槽宽AB,那么判定△OAB≌△OA’ B’的理由是.13.某地雪灾发生之后,灾区急需帐篷。
八年级数学上册第十三章《轴对称》综合测试题-人教版(含答案)
八年级数学上册第十三章《轴对称》综合测试题-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。
八年级数学试卷
八年级数学试卷篇一:八年级数学综合测试题数学测试题(九)班级:姓名:分数:一、选择题:(每小题5分,共30分)1.若代数式某1某某21某3有意义,则某的取值范围是()A、某2B、某2且某3C、某3D、某2,某3且某12.化简(某242某某24某4某2)某某2,其结果是()A、8某2B、8某2C、8某2D、8某23.已知函数yk某中,某0时,y随某的增大而增大,则yk某k的大致图象是()4.已知ABC中,AB=17,AC=10,BC边上的高AD为8,则边BC的长为()A、21B、15C、6D、21或95.如图,自矩形ABCD的顶点C作CEBD,E为垂足,延长EC至F,使CF=BD,连接AF,则BAF的大小是()A、30oB、45oC、48oD、60o5题图6题图6.在梯形ABCD中,AD//BC,B与C互余,E、F分别是AD、BC的中点,AD=EF=1,则BC的长为()A、2B、3C、4D、5二、填空题(每小题5分,共30分)7.若某1某4,则某2某4某28.已知abc1,则aaba1bbcb1ccac19.关于某的分式方程m某12某13某21CD=23,AB=2,BC=33,则四边形ABCD的周长为三、解答题:(每小题10分,共60分)13.已知某y某y2,某z某z3,yzyz4,求某yyzz某的值。
14.已知非负数a、b、c满足a3b2c3与3a3bc4,k3a2b4c,指出y(k1)某k7的图象所在的象限。
15.求某24某216某80的最小值。
16.如图,在□ABCD中,BC=2AB,AE=AB=BF,且点E、F在直线AB 上。
求证:CEDF。
17.如图,已知五边形ABCDE中,ABC=AED=90o,BAC=EAD,F是CD 的中点。
求证:BF=EF。
18.如图,在梯形ABCD中,AB//DC,DC=2AB=2AD,BD=6,BC=4。
求梯形ABCD的面积。
数学测试题(一)班级____________姓名____________分数__________一、选择题(每小题5分,共30分)1.计算4某62某42某42某3某1的结果是()A、5某2B、5某2C、5某4D、5某42.关于某3的不同实数解共有()A、1个B、2个C、3个D、无数个3.若m,n,p都是大于1的自然数,且mp12348n,则m的最小值为()A、24B、42C、294D、74.如图,ABC中,ADBC于D,BEAC于E,AD与BE相交于点F,若BF=AC,则ABC的大小为()A、40B、45C、50D、605.已知点(m,n)在第二象限,则直线ym某n不经过()CA、第一象限B、第二象限C、第三象限D、第四象限6.设某,y,z都为实数,且某yz,a某2yz,by2某z,cz2某y,则对a,b,c的判断正确的是()A、都大于或等于0B、都不大于0C、至少有一个大于0D、至少有一个小于0二、填空题(每小题5分,共30分)7.772022882022的个位数是______________。
人教版八年级数学第一学期期末综合复习测试题(含答案)
人教版八年级数学第一学期期末综合复习测试题(含答案)一.选择题(共12小题,满分36分)1.以下是清华大学、北京大学、上海交通大学、浙江大学的校徽,其中是轴对称图形的是()A.B.C.D.2.目前发现的新冠病毒其直径约为0.00012毫米,则这个数字用科学记数法表示正确的是()A.1.2×104B.1.2×10﹣4C.0.12×105D.0.12×10﹣5 3.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n的值为()A.﹣1B.﹣7C.1D.74.若3和9是一个三角形的两边长,且第三边长为偶数,则该三角形的周长为()A.20B.21C.21或22D.20或225.如果一个正多边形的每一个内角是144°,则这个多边形是()A.正十边形B.正九边形C.正八边形D.正七边形6.已知等腰三角形一腰上的高线与另一腰的夹角为40°,那么这个等腰三角形的顶角等于()A.50°或130°B.130°C.80°D.50°或80°7.下列各式正确的是()A.B.C.D.8.下列计算正确的是()A.a m a n=a mn B.(﹣a2)3=a6C.(a﹣1)2=D.a3÷2a=2a29.现有甲、乙、丙三种不同的长方形纸片若干张(边长如图).小明要用这三种纸片紧密拼接成一个没有缝隙的大正方形,他选取甲纸片1张,再取乙纸片4张,还需要取丙纸片的张数为()A.1B.2C.3D.410.甲乙两个码头相距s千米,某船在静水中的速度为a千米/时,水流速度为b千米/时,则船一次往返两个码头所需的时间为()小时.A.B.C.D.+11.如图所示,在直角三角形ABC中,已知∠ACB=90°,点E是AB的中点,且DE⊥AB,DE交AC的延长线于点D、交BC于点F,若∠D=30°,EF=2,则DF的长是()A.5B.4C.3D.212.已知△ABC是边长为10的等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交BC的延长线于F.若AE=4BE,则CF的长为()A.1B.2C.3D.4二.填空题(共6小题,满分18分)13.当x=时,分式无意义.14.如图,自行车是人们日常代步的工具.你发现了没有,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的.15.分解因式:2x2﹣8x+8=.16.已知:a﹣b=1,a2+b2=25,则(a+b)2的值为.17.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了赶在雨季前竣工,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划工作时每天绿化的面积为x万平方米,根据题意列方程得.18.已知一张三角形纸片ABC(如图甲),其中AB=AC=10,BC=6.将纸片沿DE折叠,使点A与点B重合(如图乙)时,CE=a;再将纸片沿EF折叠,使得点C恰好与BE边上的G点重合,折痕为EF(如图丙),则△BFG的周长为(用含a的式子表示).三.解答题(共8小题,满分66分)19.计算:(1)(﹣a3)2•(ab)2.(2)(﹣0.25)2020×42021.20.先化简再求值,选择一个你喜欢的x的值代入其中并求值.21.如图,在△ABC中,AB=AC.(1)用尺规完成以下基本作图:作△ABC的边AB的垂直平分线DE,交AB于点D,交AC于点E,连接BE;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若∠A=40°,求∠CBE的度数.22.如图,CE⊥AB,BD⊥AC,垂足分别为E、D,CE,BD相交于O.(1)若∠1=∠2,求证:OB=OC;(2)若OB=OC,求证:∠1=∠2.23.受疫情影响,洗手液需求量猛增,某商场用4000元购进一批洗手液后,供不应求,商场用8800元购进第二批这种洗手液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批洗手液的单价;(2)商场销售这种洗手液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?24.等面积法是一种常用的、重要的数学解题方法.(1)如图1,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB=5,CD⊥AB,则CD长为;(2)如图2,在△ABC中,AB=4,BC=2,则△ABC的高CD与AE的比是;(3)如图3,在△ABC中,∠C=90°(∠A<∠ABC),点D,P分别在边AB,AC上,且BP=AP,DE⊥BP,DF⊥AP,垂足分别为点E,F.若BC=5,求DE+DF的值.25.阅读材料:若满足(8﹣x)(x﹣6)=﹣3,求(8﹣x)2+(x﹣6)2的值.解:设8﹣x=a,x﹣6=b,则(8﹣x)(x﹣6)=ab=﹣3,a+b=8﹣x+x﹣6=2.所以(8﹣x)2+(x﹣6)2=a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10.请仿照上例解决下面的问题:(1)问题发现:若x满足(3﹣x)(x﹣2)=﹣10,求(3﹣x)2+(x﹣2)2的值;(2)类比探究:若x满足(2022﹣x)2+(2021﹣x)2=2020.求(2022﹣x)(2021﹣x)的值;(3)拓展延伸:如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).26.已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB 上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,①求证:AF=AE+AD;②求证:AD∥BC.(2)如图2,若AD=AB,那么线段AF,AE,BC之间存在怎样的数量关系.参考答案一.选择题(共12小题,满分36分)1.B.2.B.3.A.4.D.5.A.6.A.7.D.8.C.9.D.10.D.11.B.12.C.二.填空题(共6小题,满分18分)13.﹣3.14.稳定性.15.2(x﹣2)2.16.49.17.﹣=30.18.16﹣2a.三.解答题(共8小题,满分66分)19.解:(1)(﹣a3)2•(ab)2=a6•a2b2=a8b2.(2)(﹣0.25)2020×42021=(﹣)2020×42020×4=(﹣×4)2020×4=1×4=4.20.解:原式=[﹣]÷=()•=•=,由题意得:x≠±1,当x=2时,原式==1.21.解:(1)如图所示.(2)∵AB=AC,∴∠ABC=∠ACB,∵∠A=40°,∴∠ABC=∠ACB=70°,∵DE为线段AB的垂直平分线,∴∠A=∠ABE=40°,∴∠CBE=∠ABC﹣∠ABE=70°﹣40°=30°.22.证明:如图所示:(1)∵CE⊥AB,BD⊥AC,∴∠BEO=∠CDO=90°,又∵∠EOB=∠DOC,∠BEO+∠EOB+∠B=180°,∠CDO+∠DOC+∠C=180°,∴∠B=∠C.在△ABO和△ACO中,,∴△ABO≌△ACO(AAS),∴OB=OC.(2)∵CE⊥AB,BD⊥AC,∴∠OEB=∠ODC=90°,在△BOE和△COD中,,∴△BOE≌△COD(AAS),∴OE=OD,∴AO是∠BAC的角平分线,∴∠1=∠2.23.解:(1)设该商场购进的第一批洗手液的单价为x元/瓶,依题意得:2×=,解得:x=10,经检验,x=10是原方程的解,且符合题意,答:该商场购进的第一批洗手液的单价为10元;(2)共获利:(+﹣200)×13+200×13×0.9﹣(4000+8800)=2540(元).答:在这两笔生意中商场共获得2540元.24.解:(1)如图1中,∵CD⊥AB,∴S△ABC=•AC•BC=•AB•CD,∴CD==;故答案为:;(2)如图2中,∵S△ABC=AB•CD=BC•AE∴,∴2CD=AE,∴CD:AE=1:2;故答案为:1:2;(3)∵S△ABP=,,,∵S△ABP=S△ADP+S△BDP,∴,又∵BP=AP,∴,即DE+DF=BC=5.25.解:(1)设3﹣x=a,x﹣2=b,则a+b=(3﹣x)+(x﹣2)=1,由完全平方公式可得a2+b2=(a+b)2﹣2ab=12﹣2×(﹣10)=21,即:(3﹣x)2+(x﹣2)2的值为21;(2)设2022﹣x=a,2021﹣x=b,则a﹣b=1,a2+b2=2020,由完全平方公式可得ab==,即:(2022﹣x)(2021﹣x)的值为;(3)设DE=a,DG=b,则a=x﹣10,b=x﹣20,a﹣b=10,又由ab=200,∴正方形MFNP的面积为:(a+b)2=(a﹣b)2+4ab=102+4×200=900.26.证明:(1)①∵∠BAC=∠EDF=60°,AB=AC,DE=DF,∴△ABC,△DEF为等边三角形,∴BC=AC,CE=CD,∠BCE+∠ACE=∠DCA+∠ECA=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BCE≌△ACD(SAS),∴AD=BE,∴AE+AD=AE+BE=AB=AF,即AF=AE+AD;②∵△BCE≌△ACD,∴∠DAC=∠EBC,∵△ABC为等边三角形,∴∠EBC=∠EAC=∠DAC=60°,∴∠EBC+∠EAC+∠DAC=180°,∴AD∥BC;(2)如图2,在F A上截取FM=AE,连接DM,∵∠BAC=∠EDF,∠ANE=∠DNF,∴∠AED=∠MFD,在△AED和△MFD中,∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF,∴∠ADM=∠BAC,在△ABC和△DAM中,∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.即AF=AE+BC。
