克里金(克里格)(Corigine)算法

合集下载

克里金(kriging)插值的原理与公式推导

克里金(kriging)插值的原理与公式推导

克里金(kriging)插值的原理与公式推导
克里金插值是一种空间插值方法,用于估计未知区域的数值,其
原理是基于空间数据的空间相关性来进行插值。

具体来说,克里金插
值假设空间数据在不同位置之间具有一定的相关性,即在空间上相邻
的点具有相似的数值。

克里金插值利用这种相关性来进行插值,从而
可以更准确地估计未知位置的数值。

克里金插值的公式推导涉及到半变异函数的定义,通常使用高斯
模型、指数模型或球形模型来描述数据的空间相关性。

在推导过程中,会利用已知数据点的数值和位置信息,以及半变异函数的参数来构建
插值模型,进而估计未知位置的数值。

克里金插值的公式可以表示为:
\[Z(u) = \sum_{i=1}^{n} \lambda_i \cdot Z(u_i)\]
其中,\(Z(u)\)为未知位置的数值,\(Z(u_i)\)为已知数据点的
数值,\(\lambda_i\)为插值权重,通过半变异函数及数据点之间的空
间距离计算得出。

除了基本的克里金插值方法外,还有一些相关的扩展方法,如普通克里金、泛克里金等,这些方法在建模和插值的过程中考虑了更多的因素,如均值趋势、空间方向等,使得插值结果更加准确和可靠。

总的来说,克里金插值是一种常用的空间插值方法,适用于各种地学环境下的数据分析与建模。

在实际应用中,需要根据具体数据的特点选择合适的插值方法和模型参数,以获得准确的插值结果。

克里金插值法的详细介绍。kriging。

克里金插值法的详细介绍。kriging。

kriging 插值作为地统计学中的一种插值方法由南非采矿工程师D.G.Krige于1951年首次提出,是一种求最优、线形、无偏的空间内插方法。

在充分考虑观测资料之间的相互关系后,对每一个观测资料赋予一定的权重系数,加权平均得到估计值。

这里介绍普通Kriging插值方法的基本步骤:1.该方法中衡量各点之间空间相关程度的测度是半方差,其计算公式为:h为各点之间距离,n 是由h 分开的成对样本点的数量,z 是点的属性值。

2.在不同距离的半方差值都计算出来后,绘制半方差图,横轴代表距离,纵轴代表半方差。

半方差图中有三个参数nugget(表示距离为零时的半方差),sill(表示基本达到恒定的半方差值),range(表示一个值域范围,在该范围内半方差随距离增加,超过该范围,半方差值趋于恒定)。

利用做出的半方差图找出与之拟合的最好的理论变异函数模型(这是关键所在),可用于拟合的模型包括高斯模型、线性模型、球状模型、指数模型、圆形模型。

----球状模型,球面模型空间相关随距离的增长逐渐衰减,当距离大于球面半径后,空间相关消失。

3.用拟合的模型计算出三个参数。

例如球状模型中nugget为c0,range为a,sill为c。

4.利用拟合的模型估算未知点的属性值,方程为:,z0为估计值,zx是已知点的值,wx为权重,s是用来估算未知点的已知点的数目。

假如用三个点来估算,则有这样权重就可以求出,然后估算未知点。

(上述内容根据《地理信息系统导论》(Kang-tsung Chang著;陈健飞等译,科学出版社,2003)第十三章内容进行总结,除球状模型公式外其余公式皆来自此书)下面是本人自己编写的利用海洋中断面上观测站点的实测温度值来估算未观测处的温度的Fortran程序,利用距离未知点最近的五个观测点来估算未知点的温度,选用模型为球状模型。

