二元一次方程组的基本概念

合集下载

数学七年级下册二元一次方程组性质

数学七年级下册二元一次方程组性质

数学七年级下册二元一次方程组性质数学七年级下册二元一次方程组性质导语:书是人类进步的阶梯,这句话说得真不错,我总是爱看书。

因为我从书本里明白了很多很多的道理。

下面是小编为大家整理的,数学知识,想要知更多的资讯,请多多留意CNFLA学习网!第一章二元一次方程组一、二元一次方程组 1、概念:①二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。

②二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。

2、二元一次方程的解和二元一次方程组的解:使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。

使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。

注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。

二元一次方程组的解的讨论:a1x + b1y = c1 已知二元一次方程组a2x + b2y = c2①、②、③、当a1/a2 ≠ b1/b2 时,有唯一解; 当a1/a2 = b1/b2 ≠ c1/c2时,无解; 当a1/a2 = b1/b2 = c1/c2时,有无数解。

x + y = 4 2x + 2y = 8x + y = 4 x + y = 3 例如:对应方程组:①、②、③、 3x - 5y = 9 2x + 2y = 5例:判断下列方程组是否为二元一次方程组:a +b = 2 ②、x = 4 ③、3t + 2s = 5 ④、x = 11 ①、b +c = 3 y = 5 ts + 6 = 0 2x + 3y = 03、用含一个未知数的代数式表示另一个未知数:用含X的代数式表示Y,就是先把X看成已知数,把Y看成未知数;用含Y的代数式表示X,则相当于把Y看成已知数,把X看成未知数。

(word完整版)二元一次方程组的概念和解法-教师版

(word完整版)二元一次方程组的概念和解法-教师版

(word 完整版)二元一次方程组的概念和解法-教师版二元一次方程的基本概念1。

含有两个未知数,并且含未知数项的最高次数是1的方程叫二元一次方程。

判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——整式方程; ②含有两个未知数——“二元”;③含有未知数的项的次数为1——“一次”。

2。

二元一次方程的一般形式:0ax by c ++=(0a ≠,0b ≠)3。

二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解。

一般情况下,一个二元一次方程有无数个解。

【例1】 下列各式是二元一次方程的是( )A 。

30x y z -+=B 。

30xy y x -+=C 。

12023x y -= D 。

210y x+-=【解析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别. 【答案】故本题选C .【巩固】下列方程是二元一次方程的是( )A.31x xy -= B 。

2430x x += C.23y += D.3x y =【答案】D .【例2】 若32125m n x y ---=是二元一次方程,则求m 、n 的值.【答案】由定义知:321m -=,11n -=,所以:1m =,2n =.【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。

【答案】根据题意可得:20m -≠,11n -=,11m -=,所以2n =,0m =.二元一次方程组的概念和解法同步练习知识讲解(word 完整版)二元一次方程组的概念和解法-教师版【例3】 若32125m n x y ---=是二元一次方程,则求m 、n 的值。

【答案】由定义知:321m -=,11n -=,所以:1m =,2n =。

【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。

完整版)二元一次方程组知识点及典型例题

完整版)二元一次方程组知识点及典型例题

完整版)二元一次方程组知识点及典型例题二元一次方程组小结与复一、知识梳理一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。

2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。

任何一个二元一次方程都有无数个解。

3.方程组和方程组的解1) 方程组:由几个方程组成的一组方程叫作方程组。

2) 方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。

4.二元一次方程组和二元一次方程组的解1) 二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。

2) 二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。

二)二元一次方程组的解法:1.代入消元法2.加减消元法二、典例剖析题型一1.二元一次方程及方程组的概念。

二元一次方程的一般形式:任何一个二元一次方程经过整理、化简后,都可以化成ax+by+c=(a,b,c为已知数,且a≠0,b≠0)的形式,这种形式叫二元一次方程的一般形式。

练1:下列方程,哪些是二元一次方程,哪些不是?A) 6x-2=5z+6xB) m/11+yx=7C) x-yD) xy+2x+y=1练2:若方程(m-1)x+3y5n-9=4是关于x、y的二元一次方程,求mn的值。

练3:若方程(2m-6)x|n|-1+(n+2)ym-8=1是二元一次方程,则m=_______,n=__________.专题二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。

一)代入消元法:1.直接代入例1:解方程组y=2x-3。

4x-3y=1.2.变形代入例2:解方程组x+y=90y=3x-75x+2y=8x=15-2y5x-y=9。

3x+4y=10.3.跟踪训练:1) {2x-y=-4。

4x-5y=-23.2) {3x+5y=13。

3x-2y=5.3) {3x+5y=20。

二元一次方程基本概念及基本解法讲解(最新整理)

二元一次方程基本概念及基本解法讲解(最新整理)

2
2x y 3
4.
方程组
x
y
3
的解是(

x 1
A.
y
2
x 2
B.
y
1
x 1
C.
y
1
x 2
D.
y
3
6x 5y 11, ①
5.已知二元一次方程组
3
y
2x
7,

,下列说法正确的是()
A.适合②的 x, y的值 是方程组的解①②
B.适合①的 x, y的值 是方程组的解
C.同时适合①和②的 x, y的值 不一定是方程组的解
8.在二元一次方程组
x 2x
y m
4 3
y
中,有
x
6
,则
y
_____,
m
______ .
9.若 x 2 (3y 2x)2 0 ,则 x 的值是

y
10.若
是二元一次方程
的一个解,则
的值是__________.
11.已知
,且
,则 ___________.
x 2
12.若方程
ax-2y=4
的一个解是
x
y
2 ,
8
x
y
4 ,
6
x y
1 9
等等
练习 2:二元一次方程 x-2y=1 有无数多个解,下列四组值中不是该方程解的是( )
x 0
A.
y
1 2
x 1
B.
y
1
x 1
C.
y
0
x 1
D.
y
1
【变式
2】若方程
ax

二元一次方程组-图课件

二元一次方程组-图课件

解二元一次方程组时,可以通过消元 法、代入法等方法得到不同的解。
二元一次方程组的拓展
多元一次方程组
除了二元外,还可以扩展 到更多未知数的多元一次 方程组。
分式方程组
将一次方程组的未知数次 数降低,可以得到分式方 程组。
高次方程组
将一次方程组的未知数次 数提高,可以得到高次方 程组。
二元一次方程组与其他数学知识的结合
二元一次方程组可以表示为平面上的两条直线, 这两条直线的交点就是解。解的几何意义是两条 直线的交点坐标,即两条直线的公共点。
02
二元一次方程组的图解法
直线交点法
总结词
通过作图找到两条直线的交点,该交点即为方程组的解 。
详细描述
首先,将二元一次方程组中的两个方程分别表示为两条 直线的方程。然后,在坐标系上画出这两条直线。最后 ,找到这两条直线的交点,该交点的坐标即为方程组的 解。
02 代数问题
在代数中,二元一次方程组是基本的问题类型之 一,需要掌握其解法。
03 概率统计问题
在概率统计中,经常需要计算两个事件同时发生 的概率或两个变量的相关性。
科学中的二元一次方程组问题
01
02
03
物理问题
在物理学中,经常需要解 决与速度、力和加速度相 关的二元一次方程组问题 。
化学问题
在化学中,二元一次方程 组可以用来描述化学反应 中两种物质的反应速率和 反应条件。
进阶习题2
解方程组$begin{cases}x + 2y = 6 2x + y = 4end{cases}$
进阶习题3
解方程组$begin{cases}5x - y = 11 x + 2y = 7end{cases}$

(完整)二元一次方程组的定义解析

(完整)二元一次方程组的定义解析

考点名称:二元一次方程组的定义•(一)二元一次方程组:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

把两个含有相同未知数的一次方程联合在一起,那么这两个方程就组成了一个二元一次方程组。

二元一次方程组的解:一般的,二元一次方程组的两个二元一次方程的公共解,叫做二元一次方程组的解.一般形式为:(其中a1,a2,b1,b2不同时为零).••(二)二元一次方程组的特点:1.组成二元一次方程组的两个一次方程不一定都是二元一次方程,但这两个方程必须一共含有两个未知数,如也是二元一次方程组。

2。

在方程组的每个方程中,相同字母必须代表同一未知量,否则不能将两个方程合在一起。

3。

二元一次方程组中的各个方程应是整式方程。

4。

二元一次方程组有时也由两个以上的方程组成。

••(三)二元一次方程与二元一次方程组的区别:•二元一次方程二元一次方程组条件①含有两个未知数;②含未知数的项的次数都是1;③整式方程。

①含有两个未知数;②含未知数的项的次数都是1;③整式方程组(可任意话说你有两个以上的方程)一般形式ax+by=c(a、b、c都是常数,且a≠0,b≠0)(a1,a2,b1,b2不同时为零).解的情况无数组解或无数组解或有唯一解或无解解的定义适合二元一次方程的每一对未知数的值,叫做这个二元一次方程的一组解二元一次方程组中各个方程的公共解叫做这个二元一次方程组的解••(四)二元一次方程组的判定:①方程组各方程中,相同的字母必须代表同一数量,否则不能将两个方程合在一起.②怎样检验一组数值是不是某个二元一次方程组的解,常用的方法如下:将这组数值分别代入方程组中的每个方程,只有当这组数值满足其中的所有方程时,才能说这组数值是此方程组的解,否则,如果这组数值不满足其中任一个方程,那么它就不是此方程组的解.••(五)二元一次方程:如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。