八年级下册数学期末综合测试4
八年级下册数学期末综合测试题4一、选择题(每小题3分,共36分)1.函数中自变量的取值范围是( )A. B.C.D. 2.下列计算正确的是( )A.B.C.D.3.已知△ABC 的三边分别是a 、b 、c ,下列条件中不能判断△ABC 为直角三角形的是( )A .∠A:∠B :∠C =3:2:1B .∠A +∠B =∠C C.a =l ,b =3,c =D .a :b :c =1:2:34.若A(1, )与点B(3,)都在直线上,则与的关系是( )A.B.C.D.与有关,无法确定5.已知点A (x 1,y1)、B (x 2,y 2)在直线y=kx +b (k ≠0)上,当x 1<x 2时,y 1>y 2,且kb>0,则直线y =kx +b (k ≠0)的图象大致是( )A .B .C .D .6.如果一组数据x 1,x 2,…,x n 的平均数为,方差为s 2,则数据x 1﹣a ,x 2﹣a ,…,x n ﹣a 的平均数和方差分别是( )A .,s 2B .,s 2﹣aC .,s 2﹣a 2D .,s 27.如图,两根木条钉成一个角形框架∠AOB ,且∠AOB =120°,AO =BO =2cm ,将一根橡皮筋两端固定在点A ,B 处,拉展成线段AB ,在平面内,拉动橡皮筋上的一点C ,当四边形OACB 是菱形时,橡皮筋再次被拉长了( )A .2cmB .4cmC .(4﹣4)cm D .(4﹣2)cm8.如图,△ABC 中,∠B=45°,BC=,D 是边AB 上靠近点B 的三等分点,∠ADC=∠A ,则CD 的长为( )A.2B.9.如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,连接EF 、FG 、GH 、HE. 若EH=3EF ,则下列结论正确的是( )A. B. C. D. BB13y x =-x 2x ≤3x =2x <23x x ≥≠且326()a a -=326a a a ⋅=a ==m n yb =+m n m n >m n <m n =b 52AB =AB =3AB EF =AB =10. 如图,点O 是矩形ABCD 的对角线BD 的中点,点E 为AD 的中点,连接OE 、OC 、CE ,若BC =12,CD =5,则△COE 的周长为( )A .12B .9+C .21D .9+11.如图,正方形ABCD 的对角线相交于点O ,点O 又是正方形A 1B 1C 1O 的一个顶点而且这两个正方形的边长相等,给出如下四个结论:①∠OEF =45°;②正方形A 1B 1C 1O 绕点O 旋转时,四边形OEBF 面积随EF 的长度变化而变化;③△BEF 周长的最小值为OA ;④AE 2+CF 2=2OB 2.其中所有正确的个数有( )A .1个B.2个C.3个D.4个12.如图①,在正方形ABCD 中,点E 是AB 的中点,点P 是对角线AC 上一动点,设PC =x ,PE +PB =y ,图②是y 关于x 的函数图象,且图象上最低点Q 的坐标为(,2),则正方形ABCD 的边( )A .6B .3C .4D .4二、填空题(每小题3分,共18分)13. 要使n 和都是正整数,则n 最小为 .14.学校举行演讲比赛,共有15名同学进入决赛,比赛将评出金奖1名,银奖3名,铜奖4名.某参赛选手知道自己的分数后,要判断自己能否获奖,他应当关注的有关成绩的统计量是 (填“平均数”、“中位数”或“众数”).15.平行四边形ABCD 绕点A 逆时针旋转30°,得到平行四边形AB 'C 'D '(点B '与点B 是对应点,点C '与点C 是对应点,点D '与点D 是对应点),点B '恰好落在BC 边上,B 'C '与CD 交于点E ,则∠CEB '= .16.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a =5,b =8,则该矩形的面积为_______.17.如图,在矩形ABCD 中,M 为BC 边上一点,连接AM ,过点D 作DE ⊥AM ,垂足为E .若DE =DC =1,AE =2EM ,则BM 的长为 .18.如图,直线y =﹣x +2与x 轴交于A ,与y 轴交于B ,点P 在经过点B 的直线y =x +b 上,当△PAB 是等腰直角三角形时,点P 的坐标是 .三、填空题(共46分)19.计算题: 20. 在“书香绵州•美丽绵阳”全民阅读的团体朗诵比赛活动中,甲、乙两队参赛者(各10人)的身高(单位:cm )如下表所示:甲168167170165169166171168167170乙165166169170165169170171169166(1)补充完成下面的统计分析表:身高代表队平均数方差中位数极差甲168 1686乙1684.6(2)在初赛成绩一样的情况下,如果要在甲、乙两队中选取身高更整齐的代表以参加决赛、请选一个恰当的统计量作为选择标准,说明选派哪支代表队更合适,21. 如图,在边长为6的正方形ABCD 内作∠EAF =45°,AE 交BC 于点E ,AF 交CD 于点F,连接EF ,将△ADF 绕点A 顺时针旋转90°得到△ABG .(1)求证:GE =FE ;(2)若DF =3,求BE 的长.22. 为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往A 地240吨,B 地260吨,运费如下表(单位:元/吨).目的地生产厂AB甲2025乙15241(1)(1)π--+21)+-(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元.求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5200元.求m的最小值.23.如图,已知菱形ABCD中,E是BC边上一动点,连接AE交BD于点F,连接FC.(1)如图1,求证:∠FAD=∠FCD;(2)如图2,若AB=10,BD=16,当△CEF为直角三角形时,求EC的长.24.如图,矩形OABC在直角坐标系中,顶点B的坐标为(4,n)对角线OB,AC交于D.直线y=nx﹣n分别与OA,AC,OB交于P,M,N.(1)求DP的长.(用含n的式子表示.)(2)M是否为线段PN的中点?请说明理由.(3)当CN=2MN时,求n的值.。
初二数学综合练习题及答案
初二数学综合练习题及答案1. 以分数的形式写出下列小数:a. 0.6b. 0.25c. 0.75d. 0.125答案:a. 6/10b. 25/100c. 75/100d. 125/10002. 两数的和是30,差是14,求这两个数。
答案:设其中一个数为x,根据题意可得:x + (x - 14) = 302x - 14 = 302x = 30 + 142x = 44x = 22所以这两个数分别为22和8。
3. 甲、乙两人一起修一段铁轨,甲单独修完需要4天,乙单独修完需要6天。
如果两人一起修,他们需要多少天才能完成?答案:甲单独修完的工作效率是1/4,乙单独修完的工作效率是1/6,设两人一起修完的时间为x天,则他们一起的工作效率是1/x。
根据题意可得:1/4 + 1/6 = 1/x3/12 + 2/12 = 1/x5/12 = 1/x将等式两边取倒数,得:12/5 = x/1x = 12/5x = 2.4所以,甲乙两人一起修完需要2.4天。
4. 小明有5张红色的卡片,6张黄色的卡片,他从两堆卡片中分别取出一张,那么取出的两张卡片中至少有一张红色卡的概率是多少?共有5 + 6 = 11张卡片,从中任意取出两张的情况总数为C(11, 2) = 55。
取出的两张卡片中,至少有一张红色卡的情况总数为:只有一张红色卡的情况:5 * 6 = 30两张卡片都是红色卡的情况:5 * 4 = 20所以,取出的两张卡片中至少有一张红色卡的概率为(30 + 20)/55 = 50/55 = 10/11。
5. 甲、乙两数之和是65,差是15,求甲、乙两数分别是多少。
答案:设甲、乙两数分别为x和y,根据题意可得:x + y = 65x - y = 15将第二个等式两边同时加上y,得:x = y + 15将上面的表达式代入第一个等式中,得:(y + 15) + y = 652y + 15 = 652y = 65 - 152y = 50y = 50/2y = 25将y的值代入第一个等式中,得:x + 25 = 65x = 65 - 25x = 40所以,甲、乙两数分别为40和25。
人教版八年级数学上册全册综合测试题含答案
人教版八年级数学上册全册综合测试题一、选择题(本大题共7小题,每小题3分,共21分.在每小题列出的四个选项中,只有一项符合题意)1.计算(-12)0-4的结果是( )A .-1B .-32C .-2D .-522.下列长度的三条线段,不能组成三角形的是( ) A .9,15,8 B .4,9,6 C .15,20,8 D .3,8,4 3.下列计算正确的是( )A .(-x 3)2=x 5B .(-3x 2)2=6x 4C .(-x )-2=1x2 D .x 8÷x 4=x 24.衡阳市某生态示范园计划种植一批梨树,原计划总产量为30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x -361.5x =10B.30x -301.5x =10C.361.5x -30x =10 D.30x +361.5x=10 5.如图1,在△ABC 中,AB =AC ,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,有下列结论:①BD =DC ;②DE =DF ;③AD 上任意一点到AB ,AC 的距离相等;④AD 上任意一点到点B 与点C 的距离不等.其中正确的是( )A .①②B .③④C .①②③D .①②③④图16.如图2①是长方形纸带,∠DEF =30°,将纸带沿EF 折叠成图②,再沿BF 折叠成图③,则图③中∠CFE 的度数为( )A .60°B .90°C .120°D .150°图27.如图3,在四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,在BC ,CD 上分别找一点M ,N ,当△AMN 的周长最小时,∠AMN +∠ANM 的度数为( )A .130°B .120°C .110°D .100°图3二、填空题(本大题共7小题,每小题3分,共21分) 8.0.000608用科学记数法表示为__________.9.在平面直角坐标系中,将点A (-1,2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点C 的坐标是________.10.已知a +b =32,ab =1,则(a -2)(b -2)=________.11.一个多边形的内角和是四边形内角和的4倍,则这个多边形的边数是________. 12.如图4,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE =16°,则∠C 的度数为________.413.如图5,在△ABC 中,∠C =90°,∠ABC =60°,BD 平分∠ABC ,若AD =6,则CD =________.图514.请你写一个能先用提公因式法,再用公式法来分解因式的三项式,并写出因式分解的结果:____________________.三、解答题(共58分)15.(8分)计算:(1)(-2x3y2-3x2y2+2xy)÷2xy;(2)(x+2y-3)(x-2y+3)(运用乘法公式).16.(8分)解分式方程:xx-1-1=2x3x-3.17.(9分)先化简,再求值:8x2-4x+4÷(x2x-2-x-2),其中||x=2.18.(10分)如图6,在平面直角坐标系中,每个小正方形的边长均为1,点A 的坐标为(-3,2).(1)把△ABC 向下平移4个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1,则点A 1的坐标是________; (2)画出△ABC 关于y 轴对称的△A 2B 2C 2,则点C 2的坐标是________; (3)求△ABC 的面积.图619.(11分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件.20.(12分)已知△ABC 为等腰三角形,AB =AC ,点D 为直线BC 上一动点(点D 不与点B ,C重合).以AD为边作△ADE,且AD=AE,连接CE,∠BAC=∠DAE.(1)如图7①,当点D在边BC上时,试说明:①△ABD≌△ACE;②BC=DC+CE.(2)如图②,当点D在边BC的延长线上时,其他条件不变,探究线段BC,DC,CE之间存在的数量关系,并说明理由.图71.A 2.D 3.C 4.A 5.C 6.B 7.B 8.6.08×10-49.(2,-2) 10.2 11.10 12.37° 13.314.答案不唯一,如9x 3+6x 2y +xy 2=x (9x 2+6xy +y 2)=x (3x +y )215.解:(1)原式=-2x 3y 2÷2xy -3x 2y 2÷2xy +2xy ÷2xy =-x 2y -1.5xy +1.(2)原式=[x +(2y -3)][x -(2y -3)]=x 2-(2y -3)2=x 2-(4y 2-12y +9)=x 2-4y 2+12y -9.16.解:方程左右两边同乘3(x -1),得 3x -3(x -1)=2x . 3x -3x +3=2x . 2x =3.x =1.5.检验:当x =1.5时,3(x -1)≠0. ∴原分式方程的解为x =1.5.17.解:原式=8(x -2)2÷⎣⎢⎡⎦⎥⎤x 2x -2-(x +2)(x -2)x -2=8(x -2)2÷x 2-x 2+4x -2 =8(x -2)2·x -24=2x -2. ∵||x =2,∴x =±2.∵x -2≠0,∴x =2舍去,即x =-2. 当x =-2时,2x -2=-12. 18.解:(1)△A 1B 1C 1如图所示. 由图可知A 1(-3,-2).。
