初中数学--与圆相关的计算(知识点+练习)
初三数学九上圆所有知识点总结和常考题型练习题
圆知识点一、圆的概念集合形式的概念: 1.圆可以看作是到定点的距离等于定长的点的集合;2.圆的外部: 可以看作是到定点的距离大于定长的点的集合;3.圆的内部: 可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1.圆:到定点的距离等于定长的点的轨迹就是以定点为圆心, 定长为半径的圆;(补充)2.垂直平分线: 到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3.角的平分线: 到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是: 平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是: 平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1.点在圆内点在圆内;2.点在圆上点在圆上;3.点在圆外点在圆外;三、直线与圆的位置关系1.直线与圆相离无交点;2.直线与圆相切有一个交点;3.直线与圆相交有两个交点;四、垂径定理垂径定理: 垂直于弦的直径平分弦且平分弦所对的弧。
推论1: (1)平分弦(不是直径)的直径垂直于弦, 并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心, 并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径, 垂直平分弦, 并且平分弦所对的另一条弧以上共4个定理, 简称2推3定理:此定理中共5个结论中, 只要知道其中2个即可推出其它3个结论, 即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。
推论2: 圆的两条平行弦所夹的弧相等。
即:在⊙中, ∵∥∴弧AC=弧BD五、圆心角定理圆心角定理: 同圆或等圆中, 相等的圆心角所对的弦相等, 所对的弧相等,弦心距相等。
此定理也称1推3定理, 即上述四个结论中,只要知道其中的1个相等, 则可以推出其它的3个结论,即: ①;②;③OC OF=;④弧BA=弧BD六、圆周角定理1.圆周角定理: 同弧所对的圆周角等于它所对的圆心的角的一半。
沈阳市初中数学圆的知识点训练及答案
∵半径AO=5,
∴CD=10,
∴ ,
∴AC=4,
故选:C.
【点睛】
本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.
5.如图, 是 的内接三角形, , ,把 绕圆心 按逆时针方向旋转 得到 ,点 的对应点为点 ,则点 , 之间的距离是()
【详解】
根据HL可判定 ,得 ,A正确;
∵过半径 的中点 分别作 ,连接AE,
CE为OA的中垂线,
在半圆中,
∴ , 为等边三角形, , C正确;
∴圆心角相等,所对应的弧长度也相等, ,B正确
∵ ,
∴ ,D错误
【点睛】
本题考查了全等三角形的判定和性质,勾股定理等知识点,解题的关键在于证明 .
2.在Rt△ABC中,∠ACB=90°.AC=8,BC=3,点D是BC边上动点,连接AD交以CD为直径的圆于点E,则线段BE长度的最小值为( )
∵E点在以CD为直径的圆上,
∴∠CED=90°,
∴∠AEC=180°-∠CED=90°,
∴E点也在以AC为直径的圆上,
设以AC为直径的圆的圆心为O,若BE最短,则OB最短,
∵AC=8,
∴OC= AC=4,
∵BC=3,∠ACB=90°,
∴OB= =5,
∵OE=OC=4,
∴BE=OB-OE=5-4=1.
【详解】
解:由作图知CM=CD=DN,
∴∠COM=∠COD,故A选项正确;
∵OM=ON=MN,
∴△OMN是等边三角形,
∴∠MON=60°,
∵CM=CD=DN,
∴∠MOA=∠AOB=∠BON= ∠MON=20°,故B选项正确;
九年级数学圆知识点及例题
九年级数学圆知识点及例题圆是初中数学中非常重要的一个几何概念,它与我们日常生活息息相关。
本文将带领大家系统地了解九年级数学中与圆相关的知识点,并提供一些例题进行辅助学习。
一、圆的基本概念1. 圆的定义:圆是平面上到一个定点(圆心)距离相等的所有点的集合。
2. 圆的要素:圆心、半径、直径、弧、弦、切线等。
二、圆的基本性质1. 圆的半径与直径的关系:直径是半径的两倍。
2. 圆的周长:圆的周长是其直径的倍数,即周长等于直径乘以π(π≈3.14)。
3. 圆的面积:圆的面积等于半径的平方乘以π。
三、圆的判定1. 距离判定定理:给定一定距离,平面上到该距离相等的点构成的图形是圆。
2. 切线定理:过圆外一点有且仅有一条切线,该切线与半径垂直。
四、圆的位置关系1. 同圆:拥有相同半径的两个圆。
2. 内切和外切:一个圆与另一个圆内部的一个点或外部的一个点相切。
3. 相交与相离:两个圆相交的情况包括相切和交叉,而相离则是两个圆不相交。
五、圆的综合应用1. 圆和三角形的关系:圆内切于一个三角形的关系、圆外接于一个三角形的关系等。
2. 圆和正多边形的关系:正n边形的内切和外切圆等。
3. 圆和椭圆、抛物线、双曲线的关系。
下面我们来看一些九年级数学中与圆相关的例题。
例题1:已知一个圆的半径是5cm,求其周长和面积。
解:根据圆的周长公式,周长等于直径乘以π。
我们已知半径是5cm,则直径是半径的两倍,即10cm。
所以,圆的周长为10cm × π ≈ 10 × 3.14 ≈ 31.4cm。
另外,根据圆的面积公式,面积等于半径的平方乘以π。
所以,圆的面积为5cm × 5cm × π ≈ 25 × 3.14 ≈ 78.5cm²。
例题2:已知圆A的半径是8cm,圆B的直径是12cm,判断这两个圆的位置关系。
解:首先,我们通过直径的关系得知,圆B的直径是圆A的直径的1.5倍,即12cm = 8cm × 1.5。
(易错题精选)初中数学圆的技巧及练习题附解析
(易错题精选)初中数学圆的技巧及练习题附解析一、选择题1.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°【答案】C【解析】【分析】根据圆内接四边形的性质得:∠GBC=∠ADC=50°,由垂径定理得:··=,则∠CM DMDBC=2∠EAD=80°.【详解】如图,∵四边形ABCD为⊙O的内接四边形,∴∠GBC=∠ADC=50°.∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°﹣50°=40°,延长AE交⊙O于点M.∵AO⊥CD,∴··=,∴∠DBC=2∠EAD=80°.CM DM故选C.【点睛】本题考查了圆内接四边形的性质:圆内接四边形的任意一个外角等于它的内对角,还考查了垂径定理的应用,属于基础题.2.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°【答案】D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.3.如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为()A.123B.1536π-πC.30312π-D.48336π-π【答案】C【解析】【分析】易得AD长,利用相应的三角函数可求得∠ABD的度数,进而求得∠EOD的度数,那么一个阴影部分的面积=S△ABD-S扇形DOE-S△BOE,算出后乘2即可.【详解】连接OE,OF.∵BD=12,AD:AB=1:2,∴AD=43,AB=83,∠ABD=30°,∴S△ABD=33,S扇形=603616,63393 3602OEBSππ⨯==⨯=V∵两个阴影的面积相等,∴阴影面积=()224369330312ππ⨯--=- .故选:C【点睛】本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积.4.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O ,三角尺的直角顶点C 落在直尺的10cm 处,铁片与直尺的唯一公共点A 落在直尺的14cm 处,铁片与三角尺的唯一公共点为B ,下列说法错误的是( )A .圆形铁片的半径是4cmB .四边形AOBC 为正方形 C .弧AB 的长度为4πcmD .扇形OAB 的面积是4πcm 2【答案】C【解析】【分析】【详解】 解:由题意得:BC ,AC 分别是⊙O 的切线,B ,A 为切点,∴OA ⊥CA ,OB ⊥BC ,又∵∠C=90°,OA=OB ,∴四边形AOBC 是正方形,∴OA=AC=4,故A ,B 正确;∴»AB 的长度为:904180π⨯=2π,故C 错误; S 扇形OAB =2904360π⨯=4π,故D 正确. 故选C .【点睛】本题考查切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.5.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF=EB ,EF 与AB 交于点C ,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°【答案】B【解析】【分析】连接FB,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB、∠EFB的度数,继而根据∠EFO=∠EBF-∠OFB即可求得答案.【详解】连接FB,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=12∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.6.已知,如图,点C,D在⊙O上,直径AB=6cm,弦AC,BD相交于点E,若CE=BC,则阴影部分面积为()A.934π-B.9942π-C.39324π-D.3922π-【答案】B【解析】【分析】连接OD、OC,根据CE=BC,得出∠DBC=∠CEB=45°,进而得出∠DOC=90°,根据S阴影=S 扇形-S△ODC即可求得.【详解】连接OD、OC,∵AB是直径,∴∠ACB=90°,∵CE=BC,∴∠CBD=∠CEB=45°,∴∠COD =2∠DBC=90°,∴S阴影=S扇形−S△ODC=2903360π⋅⋅−12×3×3=94π−92.故答案选B.【点睛】本题考查的知识点是扇形面积的计算,解题的关键是熟练的掌握扇形面积的计算.7.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.2【答案】B【解析】【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB 的长.【详解】连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选B.【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.8.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()A.34B.13C.12D.14【答案】C【解析】【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】解:设小正方形的边长为1,则其面积为1.Q圆的直径正好是大正方形边长,22,∴大正方形的边长为2,则大正方形的面积为222⨯=,则小球停在小正方形内部(阴影)区域的概率为12.故选:C.【点睛】概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.9.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.10.已知某圆锥的底面半径为3 cm,母线长5 cm,则它的侧面展开图的面积为()A.30 cm2B.15 cm2C.30π cm2D.15π cm2【答案】D【解析】试题解析:根据圆锥的侧面展开图的面积计算公式得:S=RLπ=15π故选D.11.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm【答案】B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.12.如图,7×5的网格中的小正方形的边长都为1,小正方形的顶点叫格点,△ABC的三个顶点都在格点上,过点C作△ABC外接圆的切线,则该切线经过的格点个数是()A.1 B.2 C.3 D.4【答案】C【解析】【分析】作△ABC的外接圆,作出过点C的切线,两条图象法即可解决问题.【详解】如图⊙O即为所求,观察图象可知,过点C作△ABC外接圆的切线,则该切线经过的格点个数是3个,选:C.【点睛】考查三角形的外接圆与外心,切线的判定和性质等知识,解题的关键是理解题意.13.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过的图形面积为()A.32πB.83πC.6πD.以上答案都不对【解析】【分析】从图中可以看出,线段AB 扫过的图形面积为一个环形,环形中的大圆半径是AC ,小圆半径是BC ,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.【详解】阴影面积=()603616103603π⨯-=π. 故选D .【点睛】本题的关键是理解出,线段AB 扫过的图形面积为一个环形.14.如图,ABC V 是O e 的内接三角形,且AB AC =,56ABC ∠=︒,O e 的直径CD 交AB 于点E ,则AED ∠的度数为( )A .99︒B .100︒C .101°D .102︒【答案】D【解析】【分析】 连接OB ,根据等腰三角形的性质得到∠A ,从而根据圆周角定理得出∠BOC ,再根据OB=OC 得出∠OBC ,即可得到∠OBE ,再结合外角性质和对顶角即可得到∠AED 的度数.