do ii=1,nxif(tgrid(ii,1)==0.)thendo i=1,dsite(ii)!首先寻找距离最近的五个已知点位置do j=1,nhif(d(mm(ii),j).ne.0.or.j==1)thenhmie(j)=d(mm(ii),j)-dgrid(i)elsehmie(j)=9999end ifhmid(j)=abs(hmie(j))end dodo j=1,nhdo k=j,nhif(hmid(j)<hmid(k))thenelsem1=hmid(j)hmid(j)=hmid(k)hmid(k)=m1end ifend doend dodo j=1,5do k=1,nhif(abs(hmie(k))==hmid(j))thenlocat(j)=kend ifend doend dodo j=1,4do k=j+1,5if(locat(j)==locat(k))thendo i3=1,nhif(abs(hmie(i3))==abs(hmie(locat(j))).and.i3.ne.locat(j))thenlocat(j)=i3exitend ifenddoendifenddoenddo!然后求各点间距离,并求半方差do j=1,5do k=1,5hij(j,k)=abs(d(mm(ii),locat(j))-d(mm(ii),locat(k)))/1000.end doend dodo j=1,5hio(j)=sqrt(hmid(j)**2+(abs(latgrid(ii)-lonlat(mm(ii),2))*llat)**2 $ +(abs(longrid(ii)-lonlat(mm(ii),1))*(1.112e5* $ cos(0.017*(latgrid(ii)+lonlat(mm(ii),2))/2)))**2)/1000.end dodo j=1,5do k=1,5if(hij(j,k).eq.0.)thenrleft(j,k)=0.elserleft(j,k)=sill*(1.5*hij(j,k)/range-0.5*hij(j,k)**3/range**3)end ifif(hio(j).eq.0.)thenrrig(1,j)=0.elserrig(1,j)=sill*(1.5*hio(j)/range-0.5*hio(j)**3/range**3)end ifend doend dorrig(1,6)=1.rleft(6,6)=0.do j=1,5rleft(6,j)=1.rleft(j,6)=1.end dotry=rleftcall brinv(rleft,nnn,lll,is,js)ty1=matmul(try,rleft)!求权重wq=matmul(rrig,rleft)!插值所有格点上t,sdo j=1,5tgrid(ii,i)=tgrid(ii,i)+wq(1,j)*t(mm(ii),locat(j)) sgrid(ii,i)=sgrid(ii,i)+wq(1,j)*s(mm(ii),locat(j))end doenddoendifenddo。

克里金法

克里金法
假设在待估计点(x)的临域内共有n个实测点,即x1, x2,…,xn,其样本值为。那么,普通克里格法的插值公式为
Z ( x ) i Z ( x i )
* i 1
n

i 为权重系数,表示各空间样本点处的观测值对估值的影响度或者贡
献程度。 显然,克里格估值的关键问题就是在于求解 i 的值,同时根据估值 的基本原则,即无偏性和估计方差最小(最优性)的要求,具体就是要满 足以下条件:
整理后得:
n j c( xi , x j ) c( xi , x) j 1 n 1 i i=1,2,3…… i 1
解上式线性方程组,求出权重系数λi和拉格朗日系数μ,代入公式
2 E c( x, x) i j c( xi , x j ) 2 i c( xi , x) i 1 j 1 i 1 n n n

可得克里格估计方差
2 σ E c( x, x) i c( xi , x) i 1 n
上述过程也可用矩阵形式表示,令
c11 c12 c 21 c22 K cn1 cn 2 1 1
c1n c2 n cnn 1
1 1 , 1 0
1 2 , n
c( x1 , x) c ( x , x ) 2 D c ( xn , x ) 1


首先,假设区域变化变量为Z(x),其满足内蕴假设条件和 二阶平稳条件,数学期望为m,协方差函数c(h)及变异函数 (h) 存在,即:
E[ Z ( x)] m c(h) E[ Z ( x) Z ( x h)] m 2 1 (h) E[ Z ( x) Z ( x h)]2 2

克里金算法

克里金算法
对于一组样本:
m

( zi )
i 1
N
N
(2)方差 为随机变量ξ的离散性特征数。若数学期望 E[ξ-E(ξ)]2存在,则称它为ξ的方差,记为D(ξ), 或Var(ξ),或σξ2。 D(ξ)= E[ξ-E(ξ)]2 其简算公式为 D(ξ)=E(ξ2) –[E(ξ)]2 方差的平方根为标准差,记为σξ
σξ=
D( ) E[ - E( ) ]2 E ( 2) - [E( ) ]2
从矩的角度说,方差是ξ的二阶中心矩。
2. 随机函数
研究范围内的一组随机变量。
{Z (u ), u 研究范围}
条件累积分布函数(ccdf)
F (u1, , u K ; z1, , z K | (n)) Pr ob{Z (u1) z1, , Z (u K ) z K | (n)}
构造深度 砂体厚度 有效厚度 孔隙度 渗透率 含油饱和度
砂体 相 流动单元 隔夹层
随机变量的特征值:
(1)数学期望 是随机变量ξ的整体代表性特征数。
①设离散型随机变量ξ的所有可能取值为 x1,x2,…,其相应的概率为 P (ξ=xk)= pk,