《二元一次方程组》知识讲解及例题解析

《二元一次方程组》知识讲解及例题解析

《二元一次方程组》知识讲解及例题解析◆知识讲解1.二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.3.二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.◆例题解析例1 已知21xy=⎧⎨=⎩是方程组2(1)21x m ynx y+-=⎧⎨+=⎩的解,求(m+n)的值.【分析】由方程组的解的定义可知21xy=⎧⎨=⎩,同时满足方程组中的两个方程,将21xy=⎧⎨=⎩代入两个方程,分别解二元一次方程,即得m 和n 的值,从而求出代数式的值.【解答】把x=2,y=1代入方程组2(1)21x m y nx y +-=⎧⎨+=⎩中,得22(1)12211m n ⨯+-⨯=⎧⎨+=⎩ 由①得m=-1,由②得n=0.所以当m=-1,n=0时,(m+n )=(-1+0)=-1.【点评】如果是方程组的解,那么它们就能满足这个方程组中的每一个方程. 例2 “5.12”汶川大地震后,灾区急需大量帐篷.•某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000•顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;•若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?【解答】(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x ,y 顶,则210523178x y x y +=⎧⎨+=⎩ 解得:x=41;y=32答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3×(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,也不能如期完成任务.可以从加班生产,改进技术等方面进一步挖掘生产潜力,或者动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.例3 某商场正在热销2008年北京奥运会吉祥物“福娃”和徽章两种奥运商品,根据下图提供的信息,•求一盒“福娃”玩具和一枚徽章的价格各是多少元?【分析】本题以图文形式提供了部分信息,主要考查学生运用二元一次方程组解决实际问题的能力.【解答】设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得214523280x y x y +=⎧⎨+=⎩解这个方程组,得12510x y =⎧⎨=⎩ 故一盒“福娃”玩具的价格为125元,一枚徽章的价格为10元.例4 为满足用水量不断增长的需求,昆明市最近新建甲,乙,•丙三个水厂,这三个水厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A 型,B •型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5次,可把土石运完;或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)【分析】(1)可设甲水厂的日供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3,由三个水厂的日供水量总和为11.8万m 3,可列方程x+3x+12x+1=11.8; (2)设每辆A 型汽车每次运土石xt ,B 型车每辆每次运土石yt ,•依题意可列方程组30206001530600x y x y +=⎧⎨+=⎩解方程后可求解.【解答】(1)设甲水厂的供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3. 由题意得:x+3x+12x+1=11.8,解得x=2.4. 则3x=7.2,x+1=2.2.答:甲水厂日供水量是2.4万m 3,乙水厂日供水量是7.2万m 3,•丙水厂日供水量是2.2万m 3.(2)设每辆A 型汽车每次运土石xt ,每辆B 型汽车每次运土石yt ,由题意得: 30206001530600x y x y +=⎧⎨+=⎩ ∴1015x y =⎧⎨=⎩答:每辆A型汽车每次运土石10t,每辆B型汽车每次运土石15t.【点评】本例系统地考查了一元一次方程和二元一次方程组这两个重要内容,在同一背景下提供不同的动作方案是近年中考应用题的发展方法.。

(完整版)二元一次方程组优秀课件PPT

(完整版)二元一次方程组优秀课件PPT

答案解析
答案解析1
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
答案解析2
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
几何问题
例如,在计算几何图形的面积、 周长或体积时,需要使用二元一 次方程组来表示相关变量之间的
关系。
代数问题
例如,在解决代数方程组时,需要 使用二元一次方程组来表示未知数 之间的关系。
概率统计问题
例如,在计算概率分布或统计数据 时,需要使用二元一次方程组来表 示相关变量之间的关系。
科学中的二元一次方程组问题
化学反应
在化学反应中,常常需要用到 二元一次方程组来表示反应物 和生成物的关系。
几何问题
在解决涉及两个未知数的几何 问题时,如两点之间的距离、 角度等,常常需要用到二元一
次方程组。
02
二元一次方程组的解法
代入消元法
通过代入一个方程中的未知数,将其表示为另一个变量的函数,从而简化方程组的方法。
代入消元法是解二元一次方程组的一种常用方法。首先,选择一个方程中的未知数,用另一个未知数表示出来,然后将其代 入到另一个方程中,消去一个未知数,得到一个一元一次方程。接着解这个一元一次方程,得到一个变量的值,再将其代回 原方程中求得另一个变量的值。
01
02
03
购物问题
例如,在购买商品时,需 要计算不同商品的价格和 折扣,以确定最佳购买方 案。
交通问题

二元一次方程组的概念

二元一次方程组的概念

二元一次方程组的概念
二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程。

两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组。

每个方程可化简为ax+by=c的形式。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

求解方法:
利用数的整除特性结合代人排除的方法去求解。

(可利用数的尾数特性,也可利用数的奇偶性。

)
扩展资料:
用代入消元法的一般步骤是:
1.选一个系数比较简单的方程进行变形,变成
y=ax+b或x=ay+b的形式;
2.将y=ax+b或x=ay+b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;
3.解这个一元一次方程,求出x或y值;
4.将已求出的x或y值代入方程组中的任意一个方程(y=ax+b
或x=ay+b),求出另一个未知数;
5.把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。

加减消元法
1.在二元一次方程组中,若有同一个未知数的系数相同(或互为
相反数),则可直接相减(或相加),消去一个未知数;
2.在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次
方程;
3.解这个一元一次方程;
4.将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;
5.把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。

第4讲 二元一次方程(组)的概念与解法(学生版)

第4讲 二元一次方程(组)的概念与解法(学生版)

第4讲 二元一次方程(组)的概念与解法一、知识回顾:一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 特别说明:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧ba==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.二、二元一次方程组的解法 1.解二元一次方程组的思想2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式;②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;转化消元一元一次方程二元一次方程组④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解. (2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.二、经典例题:知识点一、二元一次方程(组)的概念【例1】若(a −2)x |a−1|−3y =5是关于x 、y 的二元一次方程,则a 的值为( ) A .0 B .2 C .0或2 D .1或2 【例2】下列各组数中,是二元一次方程3x −5y =8的解的是( )A .{x =1y =1B .{x =−1y =1C .{x =−1y =−1D .{x =1y =−1【例3】若{x =−1y =2是关于x ,y 的二元一次方程3x+ay=5的一个解,则a 的值为 【例4】如果{x =1,y =2是关于x ,y 的方程mx +2y =6的解,那么m 的值为() A .−2 B .−1 C .1 D .2【例5】下列方程中:①xy =1 ;②3x +2y =4 ;③2x +3y =0 ;④x 4+y3=7 ,二元一次方程有( ) A .1个 B .2个 C .3个 D .4个 【例6】下列方程组是二元一次方程组的是( )A .{mn =2m +n =3 B .{5m −2n =01m+n =3C .{m +n =03m +2a =16D .{m =8m 3−n 2=1知识点二、二元一次方程组的解法【例7】用代入消元法解方程组 {y =x −13x −2y =5正确的化简结果是( ) A .3x −2x −2=5 B .3x −2x +2=5 C .3x −2x −1=5 D .3x −2x +1=5【例8】用代入法解方程组使得代入后化简比较容易的变形是( )A .由(1),得x=2−4y 3B .由(1),得y=2−3x 4C .由(2),得x=y+52D .由(2),得y=2x ﹣5【例9】解方程组。

第11讲二元一次方程组的概念与求解(原卷版)

第11讲二元一次方程组的概念与求解(原卷版)

第11讲二元一次方程组的概念与求解目标导航知识精讲知识点01二元一次方程(组)概念及解1、二元一次方程含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.注意:二元一次方程的识别方法①“二元”,即含有两个未知数;②“一次”,即含未知数的次数是1;③“整式方程”,即未知数不能出现在分母中。

2、二元一次方程组共含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组.注意:①含有两个整式方程;②方程中共含有两个未知数;③含未知数的项的次数都是1.3、二元一次方程的解适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.注意:①二元一次方程的每一个解都是一对数值,而不是一个数;②一般情况下,一个二元一次方程有无穷多个解,但如果对其未知数的取值附加某些限制条件,那么也可能只有有限个特殊的解。

4、二元一次方程组的解我们把二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.注意:①方程组的解同时满足方程组中的每一个方程;②由于方程组需用“{”括起来,所以方程组的解也要用“{”括起来.5、二元一次方程组解的情况(1)唯一解;(2)无数解;(3)无解.【知识拓展】(2019秋•成都期末)下列方程是二元一次方程的是()A .2y xy -+=B .3115x x -=C .32x y =+D .2612x y -=【即学即练1】(2019春•迁西县期末)已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程3mx y -=的一个解,则m的值是()A .1-B .1C .5-D .5【即学即练2】(2020春•港南区期末)下列各组数值是二元一次方程34x y -=的解的是()A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .41x y =⎧⎨=-⎩【即学即练3】(2020春•肇源县期末)已知21x y =⎧⎨=⎩是方程组15ax by x by -=⎧⎨+=⎩的解,则a 、b 的值分别为()A .2,7B .1-,3C .2,3D .1-,7知识点02二元一次方程组的解法1、代入消元法将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。