【详解】解:连接OB ,∵AB=AC ,∴∠ABC=∠ACB=56°,∴∠A=180°-56°-56°=68°=12∠BOC , ∴∠BOC=68°×2=136°,∵OB=OC ,∴∠OBC=∠OCB=(180°-136°)÷2=22°,∴∠OBE=∠EBC-∠OBC=56°-22°=34°,∴∠AED=∠BEC=∠BOC-∠OBE=136°-34°=102°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质,外角的性质,解题的关键是作出辅助线OB,得到∠BOC的度数.15.如图,已知某圆锥轴截面等腰三角形的底边和高线长均为10cm,则这个圆锥的侧面积为()A.50cm2B.50πcm2C.255cm2D.255πcm2【答案】D【解析】【分析】根据勾股定理求出圆锥的母线长,求出底面圆周长,根据扇形面积公式计算即可.【详解】解:如图所示,∵等腰三角形的底边和高线长均为10cm,∴等腰三角形的斜边长=22=55,即圆锥的母线长为55cm,圆锥底面圆半105径为5,∴这个圆锥的底面圆周长=2×π×5=10π,即为侧面展开扇形的弧长,圆锥的侧面积=1×10π×55=255πcm2,2故选:D.【点睛】本题考查了圆锥的计算,解题的关键是弄清楚圆锥的侧面积的计算方法,特别是圆锥的轴截面是等腰三角形,勾股定理的应用,以及圆锥的底面周长等于圆锥的侧面扇形的弧长.16.如图,点A 、B 、C 、D 、E 、F 等分⊙O ,分别以点B 、D 、F 为圆心,AF 的长为半径画弧,形成美丽的“三叶轮”图案.已知⊙O 的半径为1,那么“三叶轮”图案的面积为( )A .π+33B .π-33C .33π+ D .33π-【答案】B【解析】【分析】连接OA 、OB 、AB ,作OH ⊥AB 于H ,根据正多边形的中心角的求法求出∠AOB ,根据扇形面积公式计算.【详解】连接OA 、OB 、AB ,作OH ⊥AB 于H ,∵点A 、B 、C 、D 、E 、F 是⊙O 的等分点,∴∠AOB=60°,又OA=OB ,∴△AOB 是等边三角形,∴AB=OB=1,∠ABO=60°,∴2211()2-3 ∴“三叶轮”图案的面积=(2601360π⨯⨯-12×1×32)×6=π-332, 故选B .【点睛】本题考查的是正多边形和圆、扇形面积的计算,掌握正多边形的中心角的求法、扇形面积公式是解题的关键.17.如图,有一圆锥形粮堆,其侧面展开图是半径为6m 的半圆,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时,小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程长为( )A .3mB .33mC .35mD .4m【答案】C【解析】【分析】【详解】 如图,由题意得:AP =3,AB =6,90.BAP ∠=o ∴在圆锥侧面展开图中223635.BP m =+=故小猫经过的最短距离是35.m故选C.18.如图,已知⊙O 上三点A ,B ,C ,半径OC=1,∠ABC=30°,切线PA 交OC 延长线于点P ,则PA 的长为( )A .2B 3C 2D .12【答案】B【解析】【分析】 连接OA ,由圆周角定理可求出∠AOC=60°,再根据∠AOC 的正切即可求出PA 的值.【详解】连接OA ,∵∠ABC=30°,∴∠AOC=60°,∵PA是圆的切线,∴∠PAO=90°,∵tan∠AOC =PA OA,∴PA= tan60°×1=3.故选B.【点睛】本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.19.如图,四边形ABCD是⊙O的内接正方形,点P是劣弧弧AB上任意一点(与点B不重合),则∠BPC的度数为()A.30°B.45°C.60°D.90°【答案】B【解析】分析:接OB,OC,根据四边形ABCD是正方形可知∠BOC=90°,再由圆周角定理即可得出结论.详解:连接OB,OC,∵四边形ABCD是正方形,∴∠BOC=90°,∴∠BPC=12∠BOC=45°.故选B.点睛:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.20.如图,在扇形OAB中,120AOB∠=︒,点P是弧AB上的一个动点(不与点A、B重合),C、D分别是弦AP,BP的中点.若33CD=,则扇形AOB的面积为()A.12πB.2πC.4πD.24π【答案】A【解析】【分析】如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.【详解】解:如图作OH⊥AB于H.∵C、D分别是弦AP、BP的中点.∴CD是△APB的中位线,∴AB=2CD=63∵OH⊥AB,∴BH=AH=33∵OA=OB,∠AOB=120°,∴∠AOH=∠BOH=60°,在Rt△AOH中,sin∠AOH=AHAO,∴AO=336sin3AHAOH==∠,∴扇形AOB的面积为:2120612360ππ=g g,故选:A.【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.。
初三数学圆的练习题基础
初三数学圆的练习题基础圆的概念在初三数学中占据着非常重要的位置。
通过练习题的基础,我们可以加深对圆的认识,并掌握相关的计算方法。
本文将针对初三数学圆的练习题基础进行详细讲解,帮助同学们更好地理解和掌握这一知识点。
一、圆的基本概念1. 定义:圆是由平面上到一个定点的距离等于常数的点的集合。
2. 要素:圆心、半径3. 重要性:在几何问题中常常需要应用圆的性质进行计算和推理。
二、常见的圆的性质练习题1. 圆的面积计算题题目:求半径为3cm的圆的面积。
解答:圆的面积公式为πr^2,其中r代表半径。
将半径r=3cm代入公式,即可计算得到圆的面积。
2. 圆的周长计算题题目:若圆的半径为4cm,求其周长。
解答:圆的周长公式为2πr,将半径r=4cm代入公式即可计算得到圆的周长。
3. 相交弦的性质题题目:已知圆的半径为6cm,弦AB与弦CD相交于点E,若AE=3cm,BE=2cm,求CE和DE的长度。
解答:根据相交弦的性质,我们可以利用它们之间的关系进行计算。
由于AE+EB=AB,我们知道AB的长度为5cm。
同理,AB+BC=AC,所以AC的长度为8cm。
根据CE=AC-AE和DE=AC-BE的关系,我们可以得到CE的长度为5cm-3cm=2cm,DE的长度为8cm-2cm=6cm。
4. 弧长与弦的关系题题目:圆的半径为10cm,弦AB的长度为8cm,求弧AB的长度。
解答:利用弧长公式,我们可以得到弧AB的长度等于该圆的半径乘以弦AB所对应的圆心角的度数除以360°。
首先,根据余弦定理可以求得夹角的余弦值为(10^2+10^2-8^2)/(2×10×10)=8/20=2/5。
然后,根据反余弦函数可以求得夹角的度数为arccos(2/5)。
最后,将360°乘以(2/5)再除以360°,可以得到弧AB的长度。
5. 切线与半径的垂直性题题目:已知半径为5cm的圆,以A为圆心作一条切线BC,且B在A的右侧,若AB的长度为3cm,求BC的长度。
圆的相关证明与计算--与切线有关的证明与计算(解析版)-中考数学重难点题型专题汇总
圆的相关证明与计算-中考数学重难点题型与切线有关的证明与计算(专题训练)1.如图,ABC 内接于O ,AB 是O 的直径,E 为AB 上一点,BE BC =,延长CE 交AD 于点D ,AD AC =.(1)求证:AD 是O 的切线;(2)若1tan 3ACE ∠=,3OE =,求BC 的长.【答案】(1)见解析;(2)8【分析】(1)根据BE BC =,可得BEC BCE ∠=∠,根据对顶角相等可得AED BEC ∠=∠,进而可得BCE AED ∠=∠,根据AD AC =,可得ADC ACE ∠=∠,结合90ACB ∠=︒,根据角度的转化可得90AED D ∠+∠=︒,进而即可证明AD 是O 的切线;(2)根据ADC ACE ∠=∠,可得1tan tan 3EA D ACE DA ==∠=,设AE x =,则3AC AD x ==,分别求得,,AC AB BC ,进而根据勾股定理列出方程解方程可得x ,进而根据6BC x =+即可求得.【详解】(1) BE BC =,∴BEC BCE ∠=∠,AED BEC ∠=∠,∴BCE AED ∠=∠,AD AC =,∴ADC ACE ∠=∠,AB 是直径,∴90ACB ∠=︒,90D AED ACD BCE ACB ∴∠+∠=∠+∠=∠=︒,∴AD 是O 的切线;(2)AD AC = ,∴ADC ACE ∠=∠,1tan tan 3EA D ACE DA ∴==∠=,设AE x =,则3AC AD x ==,3,336OB OA AE OE x BC BE OE OB x x ==+=+==+=++=+,226AB OA x ==+,在Rt ABC 中,222AC BC AB +=,即()()()2223626x x x ++=+,解得122,0x x ==(舍去),68BC x ∴=+=.【点睛】本题考查了切线的判定,勾股定理解直角三角形,正切的定义,利用角度相等则正切值相等将已知条件转化是解题的关键.2.如图,ABC 内接于O ,AB AC =,AD 是O 的直径,交BC 于点E,过点D 作//DF BC ,交AB 的延长线于点F,连接BD .(1)求证:DF 是O 的切线;(2)已知12AC =,15AF =,求DF 的长.【答案】(1)见解析;(2)DF =【分析】(1)由题意根据圆周角定理得出90ABC CBD ∠+∠=︒,结合同弧或等弧所对的圆周角相等并利用经过半径外端并且垂直于这条半径的直线是圆的切线进行证明即可;(2)根据题意利用相似三角形的判定即两个角分别相等的两个三角形相似得出FBD FDA ~△△,继而运用相似比FB FD FD FA =即可求出DF 的长.【详解】解:(1)证明:∵AD 是O 的直径∴90ABD ∠=︒(直径所对的圆周角是直角)即90ABC CBD ∠+∠=︒∵AB AC=∴ABC C ∠=∠(等边对等角)∵ AB AB=∴ADB C ∠=∠(同弧或等弧所对的圆周角相等)∴ABC ADB∠=∠∵//BC DF ,∴CBD FDB∠=∠∴90ADB FDB ∠+∠=︒即90ADF ∠=︒∴AD DF⊥又∵AD 是O 的直径∴DF 是O 的切线(经过半径外端并且垂直于这条半径的直线是圆的切线).(2)解:∵12AB AC ==,15AF =∴3BF AF AB =-=∵F F ∠=∠,90FBD FDA ∠=∠=∴FBD FDA ~△△(两个角分别相等的两个三角形相似)∴FB FD FD FA=,∴231545FD FB FA =⋅=⨯=∴DF =【点睛】本题主要考查圆的切线的判定、圆周角定理、相似三角形的判定与性质等知识点,熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.3.如图,AB 为O 的直径,C 为O 上一点,D 为AB 上一点,BD BC =,过点A 作AE AB ⊥交CD 的延长线于点E,CE 交O 于点G,连接AC,AG,在EA 的延长线上取点F,使2FCA E ∠=∠.(1)求证:CF 是O 的切线;(2)若6AC =,AG ,求O 的半径.【答案】(1)见解析;(2)5【分析】(1)根据题意判定ADG DCB ∽,然后结合相似三角形的性质求得2AGD E ∠∠=,从而可得FCA AGD ∠∠=,然后结合等腰三角形的性质求得90FCO ∠︒=,从而判定CF 是O 的切线;(2)由切线长定理可得AF CF =,从而可得2FAC E ∠∠=,得到AC AE =,然后利用勾股定理解直角三角形可求得圆的半径.【详解】(1)证明:B AGC ∠∠ =,ADG CDB ∠∠=,ADG DCB ∴ ∽,BD BC GD GA∴=,BD BC =,GD GA ∴=,ADG DAG ∴∠∠=,又AE AB ⊥ ,90EAD ∴∠︒=,90GAE DAG E ADG ∴∠+∠∠+∠︒==,GAE E ∴∠∠=,AG DG EG ∴==,2AGD E ∠∠=,2FCA E ∠∠ =,FCA AGD B ∴∠∠∠==,AB 是O 的直径,90CAB B ∴∠+∠︒=,又OA OC Q =,ACO CAB ∴∠∠=,90FCA ACO ∴∠+∠︒=,90FCO ∴∠︒=,即CF 是O 的切线;(2) CF 是O 的切线,AE AB ⊥,AF CF ∴=,2FAC FCA E ∴∠∠∠==,6AC AE ∴==,又AG DG EG ==在Rt ADE △中,2AD ===,设O 的半径为x,则2AB x =,22BD BC x==﹣,在Rt ABC △中,2226222x x +(﹣)=(),解得:5x =,O ∴ 的半径为5.【点睛】本题考查了圆周角定理、切线的判定与性质、相似三角形的判定与性质、勾股定理等,熟练4.如图,四边形ABCD 内接于⊙O,AB 为⊙O 的直径,过点C 作CE⊥AD 交AD 的延长线于点E,延长EC,AB 交于点F,∠ECD=∠BCF.(1)求证:CE 为⊙O 的切线;(2)若DE=1,CD=3,求⊙O 的半径.【答案】(1)见解析;(2)⊙O 的半径是4.5【分析】(1)如图1,连接OC,先根据四边形ABCD 内接于⊙O,得CDE OBC ∠∠=,再根据等量代换和直角三角形的性质可得90OCE ∠︒=,由切线的判定可得结论;(2)如图2,过点O 作OG AE ⊥于G,连接OC,OD,则90OGE ∠︒=,先根据三个角是直角的四边形是矩形得四边形OGEC 是矩形,设⊙O 的半径为x,根据勾股定理列方程可得结论.【详解】(1)证明:如图1,连接OC,∵OB OC =,∴OCB OBC ∠∠=,∵四边形ABCD 内接于⊙O,∴180CDA ABC ∠+∠=︒又180CDE CDA ∠+∠=︒∴CDE OBC ∠∠=,∵CE AD ⊥,∴90E CDE ECD ∠∠∠︒=+=,∵ECD BCF ∠∠=,∴90OCB BCF ∠∠︒+=,∴90OCE ∠︒=,∵OC 是⊙O 的半径,∴CE 为⊙O 的切线;(2)解:如图2,过点O 作OG AE ⊥于G,连接OC,OD,则90OGE ∠︒=,∵90E OCE ∠∠︒==,∴四边形OGEC 是矩形,∴OC EG OG EC =,=,设⊙O 的半径为x,Rt△CDE 中,31CD DE =,=,∴EC =∴OG =1GD xOD x =﹣,=,由勾股定理得222OD OG DG +:=,∴222(1)x x =+-,解得: 4.5x =,∴⊙O 的半径是4.5.