k=1,2,….
则当级数 xk pk 绝对收敛时,称此级数的 k 1 和为ξ的数学期望,记为E(ξ),或Eξ。 E(ξ) =
半变差函数(或半变异函数)
在二阶平稳假设,或作本征假设,此时:
E[Z(x)-Z(x+h)] = 0
则:
h
( x, h ) =
=
1 2 Var[Z(x)-Z(x+h)] 1 E[Z(x)-Z(x+h)]2-{E[Z(x)-Z(x+h)]}2 2

克里金插值

克里金插值

克里金插值克里金(Kriging)插值克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最优内插法。

克里金法广泛地应用于地下水模拟、土壤制图等领域,是一种很有用的地质统计格网化方法它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。

该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。

它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后进行加权平均来估计块段品位的方法。

但它仍是一种光滑的内插方法在数据点多时,其内插的结果可信度较高。

克里金法类型分常规克里金插值(常规克里金模型/克里金点模型)和块克里金插值。

常规克里金插值其内插值与原始样本的容量有关,当样本数量较少的情况下,采用简单的常规克里金模型内插的结果图会出现明显的凹凸现象;块克里金插值是通过修改克里金方程以估计子块B内的平均值来克服克里金点模型的缺点,对估算给定面积实验小区的平均值或对给定格网大小的规则格网进行插值比较适用。

块克里金插值估算的方差结果常小于常规克里金插值,所以,生成的平滑插值表面不会发生常规克里金模型的凹凸现象。

按照空间场是否存在漂移(drift)可将克里金插值分为普通克里金和泛克里金,其中普通克里金(Ordinary Kriging简称OK法)常称作局部最优线性无偏估计.所谓线性是指估计值是样本值的线性组合,即加权线性平均,无偏是指理论上估计值的平均值等于实际样本值的平均值,即估计的平均误差为0,最优是指估计的误差方差最小。

在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括:Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)下面简单说明不同算法的特点。

kriging(克里金方法,克里金插值)[1]

kriging(克里金方法,克里金插值)[1]

精选完整ppt课件
15
二阶平稳
当区域化变量Z(u)满足下列二个条件时,则称其 为二阶平稳或弱平稳:
① 在整个研究区内有Z(u)的数学期望存在, 且等于常数,即: E[Z(u)] = E[Z(u+h)] = m(常数) x h
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
精选完整ppt课件
精选完整ppt课件
21
三、克里金估计(基本思路
----以普通克里金为例
设 x1,, xn 为区域上的一系列观测点,zx1, ,zxn
为相应的观测值。区域化变量在 x 0 处的值 z*x0 可
采用一个线性组合来估计:
n
z*x0 izxi i1
无偏性和估计方差最小被作为 i 选取的标准
无偏 最优
16
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)
•协方差不依赖于空间绝对位置,而依赖于相对位置 , 即具有空间的平稳不变性。
提出了“地质统计学”概念 (法文Geostatistique)
发表了专著《应用地质统计学论》。
阐明了一整套区域化变量的理论,
为地质统计学奠定了理论基础。
区域化变量理论
克里金估计
1977年我国开始引入精选完整ppt课件随机模拟
3
克里金插值方法
n
z*x0izxi i1 (普通克里金)
•不仅考虑待估点位置与
特殊地,当h=0时,上式变为
Var[Z(u)]=C(0), 即方差存在且为常数。

克里格方法(Kriging)