二元一次方程组的相关概念(基础)知识讲解

二元一次方程组的相关概念(基础)知识讲解

二元一次方程(组)的相关概念(基础)知识讲解【学习目标】1.理解二元一次方程、二元一次方程组及它们的解的含义;2.会检验一组数是不是某个二元一次方程(组)的解.【要点梳理】要点一、二元一次方程含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.要点二、二元一次方程的解一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.要点三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.要点四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.要点诠释:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x a y b =⎧⎨=⎩的形式. (2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x y x y +=⎧⎨+=⎩无解,而方程组1222x y x y +=-⎧⎨+=-⎩的解有无数个. 【典型例题】类型一、二元一次方程1.已知下列方程,其中是二元一次方程的有________.(1)2x -5=y ; (2)x -1=4; (3)xy =3; (4)x+y =6; (5)2x -4y =7;(6)102x +=;(7)251x y +=;(8)132x y +=;(9)280x y -=;(10)462x y +=. 【思路点拨】按二元一次方程满足的三个条件一一检验.【答案】(1)(4)(5)(8)(10)【解析】只有(1)(4)(5)(8)(10)满足二元一次方程的概念.(2)为一元一次方程,方程中只含有一个未知数;(3)中含未知数的项的次数为2;(6)只含有一个未知数;(7)不是整式方程;(9)中未知数x 的次数为2.【总结升华】判断一个方程是否为二元一次方程的依据是二元一次方程的定义,对于比较复杂的方程,可以先化简,再根据定义进行判断.举一反三:【变式】下列方程中,属于二元一次方程的有( )A .71xy -=B .2131x y -=+C .4535x y x y -=-D . 231x y-= 【答案】B类型二、二元一次方程的解2.二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程解的是( ) A .012x y =⎧⎪⎨=-⎪⎩ B .11x y =⎧⎨=⎩ C .10x y =⎧⎨=⎩ D .11x y =-⎧⎨=-⎩ 【答案】B【解析】解:当x =0,y =12-时,x -2y =1,故A 是原方程的解. 当x =1,y =1时,x -2y =-1,故B 不是原方程的解.当x =1,y =0时,x -2y =1,故C 是原方程的解.当x =-1,y =-1时,x -2y =1,故D 是原方程的解.【总结升华】判断一组数值是否是原方程的解,只需要将这组数值代入原方程,能使方程左右两边相等的未知数的值是原方程的解,否则,不是.举一反三:【变式】若方程24ax y -=的一个解是21x y =⎧⎨=⎩,则a= . 【答案】33.已知二元一次方程3142x y +=. (1)用含有x 的代数式表示y ;(2)用含有y 的代数式表示x ;(3)用适当的数填空,使2_______x y =-⎧⎨=⎩是方程的解.【思路点拨】用含一个未知数的代数式表示另一个未知数,就是把要表示的未知数当未知数,把其他的未知数当已知数,然后再将方程变形.【答案与解析】解:(1)将方程变形为3y =22x -,化y 的系数为1,得236x y =-. (2)将方程变形为232x y =-,化x 的系数为1,得46x y =-. (3)把x =-2代入236x y =-得, y =1. 【总结升华】用含x 的代数式表示y ,其实质表示为“y =含x 的代数式”的形式.在进行方程的变形过程中,有效地利用解一元一次方程的方法技巧很重要.举一反三:【变式】已知:2x +3y =7,用关于y 的代数式表示x ,用关于x 的代数式表示y .【答案】解:(1)2x =7-3y , 732y x -=;(2)3y =7-2x ,723x y -= 类型三、二元一次方程组及方程组的解 4. 下列方程组中,是二元一次方程组的是( )A. 22375(9)1x y x y ⎧+=⎨+=-⎩B. 2138237y x x y ⎧-=⎪⎨⎪-=⎩C. 135()237x z x y x z y =+-⎧⎨-=⎩D. 5()()82317x y x y x y -++=⎧⎨=-+⎩() 【答案】D【解析】A ,B 中未知数的次数高于或低于一次,而C 中出现三个未知数,只有D 选项满足题意,故正确答案为D.【总结升华】是否是二元一次方程组要满足“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.5.判断下列各组数是否是二元一次方程组4221x y x y +=⎧⎨+=-⎩①②的解.(1)35x y =⎧⎨=-⎩ (2)21x y =-⎧⎨=⎩ 【答案与解析】解:(1)把35x y =⎧⎨=-⎩代入方程①中,左边=2,右边=2,所以35x y =⎧⎨=-⎩是方程①的解.把x =3,y =-5代入方程②中,左边=3(5)2+-=-,右边=1-,左边≠右边,所以35x y =⎧⎨=-⎩不是方程②的解. 所以35x y =⎧⎨=-⎩不是方程组的解. (2)把21x y =-⎧⎨=⎩代入方程①中,左边=-6,右边=2,所以左边≠右边,所以21x y =-⎧⎨=⎩不是方程①的解,再把21x y =-⎧⎨=⎩代入方程②中,左边=x+y =-1,右边=-1,左边=右边,所以21x y =-⎧⎨=⎩是方程②的解,但由于它不是方程①的解,所以它也不是方程组的解.【总结升华】检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.举一反三:【变式】写出解为12x y =⎧⎨=-⎩的二元一次方程组. 【答案】解:此题答案不唯一,可先任构造两个以12x y =⎧⎨=-⎩为解的二元一次方程,然后将它们用“{”联立即可,现举一例:∵ x =1,y =-2,∴ x+y =1-2=-1.2x -5y =2×1-5×(-2)=12.∴ 12512x y x y +=-⎧⎨-=⎩就是所求的一个二元一次方程组.注:任选的两个方程,只要其对应系数不成比例,联立起来即为所求.。