【点睛】本题考查的是圆的综合,涉及到圆的切线的证明、勾股定理以及矩形的性质,熟练掌握相关性质是解决问题的关键.5.如图, ABC 内接于⊙O,且AB=AC,其外角平分线AD 与CO 的延长线交于点D.(1)求证:直线AD 是⊙O(2)若【答案】(1)见解析;(2)6π-【分析】(1)连接OA,证明OA⊥AD 即可,利用角平分线的意义以及等腰三角形的性质得以证明;(2)求出圆的半径和阴影部分所对应的圆心角度数即可,利用相似三角形求出半径,再根据特殊锐角三角函数求出∠BOC.【详解】解:(1)如图,连接OA 并延长交BC 于E,∵AB=AC,△ABC 内接于⊙O,∴AE 所在的直线是△ABC 的对称轴,也是⊙O 的对称轴,∴∠BAE=∠CAE,又∵∠MAD=∠BAD,∠MAD+∠BAD+∠BAE+∠CAE=180°,∴∠BAD+∠BAE=12×180°=90°,即AD⊥OA,∴AD 是⊙O 的切线;(2)连接OB,∴△AOD∽△EOC,∴AD OA EC OE =,由(1)可知AO 是ABC ∆的对称轴,OE ∴垂直平分BC ,132CE BC ∴==,设半径为r ,在Rt EOC ∆中,由勾股定理得,OE∴,解得6r =(取正值),经检验6r =是原方程的解,即6OB OC OA ===,又6BC = ,OBC ∴∆是等边三角形,60BOC ∴∠=︒,OE ==BOC BOC S S S ∆∴=-阴影部分扇形2606163602π⨯=-⨯⨯6π=-【点睛】本题考查了切线的判定和性质、角平分线的性质,圆周角定理,三角形外接圆与外心,扇形面积的计算,灵活运用切线的判定方法是解题的关键.6.如图,△ABC 内接于⊙O,AB 是⊙O 的直径,过⊙O 外一点D 作//DG BC ,DG 交线段AC 于点G,交AB 于点E,交⊙O 于点F,连接DB,CF,∠A=∠D.(1)求证:BD 与⊙O 相切;(2)若AE=OE,CF 平分∠ACB,BD=12,求DE 的长.【答案】(1)见解析;(2)【分析】(1)如图1,延长DB 至H ,证明90ABD ∠=︒,即可根据切线的判定可得BD 与O 相切;(2)如图2,连接OF ,先根据圆周角定理证明OF AB ⊥,再证明EFO EDB △∽△,列比例式可得4OF =,即O 的半径为4,根据勾股定理可得DE 的长.【详解】(1)证明:如图1,延长DB 至H ,,DG BC//∴∠=∠,CBH D,∠=∠A D∴∠=∠,A CBH的直径,Q是OAB∴∠=︒,ACB90∴∠+∠=︒,A ABC90∴∠+∠=︒,90CBH ABC∴∠=︒,90ABD∴AB⊥BD,相切;∴与OBD(2)解:如图2,连接OF,CF平分ACB∠,∴∠=∠,ACF BCF∴=,AF BF∴∠AOF=∠BOF=90°,OF AB ∴⊥,BD AB ⊥ ,//OF BD ∴,EFO EDB ∴△∽△,∴OF OE BD BE=,AE OE = ,∴13OE EB =,∴1123OF =,4OF ∴=,4OA OB OF ∴===,246BE OE OB ∴=+=+=,DE ∴=.【点睛】此题考查了相似三角形的判定与性质,切线的判定,圆周角定理,勾股定理等知识,解答本题需要我们熟练掌握切线的判定,第2问关键是证明EFO EDB △∽△.7.如图,在Rt△ACD 中,∠ACD=90°,点O 在CD 上,作⊙O,使⊙O 与AD 相切于点B,⊙O 与CD 交于点E,过点D 作DF∥AC,交AO 的延长线于点F,且∠OAB=∠F.(1)求证:AC 是⊙O 的切线;(2)若OC=3,DE=2,求tan∠F 的值.【答案】(1)见详解;(2)12.【分析】(1)由题意,先证明OA 是∠BAC 的角平分线,然后得到BO=CO,即可得到结论成立;(2)由题意,先求出BD=4,OD=5,然后利用勾股定理求出6AB AC ==,10AD =,结合直角三角形ODF,即可求出tan∠F 的值.【详解】解:(1)∵DF∥AC,∴∠CAO=∠F,∵∠OAB=∠F,∴∠CAO=∠OAB,∴OA 是∠BAC 的角平分线,∵AD 是⊙O 的切线,∴∠ABO=∠ACO=90°,∴BO=CO,又∵AC⊥OC,∴AC 是⊙O 的切线;(2)由题意,∵OC=3,DE=2,∴OD=5,OB=3,CD=8,∴4BD ==,由切线长定理,则AB=AC,设AB AC x ==,在直角三角形ACD 222AC CD AD +=,即2228(4)x x +=+,解得:6x =,∴6AB AC ==,6410AD =+=,∵∠OAB=∠F,∴10DF AD ==,∵90FDO ACO ∠=∠=︒,∴51tan 102OD F DF ∠===.【点睛】本题考查了圆的切线的判定和性质,勾股定理,角平分线的性质,以及三角函数,解题的关键是熟练掌握所学的知识,正确的求出所需的长度,从而进行解题.8.如图,在Rt ABC 中,90ACB ︒∠=,以斜边AB 上的中线CD 为直径作O ,与BC 交于点M ,与AB 的另一个交点为E ,过M 作MN AB ⊥,垂足为N .(1)求证:MN 是O 的切线;(2)若O 的直径为5,3sin 5B =,求ED 的长.【答案】(1)见解析;(2)75ED =.【解析】【分析】(1)欲证明MN 为⊙O 的切线,只要证明OM⊥MN.(2)连接,DM CE ,分别求出BD=5,BE=325,根据ED BE BD =-求解即可.【详解】(1)证明:连接OM ,OC OM = ,OCM OMC ∴∠=∠.在Rt ABC 中,CD 是斜边AB 上的中线,12CD AB BD ∴==,DCB DBC ∴∠=∠,OMC DBC ∴∠=∠,//OM BD ∴,MN BD ⊥ ,MN OM ∴⊥,MN ∴是O 的切线.(2)连接,DM CE ,易知,DM BC CE AB ⊥⊥,由(1)可知5BD CD ==,故M 为BC 的中点,3sin 5B =,4cos 5B ∴=,在Rt BMD △中,cos 4BM BD B =⋅=,28BC BM ∴==.在Rt CEB 中,32cos 5BE BC B =⋅=,327555ED BE BD ∴=-=-=.【点睛】本题考查切线的判定和性质,等腰三角形的性质,解直角三角形等知识;熟练掌握切线的判定定理是解题的关键.9.如图,AB 是半圆O 的直径,,C D 是半圆O 上不同于,A B 的两点,AD BC AC =与BD 相交于点,F BE 是半圆O 所任圆的切线,与AC 的延长线相交于点E ,()1求证:CBA DAB ∆∆≌;()2若,BE BF =求AC 平分DAB ∠.【答案】()1证明见解析;()2证明见解析.【解析】【分析】()1利用,AD BC =证明,ABD BAC ∠=∠利用AB 为直径,证明90,ADB BCA ∠=∠=︒结合已知条件可得结论;()2利用等腰三角形的性质证明:,EBC FBC ∠=∠再证明,CBF DAF ∠=∠利用切线的性质与直径所对的圆周角是直角证明:,EBC CAB ∠=∠从而可得答案.【详解】()1证明:,AD BC = ,AD BC∴=,ABD BAC ∴∠=∠AB Q 为直径,90,ADB BCA ∴∠=∠=︒,AB BA = CBA DAB ∴ ≌.()2证明:,90,BE BF ACB =∠=︒ ,FBC EBC ∴∠=∠90,,ADC ACB DFA CFB ∠=∠=︒∠∠ ,DAF FBC EBC ∴∠=∠=∠BE 为半圆O 的切线,90,90,ABE ABC EBC ∴∠=︒∠+∠=︒90,ACB ∠=︒ 90,CAB ABC ∴∠+∠=︒,CAB EBC ∴∠=∠,DAF CAB ∴∠=∠AC ∴平分DAB ∠.【点睛】本题考查的是圆的基本性质,弧,弦,圆心角,圆周角之间的关系,直径所对的圆周角是直角,三角形的全等的判定,切线的性质定理,三角形的内角和定理,掌握以上知识是解题的关键.10.如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交 BC于点D,过点D 作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【答案】(1)见解析;(2)【解析】【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【详解】解:(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,AB为⊙O的直径,90,ACB∴∠=︒∵DE∥BC,∴∠E=ACB=∠90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BF BA BD=,∴BD2=BF•BA=2×6=12.∴BD=【点睛】本题考查的是圆的基本性质,圆周角定理,切线的判定,同时考查了相似三角形的判定与性质.(1)中判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”,有切线时,常常“遇到切点连圆心得半径”;(2)中能得△DBF∽△ABD是解题关键.11.如图,在⨀O中,AB为⨀O的直径,C为⨀O上一点,P是 BC的中点,过点P作AC的垂线,交AC 的延长线于点D.(1)求证:DP 是⨀O 的切线;(2)若AC=5,5sin 13APC ∠=,求AP 的长.【答案】(1)见解析;(2)AP=.【解析】【分析】(1)根据题意连接OP,直接利用切线的定理进行分析证明即可;(2)根据题意连接BC,交于OP 于点G,利用三角函数和勾股定理以及矩形的性质进行综合分析计算即可.【详解】解:(1)证明:连接OP;∵OP=OA;∴∠1=∠2;又∵P 为 BC的中点;∴ PCPB =∴∠1=∠3;∴∠3=∠2;∴OP∥DA;∵∠D=90°;∴∠OPD=90°;又∵OP 为⨀O 半径;∴DP 为⨀O 的切线;(2)连接BC,交于OP 于点G;∵AB 是圆O 的直径;∴∠ACB 为直角;∵5sin 13APC ∠=∴sin∠ABC=513AC=5,则AB=13,半径为132由勾股定理的12=,那么CG=6又∵四边形DCGP 为矩形;∴GP=DC=6.5-2.5=4∴AD=5+4=9;在Rt△ADP ==.【点睛】本题考查圆的综合问题,熟练掌握圆的切线定理和勾股定理以及三角函数和矩形的性质是解题的关键.12.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC,CE⊥AB 于点E,D 是直径AB 延长线上一点,且∠BCE=∠BCD.(1)求证:CD 是⊙O 的切线;(2)若AD=8,BE CE =12,求CD 的长.【答案】(1)见解析;(2)4【解析】【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【详解】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD 是⊙O 的切线;(2)解:∵∠A=∠BCE,∴tanA=BC AC =tan∠BCE=BE CE =12,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BC AC =CD AD =12,∵AD=8,∴CD=4.【点睛】本题考查了切线的判定定理,相似三角形的判定与性质以及解直角三角形的应用,熟练掌握性质定理是解题的关键.13.如图,AB 是O 的直径,点C 是O 上一点,CAB ∠的平分线AD 交 BC于点D ,过点D 作//DE BC 交AC 的延长线于点E .(1)求证:DE 是O 的切线;(2)过点D 作DF AB ⊥于点F ,连接BD .若1OF =,2BF =,求BD 的长度.【答案】(1)见解析;(2)BD =【解析】【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC 得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB 的值,进而得出AF 和BA 的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD 2的值,求算术平方根即可得出BD 的值.【详解】解:(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD 平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°−∠E=90°,∴DE 是⊙O 的切线;(2)因AB 为直径,则90ADB ∠=︒∵1OF =,2BF =∴OB=3∴4AF =,6BA =∵∠ADB=∠DFB=90°,∠B=∠B∴△DBF∽△ABD ∴BF BD BD AB=∴22612BD BF BA =⋅=⨯=所以BD .【点睛】本题考查了切线的判定、相似三角形的判定与性质、平行线的性质等知识点,熟练掌握圆的切线的判定及圆中的相关计算是解题的关键.。
【单元练】九年级数学上册第二十四章《圆》知识点总结(1)