克里格方法(Kriging)
03 (h)= C(0) —C(h)
精选完整ppt课件
3
克里格法
01 Z(p)为区域Ω上随机过程,p∈Ω; Ω上有n个测点(样本点),
zi z(pi)在 p i处的测值,则 p 0 处的最优线性估计为
n
zˆ0 i zi i1
02 最小化非测点 p 0 处的估值方差 0 2E[z(0zˆ0)2],可推导出克里
2
基本概念
01 变差函数:Z(p)为一随机过程,Z(p)在p,p+h两点处的值之差 的方差之半定义为Z(p)在p方向上的变差函数,记为
(h)1V[az((rp)z(ph)]
2 变差函数描述了区域化变量的空间结构性。 (h)只依赖于h。
02 协方差函数:随机过程Z(p) 在p1、p2处的两个随机变量Z(p1) 和Z(p2)的二阶混合中心矩,即 Cov{Z(p1), Z(p2)}=E[Z(p1)*Z(p2)]-E[Z(p1)]*E[Z(p2)],记 为 C(p1, p2) 整个区域中,Z(p)的协方差函数存在且相同,即只依赖于h Cov{Z(p),Z(p+h)} ≜C(h); 当h=0时,C(0)=Var{Z(x)},x
n
i1
n j1
1 B'(hij)
B'(hij) k
0
精选完整ppt课件
6
优化测点分布的克里格方程组
由(h)=C(0)B(h),可得 C(h)=C(0)(1-B(h))
设 ce(h)1B(h) ,则上式可表示为
c(h)c(0)ce(h)
令 c(0)e 将上述式子代入克里格方程组可得与C(0)无关的克里 格方程组和克里格方差,如下
g(i)
,表明网格节点上的较大估值方差变大了,

克里格法

克里格法

二、克里格法(Kriging)转载克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。

克里格法的适用条件是区域化变量存在空间相关性。

克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。

随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。

如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。

应用克里格法首先要明确三个重要的概念。

一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。

这种变量反映了空间某种属性的分布特征。

矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。

区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。

区域化变量具有两个重要的特征。

一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X与偏离空间距离为h的点X+h 处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。

在某种意义上说这就是区域化变量的结构性特征。

二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。

在概率理论中,随机向量X与Y 的协方差被定义为:区域化变量在空间点x和x+h处的两个随机变量Z(x)和Z(x+h)的二阶混合中心矩定义为Z(x)的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。

克里格法Kriging——有公式版

克里格法Kriging——有公式版

克里格法(Kriging)——有公式版二、克里格法(Kriging)克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。

克里格法的适用条件是区域化变量存在空间相关性。

克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。

随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。

如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。

应用克里格法首先要明确三个重要的概念。

一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。

这种变量反映了空间某种属性的分布特征。

矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。

区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。

区域化变量具有两个重要的特征。

一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X 与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。

在某种意义上说这就是区域化变量的结构性特征。

二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。

在概率理论中,随机向量X与Y的协方差被定义为:区域化变量在空间点x 和x+h处的两个随机变量Z(x) 和Z(x+h) 的二阶混合中心矩定义为Z(x) 的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。

克里金(克里格)(Corigine)算法

克里金(克里格)(Corigine)算法

克里格,或者说克里金插值Kriging。

法国krige名字来的。

特点是线性,无偏,方差小,适用于空间分析。

所以很适合地质学、气象学、地理学、制图学等。

相对于其他插值方法。

主要缺点:由于他要依次考虑(这也是克里格插值的一般顺序)计算影响范围,考虑各向异性否,选择变异函数模型,计算变异函数值,求解权重系数矩阵,拟合待估计点值,所以反映速度很慢。

(当然也看你算法设计和电脑反应速度了呵呵)。

而那些趋势面法,样条函数法等。

虽然较快,但是毕竟程度和适合用范围都大受限制。

具体对比如下:方法外推能力逼近程度运算能力适用范围距离反比加权法分布均匀时好差快分布均匀最近邻点插值法不高强很快分布均匀三角网线性插值高差慢分布均匀样条函数高强快分布密集时候克里金插值高强慢均可克里格插值又分为:简单,普通,块,对数,指示性,泛,离析克里金插值等。

克里金插值的变异函数球形模型,指数模型,高斯模型,纯块金模型,幂函数模型,迪维生模型等。

以下结合我的绘制等值线(等高线)的程序和高斯迭代解矩阵方程方法以及多元线性回归方法(此两方法实现另补充)说明克里格方法的实现:注:选择变异函数模型为球形模型,选择插值方法为普通克里金,我为了简化问题,考虑为各向同性,变差距离为固定。

int i,j,i0,i1,j0,j1,k,l,m,n,p,h;//循环变量double *r1Matrix;//系数矩阵double *r0Matrix;//已知向量double *langtaMatrix;//待求解向量double *x0;//已知点横坐标double *y0;//已知点纵坐标double * densgridz;//存储每次小方格内的已知值。

double densgridz0;//待求值int N1=0;//统计有多少个已知值double r[71],r0[71];int N[70];for(i=0;i<100;i++){for(j=0;j<100;j++){if(bdataprotected[i*100+j]) continue;//原值点不需要插值//1.遍历所有非保护网格。