第8讲 二元一次方程(组)的概念和解法

第8讲   二元一次方程(组)的概念和解法

第8讲二元一次方程(组)的概念和解法【学习目标】1.二元一方程(组)的概念2.二元一次方程组的基本解法3.复杂的多元一次方程组【模块一】二元一次方程组的概念在本模块我们的学习目标是:1、掌握二元一次方程概念2、掌握二元一次方程组概念3、理解方程组的解(公共解)一、二元一次方程1、定义:含有两个未知数,并且含未知数的项的最高次数是1的整式方程叫二元一次方程. 【例】x+2y=5,2x=3y,3x=y-2对于二元一次方程的定义可以用“三个条件一个前提”来理解:①含有两个未知数一一“二元②含有未知数的项的最高次数为1一“一次③未知数的系数不能为0前提:方程两边的代数式都是整式一一整式方程2、一般形式:二元一次方程的一般形式:ax+by+c=0(a=0,b=0)【课堂建议】类比一元一次方程:标准式:ax+b=0(a≠0)3、判定:先看前提,再化一般形式易错总结(1)二元:x+y+z=1,x-2=1(2)一次:x2-x+y=1,xy+x+y=1【袁华燕录入】(3) 系数不为0:x+y-1=x-y+1,x2-x+y-1=x2+x-y+1(4) 整式方程:1x+y=1,1x+x+y=1x【易错】x+y-1=x-y+1,x2-x+y-1=x2+x-y+1,1x+x+y=1x【例1】下列方程中,是二元一次方程的有哪些?①x+3=7;②a+b=0;③3a+4t=9;④xy-1=0;⑤1x-y=0;⑥x+y+z=4;⑦2x2+x+1=2x2+y+5;⑧x2+y-6=2x.【练1】方程2x-3y=5,xy=3,x+3y-1,3x-y+2z=0,x2+y=6中是二元一次方程的有()A. 1个B. 2个C. 3个D. 4个【例2】⑴己知方程x n-1+2y|m-1|=m关于x,y的二元—次方程,求m、n的值.⑵己知方程(a-2)x|a|-1-(b+5)y|b|-4=3是关于x、少的一元一次方程,求a、b的值.【练2】(1)若方程2x m-1+y n+m=12是二元一次方程.则mn=_____(2)若己知方程(k2-1)x2+(k+1)x+(k-7)y=k+2,当k=_______时,方程为一元一次方程,当k=_____时,方程为二元一次方程.4、二元一次方程的解:二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解.任何一个二元一次方程都有无数个解.【例3】⑴己知21xy=⎧⎨=⎩是方程3x+ay=5的解,则a的值为()A.-1B.1C.2D.3⑵判断下列数值是否是二元一次方程3t+2s=24的解.①29ts=⎧⎨=⎩②21ts=⎧⎨=⎩③89ts=⎧⎨=⎩④46ts=⎧⎨=⎩【练3】⑴若23x ky k=⎧⎨=-⎩是二元—次方程2x-y=14的解,则k的值是()A.2B.-2C.3D.-3⑵已知12xy=⎧⎨=⎩与3xy m=⎧⎨=⎩都是方程x+y-=n的解,求m与n的值.二.二元_次方程组:1、二元一次方程组.由几个一次方程组成并且含有两个未知数的方程组叫二元—次力程组.(1)二元:总共有两个未知数如:+12 22 xx=⎧⎨=⎩,21x y yx+=⎧⎨=⎩,12x yx y+=⎧⎨+=⎩,121x yx+=⎧⎨=⎩,12xy=⎧⎨=⎩,12x y zx y z+-=⎧⎨-+=⎩,11x yy z+=⎧⎨+=⎩(2) —次:每个都是一次方程如:22x yy x⎧=⎪⎨=⎪⎩,2222+x x xy y y⎧=⎪⎨+=⎪⎩,11x yxy+=⎧⎨=⎩,1111xy⎧=⎪⎪⎨⎪=⎪⎩(3)方程组:方程个数大于等于2如:x+y=l,112 xyz=⎧⎪=⎨⎪=⎩① 二元—次方程组一定是由两个或多个二元一次方程组成(错)② 两个或多个二元一次方程一定可以组成二元一次方程组(错)【例4】下列方程组中,属于二元一次方程组的是()A.527x yxy+=⎧⎨=⎩B.121340xyx y⎧+=⎪⎨⎪-=⎩C.354433x yx y=⎧⎪⎨+=⎪⎩D.28312x zx y-=⎧⎨+=⎩【练4】下列方程组中,是二元一次方程组的是()A.4119x yx y+=⎧⎪⎨+=⎪⎩B.57x yy z+=⎧⎨+=⎩C.1x y xyx y-=⎧⎨-=⎩D.1326xx y=⎧⎨-=⎩2、二元一次方程组的解:使二元一次方程组的两个方程左右两边都相等的两个未知数的值(即两个方程的公共解),叫做二元一次方程组的解,同时它也必须是-个数对.而不能是一个数.【例5】⑴己知43xy=-⎧⎨=⎩是方程组12ax yx by+=-⎧⎨-=⎩的解,则(a+b)b=_______,(2)己知21xy=⎧⎨=⎩是二元一次方程组12ax bybx ay+=⎧⎨+=⎩的解,则a-b的值为( )A.1B.-1C.2D.3【练5】(1)下列四个解中是方程组16223111x yx y⎧-=⎪⎨⎪+=-⎩的解是()A.810xy=⎧⎨=-⎩B.101xy=⎧⎨=-⎩C.6xy=⎧⎨=-⎩D.112xy⎧=-⎪⎨⎪=⎩⑵关于x,y的二元一次方程组331ax yx by-=⎧⎨-=-⎩解中的两个未知数的值互为相反数,其中x=l,求a,b的值.模块二二元一次方程组的基本解法一.会解基本二元一次方程组(体会消元过程)2、熟练应用代入与加减的方法,养成严格书写的习惯二元一次方程方程组最根本的思路就是将二元方程消元变成一元方程,代入消元法和加减消元法是最常用的方法.1.代入消元:why:等量代换when:(未知数系数为1时优先)how:用一个字母表示另一个字母直接代入(1)12xx y=⎧⎨+=⎩(2)2x yx y=⎧⎨+=⎩⑶23x yx y=⎧⎨+=⎩⑷13x yx y+=⎧⎨+=⎩变形代入(5)13x yx y-=⎧⎨+=⎩(6)2127x yx y-=⎧⎨+=⎩(7)2+38321x yx y=⎧⎨-=-⎩1.代入消元法代入消元法是解二元一次方程组的基本方法之一.“消元”体现了数学研究中转化的重要思想, 代入法不仅在解二元一次方程组中适用,也是今后解其他方程(组)经常用到的方法. 用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如y,用另一个未知数如x的代数式表示出来,即写成y=ax+b的形式:②把y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程:③解这个一元一次方程,求出x的值:④回代求解:把求得的x的值代入y=ax+b中求出y的值从而得出方程组的解.⑤把这个方程组的解写成x ay b=⎧⎨=⎩的形式.【例】解方程组2 239 x yx y-=⎧⎨+=⎩②①解:由①得y=x—2 ③把③代入②,得2x+3(x-2)=9 解得x=3把x=3代入③得,y=l所以方程组的解是31 xy=⎧⎨=⎩2、加减消元:Why:等式性质When:系数绝对值相同优先How:系数统一后相加减直接加减;⑴31x yx y+=⎧⎨-=⎩⑵521327x yx y-=⎧⎨+=⎩⑶24234x yx y+=⎧⎨-=-⎩系数统一(4)23124x yx y-=⎧⎨+=⎩(5)237324x yx y+=⎧⎨-=⎩2.加减消元法加减法是消元法的一种,也是解二元一次方程组的基本方法之一,也是今后解其他方程(组)经常用到的方法用加减法解二元一次方程组的-般步骤:①变换系数:把一个方程或者两个方程的两边都乘以适当的数.使两个方程里的某―个未知数互为相反数或相等.②加减消元:把两个方程的两边分别相加或相减.消去一个未知教,得到一个一个―次方程:③解这个一元一次方程,求得一个未知数的值:④回代:将求出的未知数的值代入原方程组中,求出另一个未知数的值:⑤把这个方程组的解写成x ay b=⎧⎨=⎩的形式例:解方程组32 12 3 x yx y-=⎧⎨+=⎩②①解:①×2 得4x+2y=6 ③①+③得7x=7解得x=l把x=l代入①得y=l所以方程组的解是11 xy=⎧⎨=⎩代入消元与加减消元的对比:代入消元方法的选择:①运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0” 的形式.求不出未知数的值.②当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.加减消元方法的选择:① 一般选择系数绝对值最小的未知数消元;② 当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相等时,用减法消元;③某一未知数系数成倍数关系时,直接使其系数互为相反数或相等,再用加减消元求解.④当未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时方程进行变形,转化为系数的绝对值相同,再用加减消元求解.【例6】⑴方程组233x yx y-=⎧⎨+=⎩的解是( )A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.23xy=⎧⎨=⎩⑵方程组535213x yx y+=⎧⎨-=⎩的解是()A.12xy=⎧⎨=⎩B.45xy=-⎧⎨=⎩C.53xy=⎧⎨=⎩D.45xy=⎧⎨=-⎩⑶用代入消元法解方程组:3 3814 x yx y-=⎧⎨-=⎩⑷用加减消元法解方程组:49 351 x yx y+=-=⑸二元一次方程ax+by=6有两组解是22xy=⎧⎨=-⎩与18xy=-⎧⎨=-⎩,求a,b的值.【练6】⑴二元―次方程组2x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.11xy=-⎧⎨=-⎩⑵方程组25342x yx y-=⎧⎨+=⎩的解是____________.⑶己知方程组2421mx y nx ny m+=⎧⎨-=-⎩的解是11xy=⎧⎨=-⎩,那么m,n的值为()A.11mn=⎧⎨=-⎩B.21mn=⎧⎨=⎩C.32mn=⎧⎨=⎩D.31mn=⎧⎨=⎩三元:【例7】0 423 9328 a b ca b ca b c++=⎧⎪++=⎨⎪-+=⎩【练7】解方程组0.5320 322 x y zx y zx y z+-=⎧⎪-+=⎨⎪+-=⎩模块三二元一次方程组的基本解法本模块中,我们主要学习复杂二元一次方程组化简,同时,对换元,轮换,连等式等量代信思想的建议认识理解.复杂方程组化简为基本二元一次方程组消元求解【例8】解下列方程组:⑴3(1)4(4)5(1)3(5)y xx y-=-⎧⎨-=+⎩⑵134723m nm n⎧-=-⎪⎪⎨⎪+=⎪⎩【练8】解方程组:⑴2344143m n n mnm+-⎧-=⎪⎪⎨⎪+=⎪⎩⑵3221245323145x yx y--⎧+=⎪⎪⎨++⎪-=⎪⎩2、轮换对称:二元对称:【例9】解方程组:⑴231763172357x yx y+=⎧⎨+=⎩⑵201120134023201320114025x yx y+=⎧⎨+=⎩【曾伟录入】【练9】(1)解关于x、y的方程组301120722 150271571x yx y+=⎧⎨+=⎩(2)解关于x、y的方程组331512 173588x yx y+=⎧⎨+=⎩三元轮换【例10】解方程组(1)222426x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩;(2)1131x y zy z xz x y+-=⎧⎪+-=⎨⎪+-=⎩.【练10】(1)解方程组12323434545151212345x x xx x xx x xx x xx x x++=⎧⎪++=⎪⎪++=⎨⎪++=⎪⎪++=⎩;(2)已知1467245735674757671234567394941131499x x x x x x x x x x x x x x x x x x x x x x x x x +++=⎧⎪+++=⎪⎪+++=⎪+=⎨⎪+=⎪⎪+=⎪++++++=⎩,求7x .3、换元:【例11】(1)解方程组23237432323832x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩【练11】(第七届“华罗庚杯”邀请赛试题) 解方程组1211631102221x y x y ⎧+=⎪--⎪⎨⎪+=⎪--⎩【例12】解方程组(1)1513pq p q pq p q ⎧=⎪+⎪⎨⎪=⎪-⎩;(2)1321312312mn m n mn m n ⎧=⎪⎪+⎨⎪=⎪+⎩.【练12】(1)已知1,2,3xy yz zx x y y z z x===+++,求x y z ++的值.(2)解关于x 、y 的方程组1111(0,)x y abx a b x y aby ab ab b aa b ⎧+=+⎪⎪⎨⎪+=+≠±≠⎪⎩.4、连等比例【例13】解方程组:(1):::1:2:3:49732200x y z u x y z u =⎧⎨+++=⎩;(2)解方程组:2345238x y z x y z ⎧==⎪⎨⎪+-=⎩【练13】已知a b c k b c a c a b===+++,求k 的值.第8讲[尖端课后作业二元一次方程(的)念和解法【习1】下列各方程中,是二元一次方程的是( )A. 312x xy +=B. x y =C. 2115x y =+ D. 253x y x y -=+ 【习2】下列各方程是二元一次方程的是( )A. 23x y z +=B. 45y x +=C. 2102x y +=D. 1(8)2y x =+【习3】若关于x 、y 的方程2(3)0a a x y --+=是二元一次方程,那么a 的取值为( )A. 3a =-B. 3a =C. 3a >D. 3a <【习4】若方程22(4)(23)(2)0k x k x k y -+-+-=为二元一次方程,则k 的值为( )A. 2B. -2C. 2或-2D. 以上均不对【习5】若方程2(3)25m m x y -+-=为关于x 、y 的二元一次方程,则2012(2)m -= .【习6】下列方程组中,是二元一次方程组的是( )A. 4119x y x y +=⎧⎪⎨+=⎪⎩B. 57x y y z +=⎧⎨+=⎩C. 1x y xy x y -=⎧⎨-=⎩D.1326x x y =⎧⎨-=⎩【习7】下列不是二元一次方程组的是( )A. 23x y y z +=⎧⎨+=⎩B. 2334m n n m =+⎧⎨-=⎩ C. 21x y =⎧⎨=-⎩D. 4252()12()3a a b a b +=⎧⎨-+=+-⎩ 【习8】解下列二元一次方程组:(1)527341x y x y -=⎧⎨+=-⎩ ;(2)327238x y x y +=⎧⎨+=⎩ ;(3)34165633x y x y +=⎧⎨-=⎩【习9】若方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解是( ) A. 6.32.2x y =⎧⎨=⎩ B. 8.31.2x y =⎧⎨=⎩ C. 10.32.2x y =⎧⎨=⎩ D. 10.30.2x y =⎧⎨=⎩【习10】若实数x 、y 满足2142y x ⎛⎫= ⎪⎝⎭,求关于x 、y 的方程组12x y a x y a +=-⎧⎨-=-⎩的解.【习11】已知211(3)02a b -++=,解方程组315ax y x by -=⎧⎨+=⎩. 【习12】解方程组2(1)5(2)1101217102x y x y --++=⎧⎪-+⎨-=⎪⎩【习13】解方程组3()4()4126x y x y x y x y +--=⎧⎪+-⎨+=⎪⎩ 【习14】解方程组2320235297x y x y y --=⎧⎪-+⎨+=⎪⎩【习15】解方程组9()18523()2032m n m m n ⎧+=⎪⎪⎨⎪++=⎪⎩【习16】解方程组1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩【习17】解方程组37043225x y y z x z -+=⎧⎪+=⎨⎪-=-⎩【习18】解方程组23162125x y z x y z x y z ++=⎧⎪-+=-⎨⎪+-=⎩【习19】解方程组56812412345x y z x y z x y z +-=⎧⎪+-=-⎨⎪+-=⎩【玉勇录入】【习20】已知方程组361463102463361102x y x y +=-⎧⎨+=⎩的解是x p y q =⎧⎨=⎩,方程组345113435113991332x y z x y z x y z ++=⎧⎪++=⎨⎪+-=⎩的解是x m y n z t =⎧⎪=⎨⎪=⎩,则(p -q )(m -n +t )等于 .【习21】(武汉市“CASIO ”竞赛题)已知正数a ,b ,c ,d ,e ,f 满足becdf a =4,acdef b =9,abdef c =16,abcef d =14,abcdf e =19, abcde f =116,求(a +c +e )-(b +d +f )的值.【习22】(第二十三届“希望杯”全国数学邀请赛初二第1试)已知实数x 1,x 2,x 3,x 4满足条件1231234234134124x x x a x x x a x x x a x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=⎩,其中a 1<a 2<a 3<a 4,则x 1,x 2,x 3,x 4的大小关系是( ) A . x 1<x 2<x 3<x 4 B . x 2<x 3<x 4<x 1 C . x 3<x 2<x 1<x 4 D . x 4<x 3<x 2<x 1【习23】若x1,x2,x3,x4,x5满足方程组12323434545151212345x x xx x xx x xx x xx x x-+=⎧⎪-+=⎪⎪-+=⎨⎪-+=⎪⎪-+=⎩①②③④⑤,求x2x3x4的值.【习24】解方程组::3:2:5:466 x yy zx y z=⎧⎪=⎨⎪++=⎩【张来录入】。