一、选择题1.下列说法:(1)三点确定一个圆;(2)直径所对的圆周角是直角;(3)平分弦的直径垂直于弦,并且平分弦所对的弧;(4)相等的圆心角所对的弧相等;(5)圆内接四边形的对角互补.其中正确的个数为( )A .1个B .2个C .3个D .4个B 解析:B【分析】根据确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质一一判断即可.【详解】解:(1)任意三点确定一个圆;错误,应该是不在同一直线上的三点可以确定一个圆; (2)直径所对的圆周角是直角;正确;(3)平分弦的直径垂直于弦;并且平分弦所对的弧,错误,直径与直径互相平分,但不一定互相垂直;(4)相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;(5)圆内接四边形对角互补;正确;故选:B .【点睛】本题考查确定圆的条件、直径的性质、垂径定理、圆周角定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A .12B .16C .13D .14D 解析:D【分析】连接OC 、OD ,设O 半径为r ,利用正方形性质得:MN ∥BC ,根据三角形面积公式得:S △DON =S △AON ,S △CON =S △BON ,利用面积差可得S 阴影部分=S 扇形COD ,再利用正方形的性质得到∠COD =90°,则S 扇形=214r ,所以阴影部分面积是圆的面积的14 【详解】解:如图,连接OC、OD,设O半径为r,∵直径//MN AD,AD∥BC∴MN∥BC,根据三角形面积公式得:S△DON=S△AON,S△CON=S△BON,∴S阴影部分=S扇形COD,∵四边形ABCD是正方形∴∠COD=90°,∴S扇形=290360rπ︒︒=214rπ,∵圆的面积为2rπ∴所以阴影部分面积是圆的面积的14故选:D【点睛】本题考查扇形面积计算公式、正方形的性质,利用了面积的和差计算不规则图形的面积,解题的关键是掌握扇形的面积公式.3.如图,在⊙O中,AB是直径,弦AC=5,∠BAC=∠D.则AB的长为()A.5B.10C.52D.102解析:C【分析】根据圆周角定理得出∠D=∠B,得出△ABC是等腰直角三角形,进而解答即可.【详解】∵AC=AC,∴∠D=∠B,∵∠BAC=∠D,∴∠B=∠BAC,∴△ABC是等腰三角形,∵AB是直径,∴△ABC是等腰直角三角形,∵AC=5,∴AB=52,故选:C.【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B.4.点A,B的坐标分别为A (4,0),B(0,4),点C为坐标平面内一点,BC﹦2,点M为线段AC的中点,连接OM,则OM的最大值为()A.22+1 B.22+2 C.42+1 D.42-2A解析:A【分析】根据同圆的半径相等可知:点C在半径为2的B上,通过画图可知,C在BD与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.【详解】解:如图,BC=,点C为坐标平面内一点,2∴在B上,且半径为2,COD OA,连接CD,取4AM CM =,OD OA =,OM ∴是ACD ∆的中位线, 12OM CD , 当OM 最大时,即CD 最大,而D ,B ,C 三点共线时,当C 在DB 的延长线上时,OM 最大,4OB OD ,90BOD ∠=︒,42BD ∴=, 422CD ,1142222122OM CD , 即OM 的最大值为221+;故选:A .【点睛】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM 为最大值时点C 的位置是解题的关键.5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,28CDB ∠=︒,过点C 作⊙O 的切线交AB 的延长线于点E ,则E ∠等于( )A .28︒B .34︒C .44︒D .56︒B解析:B【分析】 连接OC ,由CE 为圆O 的切线,利用切线的性质得到OC 垂直于CE ,由OA=OC ,利用等边对等角得到一对角相等,再利用外角性质求出∠COE 的度数,即可求出∠E 的度数.【详解】解:连接OC ,∵CE 为圆O 的切线,∴OC ⊥CE ,∴∠COE=90°,∵∠CDB与∠BAC都对BC,且∠CDB=28°,∴∠BAC=∠CDB=28°,∵OA=OC,∴∠OAC=∠OCA=28°,∵∠COE为△AOC的外角,∴∠COE=56°,则∠E=34°.故选:B.【点睛】此题考查了切线的性质,圆周角定理,等腰三角形的性质,以及三角形内角和定理,熟练掌握切线的性质是解本题的关键.6.如图△ABC中,∠C=90°,∠B=28°,以C为圆心,CA为半径的圆交AB于点D,则AD的度数为()A.28°B.56 °C.62°D.112°B解析:B【分析】连接CD,如图,利用互余计算出∠A=62°,则∠A=∠ADC=62°,再根据三角形内角和定理计算出∠ACD=56°,然后根据圆心角的度数等于它所对弧的度数求解.【详解】解:连接CD,如图,∵∠C=90°,∠B=28°,∴∠A=90°-28°=62°,∵CA=CD ,∴∠A=∠ADC=62°,∴∠ACD=180°-2×62°=56°∴AD 的度数为56°;故选:B .【点睛】本题考查了同圆的半径相等、直角三角形的两锐角互余、等腰三角形的性质,熟练进行逻辑推理是解题关键.7.如图,大半圆中有n 个小半圆,若大半圆弧长为1L ,n 个小半圆弧长的和为2L ,大半圆的弦AB ,BC ,CD 的长度和为3L .则( )A .123L L L =>B .123L L L =<C .无法比较1L 、2L 、3L 间的大小关系D .132L L L >>A解析:A【分析】利用圆周长公式计算1L 和2L 的长.根据圆周长公式分别写出1L 和2L 的表达式进行比较,再根据“两点之间线段最短的性质”得出13L L >,即可选出答案.【详解】解:设n 个小半圆半径依次为1r ,2r ,⋯,n r .则大圆半径为()12n r r r ++⋯+()112n L r r r π∴=++⋯+,212n L r r r πππ=++⋯+()12n r r r π=++⋯+,12L L ∴=;根据“两点之间线段最短的性质”可得:13L L >,123L L L ∴=>..故选A .【点睛】本题考查了半圆弧长的计算,两点之间线段最短的性质,是基础题,难度不大. 8.如图,⊙P 与y 轴相切于点C (0,3),与x 轴相交于点A (1,0),B (7,0),直线y=kx-1恰好平分⊙P 的面积,那么k 的值是( )A .12B .45C .1D .43C 解析:C【分析】连接PC ,PA ,过点P 作PD ⊥AB 于点D ,根据切线的性质可知PC ⊥y 轴,故可得出四边形PDOC 是矩形,所以PD=OC=3,再求出AB 的长,由垂径定理可得出AD 的长,故可得出OD 的长,进而得出P 点坐标,再把P 点坐标代入直线y=kx-1即可得出结论.【详解】解:连接PC ,PA ,过点P 作PD ⊥AB 于点D ,∵⊙P 与y 轴相切于点C (0,3),∴PC ⊥y 轴,∴四边形PDOC 是矩形,∴PD=OC=3,∵A (1,0),B (7,0),∴AB=7-1=6,∴AD=12AB=12×6=3, ∴OD=AD+OA=3+1=4,∴P(4,3),∵直线y=kx-1恰好平分⊙P的面积,∴3=4k-1,解得k=1.故选:C.【点睛】本题考查的是圆的综合题,根据题意作出辅助线,构造出直角三角形求出P点坐标即可得出结论.9.如图,半径为1cm的P在边长为9πcm,12πcm,15πcm的三角形外沿三遍滚动(没有滑动)一周,则圆P所扫过的面积为()cm2A.73πB.75πC.76πD.77πA解析:A【分析】圆在三角形的三个角的顶点处旋转的路线是弧,通过观察可以发现圆转动时在三个角上共转动了圆心角360°,所以在三个顶点处转了一个圆的面积,在三个边上滚过的图形是以三角形边长为长,圆的直径为宽的矩形,然就分别计算,最后求和.【详解】解:根据运动特点可知三个顶点处转了一个圆的面积,在三个边上滚过的图形矩形∴圆P所扫过的面积=π+(9π+12π+15π)×2=73π故选:A【点睛】解答本题的关键是,找出圆滚动一周的图形,并将图形进行分割,拼组,化难为易,列式解答即可.10.下列说法中,正确的是()A.三点确定一个圆B.在同圆或等圆中,相等的弦所对的圆周角相等C.平分弦的直径垂直于弦D.在同圆或等圆中,相等的圆心角所对的弦相等D解析:D【分析】根据确定圆的条件、垂径定理、圆周角定理一一判断即可.【详解】解:A、任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆,不符合题意;B 、在同圆或等圆中,相等的弦所对的圆周角相等或互补,错误,不符合题意;C 、平分弦的直径垂直于弦,错误,此弦不是直径,不符合题意;D 、在同圆或等圆中,相等的圆心角所对的弦相等,正确,符合题意;故选:D .【点睛】本题考查确定圆的条件、垂径定理、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题11.如图,点A ,B ,C 在圆O 上,54ACB ∠=︒,则ABO ∠的度数是______.36°【分析】根据圆周角定理可得再利用等腰三角形的性质即可求解【详解】解:∵∴∵∴故答案为:36°【点睛】本题考查圆周角定理掌握圆周角定理是解题的关键解析:36°【分析】根据圆周角定理可得2108AOB ACB ∠=∠=︒,再利用等腰三角形的性质即可求解.【详解】解:∵54ACB ∠=︒,∴2108AOB ACB ∠=∠=︒,∵OA OB =, ∴()1180362ABO BAO AOB ∠=∠=︒-∠=︒, 故答案为:36°.【点睛】本题考查圆周角定理,掌握圆周角定理是解题的关键.12.如图,四边形ABCD 是O 的内接四边形,对角线AC ,BD 交于点E ,且AC BD AB ==,若70AEB ∠=︒,则AOB ∠等于______︒.125【分析】根据题意先求出∠ABE=∠BAE=55°然后由等腰三角形的定义和三角形的内角和定理求出∠C=625°即可求出的度数【详解】解:根据题意∵在圆中有∴∴∴在△ABE 中∴在等腰△ABC 中则∴解析:125【分析】根据题意,先求出∠ABE=∠BAE=55°,然后由等腰三角形的定义和三角形的内角和定理,求出∠C=62.5°,即可求出AOB ∠的度数.【详解】解:根据题意,∵在圆中,有AC BD AB ==,∴AC BD =,∴AD BC =,∴ABD BAC ∠=∠,在△ABE 中,70AEB ∠=︒, ∴1(18070)552ABD BAC ∠=∠=⨯︒-︒=︒, 在等腰△ABC 中,AC AB =则1(18055)62.52C ∠=⨯︒-︒=︒, ∴2125AOB C ∠=∠=︒;故答案为:125.【点睛】本题考查了圆内接四边形的性质,圆周角定理,三角形的内角和定理,等腰三角形的定义,解题的关键是熟练掌握所学的知识,正确的进行解题.13.将面积为3πcm 2的扇形围成一个圆锥的侧面,若扇形的圆心角是120°,则该圆锥底面圆的半径为_____cm .1【分析】直接利用已知得出圆锥的母线长再利用圆锥侧面展开图与各部分对应情况得出答案【详解】解:设圆锥的母线长为Rcm 底面圆的半径为rcm ∵面积为3πcm2的扇形围成一个圆锥的侧面扇形的圆心角是120 解析:1【分析】直接利用已知得出圆锥的母线长,再利用圆锥侧面展开图与各部分对应情况得出答案.【详解】解:设圆锥的母线长为Rcm ,底面圆的半径为rcm ,∵面积为3πcm 2的扇形围成一个圆锥的侧面,扇形的圆心角是120°, ∴2120360R π⨯=3π, 解得:R =3,由题意可得:2πr =1203180π⨯, 解得:r =1.故答案为:1.【点睛】此题主要考查了圆锥的计算,正确得出母线长是解题关键.14.如图所示,在平面直角坐标系中,正六边形OABCDE 边长是6,则它的外接圆圆心P 的坐标是______.【分析】如图所示连接POPA 过点P 作PG ⊥OA 于点G 由正六边形推出为等边三角形进而求出OGPG 的长度即可求得P 点坐标【详解】解:如图所示连接POPA 过点P 作PG ⊥OA 于点G 则∵多边形为正六边形∴∵∴ 解析:(3,33【分析】如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,由正六边形OABCDE 推出OPA 为等边三角形,进而求出OG 、PG 的长度即可求得P 点坐标.【详解】解:如图所示,连接PO ,PA ,过点P 作PG ⊥OA 于点G ,则90OGP ∠=︒,∵多边形OABCDE 为正六边形,∴60OPA ∠=︒,∵PO PA =, ∴OPA 为等边三角形,又∵PG ⊥OA ,∴PG 平分OPA ∠,∴30OPG ∠=︒,又∵OA=6, ∴11163222OG OP OA ===⨯=, ∴由勾股定理得:22226333PG OP OG =--=∴P 的坐标是(3,33, 故答案为:(3,33【点睛】本题考查正多边形外接圆的问题,熟练掌握正多边形的性质,灵活运用三角形相关知识解决边角关系是本题的关键.15.半径为5的⊙O是锐角三角形ABC的外接圆,AB=BC,连结OB、OC,延长CO交弦AB 于D,若△OBD是直角三角形,则弦BC的长为______________.或【分析】如图1当∠DOB=90°时推出△BOC是等腰直角三角形于是得到BC=;如图2当∠ODB=90°时推出△ABC是等边三角形解直角三角形得到BC=AB=【详解】如图1当∠DOB=90°时∴∠B解析:52或53【分析】如图1,当∠DOB=90°时,推出△BOC是等腰直角三角形,于是得到BC=252OB=;如图2,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=53.【详解】如图1,当∠DOB =90°时,∴∠BOC=90°∴△BOC是等腰直角三角形∴BC=252OB=⊥如图2,当∠ODB=90°时,即CD AB∴ AD=BD∴ AC=BC∵ AB=BC∴ △ABC 是等边三角形∴ ∠DBO=30°∵ OB=5∴ 35322BD OB == ∴ BC=AB=53. 综上所述:若△OBD 是直角三角形,则弦BC 的长为52或53.故答案为:52或53. 【点睛】 本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.16.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.120【分析】根据三角形的内心是三角形角平分线的交点结合公式求出即可【详解】解:为的内心故答案是:120【点睛】注意此题中的结论:若是内心则熟记公式可简化计算解析:120【分析】根据三角形的内心是三角形角平分线的交点,结合公式1902BOC A ∠=+∠︒求出即可. 【详解】解:60A ∠=︒,O 为ABC ∆的内心,1190906012022BOC A , 故答案是:120.【点睛】注意此题中的结论:若O 是内心,则1902BOC A ∠=+∠︒.熟记公式可简化计算. 17.如图,A ,B ,P 是半径为2的O 上的三点,45APB ∠=︒,则弦AB 的长为______.【分析】首先连接OAOB由圆周角定理即可求得∠AOB=90°又由OA=OB=2利用勾股定理即可求得弦AB的长【详解】解:连接OAOB∵∠APB=45°∴∠AOB=2∠APB=90°∵OA=OB=2∴解析:22【分析】首先连接OA,OB,由圆周角定理即可求得∠AOB=90°,又由OA=OB=2,利用勾股定理即可求得弦AB的长.【详解】解:连接OA,OB,∵∠APB=45°,∴∠AOB=2∠APB=90°,∵OA=OB=2,∴2222+=AB OA OB故答案为:2【点睛】此题考查了圆周角定理以及勾股定理.