克里格法Kriging——有公式版

克里格法Kriging——有公式版

克里格法(Kriging)——有公式版二、克里格法(Kriging)克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。

克里格法的适用条件是区域化变量存在空间相关性。

克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。

随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。

如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。

应用克里格法首先要明确三个重要的概念。

一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。

这种变量反映了空间某种属性的分布特征。

矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。

区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。

区域化变量具有两个重要的特征。

一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X 与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。

在某种意义上说这就是区域化变量的结构性特征。

二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。

在概率理论中,随机向量X与Y的协方差被定义为:区域化变量在空间点x 和x+h处的两个随机变量Z(x) 和Z(x+h) 的二阶混合中心矩定义为Z(x) 的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。

克里金插值法

克里金插值法

克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。

1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。

其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。

因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。

假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。

其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (x i ,x j )是Z(x i )和Z(x j )的协方差函数。

克里金算法

克里金算法

克里金算法克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。

克里格法的适用条件是区域化变量存在空间相关性。

克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。

随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。

如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。

应用克里格法首先要明确三个重要的概念。

一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。

这种变量反映了空间某种属性的分布特征。

矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。

区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。

区域化变量具有两个重要的特征。

一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。

在某种意义上说这就是区域化变量的结构性特征。

二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。

在概率理论中,随机向量X与Y的协方差被定义为:区域化变量在空间点x和x+h处的两个随机变量Z(x)和Z(x+h)的二阶混合中心矩定义为Z(x)的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。

一般来说,它是一个依赖于空间点x 和向量h 的函数。

克里格方法(Kriging)

克里格方法(Kriging)

则取消第(k+1)次测点的移动。
谢谢!
(Code just enter in your cart)
4
利用克里格方程求出估计量Z(p)
克里格法新解
01 变差函数:几乎所有的变差函数理论模型都可归纳为以下形式
(h)=A(h)*B(h)
(h)仅取决于测点的样本值,(h)则仅取决于测点的空间分布
02 A(h)由下式确定:A(h)=C(0)
03 至于B(h) 的参数 1,2,,s利用最大似然法求解,得到
上有n个测点样本点处的最优线性估计为最小化非测点处的估值方差可推导出克里格方程组01010202方程求解后可得的估值方差为0303由此可知估值及估值方差完全取决于ch克里格法步骤测点数据的分析和选择
克里格(Kriging)法
克里格法是地质统计学的核心。 解决问题:主要对矿产资源储量进行估计, 现已推广运用到各领域。 方法概要:根据已知样品的空间位置和相关 程度,求出未知区域线性无偏、估计误差最小 的储量。 优点:考虑到样品的空间变异性特征。
n
i1
n j1
1 B'(hij)
B'(hij) k
0
优化测点分布的克里格方程组
由(h)=C(0)B(h),可得 C(h)=C(0)(1-B(h))
设 ce(h)1B(h) ,则上式可表示为
c(h)c(0)ce(h)
令 c(0)e 将上述式子代入克里格方程组可得与C(0)无关的克里 格方程组和克里格方差,如下
一个正数,而无需实际采集的样本值。
上式说明,随机场上估值方差的分布相对大小仅取决于测点的空间分布。
测点分布的优化的步骤
将区域Ω网格化,网格单元为边长等于d的正方形;将落在区 域Ω中的m个网格节点依次编号1、2、…、m,相应的空间坐标 为q 1、q2、…、qm

克里金插值法

克里金插值法

克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。

1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。

其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。

因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。

假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。

其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式:11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (x i ,x j )是Z(x i )和Z(x j )的协方差函数。