2022-2023学年人教版数学八年级上册+期末综合试题训练
2022-2023学年人教版数学八年级上册 期末综合试题训练一、单选题1.下列语句:①全等三角形的周长相等.②面积相等的三角形是全等三角形.③若成轴对称的两个图形中的对称线段所在直线相交,则这个交点一定在对称轴上.其中正确的有( ) A .0个B .1个C .2个D .3个2.要使11x x -+ 分式有意义,则 x 的取值应满足( ) A .1x =-B .1x =C .1x ≠-D .1x ≠3.下列从左到右的变形正确的是( )A .22()()a b a b a b ---=-B .2211a a a a ---=-- C .226(23)(2)x x x x --=+-D .222469(23)m mn n m n -+=-4.一块三角形形状的玻璃破成如图所示的四块,如果用部分碎片配一块与原来形状相同的玻璃,可以使用的碎片编号为( )A .1,3B .3,4C .1,3,4D .25.下列运算正确的是( )A .246a a a +=B .()222a b a b -=- C .()3263a ba b =D .66a a a ÷=6.若x 满足 xx=1,则x 应为( )A .正数B .非正数C .负数D .非负数7.如图,在等腰直角三角形ABD 中,AD BD =,点F 是AD 上的一个动点,过点A 作AC BF ⊥,交BF 的延长线于点E ,交BD 的延长线于点C ,则下列说法错误的是( )A .CD DF =B .AC BF =C .AD BE =D .45CAD ABF ∠+∠=︒8.下列各式中,计算正确的是( )A .235x y xy +=B .623x x x ÷=C .339(2)6x x -=-D .325a a a ⋅=9.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当∠PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.∠ABC 中,∠BAC=60°,AD∠BC 于D ,且AD= 3 ,E 、F 、G 分别为边BC 、CA 、AB 上的点,则∠EFG 周长的最小值为( )A 3B .2 3C .3D .3 3二、填空题11.计算: ()()323xy x z -⋅-= .12.如上图,在∠ABC 中,∠A=90°,AB=AC ,BD 平分∠ABC ,CE∠BD 于E ,若BD=12,则CE为 .13.关于x 的方程312x ax +=- 的解是正数,则a 的取值范围是 . 14.如图,点A ,D ,B ,E 在同一条直线上,AD =BE ,AC =EF ,要使∠ABC∠∠EDF ,只需添加一个条件,这个条件可以是 .15.如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…若∠A=70°,则锐角∠A n 的度数为 .三、计算题16.下列各式分解因式:(1)225x -(2)22363ax axy ay -+17.(1)分解因式:321025x x x -+ (2)解方程:11222x x x-=--- 四、解答题18.如图,点E 、C 在线段BF 上,AC∠DF ,∠A =∠D ,AB =DE ,证明:BE =CF .19.先化简,再求值:221111xx x⎛⎫÷+⎪--⎝⎭,其中x为满足不等式11x->的最小整数.20.如图,∠ABC中,点D、E分别在AB、AC上,∠ABE∠∠ACD.(1)求证:∠BEC∠∠CDB;(2)若∠A=70°,BE∠AC,求∠BCD的度数.21.已知某项工程,乙工程队单独完成所需天数是甲工程队单独完成所需天数的两倍,若甲工程队单独做10天后,再由乙工程队单独做15天,恰好完成该工程的710,共需施工费用85万元,甲工程队每天的施工费用比乙工程队每天的施工费用多1万元.(1)单独完成此项工程,甲、乙两工程对各需要多少天?(2)甲、乙两工程队每天的施工费各为多少万元?(3)若要完成全部工程的施工费用不超过116万元,且乙工程队的施工天数大于10天,求甲工程队施工天数的取值范围?答案解析部分1.【答案】C 2.【答案】C 3.【答案】C 4.【答案】D 5.【答案】C 6.【答案】A 7.【答案】C 8.【答案】D 9.【答案】B 10.【答案】C11.【答案】5327x y z .12.【答案】613.【答案】a <-2且a≠-6 14.【答案】∠A=∠E 或BC=DF 15.【答案】1702n -︒16.【答案】(1)解:原式=(x+5)(x-5);(2)解:原式=3a (x 2-2xy+y 2)=3a (x-y )2.17.【答案】(1)解:原式=()21025x x x -+=()25x x -; (2)解:11222x x x-=---, 11222x x x -=----, ()1122x x -=---, 1124x x -=--+, 2141x x -+=-+-, 2x =,检验,将2x =代入2x -=2-2=0, ∴2x =是原方程的增根.18.【答案】证明:∵AC∠DF ,∴∠ACB=∠DFE , 在∠ACB 和∠DFE 中,ACB DFE A DAB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴∠ACB∠∠DFE (AAS ), ∴BC=EF , ∴BE=CF .19.【答案】解: 221111x x x ⎛⎫÷+ ⎪--⎝⎭= ()()211111x x x x x +-÷-+-= ()()2111x x x x x -⋅-+=解不等式 11x -> ,得 x >2∵x 为满足不等式 11x -> 的最小整数 ∴x=3当x=3时,原式=331+ = 34. 20.【答案】(1)证明:∵∠ABE∠∠ACD ,∴AB=AC ,AD=AE ,BE=CD , ∴BD=CE ,在∠BEC 与∠CDB 中, BD=CE ,CD=BE ,BC=CB , ∴∠BEC∠∠CDB.(2)解:∵AB=AC ,∠A=70°, ∴∠ACB=∠ABC=55°, ∵BE∠AC ,∴∠BEC=∠AEB=90°, ∴∠ABE=∠ACD=20°, ∴∠BCD=35°21.【答案】解:(1)设甲工程队单独施工完成此项工程的天数为x 天,乙工程队单独施工完成此项工程的天数为2x 天,根据题意得:10x +152x =710, 解得:x=25,经检验:x=25是原方程的根, 则2x=25×2=50(天),答:甲、乙两工程队各需要25天和50天;(2)设甲工程队每天的施工费为a 万元,则乙工程队每天的施工费为(a ﹣1)万元, 根据题意得:10a+15(a ﹣1)=85, 解得:a=4, 则a ﹣1=3(万元),答:甲工程队每天的施工费为4万元,乙工程队每天的施工费为3万元; (3)设全部完成此项工程中,甲队施工了m 天,则甲完成了此项工程的25m ,乙队完成了此项工程的(1-25m),故乙队在全部完成此项工程中,施工时间为:125150m -=50﹣2m (天),根据题意得:()4350211650210m m m ⎧+-≤⎨->⎩,解得:17≤m <20.答:甲工程队施工天数m 的取值范围是:17≤m <20.。
八年级数学上册第一章综合习题试题
第九中学八年级数学上册?第一章?综合习题新人教版创作人:历恰面日期:2020年1月1日一、选择题〔每一小题3分,一共30分〕1. 直角三角形一直角边长为12,另两条边长均为自然数,那么其周长为( ).〔A〕30 〔B〕28 〔C〕56 〔D〕不能确定2. 直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,那么它的斜边长〔A〕4 cm 〔B〕8 cm 〔C〕10 cm 〔D〕12 cm3. 一个Rt△的两边长分别为3和4,那么第三边长的平方是〔〕〔A〕25 〔B〕14 〔C〕7 〔D〕7或者254. 等腰三角形的腰长为10,底长为12,那么其底边上的高为( )〔A〕13 〔B〕8 〔C〕25 〔D〕645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的选项是〔〕6. 将直角三角形的三条边长同时扩一倍数, 得到的三角形是( )〔A〕钝角三角形〔B〕锐角三角形〔C〕直角三角形〔D〕等腰三角形.7. 如图小方格都是边长为1的正方形,那么四边形ABCD的面积是 ( )〔A〕 25 〔B〕 12.58. 三角形的三边长为ab c b a 2)(22+=+,那么这个三角形是( )〔A 〕 等边三角形 〔B 〕 钝角三角形〔C 〕 直角三角形 〔D 〕 锐角三角形.9.△ABC 是某在撤除违章建筑后的一块三角形空地.∠C=90°,AC=30米,AB=50米,假如要在这块空地上种植草皮,按每平方米草皮a 元计算,那么一共需要资金〔 〕. 〔A 〕50a 元 〔B 〕600a 元 〔C 〕1200a 元 〔D 〕1500a 元10.如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,假如CD=17,BE=5,那么AC 的长为〔 〕.〔A 〕12 〔B 〕7 〔C 〕5 〔D 〕13二、填空题〔每一小题3分,24分〕11. 如图为某楼梯,测得楼梯的长为5米,高3米,方案在楼梯外表铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,那么222AB AC BC ++=______.13. 直角三角形的三边长为连续偶数,那么其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,那么这个半圆的面积是____________.15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.16. 如图,△ABC中,∠C=90°,AB垂直平分线交BC于D假设BC=8,AD=5,那么AC等于______________.17. 如图,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,阴影局部的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,那么正方形A,B,C,D的面积之和为___________cm2.三、解答题〔每一小题7分,一共28分〕19. 如图,一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.20. 如图,A、B两个小集镇在河流CD的同侧,分别到河的间隔为AC=10千米,BD=30千米,且CD=30千米,如今要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节,并求出总费用是多少?21. 如下图的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。
数学八年级上册 全册全套试卷综合测试卷(word含答案)