完整版)二元一次方程组知识点归纳

完整版)二元一次方程组知识点归纳

完整版)二元一次方程组知识点归纳二元一次方程组是数学中的基本概念,它包含了两个未知数,且未知数的项次数都是1.这样的方程被称为二元一次方程。

当两个二元一次方程具有相同的未知数时,它们可以被合并成一个二元一次方程组。

需要注意的是,一个或多个二元一次方程也可以单独组成一个方程组。

二元一次方程组的解是指使方程组中两个未知数相等的值。

一个二元一次方程有无数个解。

二元一次方程组的解是指满足方程组中两个方程的公共解。

例如,方程组x+y=5和6x+13y=89有解x=-24/7,y=59/7.有些方程组没有解,例如x+y=4和2x+2y=10.这是因为方程②化简后为x+y=5,这与方程①相矛盾。

消元是解决方程组的一种常用方法,它可以将方程组中的未知数个数由多化少。

代入消元法是一种常见的消元方法,它可以将一个方程中的未知数用另一个未知数的式子表示出来,然后代入另一个方程中,消元求解。

加减消元法是另一种解二元一次方程组的方法,它可以将两个方程相加或相减,消去其中一个未知数,从而得到一个关于另一个未知数的一元一次方程。

最后解出这个方程,求出未知数的值。

1.理解问题,明确未知量和已知量之间的关系;2.根据问题中的条件,列出方程(组);3.解方程(组),求出未知量的值;4.检验解是否符合实际情况;5.给出问题的答案,并附上解题过程。

七、注意事项1.在解题过程中,要注意符号的运用,避免出现计算错误;2.在列方程(组)时,要注意把问题中的信息全部转化为数学语言,避免遗漏;3.在解方程(组)时,要注意检查解的合理性,避免出现无解或多解的情况;4.在解应用题时,要注意理解问题的实际意义,避免出现解出的答案与实际情况不符的情况。

解二元一次方程组的方法主要有加减消元法和代入法。

在同一个方程中,如果同一未知数的系数不相等或不互为相反数,就可以用适当的数乘方程两边,使同一未知数的系数相等或互为相反数,即“乘”。

将两个方程的两边相加或相减,可消去一个未知数,得到一个一元一次方程,即“加减”。

二元一次方程组知识点整理

二元一次方程组知识点整理

二元一次方程组知识点整理第五章:二元一次方程组知识点整理知识点1:二元一次方程(组)的定义1.二元一次方程的概念:二元一次方程是指含有两个未知数,且所含未知数的项的次数都是1的方程。

注意:1)方程中的元指的是未知数,即二元一次方程有且只有两个未知数。

2)含有未知数的项的次数都是1.3)二元一次方程的左右两边都必须是等式。

(三个条件完全满足的就是二元一次方程)2.含有未知数的项的系数不等于零,且两未知数的次数为1.即若ax+by=c是二元一次方程,则a≠0,b≠0且m=1,n=1.例1:已知(a-2)x-by|a|-1/mn=5是关于x、y的二元一次方程,则a=______,b=_____.例2:下列方程为二元一次方程的有:①2x-5=y,②x-4=1,③xy=2,④x+y=3,⑤x-y=2,⑥xy+2x-y=2,⑦3x+2y,⑧a+b+c=1巩固练】下列方程中是二元一次方程的是()A.3x-y2=0.B.(1+y)/(7x+21/5)=1.C.-y=6.D.4xy=3/23.二元一次方程组的概念:由两个二元一次方程所组成的方程组叫做二元一次方程组。

注意:①方程组中有且只有两个未知数。

②方程组中含有未知数的项的次数为1.③方程组中每个方程均为整式方程。

例:下列方程组中,是二元一次方程组的是()A。

{x+y=4,2x+3y=7}B。

{2a-3b=11,5b-4c=6}C。

{x^2=9,y=2x}D。

{x+y=8,2x-y=4}巩固练】已知下列方程组:(1){y=-2,(2){y-z=4,x-y=1/2},(3){x-y=1/3,x+y=2},(4){x+y=3/2,3x+y=2}其中属于二元一次方程组的个数为()A.1B.2C.3D.4知识点2:二元一次方程组的解定义一般地,使二元一次方程组中两个方程左右两边的值都相等的两个未知数的值叫做二元一次方程组的解。

1.类型题1:根据定义判断例:方程组{ x-y=2.y=4}的解是()A。

常见的二元一次方程组

常见的二元一次方程组

常见的二元一次方程组(原创版)目录1.二元一次方程组的定义与概念2.二元一次方程组的解法:代入法和消元法3.二元一次方程组的实际应用正文一、二元一次方程组的定义与概念二元一次方程组是指由两个含有两个未知数的一次方程所组成的方程组。

其中,每个方程中的未知数的次数都是一次,且方程的形式为 ax + by = c。

例如,下面这个方程组就是一个二元一次方程组:2x + 3y = 75x - 4y = 11二、二元一次方程组的解法解二元一次方程组有多种方法,其中最常见的是代入法和消元法。

1.代入法代入法是一种比较直观的方法。

首先,我们可以解出一个未知数,然后将其表示为另一个未知数的表达式,最后将其代入另一个方程,从而将二元一次方程组转化为一个一元一次方程。

例如:2x + 3y = 7解得 y = (7 - 2x) / 3将 y 的表达式代入另一个方程:5x - 4y = 11得到:5x - 4((7 - 2x) / 3) = 11解得 x = 1将 x 的值代入 y 的表达式,得到 y = 1因此,方程组的解为 x = 1, y = 1。

2.消元法消元法的基本思想是通过加减消去一个未知数,从而将二元一次方程组转化为一个一元一次方程。

例如:2x + 3y = 75x - 4y = 11我们可以将第一个方程乘以 4,然后将第二个方程与它相加,从而消去 y:8x + 12y = 285x - 4y = 11-------------13x = 39解得 x = 39 / 13 = 3将 x 的值代入任意一个原方程,例如第一个方程:2 *3 + 3y = 7解得 y = 1因此,方程组的解为 x = 3, y = 1。

三、二元一次方程组的实际应用二元一次方程组在实际生活中有很多应用,例如购物问题、行程问题、配料问题等。

以购物问题为例,假设小明想买一本书和一支笔,书的价格是 30 元,笔的价格是 5 元。

如果书店对一次性购买满 50 元的顾客提供 10% 的优惠,那么小明需要支付多少钱?设小明购买了书和笔,可以得到以下二元一次方程组:30x + 5y = 500.1 * (30x + 5y) = 50 * 0.1其中,x 表示购买的书的数量,y 表示购买的笔的数量。