克里格插值法

克里格插值法
工程数学
工程数学
提出了如下的平稳假设及内蕴假设: 提出了如下的平稳假设及内蕴假设:
{ 随机函数: 随机函数:Z (u ), u ∈ 研究范围} ,其空间分布律不因平移 而改变,即若对任一向量h, 而改变,即若对任一向量 ,关系式
F ( z1 , z2 , ⋅⋅⋅; x1 , ⋅⋅⋅) = F ( z1 , z2 , ⋅⋅⋅; x1 + h, x2 + h, ⋅⋅⋅)
D(ξ ) = Var (ξ ) = E[ξ − E (ξ )] = E (ξ ) − E (ξ )2 22来自工程数学工程数学
(3)协方差 ) 协方差是用来刻画随机变量之间协同变化程度的指标, 协方差是用来刻画随机变量之间协同变化程度的指标,其 大小反映了随机变量之间的协同变化的密切程度。 大小反映了随机变量之间的协同变化的密切程度。
σ ij = Cov(ξ1 , ξ 2 ) = E[(ξ1 − E (ξ1 ) (ξ 2 − E (ξ 2 ) ] ) )
= E (ξ1ξ 2 ) − E (ξ1 ) E (ξ 2 )
(4)相关系数 ) 协方差是有量纲的量,与随机变量分布的分散程度有关, 协方差是有量纲的量,与随机变量分布的分散程度有关,为 消除分散程度的影响,提出了相关系数这个指标。 消除分散程度的影响,提出了相关系数这个指标。
成立时,则该随机函数 成立时,则该随机函数Z(x)为平稳性随机函数。 为平稳性随机函数。 这实际上就是指,无论位移h多大,两个 维向量的随机变量 多大, 这实际上就是指,无论位移 多大 两个k维向量的随机变量
{ Z ( x1 ), Z ( x2 ),L , Z ( xk )} 和 { Z ( x1 + h), Z ( x2 + h),L , Z ( xk + h)}

克里金算法

克里金算法
为相应的观测值。区域化变量在 x 0 处的值 z*x0可
采用一个线性组合来估计:
n
z*x0 izxi i1
无偏性和估计方差最小被作为 i 选取的标准
无偏 EZx0Z*x00 最优 VaZrx0Z*x0min
Z*(x0)
(1)无偏条件
从本征假设出发, 可知 EZx为常数,有
E Z * x0 Z x0
井眼 地震
第一节 基本原理
一、随机变量与随机函数 1. 随机变量
为一个实值变量,可根据概率分布取不同的值。 每次取值(观测)结果z为一个确定的数值,称为 随机变量Z的一个实现。
P
连续变量:
累积分布函数(cdf)
Z (u)
cumulative distribution function
F ( u ;z ) P o { Z r ( u b ) z }
发表了专著《应用地质统计学论》。
阐明了一整套区域化变量的理论,
为地质统计学奠定了理论基础。
1977年我国开始引入
区域化变量理论 克里金估计 随机模拟
克里金插值方法
n
z*x0izxi i1 (普通克里金)
•不仅考虑待估点位置与
已知数据位置的相互关 系,而且还考虑变量的 空间相关性。
(应用随机函数理论)
跃迁现象
一维情况下的定义:
假设空间点x只在一维的x轴上变化,则将区域化 变量Z(x)在x,x+h两点处的值之差的方差之半定义
为Z(x)在x轴方向上的变差函数,记为 (x,h)
(x,h)=
1 2
Var[Z(x)-Z(x+h)]
=
1 2
E[Z(x)-Z(x+h)]2-{E[Z(x)-Z(x+h)]}2

第 章克里格法

第 章克里格法

(3)Z(x)的泛克里金法估计
• 设Z(x)为一非平稳区域化变量,其 数学期望为m(x),协方差函数为 C(x,y)且已知,则
• 已知n个样品点xi(i =1,2,…,n),其 观测值为Z(xi) (i =1,2,…,n),现要 用这些样品点估计邻域内任一点x 的值Z(x),Z(x)的泛克里金估计量 为:
1、简单克里金法
• 在满足以下两个条件时,Yv*是Y(V)的线性、无偏、最优估计量。
(1)无偏性 由于
所以 则 Yv* 不需要任何条件即是Y(V)的无偏估计量。 (2)最优性
在满足无偏条件下,可推导估计方差公式为:
1、简单克里金法
• 为使估计方差最小,需对上式求λi的偏导数并令其为0
• 整理得简单克里金方程组:
• 现要求出权重系数λi(i =1,2,…,n),使Z*V(x)为ZV(x)的无偏估计量,且估计方 差最小。
2、普通克里金法
(1)无偏性条件 由于
若要满足无偏性条件,需
,则无偏性条件为:
即在权系数之和为1的条件下估计量是无偏的。
(2)最优性条件
即估计方差最小条件,在满足无偏性条件下,有如下估计方差公式
1、简单克里金法
• 简单克里金法计算示例:
• 设某一区域气温数据满足二阶平稳假设,协方差函数和变异函数存在,所有采 样数据的均值为16.08度,并将均值作为此区域化变量的数学期望值,将所有 采样数据剔除数学期望值后拟合的变异函数模型为球状模型,如下所示。
• 现用简单克里金方法根据五个已知点的气温数据来估算0点处的气温值
• 用变异函数γ(h)表示如下:
(4)泛克里金法计算示例
• 设某一区域气温是非平稳的区域化变量,在南北方向(空间坐标的y方向)上 存在线性漂移,即 。若已知其涨落满足二阶平稳假设,并且拟合的协方差函数 模型为球状模型,如下所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