注意准确作出辅助线是解此题的关键.18.小明用一张扇形纸片做一个圆锥的侧面,已知该扇形的半径是10cm,弧长是12πcm2,那么这个圆锥的高是________cm.参考答案8【分析】设圆锥的底面半径为利用圆锥的侧面展开图为一个扇形这个扇形的弧长等于圆锥底面的周长圆的周长公式计算出然后利用勾股定理计算出圆锥的高【详解】解:设圆锥底面圆的半径为则有∴圆锥的高为故答案是:【解析:8【分析】设圆锥的底面半径为r,利用圆锥的侧面展开图为一个扇形、这个扇形的弧长等于圆锥底面的周长、圆的周长公式计算出r,然后利用勾股定理计算出圆锥的高.解:设圆锥底面圆的半径为r ,则有,212r ππ=6r =∴圆锥的高为221068cm -=.故答案是:8【点睛】本题考查了平面图形与立体图形之间的互相转化、求圆锥的底面半径、圆的周长公式以及勾股定理等相关知识,能够利用“扇形的弧长等于圆锥底面的周长”求得圆锥的底面半径是解题的关键.19.如图,直线33y x =+交x 轴于点A ,交y 轴于点B .以A 为圆心,以AB 为半径作弧交x 轴于点A 1;过点A 1作x 轴的垂线,交直线 AB 于点B 1,以A 为圆心,以AB 1为半径作弧交x 轴于点 A 2;…,如此作下去,则点n A 的坐标为___________;(2n ﹣10)【分析】根据题意先求出点AB 的坐标再利用勾股定理求出AA1AA2AA3……AAn 的长可得到点A1A2A3……An 的坐标找到规律即可解答【详解】解:当x=0时y=当y=0时x=﹣1∴A(解析:(2n ﹣1,0)【分析】根据题意,先求出点A 、B 的坐标,再利用勾股定理求出AA 1、AA 2、AA 3……AA n 的长,可得到点A 1、A 2、A 3……A n 的坐标,找到规律即可解答.【详解】解:当x=0时,3y=0时,x=﹣1,∴A(﹣1,0),B(03,∴AA 122(01)(3)2++=,则点A 1(1,0),B 1(1,3,∴AA 2=AB 122(11)(23)4++=,则点A 2(3,0),B 2(3,3,∴AA 3=AB 222(31)(43)8++=,则点A 3(7,0),B 3(7,3,……∴可以得到A n 的坐标为(2n ﹣1,0),故答案为:(2n ﹣1,0).本题考查了一次函数图象上的点的坐标特征、图形的规律探究、圆的基本知识、勾股定理,解答的关键是利用勾股定理求得AA 1、AA 2、AA 3……AA n 的长,进而得到A 1、A 2、A 3……A n 的坐标的变化规律.20.在半径为4cm 的圆中,长为4cm 的弦所对的圆周角的度数为________或【分析】首先根据题意画出图形然后在优弧上取点C 连接ACBC 在劣弧上取点D 连接ADBD 易得是等边三角形再利用圆周角定理即可得出答案【详解】解:如图在优弧上取点C 连接ACBC 在劣弧上取点D 连接ADBD解析:30或150︒【分析】首先根据题意画出图形,然后在优弧上取点C ,连接AC 、BC ,在劣弧上取点D ,连接AD 、BD ,易得OAB 是等边三角形,再利用圆周角定理,即可得出答案.【详解】解:如图,在优弧上取点C ,连接AC 、BC ,在劣弧上取点D ,连接AD 、BD ,4,4OA OB cm AB cm OA OB AB===∴== OAB ∴是等边三角形,601302180150AOB C AOB D C ∴∠=︒∴∠=∠=︒∴∠=︒-∠=︒∴所对的圆周角度数为:30或150︒故答案为:30或150︒.【点睛】本题考查圆周角定理及等边三角形的判定与性质,注意两种情况.三、解答题21.如图,已知正方形ABCD 的边长为1,正方形BEFG 中,点E 在AB 的延长线上,点G在BC上,点O在线段AB上,且AO BO≥.以OF为半径的O与直线AB交于点M、N.(1)如图1,若点O为AB中点,且点D,点C都在O上,求正方形BEFG的边长.(2)如图2,若点C在O上,求证:以线段OE和EF为邻边的矩形的面积为定值,并求出这个定值.(3)如图3,若点D在O上,求证:DO FO⊥.解析:(1)12;(2)见解析;12;(3)证明见解析【分析】(1)连接OC,设BE=EF=x,则OE=x+12,得出(x+12)2+x2=(12)2+12,解得:x=12,则答案求出;(2)连接OC,设OB=y,BE=EF=x,同(1)可得,OE2+EF2=OF2,OB2+BC2=OC2,得出x2+(x+y)2=y2+12,即x(x+y)=12,则结论可得证;(3)连接OD,设OA=a,BE=EF=b,则OB=1-a,则OE=1-a+b,可得出12+a2=(1-a+b)2+b2,得出a=b,则OA=EF,证明Rt△AOD≌Rt△EFO(HL),则得出∠FOE=∠ODA,结论得出.【详解】解:(1)连接OC∵四边形ABCD和四边形BEFG为正方形,∴AB=BC=1,BE=EF,∠OEF=∠ABC=90°,∵点O为AB中点,∴OB=12AB=12,设BE=EF=x,则OE=x+12,在Rt△OEF中,∵OE2+EF2=OF2,∴(x+12)2+x2=OF2,在Rt△OBC中,∵OB2+BC2=OC2,∴(12)2+12=OC2,∵OC,OF为⊙O的半径,∴OC=OF,∴(x+12)2+x2=(12)2+12,解得:x=12,∴正方形BEFG的边长为12;(2)证明:如图2,连接OC,设OB=y,BE=EF=x,同(1)可得,OE2+EF2=OF2,OB2+BC2=OC2,∴OF2=x2+(x+y)2,OC2=y2+12∵OC,OF为⊙O的半径,∴OC=OF,∴x2+(x+y)2=y2+12,∴2x2+2xy=1,∴x2+xy=12,即x(x+y)=12,∴EF×OE=12,∴以线段OE和EF为邻边的矩形的面积为定值,这个定值为12.(3)证明:连接OD,设OA=a,BE=EF=b,则OB=1-a,则OE=1-a+b,∵∠DAO=∠OEF=90°,∴DA 2+OA 2=OD 2,OE 2+EF 2=OF 2,∴12+a 2=OD 2,(1-a+b )2+b 2=OF 2,∵OD=OF ,∴12+a 2=(1-a+b )2+b 2,∴(b+1)(a-b )=0,∵b+1≠0,∴a-b=0,∴a=b ,∴OA=EF ,在Rt △AOD 和Rt △EFO 中,OD OF OA EF ⎧⎨⎩==, ∴Rt △AOD ≌Rt △EFO (HL ),∴∠FOE=∠ODA ,∵∠DAO=90°,∴∠ODA+∠AOD=90°,∴∠FOE+∠AOD=90°,∴∠DOF=90°,∴DO ⊥FO .【点睛】本题是圆的综合题,考查了圆的性质,正方形的性质,全等三角形的判定与性质,矩形的面积等知识,熟练运用方程的思想是解题的关键.22.如图,以Rt ABC 的AC 边为直径作O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点P 为BC 的中点,连接EP ,AD .(1)求证:PE 是O 的切线;(2)若O 的半径为3,30B ∠=︒,求P 点到直线AD 的距离. 解析:(1)证明见解析;(2)217 【分析】(1)连接CE ,由AC 是⊙O 的直径,得出CE ⊥AE ,由P 为BC 的中点,可得EP=BP=CP ,可得∠PEC=∠PCE , 再由∠ACB=90°,即可得到结论.(2)设P 点到直线AD 的距离为d ,根据三角形的面积得到PD AC d AD= ①由勾股定理得63BC =,根据平行线的性质得到∠OPC=∠B=30°,推出OEA △为等边三角形,得到∠EOA=60°,在Rt ACD △中,由勾股定理得:2237AD AC CD =+=,将以上数据代入①得即可得到结论.【详解】 证明:(1)连接CE ,如图所示:∵AC 为⊙O 的直径,∴∠AEC=90°.∴∠BEC=90°.∵点P 为BC 的中点,∴EP=BP=CP .∴∠PEC=∠PCE .∵OE=OC ,∴∠OEC=∠OCE .∵∠PCE+∠OCE=∠ACB=90°,∴∠PEC+∠OEC=∠OEP=90°.E 在O 上,∴EP 是⊙O 的切线;(2)解:设P 点到直线AD 的距离为d ,连接,AP OP , 则有:1122PAD S AD d PD AC ==,∴PD ACd AD = ①∵⊙O 的半径为3,∠B=30°,∴∠BAC=60°,AC=6,AB=12,由勾股定理得:3BC =∴33PC =∵O ,P 分别是AC ,BC 的中点,∴//OP AB ,∴∠OPC=∠B=30°,∵OE=OA ,∠OAE=60°,∴OEA △为等边三角形,∴∠EOA=60°,∴∠ODC=90°-∠COD=90°-∠EOA=30°,∴∠ODC=∠OPC=30°,∴OP=OD ,∵OC ⊥PD , ∴33CD PC ==,在Rt ACD △中,由勾股定理得:2237AD AC CD =+=,将以上数据代入①得: 6361221737PD AC d AD ⨯===. 【点睛】本题考查了圆周角定理,切线的判定,勾股定理,等腰三角形,等边三角形的判定和性质,直角三角形斜边上的中线等于斜边的一半,含30的直角三角形的性质,等面积法,掌握以上知识是解题的关键.23.如图,在△ABC 中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且ME =NE =3.(1)求证:BC 是⊙O 的切线;(2)若AE =4,求⊙O 的直径AB 的长度.解析:(1)见解析;(2)AB =254. 【分析】(1)先由垂径定理得AB ⊥MN ,再由平行线的性质得BC ⊥AB ,然后由切线的判定定理即可得到BC 是⊙O 的切线;(2)连接OM ,设⊙O 的半径是r ,在Rt △OEM 中,根据勾股定理得到r 2=32+(4-r )2,解方程即可得到⊙O 的半径,即可得出答案.【详解】(1)证明:∵ME =NE =3,∴AB ⊥MN ,又∵MN ∥BC ,∴BC⊥AB,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4﹣r)2,解得:r=25 8,∴AB=2r=254.【点睛】本题考查了切线的判定定理、垂径定理和勾股定理等知识;熟练掌握切线的判定和垂径定理是解题的关键.24.如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,∠C=90°,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F 与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,−1),D(2,0),求⊙F的半径;(3)请直接写出线段AG、AD、CD三者之间满足的数量关系:___________________.解析:(1)见解析;(2)52;(3)AG=AD+2CD.【分析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD ,设⊙F 的半径为r ,根据勾股定理列出方程,解方程即可;(3)作FR ⊥AD 于R ,得到四边形RCEF 是矩形,得到EF=RC=RD+CD ,根据垂径定理解答即可.【详解】(1)证明:连接EF ,∵AE 平分∠BAC ,∴∠FAE=∠CAE ,∵FA=FE ,∴∠FAE=∠FEA ,∴∠FEA=∠EAC ,∴FE ∥AC ,∴∠FEB=∠C=90°,即BC 是⊙F 的切线;(2)解:连接FD ,∵A(0,−1),D(2,0),∴OA=1,OD=2.在Rt △FOD 中,∵222OF OD DF += 设⊙F 的半径为r ,∴r 2=(r-1)2+22,解得,r=52,即⊙F 的半径为52; (3)解:AG=AD+2CD .证明:作FR ⊥AD 于R ,则∠FRC=90°,又∵BC 是⊙F 的切线;∴∠FEC=∠C=∠FRC=90°,∴四边形RCEF 是矩形,∴EF=RC=RD+CD ,∵FR ⊥AD ,AF=FD,∴AR=RD , ∴EF=RD+CD=12AD+CD , ∴AG=2FE=AD+2CD .【点睛】本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质,掌握相关知识是解题的关键.25.第十届亚运会在广东召开,有三名运动员分别下榻在A 、B 、C 三个宾馆,三个宾馆由三条道路相连,如图所示.(1)为建一个公共活动场地P 到三个宾馆的距离相等.请用尺规作图方法作出点P ,使得点P 落在△ABC 内部.保留作图痕迹,不要求写作法.(2)如果ACB α∠=,那么APB ∠=______.解析:(1)作两边的垂直平分线,交点即为所求,见解析;(2)2α.【分析】(1)分别作三角形两条边的垂直平分线,两条直线的交点即为所求;(2)根据(1)的作法,可以确定点P 是△ABC 的外接圆的圆心,再根据圆周角定理即可确定∠APB 是∠ACB 的2倍,即可求得结论.【详解】解:(1)如图所示,点P 即为所求(2)由(1)可知PA=PB=PC ,所以点A 、B 、C 在以P 为圆心,PA 为半径的圆上,即A 、B 、C 三点共圆,∴∠APB 与∠ACB 是AB 所对的圆心角和圆周角,∴∠APB=2∠ACB ,又∵ACB α∠=,∴∠APB=2α.故答案为:2α.【点睛】本题考查垂直平分线的作法和定义,三角形外心定义、三角形外接圆、圆周角定理,难度中等.26.如图,在33⨯的网格中有一个圆,请仅用无刻度直尺作图(保留画图痕迹).(1)在图1中,圆过格点A ,B ,请作出圆心O ;(2)在图2中,⊙O 的两条弦AB CD =,请作一个45圆周角.解析:(1)见解析;(2)见解析.【分析】(1)如图3,连接AN 、BM ,通过圆内接三角形是直角三角形时,斜边就是直径来确定圆心位置;(2)连接BC 、AD 、BD ,通过同(等)弧所对圆周角相等推出ABD CDB ∠=∠,进而推出45BDC ∠=︒.【详解】(1)如图3,连接AN 、BM 交点O 即为圆心∵9090ABN BAM ∠=︒∠=︒,,∴AN 、BM 是直径,∴直径交点O 就是圆心.(2)如图4,连接BC 、AD 、BD∵AB=CD ,∴AB CD =,∴ADB CBD ∠=∠,又∵AC CA =,∴ABC CDA ∠=∠,∴ABD CDB ∠=∠,又∵90BED ∠=︒,∴45ABD CDB ∠=∠=︒,故连接BD ,则45BDC ∠=︒.【点睛】本题考查确定圆心和确定圆弧圆周角等问题,解题的关键是圆内接三角形是直角三角形时,斜边就是直径以及同(等)弧所对圆周角相等.27.如图,O 中,AB CD =,A C ∠=∠,AB 与CD 交于点P .求证=DP BP .解析:见解析.【分析】根据已知条件和圆周角定理证明△APD ≌△CPB 即可得到DP=BP .【详解】证明:∵AB CD =,∴CD = AB ,∴ CD- CA= AB - AC ,∴ AD = BC.又∵∠A=∠C ,∠APD=∠CPB ,∴△APD ≌△CPB.∴DP=BP .【点睛】本题考查了全等三角形的判定以及圆心角定理:在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立. 28.如图,一条公路的转弯处是一段圆弧CD ,点O 是CD 的圆心,E 为 CD 上一点,OE ⊥CD ,垂足为F .已知CD=300m ,EF=50m ,求这段弯路的半径.解析:这段弯路的半径为250米.【分析】设这段弯路的半径为R 米,可得50OFOE EF R .由垂径定理得 11300150()22CF CD m .由勾股定理可得222OC CF OF =+,解得 R 的值.【详解】解:连接OC .设这段弯路的半径为R 米则50OF OE EF ROE CD ⊥ 11300150()22CF CD m .根据勾股定理,得222OC CF OF =+即()22215050R R =+-R解之,得250所以这段弯路的半径为250米.【点睛】本题考查了垂径定理及勾股定理的应用,熟悉相关性质是解题的关键.。