二元一次方程组知识点归纳及解题技巧

二元一次方程组知识点归纳及解题技巧

二元一次方程组知识点归纳及解题技巧一、基本定义:二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。

二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。

二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。

二、解的情况:二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。

三、二元一次方程的解法:1、一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

消元的方法有两种:1、代入消元法2、加减消元法3、教科书中没有的几种解法(一)加减-代入混合使用的方法.例:13x+14y=41 (1)14x+13y=40 (2)解:(2)-(1)得x-y=-1 x=y-1 (3)把(3)代入(1)得13(y-1)+14y=41y=2把y=2代入(3)得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例3:x:y=1:45x+6y=29令x=t, y=4t 则方程2可写为:5t+6×4t=2929t=29t=1 所以x=1,y=4四、列方程(组)解应用题(一)、其具体步骤是:⑴审题。

理解题意。

弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。

①直接未知数②间接未知数(往往二者兼用)。

一般来说,未知数越多,方程越易列,但越难解。

(完整版)二元一次方程组知识点归纳

(完整版)二元一次方程组知识点归纳

t at i me an dAl l t h i ng si nt he i rb ei n ga re go od fo rs o m e t h i n二元一次方程组知识点归纳、解题技巧汇总、练习题及答案1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。

2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

注意 :二元一次方程组不一定都是由两个二元一次方程合在一起组成的! 也可以由一个或多个二元一次方程单独组成。

3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。

4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

1.有一组解 如方程组x+y=5① 6x+13y=89② x=-24/7 y=59/7 为方程组的解 2.有无数组解 如方程组x+y=6① 2x+2y=12② 因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解 如方程组x+y=4① 2x+2y=10②, 因为方程②化简后为 x+y=5 这与方程①相矛盾,所以此类方程组无解。

一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

消元的方法有两种: 代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法。

例:解方程组x+y=5① 6x+13y=89② 解:由①得 x=5-y ③ t at i me an dAl l t h i ng si nt he i rb ei n ga re go od fo rs o m e t h i n把y=59/7带入③, x=5-59/7 即x=-24/7 ∴x=-24/7 y=59/7 为方程组的解 基本思路:未知数又多变少。