克里格,或者说克里金插值Kriging。

法国krige名字来的。

特点是线性,无偏,方差小,适用于空间分析。

所以很适合地质学、气象学、地理学、制图学等。

相对于其他插值方法。

主要缺点:由于他要依次考虑(这也是克里格插值的一般顺序)计算影响范围,考虑各向异性否,选择变异函数模型,计算变异函数值,求解权重系数矩阵,拟合待估计点值,所以反映速度很慢。

(当然也看你算法设计和电脑反应速度了呵呵)。

而那些趋势面法,样条函数法等。

虽然较快,但是毕竟程度和适合用范围都大受限制。

具体对比如下:方法外推能力逼近程度运算能力适用范围距离反比加权法分布均匀时好差快分布均匀最近邻点插值法不高强很快分布均匀三角网线性插值高差慢分布均匀样条函数高强快分布密集时候克里金插值高强慢均可克里格插值又分为:简单,普通,块,对数,指示性,泛,离析克里金插值等。

克里金插值的变异函数球形模型,指数模型,高斯模型,纯块金模型,幂函数模型,迪维生模型等。

以下结合我的绘制等值线(等高线)的程序和高斯迭代解矩阵方程方法以及多元线性回归方法(此两方法实现另补充)说明克里格方法的实现:注:选择变异函数模型为球形模型,选择插值方法为普通克里金,我为了简化问题,考虑为各向同性,变差距离为固定。

int i,j,i0,i1,j0,j1,k,l,m,n,p,h;//循环变量double *r1Matrix;//系数矩阵double *r0Matrix;//已知向量double *langtaMatrix;//待求解向量double *x0;//已知点横坐标double *y0;//已知点纵坐标double * densgridz;//存储每次小方格内的已知值。

double densgridz0;//待求值int N1=0;//统计有多少个已知值double r[71],r0[71];int N[70];for(i=0;i<100;i++){for(j=0;j<100;j++){if(bdataprotected[i*100+j]) continue;//原值点不需要插值//1.遍历所有非保护网格。

确定每一个待插值点的r(h)//每一个网格又从横向和纵向进行搜索,也就是说正方形相关,正方形的边长以R,格子长度为50;中心距离为25//首先计算起循环的起始点。

//横向if(i-25>=0)i0=i-25;else i0=0;if(i+25<=100)i1=i+25;else i1=100;//纵向if(j-25>=0)j0=j-25;else j0=0;if(j+25<=100)j1=j+25;else j1=100;//Hmax=int(50*2^.5)=70 根据对称性,所有的r(h)除以2即为所得值。

//先待插值点的编程小方格内统计有几个已知点,如果个数小于4,则不能拟合。

N1=0;for(l=i0;l<i1;l++)for(m=j0;m<j1;m++){if(bdataprotected[100*l+m]) N1++;}if(N1<4) continue;// 不符合线性回归条件,本网格不用此方法做插值//赋初值for(l=0;l<=70;l++){r0[l]=0.0;r[l]=0.0;}//计算此插值点方格内的变异函数值for(int l=i0;l<i1;l++)for(m=j0;m<j1;m++)if(i!=l&&j!=m)//不计待估计值本身{//自循环统计算网格内部的互相之间的h,N和z。