数学八年级上册全册全套试卷综合测试卷(word含答案)一、八年级数学三角形填空题(难)1.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.2.已知a、b、c为△ABC的三边,化简:|a+b﹣c|-|a﹣b﹣c|+|a﹣b+c|=______.--【答案】3a b c【解析】【分析】根据三角形的三边关系判断绝对值内式子的正负,然后利用绝对值的性质去掉绝对值,再去括号合并同类项即可.【详解】解:∵a、b、c为△ABC的三边,∴a+b>c,a-b<c,a+c>b,∴a+b-c>0,a-b-c<0,a-b+c>0,∴|a+b-c|-|a-b-c|+|a-b+c|=(a+b-c)+(a-b- c)+(a-b+c)=a+b-c+a-b- c+a-b+c=3a-b-c.故答案为:3a-b-c.【点睛】本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边关系得出绝对值内式子的正负是解决此题的关键.3.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.【答案】7【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数, ∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.4.如图所示,小明从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A 点时,(1)左转了____次;(2)一共走了_____米.【答案】11 120【解析】∵360÷30=12,∴他需要走12−1=11次才会回到原来的起点,即一共走了12×10=120米.故答案为11,120.5.如图,△ABC 中,∠B 与∠C 的平分线交于点O ,过O 作EF ∥BC 交AB 、AC 于E 、F ,若△ABC 的周长比△AEF 的周长大12cm ,O 到AB 的距离为4cm ,△OBC 的面积_____cm 2.【答案】242cm .【解析】由BE=EO可证得EF∥BC,从而可得∠FOC=∠OCF,即得OF=CF;可知△AEF等于AB+AC,所以根据题中的条件可得出BC及O到BC的距离,从而能求出△OBC的面积.【详解】∵BE=EO,∴∠EBO=∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;△AEF等于AB+AC,又∵△ABC的周长比△AEF的周长大12cm,∴可得BC=12cm,根据角平分线的性质可得O到BC的距离为4cm,∴S△OBC=12×12×4=24cm2.考点:1.三角形的面积;2.三角形三边关系.6.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BOC=______°.【答案】110【解析】已知∠A=50°,∠ABO=28°,∠ACO=32°,根据三角形外角的性质可得∠BDC=∠A+∠ABO=78°,∠BOC=∠BDC+∠ACO=110°.二、八年级数学三角形选择题(难)7.已知△ABC,(1)如图①,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+12∠A;(2)如图②,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;(3)如图③,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-12∠A.上述说法正确的个数是()A.0个B.1个C.2个D.3个【答案】C【解析】【分析】根据三角形的内角和外角之间的关系计算.解:(1)∵若P 点是∠ABC 和∠ACB 的角平分线的交点,∴∠ABP=∠PBC ,∠ACP=∠PCB∵∠A=180°-∠ABC-∠ACB=180°-2(∠PBC+∠PCB )∠P=180°-(∠PBC+∠PCB )∴∠P=90°+12∠A ; 故(1)的结论正确;(2)∵∠A=∠ACB-∠ABC=2∠PCE-2∠PBC=2(∠PCE-∠PBC )∠P=∠PCE-∠PBC∴2∠P=∠A故(2)的结论是错误.(3)∠P=180°-(∠PBC+∠PCB )=180°-12(∠FBC+∠ECB ) =180°-12(∠A+∠ACB+∠A+∠ABC ) =180°-12(∠A+180°) =90°-12∠A . 故(3)的结论正确.正确的为:(1)(3).故选:C【点睛】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到三角形的内角和是180°这一隐含的条件.8.如图,三角形ABC 内的线段,BD CE 相交于点O ,已知OB OD =,2OC OE =.若BOC ∆的面积=2,则四边形AEOD 的面积等于( )A.4 B.5 C.6 D.7【答案】D【解析】【分析】连接AO,利用等高不等底的三角形面积比等于底长的比,可求出△COD与△BOE的面积.列出关于△AOE与△AOD的面积的方程即可求出四边形AEOD的面积.【详解】连接OA,∵OB=OD,∴S△BOC=S△COD=2,∵OC=2OE,∴S△BOE=12S△BOC=1,∵OB=OD,∴S△AOB=S△AOD,∴S△BOE+S△AOE=S△AOD,即:1+S△AOE=S△AOD①,∵OC=2OE,∴S△AOC=2S△AOE,∴S△AOD+S△COD=2S△AOE,即:S△AOD+2=2S△AOE②,联立①和②:解得:S△AOE=3,S△AOD=4,S四边形AEOD=S△AOE+S△AOD=7,故选D.本题考查三角形面积问题,涉及方程组的解法,注意灵活运用等高不等底的三角形面积比等于底长的比这一结论.9.一正多边形的内角和与外角和的和是1440°,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形【答案】C【解析】【分析】依题意,多边形的内角与外角和为1440°,多边形的外角和为360°,根据内角和公式求出多边形的边数.【详解】解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°+360°=1440°,n﹣2=6,n=8.故这个多边形的边数为8.故选:C.【点睛】考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.10.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110︒B.115︒C.120︒D.125︒【答案】A【解析】【分析】根据三角形外角的性质三角形的一个外角等于和它不相邻的两个内角的和可得∠AEB=∠A+∠C=65°,∠DFE=∠B+∠AEC,进而可得答案.【详解】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=45°,∴∠DFE=65°+45°=110°,【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.11.以下列数据为长度的三条线段,能组成三角形的是()A.2 cm、3cm、5cm B.2 cm、3 cm、4 cmC.3 cm、5 cm、9 cm D.8 cm、4 cm、4 cm【答案】B【解析】【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.【详解】A、2+3=5,故本选项错误.B、2+3>4,故本选项正确.C、3+5<9,故本选项错误.D、4+4=8,故本选项错误.故选B.【点睛】本题考查三角形的三边关系,根据三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形.12.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°【答案】D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.三、八年级数学全等三角形填空题(难)13.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____.【答案】12.5【解析】【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=12×5×5=12.5,即可得出结论.【详解】如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB(ASA),∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=12×5×5=12.5,∴四边形ABCD的面积为12.5,故答案为12.5.【点睛】本题主要考查了全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题14.如图,已知△ABC为等边三角形,点D,E分别在边BC,AC上,且BD=CE,若BE交AD于点F,则∠AFE的大小为_____(度).【答案】60【解析】【分析】根据△ABC为等边三角形得到AB=BC,∠ABD=∠BCE=60°,再利用BD=CE证得△ABD≌△BCE,得到∠BAD=∠CBE,再利用内角和外角的关系即可得到∠AFE=60°.【详解】∵△ABC为等边三角形,点D,E分别在边BC,AC上,且BD=CE,∴AB=BC,∠ABD=∠BCE=60°,在△ABD和△BCE中,AB BCABD BCEBD CE=⎧⎪∠∠⎨⎪=⎩=,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABF+∠CBE=∠ABC=60°,∴∠ABF+∠BAD=60°,∵∠AFE=∠ABF+∠BAD,∴∠AFE=60°,故答案为:60.【点睛】此题考查三角形全等的判定定理及性质定理,题中证明三角形全等后得到∠BAD=∠CBE,再利用外角和内角的关系求∠AFE是解题的关键.15.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,交AD于F,FG∥BC,FH∥AC,下列结论:①AE=AF;②AF=FH;③AG=CE;④A B+FG=BC,其中正确的结论有________________.(填序号)【答案】①②③④【解析】①正确.∵∠BAC=90°∴∠ABE+∠AEB=90°∴∠ABE=90°-∠AEB∵AD⊥BC∴∠ADB=90°∴∠DBE+∠BFD=90°∴∠DBE=90-∠BFD∵∠BFD=∠AFE∴∠DBE=90°-∠AFE∵BE平分∠ABC∴∠ABE=∠DBE∴90°-∠AEB=90°-∠AFE∴∠AEB=∠AFE∴AE=AF②正确.∵∠BAC=90°∴∠BAF+∠DAC=90°∴∠BAF=90°-∠DAC∵AD⊥BC∴∠ADC=90°∴∠C+∠DAC=90°∴∠C=90°-∠DAC∴∠C=∠BAF∵FH∥AC∴∠C=∠BHF∴∠BAF=∠BHF在△ABF和△HBF中ABE CBEBAF BHFBF BF∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABF≌△HBF∴AF=FH③正确.∵AE=AF,AF=FH∴AE=FH∵FG∥BC,FH∥AC∴四边形FHCG是平行四边形∴FH=GC∴AE=GC∴AE+EG=GC+EG∴AG=CE④正确.∵四边形FHCG是平行四边形∴FG=HC∵△ABF≌△HBF∴AB=HB∴AB+FG=HB+HC=BC故正确的答案有①②③④.16.如图,Rt△ABC中,∠C=90°.E为AB中点,D为AC上一点,BF∥AC交DE的延长线于点F.AC=6,BC=5.则四边形FBCD周长的最小值是______.【答案】16【解析】四边形FBCD周长=BC+AC+DF;当DF BC⊥时,四边形FBCD周长最小为5+6+5=1617.AD,BE是△ABC的高,这两条高所在的直线相交于点O,若BO=AC,BC=a,CD=b,则AD的长为______.【答案】AD的长为a-b或b-a或a+b或12a或b.【解析】【分析】分别讨论△ABC为锐角三角形时、∠A、∠B、∠C分别为钝角时和∠A为直角时五种情况,利用AAS证明△BOD≌△ACD,可得BD=AD,根据线段的和差关系即可得答案.【详解】①如图,当△ABC为锐角三角形时,∵AD、BE为△ABC的两条高,∴∠CAD+∠AOE=90°,∠CBE+∠BOD=90°,∵∠BOD=∠AOE,∴∠CAD=∠OBD,又∵∠ODB=∠ADC=90°,OB=AC,∴△BOD≌△ACD,∴AD=BD,∵BC=a,CD=b,∴AD=BD=BC-CD=a-b.