初中数学 二元一次方程组及其解法

初中数学  二元一次方程组及其解法

二元一次方程组及其解法一、二元一次方程的概念1.二元一次方程:含有两个未知数,并且含未知数的项的最高次数是1的整式方程,叫做二元一次方程.二元一次方程的一般形式为:ax by c ++=0(,)a b ≠0≠0.【例】x y +2=5,x y 2=3,x y 3=-2,x y 2+3+6=0等都是二元一次方程. 2.二元一次方程的判定: 必须同时满足四个条件:(1)含有两个未知数——“二元”;(2)未知数项的最高次数为1——“一次”; (3)方程两边都是整式——整式方程; (4)未知数的系数不能为0.【例】x y +=1,()y x 1=+82,x y 3-1=2-5,x y 4=3等都是二元一次方程;y x 4+=5,x y z 2+3=,x y 21+=02,x x 2+3=-5等都不是二元一次方程. 3.二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解.【注】任何一个二元一次方程都有无数个解.【例】x y =1⎧⎨=2⎩和x y =3⎧⎨=1⎩是方程x y +2=5的解,可以看出x y +2=5有无数个解.二、二元一次方程组的概念和解法1.二元一次方程组:由几个一次方程组成并含有两个未知数的方程组,叫做二元一次方程组.【注意】(1)二元一次方程组不一定由几个二元一次方程合在一起.(2)方程可以超过两个.【例】x x y 2=6⎧⎨3-=1⎩,x x y 2=6⎧⎨3-=1⎩,x y x y =2⎧⎪=3⎨⎪+=4⎩等都是二元一次方程组.2.二元一次方程组的解:使二元一次方程组的几个方程左、右两边都相等的两个未知数的值(即几个方程的公共解),叫做二元一次方程组的解.【例】x x y 2=6⎧⎨3-=1⎩的解是x y =3⎧⎨=8⎩.3.二元一次方程组解的情况:一般情况下,一个二元一次方程组只有唯一一组解;但在特殊情况下,二元一次方程组也可能无解或有无数组解.【例】方程组x y x y +=1⎧⎨2+2=2⎩有无数组解,方程组x y x y +=2⎧⎨2+2=2⎩和x y x y =2⎧⎪=3⎨⎪+=4⎩无解.4.二元一次方程组的基本解法(1)代入消元法:①从方程组中选一个系数比较简单的方程,将该方程中的一个未知数用含另一未知数的式子表示出来,例如y ax b =+;②把y ax b =+代入另一个方程中,消去y ,得到一个关于x 的一元一次方程;③解这个一元一次方程,求出x 的值; ④把求得的x 的值代回y ax b =+中,求出y 的值,从而得出方程组的解;⑤把这个方程组的解写成x my n =⎧⎨=⎩的形式.解方程组:19,x y x y 3+4=⎧⎨-=4.⎩解:19,x y x y 3+4=⎧⎨-=4.⎩①②由②,得x y =4+,③ 把③代入①,()y y 34++4=19, ∴y y 12+3+4=19,得y =1. 把y =1代入③,得x =4+1=5.∴方程组的解为5x y =⎧⎨=1.⎩,(2)加减消元法:①把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数相反或相等;②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中,求出另一个未知数的值,从而得出方程组的解;⑤把这个方程组的解写成x my n=⎧⎨=⎩的形式.解方程组:x y x y +2=1⎧⎨3-2=11⎩解:x y x y +2=1⎧⎨3-2=11⎩①②①+②,得x 4=12,解得:x =3.将x =3代入①,得y 3+2=1, 解得y =-1.∴方程组的解是x y =3⎧⎨=-1⎩.5.解方程组的三大解题思想(1)消元思想;(2)整体思想;(3)换元思想.(1)在下列方程中,①x 4+5=1;②x y 3-2=1;③x y1+=1;④xy y +=14;⑤x y =;⑥()y x 1=+82,其中是二元一次方程的是__________.(填序号)(2)已知方程||n m x y m -1-1+2=是关于x 、y 的二元一次方程,则m =_____,n =______.(3)若已知方程()()()k x k x k y k 22-1++1+-7=+2,当k =______时,方程为一元一次方程,当k =_______时,方程为二元一次方程.【解析】(1)②⑤⑥;(2)m =0或2,n =2.(3)-1,1.模块一 二元一次方程的概念例题1(1)已知x y =1⎧⎨=-1⎩是方程x ay 2-=3的一个解,那么a 的值是_________.(2)若x ky k =2⎧⎨=-3⎩是二元一次方程x y 2-=14的解,则k 的值是_________.【解析】(1)1;(2)2.(1)下列方程组中,是二元一次方程组的是( )A .x y y 2+=1⎧⎪1⎨=-1⎪⎩ B .x xy 2=1⎧⎨=-1⎩ C .x y y z 2+=1⎧⎨-=-1⎩D .x y =1⎧⎨=-1⎩(2)已知x y =-4⎧⎨=3⎩是方程组ax y x by +=-1⎧⎨-=2⎩的解,则()a b 6+=______.(3)已知x y =2⎧⎨=1⎩是二元一次方程组ax by bx ay +=1⎧⎨+=2⎩的解,则a b -的值为______.【解析】(1)D ;(2)由题意得a =1,b =-2,a b +=1,∴()a b 6+=1.(3)把解代入方程组得a b b a 2+=1⎧⎨2+=2⎩①②,①-②得a b -=-1.(1)用代入消元法解方程组:x y x y 3+4=2⎧⎨2-=5⎩.(2)用加减消元法解方程组:x y x y 4+3=5⎧⎨-2=4⎩.例题2模块二二元一次方程组的概念和解法例题3例题4【解析】(1)由题意得,x yx y3+4=2⎧⎨2-=5⎩①②由②,得y x=2-5,③把③代入①,得()x x3+42-5=2,∴x x3+8-20=2,得x11=22,解得x=2.把x=2代入③,得y=-1.∴方程组的解为xy=2,⎧⎨=-1.⎩(2)由题意得,x yx y4+3=5⎧⎨-2=4⎩①②①×2+②×3,得x x8+3=10+12,∴x11=22,解得x=2.将x=2代入①,得y8+3=5,解得y=-1.∴方程组的解为xy=2,⎧⎨=-1.⎩【提示】展示解二元一次方程组的基本解法.用合适的方法解下列二元一次方程组:(1)()()()x yy x3-1=+5⎧⎨5-1=3+5⎩(2)()()()x yx y+1=5+2⎧⎨32-5-43+4=5⎩(3)()()x y yx y4--1=31--2⎧⎪⎨+=2⎪23⎩(4)m n n mnm+-⎧-=2⎪⎪34⎨⎪4+=14⎪3⎩(5)x yx y3-22-1⎧+=2⎪⎪45⎨3+23+1⎪-=0⎪45⎩(6)...x yx y112⎧+=⎪535⎨⎪05-03=02⎩【解析】(1)由题意得,x yx y3-=8⎧⎨3-5=-20⎩①②①-②,得y4=28,解得y=7.将y=7代入①,得x3-7=8,解得x=5.∴方程组的解为xy=5⎧⎨=7⎩.(2)由题意得,x yx y-5=9⎧⎨-2=6⎩①②②-①,得y3=-3,解得y=-1.将y=-1代入①,得x+5=9,解得x=4.∴方程组的解为xy=4⎧⎨=-1⎩.(3)xy=2⎧⎨=3⎩.(4)mn18⎧=⎪⎪5⎨6⎪=-⎪5⎩.(5)xy=2⎧⎨=3⎩.(6)xy14⎧=⎪⎪17⎨12⎪=⎪17⎩.例题5【提示】练习解二元一次方程组的一般步骤:(1)去分母,去括号,最好转化为各项系数为整数的二元一次方程组; (2)多观察,系数为1±时优先使用代入消元法,其次才是加减消元法.解方程组:(1)x y x y 23+17=63⎧⎨17+23=57⎩(2)x y x y 2011-2013=4023⎧⎨2013-2011=4025⎩【解析】(1)两方程相加,得:x y 40+40=120,即x y +=3 ①两方程相减,得:x y 6-6=6,即x y -=1 ② ①+②得:x 2=4,解得x =2,①-②得:y 2=2,解得y =1,∴方程组的解为:x y =2⎧⎨=1⎩.(2)x y 3⎧=⎪⎪2⎨1⎪=-⎪⎩2.【提示】系数对称的二元一次方程组的特殊解法.(1)若方程组.a b a b 2-3=13⎧⎨3+5=309⎩的解是..a b =83⎧⎨=12⎩,则方程组()()()().x y x y 2+2-3-1=13⎧⎨3+2+5-1=309⎩的解是( )A ...x y =63⎧⎨=22⎩B ...x y =83⎧⎨=12⎩C ...x y =103⎧⎨=22⎩D ...x y =103⎧⎨=02⎩(2)用适当的方法解下列方程组:()()x y x y x y x y 3+-2-=-1⎧⎪⎨+-+=1⎪⎩24.【解析】(1)A .比较两个方程组可知..x a y b +2==83⎧⎨-1==12⎩,解得..x y =63⎧⎨=22⎩.(2)令x y u +=,x y v -=,则u v u v 3-2=-1⎧⎪⎨+=1⎪⎩24,解得u v =1⎧⎨=2⎩,即x y x y +=1⎧⎨-=2⎩,解得x y 3⎧=⎪⎪2⎨1⎪=-⎪⎩2.【提示】整体换元法.例题6例题7解方程组:(1)x y z x y z x y z +-=0⎧⎪2-3+2=5⎨⎪+2+=13⎩ (2)x y z x y z x y z 2+3+=16⎧⎪-+2=-1⎨⎪+2-=5⎩【解析】(1)由题意得,x y z x y z x y z +-=0⎧⎪2-3+2=5⎨⎪+2+=13⎩①②③由①,得y z x =-,④把④代入②和③, 得x z x z 5-=5⎧⎨-+3=13⎩,解得x z =2⎧⎨=5⎩. 把x z =2⎧⎨=5⎩代入④得,y =3.∴方程组的解为x y z =2⎧⎪=3⎨⎪=5⎩.(2)由题意得,x y z x y z x y z 2+3+=16⎧⎪-+2=-1⎨⎪+2-=5⎩①②③③①+得,④x y 3+5=21, 2③②⨯+得,⑤x y 3+3=9,④﹣⑤得y 2=12,y =6,将y =6代入⑤得,x 3=-9,x =-3,将x =-3,y =6代入①得,()z =16-2⨯-3-3⨯6=4, ∴方程组的解为x y z =-3⎧⎪=6⎨⎪=4⎩.【提示】三元一次方程组的基本解法:(1)通过消元把三元一次方程组转化为二元一次方程组; (2)解二元一次方程组.模块三 多元一次方程组的解法例题8(1) x y zx y z ⎧==⎪234⎨⎪5+2-3=8⎩ (2) x y z x y z x y z 2++=2⎧⎪+2+=4⎨⎪++2=6⎩【解析】(1)令x y zk ===234,即x k =2,y k =3,z k =4, 代入②可求得k =2,所以x y z =4⎧⎪=6⎨⎪=8⎩.(2)①+②+③得x y z ++=3,用①、②、③分别减去此式得x y z =-1⎧⎪=1⎨⎪=3⎩.【提示】三元一次方程组的特殊解法:(1)连比设k 型;(2)对称轮换型,整体相加.解方程组:(1)pq p q pq p q1⎧=⎪+5⎪⎨1⎪=⎪-3⎩ (2)xyx y yz y z zx z x ⎧=1⎪+⎪⎪=2⎨+⎪⎪=3⎪+⎩【解析】(1)原方程组可化为p q q p 11⎧+=5⎪⎪⎨11⎪-=3⎪⎩,解得q p 1⎧=4⎪⎪⎨1⎪=1⎪⎩,∴q p 1⎧=⎪4⎨⎪=1⎩.(2)原方程组可化为,解得,∴.【提示】均为可以转化为二元一次方程组或者三元一次方程组的分式方程.11111121113x y y z z x ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩151217121112x y z ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩12512712x y z ⎧=⎪⎪⎪=⎨⎪⎪⎪=-⎩例题9非常挑战(1)已知二元一次方程x y--1=023,下列用含x 的代数式表示y 正确的是( ). A .y x 3=-12 B .y x 3=+12 C .y x 3=-32 D .y x 3=+32(2)下列方程属于二元一次方程的是( )A .x y +=1B .xy +5=4C .y x 23-8=D .x y1+=2(3)已知方程||||()()a b a x b y -1-4-2-+5=3是关于x 、y 的二元一次方程,则a =________,b =__________.【解析】(1)C ;(2)A ;(3)根据题意可得:a -2≠0,b +5≠0,||a -1=1,||b -4=1,所以a =-2,b =5.(1)下列不是二元一次方程组的是( )A .x y =2⎧⎨=-1⎩B .m n n m =2+3⎧⎨3-=4⎩C .x y y z +=2⎧⎨+=3⎩D .(())a a b a b 4+2=5⎧⎨2-+1=2+-3⎩(2)二元一次方程ax by +=6有两组解是x y =2⎧⎨=-2⎩与x y =-1⎧⎨=-8⎩,求a 、b 的值.【解析】(1)C .(2)将两组解分别代入ax by +=6,可得a b a b 2-2=6⎧⎨--8=6⎩,解得a b =2⎧⎨=-1⎩.复习巩固演练1演练2解方程组:(1)m n m n 3+2=2⎧⎨5-4=7⎩(2)()()()()y x x y 3-1=4-4⎧⎨5-1=3+5⎩(3)()()y x x y y x -1⎧-=3⎪2⎨⎪2-+32-=-6⎩ (4)x y x y +1+2⎧=⎪⎪34⎨-3-31⎪-=⎪4312⎩【解析】(1)m n =1⎧⎪⎨1=-⎪⎩2. (2)x y =7⎧⎨=5⎩. (3)x y =2⎧⎨=-1⎩. (4)x y =2⎧⎨=2⎩.解下列方程组:(1)x y x y 21+23=243⎧⎨23+21=241⎩ (2)x y x y 2014+2013=2012⎧⎨2012+2011=2010⎩(3)x y x yx y x y 2+32-3⎧+=7⎪⎪43⎨2+32-3⎪+=8⎪32⎩【解析】(1)x y =5⎧⎨=6⎩.(2)x y =-1⎧⎨=2⎩.(3)设x y a 2+3=,x y b 2-3=,则原方程组可变为,,a ba b ⎧+=7⎪⎪43⎨⎪+=8⎪32⎩整理,得,,a b a b 3+4=84⎧⎨2+3=48⎩解得,.a b =60⎧⎨=-24⎩∴,,x y x y 2+3=60⎧⎨2-3=-24⎩解得,,x y =9⎧⎨=14⎩ ∴原方程组的解为,.x y =9⎧⎨=14⎩演练3演练4解方程组:(1)x z z y x y z -=4⎧⎪-2=-1⎨⎪+-=-1⎩(2)::::::x y z u x y z u =1234⎧⎨9+7+3+2=200⎩(3) x y z y z x z x y +-=11⎧⎪+-=3⎨⎪+-=1⎩(4)mn m n mn m n 1⎧=⎪⎪3+213⎨1⎪=⎪2+312⎩【解析】(1)x y z =-7⎧⎪=-5⎨⎪=-11⎩.(2)设x k =,y k =2,z k =3,u k =4,所以有k k k k 9+14+9+8=200, 即k =5,故x y z u =5⎧⎪=10⎪⎨=15⎪⎪=20⎩.(3)①+②+③得:x y z ++=15,分别去减①、②、③式可得:x y z =6⎧⎪=7⎨⎪=2⎩.(4)m n 1⎧=⎪⎪2⎨1⎪=⎪3⎩.演练5。