新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析
人教版初中数学——圆的性质及与圆有关的位置关系知识点归纳及中考典型例题解析一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2如图,已知⊙O的半径为6 cm,两弦AB与CD垂直相交于点E,若CE=3 cm,DE=9 cm,则AB=A3cm B.3cm C.3D.3【答案】D【解析】如图,连接OA,∵⊙O的半径为6 cm,CE+DE=12 cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE=2233OA OE-=,∴AB=2AE=63,故选D.典例3如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2 cm B.3cmC.23cm D.25cm【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.作OD⊥AB于D,连接OA.根据题意得OD=12OA=1cm,再根据勾股定理得:AD3,根据垂径定理得AB3.故选C.3.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为4,则弦AB的长是A.3 B.6 C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB的长为8515米,大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4如图,在⊙O中∠O=50°,则∠A的度数为A.50°B.20°C.30°D.25°【答案】D【解析】∠A=12BOC=12×50°=25°.故选D.典例5如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是A.20°B.25°C.30°D.35°【答案】B【解析】如图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,由三角形内角和定理得,∠ACD=180°﹣∠CAD﹣∠CDA=105°,∴∠ABD=180°﹣∠ACD=75°,∴∠BAD=90°﹣∠ABD=15°,∴∠E=∠CDA﹣∠DAB=25°,故选B.5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为A.103πB.109πC.59πD.518π6.如图,AB是⊙O的直径,=BC CD DE,∠COD=38°,则∠AEO的度数是A.52°B.57°C.66°D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC 所在直线向下平移__________cm时与⊙O相切.考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8如图,⊙O以AB为直径,PB切⊙O于B,近接AP,交⊙O于C,若∠PBC=50°,∠ABC=A.30°B.40°C.50°D.60°【答案】B【解析】∵⊙O以AB为直径,PB切⊙O于B,∴∠PBA=90°,∵∠PBC=50°,∴∠ABC=40°.故选B.典例9如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B【解析】作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为r,如图,∵∠C=90°,AB=5,AC=3,∴BC22AB AC-,而AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=r,∴HC=r,AH=3–r,∵EH∥BC,∴△AEH∽△ADC,∴EH∶CD=AH∶AC,即EH=233r-(),∵S △ABE +S △BCE +S △ACE =S △ABC , ∴()1112154333422232r r r ⨯⨯+⨯⨯+⨯⨯-=⨯⨯,∴67r =.故选B .9.已知四边形ABCD 是梯形,且AD ∥BC ,AD <BC ,又⊙O 与AB 、AD 、CD 分别相切于点E 、F 、G ,圆心O 在BC 上,则AB +CD 与BC 的大小关系是 A .大于 B .等于C .小于D .不能确定10.如图,以等腰△ABC 的腰AB 为⊙O 的直径交底边BC 于D ,DE AC ⊥于E .求证:(1)DB DC =; (2)DE 为⊙O 的切线.1.下列关于圆的叙述正确的有①圆内接四边形的对角互补; ②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等; ④同圆中的平行弦所夹的弧相等.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =136°,则∠C 的度数是A .44°B .22°C .46°D .36°3.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长等于A .41B .34C .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,O 的直径8AB =,30CBD ∠=︒,则CD 的长为A .2B .3C .4D .36.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且34AB AMC =∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14 cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O的内接正十边形的一边,DE 的度数为__________.11.如图,半圆O 的直径是AB ,弦AC 与弦BD 交于点E ,且OD ⊥AC ,若∠DEF =60°,则tan ∠ABD =__________.12.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF 的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,CD=2,AD=4,求直径AB的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.1.如图,在O 中,AB 所对的圆周角50ACB ∠=︒,若P 为AB 上一点,55AOP ∠=︒,则POB ∠的度数为A .30°B .45°C .55°D .60°2.如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.84.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是A .PA =PB B .∠BPD =∠APDC .AB ⊥PDD .AB 平分PD5.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于A .55°B .70°C .110°D .125°6.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为A .60°B .50°C .40°D .30°7.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =A .54°B .64°C .27°D .37°8.如图,AB 为O 的直径,BC 为O 的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是O 的切线;②CO DB ⊥;③EDA EBD △∽△;④ED BC BO BE ⋅=⋅.其中正确结论的个数有A .4个B .3个C .2个D .1个9.如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.10.如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为__________.11.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.12.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD的中点,则DF的长为__________;②取AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.1.【答案】D【解析】设原来的圆的半径为r ,则面积S 1=πr 2, ∴半径缩小到原来的14后所得新圆的面积22211π()π416S r r ==, ∴22211π116π16rS S r ==,故选D . 2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l ≤,故选D . 3.【答案】B【解析】如图,连接OA ,∵O 的直径为10,5OA ∴=,∵圆心O 到弦AB 的距离OM 的长为4, 由垂径定理知,点M 是AB 的中点,12AM AB =, 由勾股定理可得,3AM =,所以6AB =.故选B .4.【解析】(1)如图所示:CO ⊥AB 于点D ,设圆弧形所在圆的半径为xm ,根据题意可得:DO 2+BD 2=BO 2, 则(x –2.3)2+851×12)2=x 2,解得x =3. 变式训练答:圆弧形所在圆的半径为3米;(2)如图所示:当MN =1.7米,则过点N 作NF ⊥CO 于点F ,可得:DF =1.7米,则FO =2.4米,NO =3米,故FN =223 2.4-=1.8(米), 故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米. 5.【答案】B【解析】根据题意可知:∠OAC =∠OCA =50°,则∠BOC =2∠OAC =100°,则弧BC 的长度为:100π210π1809⨯=,故选B .6.【答案】B【解析】∵=BC CD DE =,∴∠BOC =∠DOE =∠COD =38°, ∴∠BOE =∠BOC +∠DOE +∠COD =114°,∴∠AOE =180°–∠BOE =66°, ∵OA =OE ,∴∠AEO =(180°–∠AOE )÷2=57°,故选B . 7.【答案】A【解析】如图,连接OA ,则在直角△OMA 中,根据勾股定理得到OA =223 3.823.445+=<. ∴点A 与⊙O 的位置关系是:点A 在⊙O 内.故选A .8.【答案】2【解析】连接OA .∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2=4,OA =5,∴OH =3. ∴需要平移5–3=2(cm ).故答案为:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d =R . 9.【答案】B【解析】如图,连接OF ,OA ,OE ,作AH ⊥BC 于H .∵AD 是切线,∴OF ⊥AD ,易证四边形AHOF 是矩形,∴AH =OF =OE , ∵S △AOB =12•OB •AH =12•AB •OE ,∴OB =AB ,同理可证:CD =CO , ∴AB +CD =BC ,故选B .【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】∵∠AOD =136°,∴∠BOD =44°,∴∠C =22°,故选B . 3.【答案】C【解析】如图,延长CA ,交⊙A 于点F ,考点冲关∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC=228CF BF-=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0)的距离均为5,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】C【解析】如图,作直径DE,连接CE,则∠DCE=90°,∵∠DBC=30°,∴∠DEC=∠DBC=30°,∵DE=AB=8,∴12DC DE==4,故选C.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB=BC可得:弧AB的度数和弧BC的度数相等,则弧AMC的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴DE 的度数为84°.故答案为:84°.113【解析】∵OD ⊥AC ,∠DEF =60°, ∴∠D =30°,∵OD=OB,∴∠ABD=∠D=30°,∴tan∠ABD=33,故答案为:33.12.