②如图,当∠B为钝角时,∵∠C+∠CAD=90°,∠O+∠CAD=90°,∴∠C=∠O,又∵∠ADC=∠ODB=90°,OB=AC,∴△BOD≌△ACD,∴BD=AD,∴AD=CD-BC=b-a.③如图,当∠A为钝角时,同理可证:△BOD≌△ACD,∴AD=BC-CD=a-b.④如图,当∠C为钝角时,同理可证:△BOD≌△ACD,∴AD=BD=BC+CD=a+b.⑤当∠B为直角时,点O、D、B重合,OB=0,不符合题意,当∠C为直角时,点O、C、D、E重合,CD=0,不符合题意,如图,当∠A为直角时,点A、E、O重合,∵OB=AC,∠CAB=90°,∴△ABC是等腰直角三角形,∵AD⊥BC,∴AD是Rt△ABC斜边中线,∴AD=AD=12BC=12a=b.综上所述:AD的长为a-b或b-a或a+b或12a或b.故答案为:a-b或b-a或a+b或12a或b【点睛】本题主要考查全等三角形的判定与性质,全等三角形的判定方法有:SSS 、AAS 、ASA 、SAS 、HL 等,注意:SAS 时,角必须是两边的夹角,SSA 和AAA 不能判定两个三角形全等.灵活运用分类讨论的思想是解题关键.18.如图,已知AB ∥CD ,O 为∠CAB 、∠ACD 的角平分线的交点,OE ⊥AC 于E ,且OE =2,CO =3,则两平行线间AB 、CD 的距离等于________.【答案】4【解析】试题解析:如图,过点O 作MN ,MN ⊥AB 于M ,交CD 于N ,∵AB ∥CD ,∴MN ⊥CD ,∵AO 是∠BAC 的平分线,OM ⊥AB ,OE ⊥AC ,OE=2,∴OM=OE=2,∵CO 是∠ACD 的平分线,OE ⊥AC ,ON ⊥CD ,∴ON=OE=2,∴MN=OM+ON=4,即AB 与CD 之间的距离是4.点睛:要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.四、八年级数学全等三角形选择题(难)19.如图,AOB ∆的外角,CAB DBA ∠∠的平分线,AP BP 相交于点P ,PE OC ⊥于E ,PF OD ⊥于F ,下列结论:(1)PE PF =;(2)点P 在COD ∠的平分线上;(3)90APB O ∠=︒-∠,其中正确的有 ( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】 过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE PG PF ==,可判断(1)(2)正确;由12APB EPF ∠=∠,180EPF O ∠+∠=︒,得到1902APB O ∠=︒-∠,可判断(3)错误;即可得到答案.【详解】解:过点P 作PG ⊥AB ,如图:∵AP 平分∠CAB ,BP 平分∠DBA ,PE OC ⊥,PF OD ⊥,PG ⊥AB ,∴PE PG PF ==;故(1)正确;∴点P 在COD ∠的平分线上;故(2)正确;∵12APB APG BPG EPF ∠=∠+∠=∠, 又180EPF O ∠+∠=︒, ∴11(180)9022APB O O ∠=⨯︒-∠=︒-∠;故(3)错误; ∴正确的选项有2个;故选:C .【点睛】 本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.20.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S ,若AQ =PQ ,PR =PS ,下面四个结论:①AS =AR ;②QP ∥AR ;③△BRP ≌△QSP ;④AP 垂直平分RS .其中正确结论的序号是( ).A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】如图,连接AP,根据HL判定△APR和△APS全等,即可说明①正确;由△APR和△APS 全等可得∠RAP=∠PAC,再根据等腰三角形性质推出∠QAP=∠QPA,得到∠QPA=∠BAP,根据平行线判定推出OP//AB,即②正确;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等;连接RS,与AP交于点D,先证△ARD≌△ASD,即RD=SD;运用等腰三角形的性质即可判定.【详解】解:如图,连接AP∵PR⊥AB,PS⊥AC,PR=PS∴△APR≌△APS∴AS=AR,∠RAP=∠PAC即①正确;又∵AQ=PQ∴∠QAP=∠QPA∴∠QPA=∠BAP∴OP//AB,即②正确.在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等,故③错误.如图,连接PS∵△APR≌△APS∴AR=AS,∠RAP=∠PAC∴AP垂直平分RS,即④正确;故答案为C.【点睛】本题主要考查了全等三角形的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解答本题的关键21.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为()A.2 B.3 C.4 D.5【答案】C【解析】【分析】可延长DE至F,使EF=BC,利用SAS可证明△ABC≌△AEF,连AC,AD,AF,再利用SSS证明△ACD≌△AFD,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求解即可.【详解】延长DE至F,使EF=BC,连AC,AD,AF,在△ABC与△AEF中,=90AB AEABC AEFBC EF⎧⎪∠∠⎨⎪⎩===,∴△ABC≌△AEF(SAS),∴AC=AF,∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,∴CD=EF+DE=DF,在△ACD与△AFD中,AC AFCD DFAD AD⎧⎪⎨⎪⎩===,∴△ACD≌△AFD(SSS),∴五边形ABCDE的面积是:S=2S△ADF=2×12•DF•AE=2×12×2×2=4.故选C.【点睛】本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE的面积转化为两个△ADF的面积是解决问题的关键.22.如右图,在△ABC中,点Q,P分别是边AC,BC上的点,AQ=PQ,PR⊥AB于R,PS⊥AC于S,且PR=PS,下面四个结论:①AP平分∠BAC;②AS=AR;③B P=QP;④QP∥AB.其中一定正确的是( )A.①②③B.①③④C.①②④D.②③④【答案】C【解析】试题解析:∵PR⊥AB于点R,PS⊥AC于点S,且PR=PS,∴点P在∠BAC的平分线上,即AP平分∠BAC,故①正确;∴∠PAR=∠PAQ,∵AQ=PQ,∴∠APQ=∠PAQ,∴∠APQ=∠PAR,QP AB∴,故④正确;在△APR与△APS中,AP AP PR PS=⎧⎨=⎩,(HL)APR APS∴≌,∴AR=AS,故②正确;△BPR和△QSP只能知道PR=PS,∠BRP=∠QSP=90∘,其他条件不容易得到,所以,不一定全等.故③错误.故选C.23.如图,在△ABC和△DCB中,AB=DC,AC与BD相交于点E,若不再添加任何字母与辅助线,要使△ABC≌△DCB,则还需增加的一个条件是()A .AC=BDB .AC=BC C .BE=CED .AE=DE【答案】A【解析】 由AB=DC ,BC 是公共边,即可得要证△ABC≌△DCB,可利用SSS ,即再增加AC=DB 即可. 故选A.点睛:此题主要考查了全等三角形的判定,解题时利用全等三角形的判定:SSS ,SAS ,ASA ,AAS ,HL ,确定条件即可,此题为开放题,只要答案符合判定定理即可.24.在ABC 中,2,72A B ACB ∠=∠∠≠︒,CD 平分ACB ∠,P 为AB 的中点,则下列各式中正确的是( )A .AD BC CD =-B .AD BC AC =- C .AD BC AP =-D .AD BC BD =-【答案】B【解析】【分析】 可在BC 上截取CE=CA ,连接DE ,可得△ACD ≌△ECD ,得DE=AD ,进而再通过线段之间的转化得出线段之间的关系.【详解】解:∵∠A=2∠B,∴∠A﹥∠B∴BC﹥AC∴可在BC上截取CE=CA,连接DE(如图),,∴∠ACD=∠BCD∵CD平分ACB又∵CD=CD,CE=CA∴△ACD≌△ECD,∴AD=ED,∠CED=∠A=2∠B又∠CED=∠B+∠BDE∴∠B=∠BDE∴AD=DE=BE,∴BC=BE+EC=AD+AC所以AD=BC-AC故选:B若A选项成立,则CD=AC,∴∠A=∠CDA=∠CDE=∠CED=2∠B=2∠EDB∴∠CDA+∠CDE+∠EDB=180°即5∠EDB=180°∴∠EDB=36°∴∠A=72°,∠B=36°∴∠ACB=72°与已知∠ACB≠72°矛盾,故选项A不正确;假设C选项成立,则有AP=AC,作∠BAC的平分线,连接FP,∴△CAF≌△PAF≌△PBF,∴∠CFA=∠AFP=∠PFB=60°∠B=30°,∠ACB=90°当∠ACB=90°时,选项C才成立,∴当∠ACB≠72°时,选项C不一定成立;假设D选项成立,则AD=BC-BD由图可知AD=BA-BD∴AB=BC∴∠A=∠ACB=2∠B∴∠A+∠ACB+∠B=180°∴∠B=36°,∠ACB=72这与已知∠ACB≠72°矛盾,故选项D不成立.故选:B【点睛】本题考查的是考查的是利用角的平分线的性质说明线段之间的关系.,,五、八年级数学轴对称三角形填空题(难)25.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形(1)如图,在ABC∆中,25,105A ABC∠=︒∠=︒,过B作一直线交AC于D,若BD 把ABC∆分割成两个等腰三角形,则BDA∠的度数是______.(2)已知在ABC∆中,AB AC=,过顶点和顶点对边上一点的直线,把ABC∆分割成两个等腰三角形,则A∠的最小度数为________.【答案】130︒1807︒⎛⎫⎪⎝⎭【解析】【分析】(1)由题意得:DA=DB,结合25A∠=︒,即可得到答案;(2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,③AB=AC,当AD=BD=BC,④当AD=BD,CD=BC,分别求出A∠的度数,即可得到答案.【详解】(1)由题意得:当DA=BA,BD=BA时,不符合题意,当DA=DB时,则∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为:130°;(2)①如图1,∵AB=AC,当BD=AD,CD=AD,∴∠B=∠C=∠BAD=∠CAD,∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠BAC=90°.②如图2,∵AB=AC,当AD=BD,AC=CD,∴∠B=∠C=∠BAD,∠CAD=∠CDA,∵∠CDA=∠B+∠BAD=2∠B,∴∠BAC=3∠B,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°.③如图3,∵AB=AC,当AD=BD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠BDC=∠C,∵∠BDC=∠A+∠ABD=2∠BAC,∴∠ABC=∠C=2∠BAC,∵∠BAC+∠ABC+∠C=180°,∴5∠BAC=180°,∴∠BAC=36°.④如图4,∵AB=AC,当AD=BD,CD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,∵∠BDC=∠BAC+∠ABD=2∠BAC,∴∠ABC=∠C=3∠BAC,∵∠BAC+∠ABC+∠C=180°,∴7∠BAC=180°,∴∠BAC=180 ()7︒.综上所述,∠A的最小度数为:180 ()7︒.故答案是:180 ()7︒.【点睛】本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.26.在平面直角坐标系中,点A在x轴的正半轴上,点B在y轴的正半轴上,∆为等腰三角形,符合条件的C点有∠=︒,在x轴或y轴上取点C,使得ABCABO36__________个.【答案】8【解析】【分析】观察数轴,按照等腰三角形成立的条件分析可得答案.【详解】解:如下图所示,若以点A为圆心,以AB为半径画弧,与x轴和y轴各有两个交点,但其中一个会与点B重合,故此时符合条件的点有3个;若以点B为圆心,以AB为半径画弧,同样与x轴和y轴各有两个交点,但其中一个与点A重合,故此时符合条件的点有3个;线段AB的垂直平分线与x轴和y轴各有一个交点,此时符合条件的点有2个.∴符合条件的点总共有:3+3+2=8个.故答案为:8.【点睛】本题考查了等腰三角形的判定,可以观察图形,得出答案.27.