二元一次方程组的概念及解法

二元一次方程组的概念及解法

二元一次方程组的概念及解法二元一次方程组是含有两个未知数,且未知数的指数都是1的方程。

当把两个二元一次方程合在一起时,就组成了一个二元一次方程组。

方程组的解是使得两个方程的未知数相等的值。

公共解是指两个方程的解都相同的值。

例如,在方程组中,是一个二元一次方程组的例子。

另外,已知二元一次方程2x-y=1,当x=2时,y=3;当y=1时,x=3.消元解法是解二元一次方程组的一种方法。

代入消元法是将一个方程中的一个未知数表示为另一个未知数的函数,然后代入另一个方程中进行消元。

加减消元法是将两个方程相加或相减,消去一个未知数,然后解出另一个未知数。

例如,方程2x-y-5=0可以表示为x=(y+5)/2,y=2x-5.另外,方程组可以用消元解法来解,例如,方程组(2x+3y=40.x-y=-5)可以用加减消元法解出x=11,y=6.举例来说,如果有一个两位数,其个位和十位数字之和为11,将其个位数字和十位数字对调后得到的数比原数大63,那么可以用代数式表示原数为(10y+x),对调后的数为(10x+y),则可以列出方程组(10y+x+63=10x+y。

x+y=11)。

解方程组可以得到x=8,y=3,因此原数为83.鸡兔同笼”问题是另一个例子,可以用二元一次方程组表示。

题目中给出了总共30个头和94只脚,因此可以列出方程组(2x+4y=30.2x+2y=94),其中x表示鸡的数量,y表示兔的数量。

解方程组可以得到x=12,y=9,因此鸡的数量为12,兔的数量为9.综上所述,二元一次方程组是含有两个未知数和未知数的指数都是1的方程组。

解二元一次方程组可以使用消元解法,包括代入消元法和加减消元法。

实际问题可以用二元一次方程组来表示,然后解方程组得出答案。

1.在方程y=-3x-2中,若x=2,则y=-8.若y=2,则x=-4.2.若方程2x-y=3写成用含x的式子表示y的形式:y=2x-3;写成用含y的式子表示x的形式:x=(y+3)/2.3.已知43=2x-3y+1,4x-15y-17=0,6x-25y-23=0,则x=3,y=-2.4.二元一次方程3x-my=4和mx+ny=3有一个公共解,则m=-4,n=3.5.已知|a-b+2|+(b-3)^2=1,那么ab=-1.6.对于方程组(1){xy= -10.x+y=-2},是二次方程组;(2){x-y=1.x/y=3/4},是一次方程组;(3){x+y=5.xy=3},是二次方程组;(4){x+y=3.x=2y},是一次方程组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

详解点一、方程、一元一次方程的概念
⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.
⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 详解点二、二元一次方程:
含有两个未知数,并且含未知数的项的次数都是1的(整式)方程叫做二元一次方程。

练习:在方程(1) x + 2y = 3,(2) x 2 + 2x = 0,(3)93
1=-y
x ,(4)4131=-y 中,属于二元一次方程的有 个。

详解点三、二元一次方程组:
把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。

详解点四、二元一次方程组的解:
一般地,使二元一次方程组的各个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

练习:方程组⎩⎨⎧=-=+1
233
2y x y x 的解是( )
A .⎩⎨⎧=-=35y x
B .⎩⎨⎧-=-=11y x
C .⎩⎨⎧==11y x
D .⎩
⎨⎧-==53y x
例1:下列方程组中,不是二元一次方程组的是( )
A.1
23x y =⎧⎨
+=⎩,.
B.10x y x y +=⎧⎨
-=⎩,.
C.10x y xy +=⎧⎨
=⎩,.
D.21y x x y =⎧⎨
-=⎩,

分析:根据二元一次方程组的概念,我们知道,组成方程组必须含两个相同的未知数(如x 和y ),并且这两个方程中必须至少含一个二元一次方程。

例2:已知x y ,的值:①22x y =⎧⎨=
⎩,;②32x y =⎧⎨=⎩,;③32x y =-⎧⎨=-⎩,;④66x y =⎧⎨=⎩

.其中,是二元一次方程24
x y -=的解的是( )
A.① B.② C.③ D.④ 分析:这个题可以说是在整式乘除的基础上进行变形的一个类型,把这几组组解分别代入二元一次方程组检验即可。

例1、根据下表中所给的x 的值以及x 与y 的对应关系,填写下表:
【变式练习】若方程628kx y -=有一解32
x y =-⎧⎨=⎩,
则k 的值等于
例2、有这样一道题目:判断31x y =⎧⎨=⎩,是否是方程组2502350x y x y +-=⎧⎨+-=⎩

的解?
小明的解答过程是:将3x =,1y =代入方程250x y +-=,等式成立.所以31
x y =⎧⎨
=⎩,
是方程组
2502350x y x y +-=⎧⎨
+-=⎩

的解. 小颖的解答过程是:将3x =,1y =分别代入方程250x y +-=和2350x y +-=中,得
250x y +-=,2350x y +-≠.所以31x y =⎧⎨=⎩,不是方程组2502350x y x y +-=⎧⎨+-=⎩

的解. 你认为上画的解答过程哪个对?为什么?
【变式练习】若⎩⎨⎧-==1
2
y x 满足方程5x – ky = 8,则k = .
一、关于二元一次方程概念:
1、未知数可以用,x y 来表示,也可以用其他任何一个字母来表示
2、含有未知数的项的次数是含有未知数项的指数之和。

例如xy 的指数是2而不是1.
3、方程一定要是整式方程。

如42
=+
y
x 不是二元一次方程。

二、关于二元一次方程组的概念:
二元一次方程组不一定是两个二元一次方程组成的方程组,只要求满足整个方程组含有两个未知
数,并且每一个方程都是整式方程。

例如23x y =⎧⎨=⎩,636x y x +=⎧⎨=⎩和⎪⎩

⎨⎧=+=121
3
y x x 这些都是二元一次方程组。

A 组
1.若方程ax -2y =4的一个解是 则a 的值是( )
A 、-1
B 、3
C 、1
D 、-3
2.方程组 的解是( )
A 、
B 、
C 、
D 、
3.二元一次方程2x -3y =4的解是( )
A 、任何一个有理数对
B 、无穷多个数对,但不是任何一个有理数对
C 、仅有一个有理数对
D 、有限个有理数对 4.已知方程:①2x -y =3;②x +1=2;③
x
3
+3y =5;④x -xy =10;⑤x +y +z =6.其中是二元一次方程的有______________(填序号即可)
5.已知2x -y =1,则当x =3时,y =______;当y =3时,x =______.
6.2x 与8y 的和的2倍是10,则可用方程表示为______________.
7.试写出一个二元一次方程组,使它的解是 ,这个方程组可以是________.
8.判断 是否是方程组 的解.
x -2y =3
x +2y =5
x =4 y =3 x =4 y =-4 x =4 y =0.5 x =3 y =2 x =2
y =1
3x -y =5
2x +5y =7
x =-1
y =3
x =2
y =1
9.已知3x +2y =1
(1) 用含x 的代数式表示y ; (2)用含y 的代数式表示x.
10.若方程2x 2m +3+3y 5n -9=4是关于x ,y 的二元一次方程,求m 2+n 2的值.
11.已知 是关于x 、y 的方程组 的解,求5m -2n 的值.
12.小刚有20页的练习本和30页的练习本共20本,其中20页的练习本比30页的练习本的2倍少4本,小刚20页、30页的练习本各有多少本?(只列方程组)
x =-1
y =3
2x -my =7
nx +3y =-4
B 组
1、下列方程有几个是二元一次方程组 ( )
⑴35232x y x z +=⎧⎨+=⎩ ⑵22325y x x y ⎧
-=⎪⎨⎪+=⎩ ⑶252x y y ⎧+=⎪⎨⎪=⎩
⑷24245xy x y =⎧⎨-=⎩ A.1个 B.2个 C.3个 D.4个
2、下列方程中,属于二元一次方程的是( )
A .42xy -=
B .2142x y x +=+
C .2337x x y ++=
D .43x y y x -=+ 3、在下列所给的方程中,是二元一次方程的共有( )
①3x+y -2=0;②x+m=310;③x 2-y 2=1;④x=2y -1;⑤5x+3y=2z. A .4个 B .3个 C .2个 D .1个 4、若方程组199820062007
(||2)55
x y a z x +=⎧⎨
-+=⎩是关于x 和y 二元一次方程组,则a 等于( )
A .2
B .-2
C .±2 D.0
5、方程53=+y kx 有一组解是⎩⎨
⎧==1
2
y x ,则k 的值( ). A.1 B.1- C.0 D.2.
6、已知方程1235a b x b --+=是二元一次方程,则b a =_____
7、写出一个以2
3x y =⎧⎨=⎩
为解的二元一次方程____________ .
8、已知2007ax by =+的一个解是⎩⎨

-==1
1y x ,则a+b=________ 9、已知二元一次方程310x y +=,回答下列问题
⑴373x y =⎧⎪⎨=⎪⎩
是否是二元一次方程的解。

⑵写出二元一次方程的所有正整数解。

1、(2011湖南益阳)二元一次方程21-=x y 有无数多个解,下列四组值中不是..
该方程的解的是 A .0
12
x y =⎧⎪⎨=-⎪⎩
B .1
1x y =⎧⎨=⎩
C .1
0x y =⎧⎨=⎩
D .1
1x y =-⎧⎨=-⎩
2、(2011四川凉山州)下列方程组中是二元一次方程组的是( )
A .12xy x y =⎧⎨+=⎩
B . 523
13x y y x
-=⎧⎪⎨+=⎪⎩ C .
20
135x z x y +=⎧⎪

-=⎪⎩ D .5723
z x y =⎧⎪⎨+=⎪⎩
3、(2011广东肇庆)方程组⎩⎨
⎧=+=-4
22
y x y x 的解是
A .⎩⎨⎧==21
y x
B .⎩
⎨⎧==13
y x
C .⎩
⎨⎧-==20y x
D .⎩
⎨⎧==02
y x
4、(2011山东东营)方程组31
x y x y +=⎧⎨
-=-⎩,
的解是
A .12.x y =⎧⎨
=⎩, B .12.x y =⎧⎨=-⎩, C .21.x y =⎧⎨=⎩, D .01.x y =⎧⎨=-⎩

5、(2012广东湛江) 请写出一个二元一次方程组 ,使它的解是

6、(2012广东)若x ,y 为实数,且满足|x ﹣3|+=0,则()
201 2
的值是 。

相关文档
最新文档