【解析】(1)连接OC,如图.∵点C为弧BF的中点,∴弧BC=弧CF,∴∠BAC=∠FAC.∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AE.∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切线;(2)在Rt△OCD中,∵tan D=34OCCD=,OC=3,∴CD=4,∴OD=22OC CD+=5,∴AD=OD+AO=8.在Rt△ADE中,∵sin D=35OC AEOD AD==,∴AE=245.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)如图1,连接OC.∵OB=OC,∴∠OCB=∠B,∵∠DCA=∠B,∴∠DCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,∴CD是⊙O的切线.(2)∵AD⊥CD,CD=2,AD=4.∴222425AC=+=由(1)可知∠DCA=∠B,∠D=∠ACB=90°,∴△ADC∽△ACB,∴AD ACAC AB=2525=,∴AB=5.(3)2AC BC EC=+,如图2,连接BE,在AC上截取AF=BC,连接EF.∵AB 是直径,∠DAB =45°, ∴∠AEB =90°,∴△AEB 是等腰直角三角形, ∴AE =BE ,又∵∠EAC =∠EBC ,∴△ECB ≌△EFA ,∴EF =EC , ∵∠ACE =∠ABE =45°, ∴△FEC 是等腰直角三角形, ∴2FC EC =,∴2AC AF FC BC EC =+=.1.【答案】B【解析】∵∠ACB =50°,∴∠AOB =2∠ACB =100°,∵∠AOP =55°,∴∠POB =45°,故选B . 2.【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒, ∴1502BPC BOC ∠=∠=︒,故选B . 3.【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =--=,∵OD AC ⊥,∴142CD AD AC ===, 直通中考在Rt CBD △中,2246213BD =+=.故选C .4.【答案】D【解析】∵PA ,PB 是⊙O 的切线,∴PA =PB ,所以A 成立;∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;∵PA ,PB 是⊙O 的切线,∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立,故选D . 5.【答案】B【解析】如图,连接OA ,OB ,∵PA ,PB 是⊙O 的切线,∴PA ⊥OA ,PB ⊥OB ,∵∠ACB =55°,∴∠AOB =110°, ∴∠APB =360°-90°-90°-110°=70°.故选B .6.【答案】B【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠ABC =50°,故选B . 7.【答案】C【解析】∵∠AOC =126°,∴∠BOC =180°-∠AOC =54°,∵∠CDB =12∠BOC =27°.故选C . 8.【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确,∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒,∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A . 9.【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1. 10.【答案】2【解析】如图,连接CO 并延长交⊙O 于E ,连接BE ,则∠E =∠A =30°,∠EBC =90°,∵⊙O 的半径为2,∴CE =4,∴BC =12CE =2, ∵CD ⊥AB ,∠CBA =45°,∴CD =22BC =2,故答案为:2. 11.【解析】(1)∵AB =AC ,∴AB AC =,∠ABC =∠ACB ,∴∠ABC =∠ADB ,∠ABC =(180°-∠BAC )=90°-∠BAC ,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=45,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==.12.【解析】(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是BD的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵FHBF=sin∠ABD=sin45°2,∴22FDBF=BF2FD,∵AB=4,∴BD=4cos45°2,即BF+FD22+1)FD2,∴FD=2221=4-22,故答案为:4-22.②连接OH,EH,∵点H是AE的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=12 AB,∴sin∠EAB=BEAB=12,∴∠EAB=30°.故答案为:30°.31。
初中数学圆的专项训练解析含答案
初中数学圆的专项训练解析含答案一、选择题1.“直角”在几何学中无处不在,下列作图作出的AOB ∠不一定...是直角的是( ) A . B .C .D .【答案】C【解析】【分析】根据作图痕迹,分别探究各选项所做的几何图形问题可解.【详解】解:选项A 中,做出了点A 关于直线BC 的对称点,则AOB ∠是直角.选项B 中,AO 为BC 边上的高,则AOB ∠是直角.选项D 中,AOB ∠是直径AB 作对的圆周角,故AOB ∠是直角.故应选C【点睛】本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键.2.如图,在ABC ∆中,90ABC ∠=︒,6AB =,点P 是AB 边上的一个动点,以BP 为直径的圆交CP 于点Q ,若线段AQ 长度的最小值是3,则ABC ∆的面积为( )A .18B .27C .36D .54【答案】B【解析】【分析】 如图,取BC 的中点T ,连接AT ,QT .首先证明A ,Q ,T 共线时,△ABC 的面积最大,设QT=TB=x ,利用勾股定理构建方程即可解决问题.【详解】解:如图,取BC的中点T,连接AT,QT.∵PB是⊙O的直径,∴∠PQB=∠CQB=90°,∴QT=12BC=定值,AT是定值,∵AQ≥AT-TQ,∴当A,Q,T共线时,AQ的值最小,设BT=TQ=x,在Rt△ABT中,则有(3+x)2=x2+62,解得x=92,∴BC=2x=9,∴S△ABC=12•AB•BC=12×6×9=27,故选:B.【点睛】本题考查了圆周角定理,勾股定理,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,则有中考选择题中的压轴题.3.将直尺、有60°角的直角三角板和光盘如图摆放,A为60°角与直尺的交点,B为光盘与直尺的交点,AB=4,则光盘表示的圆的直径是()A.4 B.3C.6 D.43【答案】B【解析】【分析】设三角板与圆的切点为C,连接OA、OB,根据切线长定理可得AB=AC=3,∠OAB=60°,然后根据三角函数,即可得出答案.【详解】设三角板与圆的切点为C,连接OA、OB,由切线长定理知,AB=AC=3,AO平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=AB tan∠OAB=43,∴光盘的直径为83.故选:B.【点睛】本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数.4.已知,如图,点C,D在⊙O上,直径AB=6cm,弦AC,BD相交于点E,若CE=BC,则阴影部分面积为()A.934π-B.9942π-C.39324π-D.3922π-【答案】B【解析】【分析】连接OD、OC,根据CE=BC,得出∠DBC=∠CEB=45°,进而得出∠DOC=90°,根据S阴影=S 扇形-S△ODC即可求得.【详解】连接OD、OC,∵AB是直径,∴∠ACB=90°,∵CE=BC,∴∠CBD=∠CEB=45°,∴∠COD =2∠DBC=90°,∴S 阴影=S 扇形−S △ODC =2903360π⋅⋅ −12×3×3=94π −92. 故答案选B.【点睛】本题考查的知识点是扇形面积的计算,解题的关键是熟练的掌握扇形面积的计算.5.如图,ABC ∆是O e 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()A .1B .2C .3D .2【答案】A【解析】【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.【详解】如图,连接AD ,AO ,DO∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒∴1452ABD AOD ∠=∠=︒(同弧所对应的圆周角等于圆心角的一半), 即45ABD EDB ∠=∠=︒,又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),在△ADB 和△DBE 中ABD EDB AB EDDAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△EBD (ASA ),∴AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.6.下列命题是假命题的是( )A .三角形两边的和大于第三边B .正六边形的每个中心角都等于60oC .半径为RD .只有正方形的外角和等于360︒【答案】D【解析】【分析】根据三角形三边关系、中心角的概念、正方形与圆的关系、多边形的外角和对各选项逐一进行分析判断即可.【详解】A 、三角形两边的和大于第三边,A 是真命题,不符合题意;B 、正六边形6条边对应6个中心角,每个中心角都等于360606︒︒=,B 是真命题,不符合题意;C 、半径为R 的圆内接正方形中,对角线长为圆的直径2R ,设边长等于x ,则:222(2)x x R +=,解得边长为x :,C 是真命题,不符合题意;D 、任何凸3n n ≥()边形的外角和都为360︒,D 是假命题,符合题意, 故选D.【点睛】本题考查了真假命题,熟练掌握正多边形与圆、中心角、多边形的外角和等知识是解本题的关键.7.如图,以Rt △ABC 的直角边AB 为直径作⊙O 交BC 于点D ,连接AD ,若∠DAC =30°,DC =1,则⊙O 的半径为( )A.2 B.3C.2﹣3D.1【答案】B【解析】【分析】先由圆周角定理知∠BDA=∠ADC=90°,结合∠DAC=30°,DC=1得AC=2DC=2,∠C=60°,再由AB=ACtanC=23可得答案.【详解】∵AB是⊙O的直径,∴∠BDA=∠ADC=90°,∵∠DAC=30°,DC=1,∴AC=2DC=2,∠C=60°,则在Rt△ABC中,AB=ACtanC=23,∴⊙O的半径为3,故选:B.【点睛】本题主要考查圆周角定理,解题的关键是掌握半圆(或直径)所对的圆周角是直角和三角函数的应用.的扇形无重叠地围成一个圆锥,则这个圆锥的高8.如图,用半径为12cm,面积272cm为()A.12cm B.6cm C.6√2 cm D.3【答案】D【解析】【分析】先根据扇形的面积公式计算出扇形的圆心角,再利用周长公式计算出底面圆的周长,得出半径.再构建直角三角形,解直角三角形即可.【详解】72π=212360n π⨯ 解得n=180°,∴扇形的弧长=18012180π⨯=12πcm . 围成一个圆锥后如图所示:因为扇形弧长=圆锥底面周长即12π=2πr解得r=6cm ,即OB=6cm根据勾股定理得OC=22126=63-cm ,故选D .【点睛】本题综合考查了弧长公式,扇形弧长=用它围成的圆锥底面周长,及勾股定理等知识,所以学生学过的知识一定要结合起来.9.如图,⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC ,若∠A=60°,∠ADC=85°,则∠C 的度数是( )A .25°B .27.5°C .30°D .35°【答案】D【解析】 分析:直接利用三角形外角的性质以及邻补角的关系得出∠B 以及∠ODC 度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D .点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC 度数是解题关键.10.如图,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,2BC =.将ABC V 绕点C 按顺时针方向旋转n 度后得到EDC △,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A .302,B .602,C .360,D .603, 【答案】C【解析】试题分析:∵△ABC 是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot ∠33AB=2BC=4,∵△EDC 是△ABC 旋转而成,∴BC=CD=BD=12AB=2, ∵∠B=60°,∴△BCD 是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE ⊥AC ,∴DE ∥BC ,∵BD=12AB=2, ∴DF 是△ABC 的中位线, ∴DF=12BC=12×2=1,CF=12AC=1233 ∴S 阴影=12DF×CF=1233 故选C .考点:1.旋转的性质2.含30度角的直角三角形.11.如图,⊙O 过点B 、C ,圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为( )A .23B .13C .4D .32【答案】B【解析】【分析】如下图,作AD ⊥BC ,设半径为r ,则在Rt △OBD 中,OD=3-1,OB=r ,BD=3,利用勾股定理可求得r.