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.【答案】6; 3×22018.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出a3=4a1,a4=8a1,a5=16a1…进而得出答案.【详解】解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=3,∴A2B1=3,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1=6,a3=4a1,a4=8a1,a5=16a1,以此类推:a2019=22018a1=3×22018故答案是:6;3×22018.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a2=2a1=6,a3=4a1,a4=8a1,a5=16a1…进而发现规律是解题关键.28.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【解析】【分析】①连接NP,MP,根据SSS定理可得△ANP≌△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;③根据∠1=∠B可知AD=BD ,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD=12AD,再由三角形的面积公式即可得出结论.【详解】①连接NP,MP.在△ANP与△AMP中,∵AN AMNP MPAP AP=⎧⎪=⎨⎪=⎩,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此选项正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;④∵在Rt△ACD中,∠2=30°,∴CD=12AD,∴BC=BD+CD=AD+12AD=32AD,S△DAC=12AC•CD=14AC•AD,∴S △ABC=12AC•BC=12AC•32AD=34AC•AD,∴S△DAC:S△ABC=1:3,故此选项正确.故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.29.如图,在ABC中,90,ACB ABD︒∠=是ABC的轴对称图形,点E在AD上,点F在AC的延长线上.若点B恰好在EF的垂直平分线上,并且5AE=,13AF=,则DE=______.【答案】4.【解析】【分析】连接BE ,BF ,根据轴对称的性质可得△ABD ≌△ACB ,进而可得DB=CB ,AD=AC ,∠D=∠BCA=90°,再利用线段垂直平分线的性质可得BE=BF ,然后证明Rt △DBE ≌Rt △CBF 可得DE=CF ,然后可得ED 长.【详解】解:连接BE ,BF ,∵△ABD 是△ABC 的轴对称图形,∴△ABD ≌△ACB ,∴DB=CB ,AD=AC ,∠D=∠BCA=90°,∴∠BCF=90°,∵点B 恰好在EF 的垂直平分线上,∴BE=BF ,在Rt △DBE 和Rt △CBF 中BD BC EB FB =⎧⎨=⎩,∴Rt △DBE ≌Rt △CBF (HL ),∴DE=CF ,设DE=x ,则CF=x ,∵AE=5,AF=13,∴AC=AD=5+x ,∴AF=5+2x , ∴5+2x=13,∴x=4,∴DE=4,故答案为:4.【点睛】此题主要考查了轴对称和线段垂直平分线的性质,关键是掌握成轴对称的两个图形全等.30.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD,再根据角的和差关系得到∠ECB =∠ACB-2∠ACD,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB-∠ACD=50°,即∠DCB=50°,从而求出∠BDC即可.【详解】∵CD平分∠ACE,∴∠ACE=2∠ACD=2∠ECD,∴∠ECB=∠ACB-∠ACE=∠ACB-2∠ACD,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB-2∠ACD=100°,∵AB=AC,∴∠ABC=∠ACB,∴2∠ACB-2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.六、八年级数学轴对称三角形选择题(难)31.如图,△ABC的周长为32,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A .3B .4C .5D .6【答案】B【解析】【分析】 首先判断△BAE 、△CAD 是等腰三角形,从而得出BA =BE ,CA =CD ,由△ABC 的周长为32以及BC =12,可得DE =8,利用中位线定理可求出PQ .【详解】∵BQ 平分∠ABC ,BQ ⊥AE ,∴∠ABQ =∠EBQ ,∵∠ABQ+∠BAQ =90°,∠EBQ+∠BEQ =90°,∴∠BAQ =∠BEQ ,∴AB =BE ,同理:CA =CD ,∴点Q 是AE 中点,点P 是AD 中点(三线合一),∴PQ 是△ADE 的中位线,∵BE+CD =AB+AC =32﹣BC =32﹣12=20,∴DE =BE+CD ﹣BC =8,∴PQ =12DE =4. 故选:B .【点睛】本题考查了三角形的中位线定理和等腰三角形的性质和判定,解答本题的关键是判断出△BAE 、△CAD 是等腰三角形,利用等腰三角形的性质确定PQ 是△ADE 的中位线.32.如图,ABC ∆中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①DE DF =;②DE DF AD +=;③DM 平分EDF ∠;④2AB AC AE +=,其中正确的是( )A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD,DF=12AD,从而可证明②正确;③若DM平分∠EDF,则∠EDM=90°,从而得到∠ABC为直角三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】解:如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.∴①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12 AD.同理:DF=12AD.∴DE+DF=AD.∴②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠EDF,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC是否等于90°不知道,∴不能判定MD平分∠EDF,故③错误.④∵DM是BC的垂直平分线,∴DB=DC.在Rt△BED和Rt△CFD中DE DFBD DC⎧⎨⎩==,∴Rt△BED≌Rt△CFD.∴BE=FC.∴AB+AC=AE-BE+AF+FC又∵AE=AF,BE=FC,∴AB+AC=2AE.故④正确.综上所述,①②④正确,故选:C.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.33.如图,在△ABC中,BC的垂直平分线分别交AC,BC于点D,E,若△ABC的周长为24,CE=4,则△ABD的周长为()A.16 B.18 C.20 D.24【答案】A【解析】【分析】根据线段的垂直平分线的性质和三角形的周长公式进行解答即可.【详解】解:∵DE是BC的垂直平分线,∴DB=DC,BC=2CE=8又∵AABC的周长为24,∴AB+BC+AC=24∴AB+AC=24-BC=24-8=16∴△ABD的周长=AD+BD+AB=AD+CD+AB=AB+AC=16,故答案为A【点睛】本题考查的是线段的垂直平分线的性质,理解并应用线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.34.如果三角形有一个内角为120°,且过某一顶点的直线能将该三角形分成两个等腰三角形,那么这个三角形最小的内角度数是( )A.15°B.40 C.15°或20°D.15°或40°【答案】C【解析】【分析】依据三角形的一个内角的度数为120°,且过某一顶点能将该三角形分成两个等腰三角形,运用分类思想和三角形内角和定理,即可得到该三角形其余两个内角的度数.【详解】如图1,当∠A=120°,AD=AC,DB=DC时,∠ADC=∠ACD=30°,∠DBC=∠DCB=15°,所以,∠DBC=15°,∠ACB=30°+15°=45°;故∠ABC=60°,∠C=80°;如图2,当∠BAC=120°,可以以A为顶点作∠BAD=20°,则∠DAC=100°,∵△APB,△APC都是等腰三角形;∴∠ABD=20°,∠ADC=∠ACD=40°,如图3,当∠BAC=120°,以A为顶点作∠BAD=80°,则∠DAC=40°,∵△APB,△APC都是等腰三角形,∴∠ABD=20°,∠ADC=100°,∠ACD=40°.故选C.【点睛】本题主要考查了三角形内角和定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的性质以及三角形内角和定理.35.如图,已知长方形ABCD,AB=1,BC=2,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为( )A.1 B.3C.3D.3【答案】B【解析】【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E 也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE的值.【详解】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得3∴MA+MD+ME的最小值为3故选B .【点睛】本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题.36.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).A .①②B .①③C .②③D .①②③【答案】D【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠,∵在BDF 和CDG △中,90BFD CGD DF DGBDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴BDF ≌()CDG ASA ,∴DB CD =,∴1(180120)302DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒, 根据三角形的外角性质,30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选:D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .3 【答案】D【解析】【分析】 把已知的式子化成12[(a-b )2+(a-c )2+(b-c )2]的形式,然后代入求解即可. 【详解】原式=12(2a 2+2b 2+2c 2-2ab-2ac-2bc ) =12[(a 2-2ab+b 2)+(a 2-2ac+c 2)+(b 2-2bc+c 2)] =12[(a-b )2+(a-c )2+(b-c )2] =12×(1+4+1) =3,故选D.【点睛】 本题考查了因式分解的应用,代数式的求值,正确利用因式分解的方法把所求的式子进行变形是关键.38.(2017重庆市兼善中学八年级上学期联考)在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式44x y -,因式分解的结。
人教版八年级数学上册期末综合复习测试题(含答案)