for(n=i0;n<i1;n++)for(p=j0;p<j1;p++)if(l!=n&&p!=m) //不对h=0计算{if(bdataprotected[l*100+m]&& bdataprotected[n*100+p])//保证用样本值而非估计值来进行估计{//计算分离距离h=int(sqrt(l-n)*(l-n)+(m-p)*(m-p));//计算不同分离距离的样本差的平方和r0[h]=r0[h]+(densgrid[l*100+m]-densgrid[ n*100+p])* (densgrid[l*100+m]- densgrid[n*100+p]);//不同的分离距离的样本对数N[h]++;}}}//不同分离距离的变异函数值for(h=1;h<=70;h++)r[h]=r0[h]/(2*N[h])/2;//2.通过所有的r(h)拟合计算球形模型的参数。

方法为多元线性回归//参数初始化double x1[70],y1[70];int n1=70; double a1[4]={0,0,0,0};//a1数组存储拟合结果int m1=4;double dt1[4];//dt1数组时拟合精度double b0,b1,b2,b3;double c0,c1,a;for(h=0;h<70;h++){x1[h]=double(h+1.0);y1[h]=r[h+1];//从h=1开始有数据}//带入多元线性回归拟合模型MLR(x1,y1,n1,a1,m1,dt1);//求得球形模型的参数如下。

注意x也即h的平均值为1到70中间数。

35.5; b0=a1[0]-a1[1]*35.5+a1[2]*35.5*35.5-a1[3]*35.5*35.5*35.5;b1=a1[1]-2*35.5*a1[2]+3*a1[3]*35.5*35.5;//b2==0 忽略b3=a1[3];//化为球形模型的标准形式参数参见空间变异理论及应用 p16 及空间插值技术开发及实现 //2.3.1 2c0=b0;a=sqrt(-b1/(3*b3));c1=3/(2*a*b1);//3.求解权重系数矩阵方程的解//开辟空间r1Matrix=new double[(N1+1)*(N1+1)];r0Matrix=new double[N1+1];langtaMatrix=new double[N1+1];x0=new int[N1];y0=new int[N1];densgridz=new double[N1];//求取已知点的横纵坐标及其值int i0=0;for(l=i0;l<i1;l++)for(m=j0;m<j1;m++){if(bdataprotected[100*l+m]){x0[i0]=gridx[100*l+m];y0[i0]=gridy[100*l+m];densgridz[i0]= densgridz[100*l+m];i0++;}}//给系数矩阵赋值for(int ii=0;ii<N1+1;ii++)for(int jj=0;jj<N1+1;jj++){//最后一行最后一列分别赋值if(ii==N1) r1Matrix[ii*(N1+1)+jj]=1;else if(jj=N1) r1Matrix[ii*(N1+1)+jj]=1;else if(ii==N1 && JJ==N1) r1Matrix[ii*(N1+1)+jj];else//左上三角{//求解已知点的hh=int(sqrt((x0[ii]-x0[jj])* (x0[ii]-x0[jj])+ (y0[ii]-y0[jj])* (y0[ii]-y0[jj])));//计算rij=r(h)r1Matrix[ii*(N1+1)+jj]=b0+b1*h+b3*h*h*h;}}//已知向量矩阵赋值ri0for(ii=0;ii<N1;ii++){//计算hh=int(sqrt((x0[ii]-gridx[i*100+j])* (x0[ii]-gridx[i*100+j])+ (y0[ii]-gridy[100*i+j])* (y0[ii]-gridy[100*i+j])));r0Matrix[ii]= b0+b1*h+b3*h*h*h;}//最后一个单独赋值r0Matrix[N1]=1;double eps=0.0001;N1=N1+1;//用求解矩阵,用高斯迭代法if (gaos(N1, r1Matrix,r0Matrix, langtaMatrix,eps)>0){//得到待估计点数值for(ii=0;ii<N1;ii++)densgridz0= densgridz0+densgridz[ii]*langtaMatrix[ii]; //赋值给对应网格densgrid[i*100+j]= densgridz0;}else continue;//如果无解,则继续//释放内存空间if( r1Matrix!=NULL) delete r1Matirx;if(r0Matrix!=NULL) delete r0Matirx;if(langtaMatrix!=NULL) delete langtaMatrix; if(x0!=NULL) delete x0;if(y0!=NULL) delete y0;if(densgridz!=NULL) delete densgirdz;}。

相关文档
最新文档