八年级数学上册期末综合复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分) 1.下列图形中具有稳定性的是( ) A .正方形 B .长方形 C .直角三角形 D .平行四边形 2.计算:a 6÷a 3=( ) A .a 2 B .a 3 C .1 D .0 3.点(-3,-2)关于x 轴对称的点是( )A .(3,-2)B .(-3,2)C .(3,2)D .(-2,-3) 4.若分式x +3x -2的值为0,则x 的值为( ) A .x =-3 B .x =2 C .x ≠-3 D .x ≠25.如图1,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是( )图1A .AC =BDB .AD =BC C .∠ABD =∠BAC D .∠CAD =∠DBC 6.若x 2+2mx +9是一个完全平方式,则m 的值是( ) A .6 B .±6 C .3 D .±3 7.如图2,在△ABC 中,D ,E 分别是边BC ,AB 的中点.若△ABC 的面积是8,则△BDE 的面积是( )图2A.2 B .3 C .4 D .5 8.已知2m +3n =3,则9m ·27n 的值是( ) A .9 B .18 C .27 D .819.某生产小组计划生产3 000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务.设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3 000x -3 000x +2=5 B .3 0002x -3 000x =5C .3 000x +2-3 000x =5D .3 000x -3 0002x=510.如图3,在平面直角坐标系中,点A ,B 分别在y 轴、x 轴上,∠ABO =60°,在坐标轴上找一点P ,使得△P AB 是等腰三角形,则符合条件的点P 的个数是( )图3A .5个B .6个C .7个D .8个 二、填空题(本大题7小题,每小题4分,共28分)11.人体淋巴细胞的直径大约是0.000 009米,将0.000 009用科学记数法表示为__________.12.如果等腰三角形的一个内角是80°,那么它的顶角的度数是__________.13.当a =4b 时,a 2+b 2ab的值是__________.14.如图4,在△ABC 中,分别以点A 和点C 为圆心,大于12 AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E ,若△ABC 的周长为23 cm ,△ABD 的周长为13 cm ,则AE 的长为__________cm.图415.若x +y =6,xy =-3,则2x 2y +2xy 2=__________.16.如图5,在△ABC 中,AB =BC ,BE 平分∠ABC ,AD 为BC 边上的高,且AD =BD ,则∠DAC =__________°.图517.如图6,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点, P 是AD 上一动点,当PC 与PE 的和最小时,∠ACP 的度数是__________.图6三、解答题(一)(本大题3小题,每小题6分,共18分)18.解方程:4x 2-9 -x3-x =1.19.先化简,再求值:(-x -y )2-(-y +x )(x +y )+2xy ,其中x =-2,y =12.20.如图7,在△ABC 中,∠BAC =60°,∠C =80°,AD 是△ABC 的角平分线,E 是AC 上一点,且∠ADE =12∠B ,求∠CDE 的度数.图7四、解答题(二)(本大题3小题,每小题8分,共24分)21.在平面直角坐标系中,△ABC 的三个顶点的位置如图8所示.(1)请画出△ABC 关于y 轴对称的△A ′B ′C ′;(其中A ′,B ′,C ′分别是A ,B ,C 的对应点,不写画法)(2)请直接写出点A ′,B ′,C ′的坐标; (3)求出△A ′B ′C ′的面积.图822.如图9,点B ,C ,E ,F 在同一条直线上,点A ,D 在BC 的异侧,AB =CD ,BF =CE ,∠B =∠C .(1)求证:AE ∥DF ; (2)若∠A +∠D =144°,∠C =30°,求∠AEC 的度数.图923.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8 000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.(1)使用智能分拣设备后,每人每小时可分拣快件多少件?(2)已知某快递中转站平均每天需要分拣10万件快件,每天工作时间为8小时,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作?五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图10①,把一个长为2m 、宽为2n 的矩形,沿图中虚线用剪刀均分成四块小矩形,然后拼成一个如图10②所示的正方形.(1)请用两种不同的方法求图10②中阴影部分的面积.(直接用含m ,n 的式子表示) 方法1:____________________________; 方法2:____________________________.(2)根据(1)中结论,下列三个式子(m +n )2,(m -n )2,mn 之间的等量关系为____________________.(3)根据(2)中的等量关系,解决如下问题:已知x +1x =3,请求出x -1x的值.图1025.(1)【问题发现】如图11①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一条直线上,连接BE ,求∠AEB 的度数.(2)【拓展探究】如图11②,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,CM 为△DCE 中DE 边上的高,连接BE .请求出∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.图11答案1.C 2.B 3.B 4.A 5.D 6.D 7.A 8.C 9.D 10.B11.9×10-6 12.80°或20° 13.174 14.5 15.-36 16.22.5 17.30°18.解:方程两边乘(x -3)(x +3),得4+x (x +3)=x 2-9.解得x =-133.检验:当x =-133 时,(x -3)(x +3)≠0.所以,原分式方程的解是x =-133.19.解:原式=x 2+y 2+2xy -(x 2-y 2)+2xy =x 2+y 2+2xy -x 2+y 2+2xy =2y 2+4xy . 当x =-2,y =12 时,原式=2×⎝⎛⎭⎫12 2 +4×(-2)×12 =-72 .20.解:在△ABC 中,∠BAC =60°,∠C =80°,∴∠B =180°-60°-80°=40°. ∵AD 平分∠BAC ,∴∠BAD =12 ∠BAC =30°.∴∠ADC =∠B +∠BAD =70°.∵∠ADE =12 ∠B =20°,∴∠CDE =∠ADC -∠ADE =70°-20°=50°.21.解:(1)如答图1,△A ′B ′C ′即为所求.答图1(2)A ′(3,3),B ′(-1,-3),C ′(0,4).(3)由图可得S △A ′B ′C ′=4×7-12 ×1×7-12 ×3×1-12 ×4×6=11.22.(1)证明:∵BF =CE ,∴BF +EF =CE +EF ,即BE =CF . 在△ABE 和△DCF 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF (SAS).∴∠AEB =∠DFC .∴AE ∥DF .(2)解:∵△ABE ≌△DCF ,∴∠A =∠D ,∠B =∠C =30°. ∵∠A +∠D =144°,∴∠A =72°. ∴∠AEC =∠A +∠B =72°+30°=102°.23.解:(1)设使用传统分拣方式,每人每小时可分拣快件x 件,则使用智能分拣设备后,每人每小时可分拣快件25x 件.依题意,得 8 00020x -8 0005×25x=4.解得x =84.经检验,x =84是原方程的解,且符合题意.∴25x =2 100.答:使用智能分拣设备后,每人每小时可分拣快件2 100件. (2)100 000÷8÷2 100=52021 (名),5+1=6(名).答:每天只需要安排6名工人就可以完成分拣工作. 24.解:(1)(m +n )2-4mn (m -n )2. (2)(m -n )2=(m +n )2-4mn .(3)∵x +1x =3,∴⎝⎛⎭⎫x -1x 2 =⎝⎛⎭⎫x +1x 2 -4x ·1x =9-4=5.∴x -1x=±5 .25.解:(1)∵△ACB 和△DCE 均为等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =∠CDE =∠CED =60°. ∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴∠ADC =∠BEC .∵点A ,D ,E 在同一条直线上,∴∠ADC =180°-∠CDE =120°. ∴∠BEC =120°.∴∠AEB =∠BEC -∠CED =60°. (2)∠AEB =90°,AE =BE +2CM .理由:∵△ACB 和△DCE 均为等腰直角三角形, ∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE ,∠ADC =∠BEC . ∵△DCE 为等腰直角三角形, ∴∠CDE =∠CED =45°.∵点A ,D ,E 在同一条直线上, ∴∠ADC =180°-∠CDE =135°. ∴∠BEC =135°.∴∠AEB =∠BEC -∠CED =90°. ∵CD =CE ,CM ⊥DE , ∴DM =ME ,∠DCM =90°-∠CDE =45°. ∴∠DCM =∠CDE . ∴DM =ME =CM .∴AE =AD +DE =BE +2CM。
人教版八年级数学第一学期寒假综合复习测试题(含答案)
人教版八年级数学第一学期寒假综合复习测试题(含答案)(满分150分,时间120分钟)一、选择题(每小题4分,共48分)1.乐乐要从下面四组木棒中选择一组制作一个三角形作品,你认为他应该选()A.3,5,6B.2,3,5C.2,4,7D.3,8,42.如图,AD是△ABC的中线,则下列结论正确的是()A.AB=AC B.BD=CD C.BD=AD D.AC=AD第2题图第5题图第6题图3.下列等式中,从左到右的变形是多项式的因式分解的是()A.(a+b)2=a2+2ab+b2B.x2﹣2x+5=x(x﹣2)+5C.a2﹣2ab+b2=(a﹣b)2D.x2+1=x(x+)4.分式的值为0,则x的值为()A.±3B.﹣3C.3D.95.如图,点E,D分别在AB,AC上,若∠B=30°,∠C=55°,则∠1+∠2的度数为()A.70°B.75°C.80°D.85°6.如图,点E在AC上,△ABC≌△DAE,BC=3,DE=7,则CE的长为()A.2B.3C.4D.57.已知A、B两点的坐标分别是(﹣1,3)和(1,3),则下面四个结论:①A、B关于x 轴对称;②A、B关于y轴对称;③A、B之间的距离为2;④A、B之间的距离为6.其中正确的是()A.①④B.①③C.②④D.②③8.从边长为a的正方形中去掉一个边长为b的小正方形,如图,然后将剩余部分剪后拼成一个矩形,上述操作所能验证的等式是()A.a2﹣b2=(a+b)(a﹣b)B.a2﹣b2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)第8题图第9题图9.如图,在△ABC中,AB=AC,AD=12,D是BC的中点,EF垂直平分AB,交AB于点E,交AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为()A.10B.11C.12D.1310.把分式中的a和b分别扩大为原来的3倍,则分式的值()A.扩大为原来的3倍B.缩小为原来的C.扩大为原来的9倍D.不变11.小丽周二在某面包店花15元买了几个面包,周六再去买时,恰好该面包店搞优惠酬宾活动,同样的面包每个比原来便宜1元,结果小丽比上次少花了1元,却比上次多买了2个面包.若设她周二买了x个面包,根据题意可列方程为()A.B.C.D.12.如图,已知∠ABC、∠EAC的角平分线BP、AP相交于点P,PM⊥BE,PN⊥BF,垂足分别为M、N.现有四个结论:①CP平分∠ACF;②;③;④S△APM+S△CPN>S△APC.其中结论正确的是()(填写结论的编号).A.①②④B.①④C.①②③D.②③④二、填空题(本题6个小题,每小题4分,共24分)13.一个正多边形的每一个内角比每一个外角的3倍还大20°,则这个正多边形的边数为.14.如图,AD=AE,∠1=∠2,请你添加一个条件(只填一个即可),使△ABD ≌△ACE.第14题图第16题图第17题图15.多项式(ax+1)(3x﹣2)的乘积不含x的一次项,则a的值为.16.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线DE交BC于点E,交AC于点D,∠B=70°,∠F AE=19°,则∠C=°.17.如图,已知S△ABC=24m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC m2.18.定义一种新运算“*”:a*b=.如:2*3=.则下列结论:①a*a=;②2*x=1的解是x=2;③若(x+1)*(x﹣1)的值为0,则x=1.正确的结论是(把所有正确结论的序号都填在横线上).三、解答题(7小题,共78分)19.(本题8分)如图,在△ABC中,点D,E分别是AB、AC上一点,若CD、DE分别是∠ACB和∠ADC的角平分线,且DE∥BC,求证:∠DEC+2∠B=180°.20.(本题8分)如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.21.(本题12分)计算:(1)a9÷a2•a+(a2)4﹣(﹣2a4)2.(2)(3x2y2﹣xy2)÷xy•(3x+1).(3)2x3﹣12x2y+18xy2.22.(本题14分)(1)解方程:(2)已知实数x、y满足|x﹣3|+y2﹣4y+4=0,求代数式•÷的值.23.(本题10分)如图:在直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2);C(3,5),请回答下列问题:(1)方格纸中画出△ABC关于x轴的对称图形△A1B1C1.(2)直接写出A1、B1、C1的坐标.A1()、B1()、C1().(3)若点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,直接写出m=、n =.(4)若y轴上一点P的坐标为(0,m),当2≤m≤4时,S△P AB=4,求点P的坐标.24.(本题12分)“疫情未结束,防疫不放松”某工厂准备生产A和B两种防疫用品,已知A种防疫用品每箱成本比B种防疫用品每箱成本多500元.经计算,用6000元生产A种防疫用品的箱数与用4500元生产B种防疫用品的箱数相等.请解答下列问题.(1)求A,B两种防疫用品每箱的成本;(2)该工厂计划用不超过90000元同时生产A和B两种防疫用品共50箱,且B种防疫用品不超过25箱,该工厂有几种生产方案?25.(本题14分)在边长为9的等边三角形ABC中,点Q是BC上一点,点P是AB上一动点,以每秒1个单位的速度从点A向点B移动,设运动时间为t秒.(1)如图1,若BQ=6,PQ∥AC,求t的值;(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位的速度从点B经点C 向点A运动,当t为何值时,△APQ为等边三角形?答案一.选择题(共12小题)1.A.2.B.3.C.4.C.5.D.6.C.7.D.8.A.9.C.10.B.11.B.12.C.二.填空题(共6小题)13.9.14.AB=AC或∠ADB=∠E或∠B=∠C.15..16.24.17.12;18.①②.三.解答题(共7小题)19.证明:∵DE∥BC,∴∠1=∠B,∠2=∠CDE,(2分)∵CD、DE分别是∠ACB和∠ADC的角平分线,∴∠1=∠CDE,∠2=∠ECD,(3分)∴∠1=∠CDE=∠ECD,(4分)∵∠DEC+∠CDE+∠ECD=180°,∴∠DEC+∠1+∠1=180°,(6分)∴∠DEC+2∠B=180°.(8分)20.证明:∵DE∥AB,∴∠EDC=∠B,(2分)在△CDE和△ABC中,(3分),(5分)∴△CDE≌△ABC(ASA),(6分)∴DE=BC.(8分)21.计算:(1)a9÷a2•a+(a2)4﹣(﹣2a4)2.原式=a8+a8﹣4a8 (2分)=﹣2a8.(4分)(2)原式=(3x2y2÷xy﹣xy2÷xy)•(3x+1)=(3xy﹣y)(3x+1)(2分)=9x2y+3xy﹣3xy﹣y (3分)=9x2y﹣y.(4分)(3)解:2x3﹣12x2y+18xy2=2x(x2﹣6xy+9y2)(2分)=2x(x﹣3y)2.(4分)22.(1)解:=﹣22x=3﹣2(2x﹣2),(1分)2x=3﹣4x+4,(2分)2x=﹣4x+7,(3分)2x+4x=7,6x=7,x=,(4分)检验:当x=时,2x﹣2≠0,(5分)所以原分式方程的解为x=.(6分)(2)解:原式=••(2分)=,(4分)∵|x﹣3|+y2﹣4y+4=0,∴|x﹣3|+(y﹣2)2=0,∴x﹣3=0,y﹣2=0,∴x=3,y=2,(6分)∴原式==.(8分)23.解:(1)如图,△A1B1C1即为所求.(2分)(2)由图可得,A1(1,﹣4),B1(4,﹣2),C1(3,﹣5).(5分)故答案为:1,﹣4;4,﹣2;3,﹣5.(3)∵点M(m﹣1,3)与点N(﹣2,n+1)关于x轴对称,∴,解得,故答案为:﹣1;﹣4.(7分)(4)当2≤m≤4时,S△P AB=(1+4)×2﹣×(4﹣m)﹣4×(m﹣2)=4,(8分)解得m=2,∴点P的坐标为(0,2);(10分)24.解:(1)设B种防疫用品每箱的成本为x元,则A种防疫用品每箱的成本为(x+500)元,(1分)根据题意得:=,(2分)解得:x=1500,(4分)经检验,x=1500是所列方程的解,且符合题意,∴x+500=1500+500=2000.(5分)答:A种防疫用品每箱的成本为2000元,B种防疫用品每箱的成本为1500元.(6分)(2)设生产B种防疫用品m箱,则生产A种防疫用品(50﹣m)箱,(7分)根据题意得:,(8分)解得:20≤m≤25,(10分)又∵m为正整数,∴m可以为20,21,22,23,24,25,∴该工厂有6种生产方案.(12分)25.解:(1)如图1,∵△ABC是等边三角形,PQ∥AC,∴∠BQP=∠C=60°,∠BPQ=∠A=60°,(2分)又∠B=60°,∴∠B=∠BQP=∠BPQ,∴△BPQ是等边三角形,(3分)∴BP=BQ,由题意可知:AP=t,则BP=9﹣t,∴9﹣t=6,(4分)解得:t=3,∴当t的值为3时,PQ∥AC;(6分)(2)如图2,①当点Q在边BC上时,(7分)此时△APQ不可能为等边三角形;(8分)②当点Q在边AC上时,(9分)若△APQ为等边三角形,则AP=AQ,(10分)由题意可知,AP=t,BC+CQ=2t,∴AQ=BC+AC﹣(BC+CQ)=9+9﹣2t=18﹣2t,(12分)即:18﹣2t=t,解得:t=6,∴当t=6时,△APQ为等边三角形.(14分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.(本题满分 8 分) 有一块直角三角形的绿地,量得两直角边长分别为 6m,8m.现在要将绿地扩充成等腰三 角形,且扩充部分是以 8m 为直角边的直角三角形,求扩充后等腰三角形绿地的周长.
8m
8m
8m
6m
(第 22 题)
6m
(备用图)
6m
(备用图)
第3页共4页
23.(本题满分 10 分) 某宾馆进行装修,要添置一批空调.有一种品牌空调,在甲、乙两家电器商店销售,挂牌 价均为 2000 元/台.甲商店用如下方法促销:买一台单价为 1980 元,买两台每台都为 1960 元,依此类推,即每多买一台则所买各台单价均再减 20 元,但最低不能低于每台 1690 元;乙商店一律按挂牌价的 90%促销. (1)若此宾馆需购买 6 台这种品牌空调,应去哪家商店购买花费较少? (2)若此宾馆恰好花费 24 080 元,在同一家商店购买了一定数量的空调,请问是在哪家 商店购买的,数量是多少?
A. 8 2 2
B. 3 2 1
C. 3 2 5
9. 已知关于 x 的方程 x2-kx-6=0 的一个根为 x=3,则实数 k 的值为
A.-1
B.1
C.2
10.若方程 x2-3x-1=0 的两根为 x1,x2,则 x12+x22 的值为
A.-2
B.7
C.9
D. 2 3 6
() D.-2
恰好落在 AC 上,则 AC 的长是
.
A
D
13.已知一组数据 1,a,3,6,7,它的平均数是 4,这组数据
的众数是
.
14.使 2x 3 有意义的 x 的取值范围是
.
B
E
C
(第 12 题)
15.某县 2009 年农民人均年收入为 8 400 元,计划到 2011 年,农民人均年收入达到 12 000
(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
A
D
G E
B
F
C
(第 24 题图①)
A
D
G
E
F
B
C
(第 24 题图②)
第4页共4页
元.设人均年收入的平均增长率为 x,则可列方程
.
16.如图,在直角坐标系中,已知点 A(-3,0),B(0,4),对△OAB 连续作旋转变换,依
次得到三角形①、②、③、④…,则三角形○13 的直角顶点的坐标为
.
y
4B
①
②
③④
A
-3 O
4
9 12
16
x
(第 16 题)
三、解答题:本题共 8 小题,共 62 分.解答时应写出文字说明、证明过程或演算步骤.
八年级数学综合试题
一、选择题:本题共 10 小题,每小题 2 分,共 20 分.下列各题都有代号为 A、B、C、D 的
四个结论供选择,其中只有一个结论是正确的,请把正确结论的代号填入题后的括号内.
1. 下列图形中,是中个
D.1 个
2. 下列线段中,首尾相接能组成直角三角形的是
A.5
A
()
B.10 C.15
B
D
D.20
C (第 4 题)
5. 有 19 位同学参加歌咏比赛,所得的分数互不相同,取得分前 10 位同学进入决赛.某同学
知道自己的分数后,要判断自己能否进入决赛,他只需知道这 19 位同学成绩的( )
A.平均数
B.中位数
C.众数
D.方差
6. 为了从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们的五次数学测验
()
A.1,2,3
B.2,3,4
C.n2-1,2n,n2+1(n>1)
D.40,50,60
3. 如图,□ABCD 中,AC,BD 为对角线,BC=6,BC 边上的高为 4,则阴影部分的面积为
()
A.3
A
D
B.6
C.12 D.24
B
(第 3 题) C
4. 如图,在菱形 ABCD 中,AB = 5,∠BCD = 120°,则对角线 AC 等于
17.(本题满分 6 分)
18.(本题满分 6 分)
解方程 x2―2x―2=0.
计算(2 3 + 6 )(2 3 - 6 ).
19.(本题满分 6 分) 如图,已知△ABO 的三个顶点的坐标分别为 A(-1,3)、B(-4,0). (1)将△ABO 绕坐标原点 O 逆时针旋转 90°.画出图形,直接写出点 A 的对应点的坐标; (2)请直接写出:以 A,B,O 为顶点的平行四边形的第四个顶点 C 的坐标.
y
·A
· B
O
x
第2页共4页
(第 19 题)
20.(本题满分 6 分) 如图,在梯形 ABCD 中,AD∥BC,AB=AD=DC,AC⊥AB.
求∠ABC 的度数.
D
A
C
B
(第 20 题)
21.(本题满分 10 分)
为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取
10 台进行测试,两种电子钟走时误差的数据如下表(单位:秒):
24.(本题满分 10 分) 已知正方形 ABCD 中,E 为对角线 BD 上一点,过 E 点作 EF⊥BD 交 BC 于 F,连接 DF, G 为 DF 中点,连接 EG,CG.
(1)求证:EG=CG; (2)将图①中△BEF 绕点 B 逆时针旋转 45º,如图②所示,取 DF 中点 G,连接 EG,CG.问
成绩进行统计,得出他们的平均分均为 85 分,且 s 甲2=100、s 乙2=110、s 丙2=120、s 丁2=90.根
据统计结果,派去参加竞赛的两位同学是
()
A.甲、乙
B.甲、丙
7. 下列根式中不.是.最简二次根式的是
C.甲、丁
D.乙、丙 ()
A. 10 8. 下列计算正确的是
B. 8
C. 6
D. 2 ()
() D.11
第1页共4页
二、填空题:本题共 6 小题,每小题 3 分,共 18 分.
把最后的结果填在题中横线上.
11.一棵大树在一次强台风中于离地面 8 m 处折断倒下,大树顶端着地处离大树根部 6m,这
棵大树在折断前的高度为
m.
12.如图,矩形纸片 ABCD,AB=2,点 E 在 BC 上,且 AE=EC.若将纸片沿 AE 折叠,点 B
编号 类型
①②③④⑤⑥⑦⑧⑨⑩
甲种电子钟 1 -3 -4 4
2 -2 2 -1 -1 2
乙种电子钟 4 -3 -1 2 -2 1 -2 2 -2 1
(1)计算甲、乙两种电子钟走时误差的平均数; (2)计算甲、乙两种电子钟走时误差的方差; (3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请