【详解】如图,过A 作AD ⊥BC ,由题意可知AD 必过点O ,连接OB ;∵△BAC 是等腰直角三角形,AD ⊥BC ,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt △OBD 中,根据勾股定理,得:OB= 22BD OD 13+=故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC 判定点O 在AD 上.12.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16B .6πC .8πD .5π 【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6π , 故选B .【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.13.如图,已知ABC ∆和ABD ∆都O e 是的内接三角形,AC 和BD 相交于点E ,则与ADE ∆的相似的三角形是( )A .BCE ∆B .ABC ∆ C .ABD ∆ D .ABE ∆ 【答案】A【解析】根据同弧和等弧所对的圆周角相等, 则AB 弧所对的圆周角BCE BDA ∠=∠,CEB ∠和DEA ∠是对顶角,所以ADE BCE ∆∆∽.【详解】解:BCE BDA ∠=∠Q ,CEB DEA ∠=∠ADE BCE ∴∆∆∽,故选:A .【点睛】考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.14.如图,圆锥的底面半径为1,母线长为3,则侧面积为( )A .2πB .3πC .6πD .8π【答案】B【解析】【分析】 圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【详解】 解:圆锥的侧面积为:12×2π×1×3=3π, 故选:B .【点睛】此题考查圆锥的计算,解题关键在于掌握运算公式.15.如图,点,,A B S 在圆上,若弦AB 的长度等于圆半径的2倍,则ASB ∠的度数是( ).A .22.5°B .30°C .45°D .60°【答案】C【解析】设圆心为O ,连接OA OB 、,如图,先证明OAB V 为等腰直角三角形得到90AOB ∠=︒,然后根据圆周角定理确定ASB ∠的度数.【详解】解:设圆心为O ,连接OA OB 、,如图,∵弦AB 的长度等于圆半径的2倍,即2AB OA =,∴222OA OB AB +=,∴OAB V 为等腰直角三角形,90AOB ∠=︒ ,∴1452ASB AOB ∠=∠=°. 故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.下列命题中正确的个数是( )①过三点可以确定一个圆②直角三角形的两条直角边长分别是5和12,那么它的外接圆半径为6.5③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米④三角形的重心到三角形三边的距离相等.A .1个B .2个C .3个D .4个【答案】A【解析】【分析】①根据圆的作法即可判断;②先利用勾股定理求出斜边的长度,然后根据外接圆半径等于斜边的一半即可判断;③根据圆与圆的位置关系即可得出答案;④根据重心的概念即可得出答案.【详解】①过不在同一条直线上的三点可以确定一个圆,故错误;②∵直角三角形的两条直角边长分别是5和12, ∴斜边为2251213+= , ∴它的外接圆半径为.113652⨯=,故正确; ③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米或1厘米,故错误; ④三角形的内心到三角形三边的距离相等,故错误;所以正确的只有1个,故选:A .【点睛】本题主要考查直角三角形外接圆半径,圆与圆的位置关系,三角形内心,重心的概念,掌握直角三角形外接圆半径的求法,圆与圆的位置关系,三角形内心,重心的概念是解题的关键.17.如图,已知⊙O 的半径是4,点A,B,C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .8833π-B .16833π-C .16433π-D .8433π- 【答案】B【解析】【分析】 连接OB 和AC 交于点D ,根据菱形及直角三角形的性质先求出AC 的长及∠AOC 的度数,然后求出菱形ABCO 及扇形AOC 的面积,则由S 扇形AOC -S 菱形ABCO 可得答案.【详解】连接OB 和AC 交于点D ,如图所示:∵圆的半径为4,OB=OA=OC=4,又四边形OABC 是菱形,∴OB⊥AC,OD=12OB=2,在Rt△COD中利用勾股定理可知:CD=224223,243AC CD-===,∵sin∠COD=3, CDOC=∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=1144383 22OB AC⨯=⨯⨯=,∴S扇形=2 1204163603ππ⨯⨯=,则图中阴影部分面积为S扇形AOC-S菱形ABCO=1683 3π-.故选B.【点睛】考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b(a、b是两条对角线的长度);扇形的面积=2 360 n r π.18.若正六边形的半径长为4,则它的边长等于()A.4 B.2 C.23D.43【答案】A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于4,则正六边形的边长是4.故选A.考点:正多边形和圆.19.如图,四边形ABCD是⊙O的内接正方形,点P是劣弧弧AB上任意一点(与点B不重合),则∠BPC的度数为()A.30°B.45°C.60°D.90°【答案】B【解析】分析:接OB,OC,根据四边形ABCD是正方形可知∠BOC=90°,再由圆周角定理即可得出结论.详解:连接OB,OC,∵四边形ABCD是正方形,∴∠BOC=90°,∴∠BPC=12∠BOC=45°.故选B.点睛:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.20.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则弧BC的长度为()A.23πB.13πC.43πD.49π【答案】A【解析】【分析】连接OE、OC,如图,根据等腰三角形的性质得到∠D=∠EOD=20°,根据外角的性质得到∠CEO=∠D+∠EOD=40°,根据等腰三角形的性质得到∠C=∠CEO=40°,根据外角的性质得到∠BOC=∠C+∠D=60°,根据求弧长的公式得到结论.【详解】解:连接OE、OC,如图,∵DE=OB=OE,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴»BC的长度=260?2360π⨯=23π,故选A.【点睛】本题考查了弧长公式:l=••180n Rπ(弧长为l,圆心角度数为n,圆的半径为R),还考查了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角形外角性质是关键.。
初中数学九年级知识点总结和练习题(答案)简洁易懂
【人教版】九年级圆一、目标与要求1.了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理。
2.探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。
3.进一步认识和理解正多边形和圆的关系和正多边的有关计算。
4.熟练掌握弧长和扇形面积公式及其它们的应用;理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算。
二、知识框架三、知识点、概念总结1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
以下图为例:①连接圆上任意两点的线段叫做弦,如图线段AC,AB;②经过圆心的弦叫做直径,如图,线段AB;③圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作AC”,读作“圆弧AC”或“弧AC”.大于半圆的弧ABC叫做优弧,小于半圆的弧AC或BC叫做劣弧.3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
以下图为例O为外接圆的圆心,即外心.5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
6.圆锥侧面展开图是一个扇形。
这个扇形的半径称为圆锥的母线。
7.圆和点的位置关系:以点P与圆O的为例(设P 是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
8.过不在同一条直线上的三点作圆的做法:9.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
中考数学圆知识点总结7篇
中考数学圆知识点总结7篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点叫做圆心,定长叫做半径。
圆有无数条对称轴,对称轴经过圆心。
圆具有旋转不变性,即围绕圆心旋转任意角度后,得到的图形仍然与原图形重合。
二、圆的性质1. 圆的直径是最大的弦,弦是连接圆上两点的直线段,直径是特殊的弦。
2. 圆心到圆上各点的距离都等于半径,即圆的半径是圆的长度单位,它决定了圆的大小。
3. 圆的周长与直径的比值叫做圆周率,是一个重要的数学常数,约等于3.1415926。
4. 圆的面积等于π乘以半径的平方,即圆的面积随着半径的增大而增大。
三、圆与直线的关系1. 直线与圆有三种位置关系:相交、相切、相离。
相交是指直线与圆有两个不同的交点;相切是指直线与圆有一个切点;相离是指直线与圆没有交点。
2. 圆的切线垂直于过切点的半径,即切线与半径是垂直关系。
3. 圆的两条平行弦所对的圆心角相等,即圆心角的大小只与弦的位置有关,与弦的长度无关。
四、圆与圆的位置关系1. 两个圆的位置关系有五种:外离、外切、相交、内切、内含。
外离是指两个圆没有公共点;外切是指两个圆有一个公共点;相交是指两个圆有两个不同的公共点;内切是指两个圆有一个公共点且两圆的圆心在公共点的两侧;内含是指两个圆的圆心在同一个大圆的内部。
2. 两个圆的圆心距等于两圆半径之和或差,即两圆的位置关系可以通过计算圆心距来判断。
3. 两个相交的圆,它们的交点叫做共点,共点将两圆分成四段弧,每段弧叫做一拱。
五、圆的幂和极坐标1. 圆的幂是指一个点到一个圆的距离的平方,即该点到圆心的距离乘以它自身。
圆的幂是该点的极坐标系中的ρ值。
2. 极坐标系是一种在平面中表示位置的方法,它使用一个角度和一个距离来表示一个点。
在极坐标系中,圆的幂可以通过ρ值来计算。
3. 通过计算圆的幂和极坐标系中的角度值,我们可以确定一个点是否在某个圆上或某个圆外。
篇2一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。
初中数学圆形专题训练50题含参考答案
初中数学圆形专题训练50题含参考答案一、单选题1.下列说法错误的是()A.等弧所对的圆心角相等B.弧的度数等于该弧所对的圆心角的度数C.经过三点可以作一个圆D.三角形的外心到三角形各顶点距离相等【答案】C【分析】根据三角形的外心的性质,确定圆的条件,圆心角、弧、弦的关系判定即可.【详解】解:A等弧所对的圆心角相等,故不符合题意;B、弧的度数等于该弧所对的圆心角的度数,故不符合题意;C、经过不在同一条直线上的三点可以作一个圆,故符合题意;D、三角形的外心到三角形各顶点距离相等,故不符合题意;故选:C.【点睛】本题考查了三角形的外接圆与外心,确定圆的条件,圆心角、弧、弦的关系,正确的理解题意是解题的关键.2.已知O的半径是5cm,线段OP的长为4cm,则点P()A.在O外B.在O上C.在O内D.不能确定【答案】C【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.OP=<【详解】解:45∴点P在O内,故选:C.【点睛】本题考查了点和圆的位置关系,熟悉点和圆的位置关系的判断是关键.3.用直角钢尺检查某一工件是否恰好是半圆环形,根据图所表示的情形,四个工件哪一个肯定是半圆环形?()A.B.C .D . 【答案】B【详解】试题分析:根据直径所对的圆周角为直角可得:B 为正确答案.4.已知⊙O 的半径是一元二次方程2340x x --=的一个根,点A 与圆心O 的距离为6,则下列说法正确在是( )A .点A 在⊙O 外B .点A 在⊙O 上C .点A 在⊙O 内D .无法判断 【答案】A【分析】先求方程的根,可得r 的值,由点与圆的位置关系的判断方法可求解.【详解】解:⊙2340x x --=,⊙1x =﹣1,2x =4,⊙⊙O 的半径为一元二次方程2340x x --=的根,⊙r =4,⊙6>4,⊙点A 在⊙O 外,故选:A .【点睛】本题考查了解一元二次方程,点与圆的位置关系,解决此类问题可通过比较点到圆心的距离d 与圆半径大小关系完成判定.5.如图,AB 是半圆O 的直径,28BAC ∠=︒,则D ∠的度数是( )A .62︒B .118︒C .152︒D .138︒【答案】B 【分析】连接BC ,则直径所对的圆周角是直角可求得B ∠的度数,再由圆内接四边形的性质即可求得结果的度数.【详解】连接BC ,如图所示,AB 是直径,90ACB ∴∠=︒, 90902862B BAC ∴∠=︒-∠=︒-︒=︒,180********D B ∴∠=︒-∠=︒-︒=︒;故选:B .【点睛】本题考查了直径所对的圆周角是直角,圆内接四边形的性质等知识,掌握这两条性质是关键.6.如图,AB 是O 的直径,CD 是O 的弦.若=21BAD ∠︒,则ACD ∠的大小为( )A .21°B .59°C .69°D .79°【答案】C 【分析】先求出ABD ∠的度数,然后再根据圆周角定理的推论解答即可.【详解】解:⊙AB 是O 的直径⊙=90BDA ∠︒,⊙=21BAD ∠︒,⊙=1809021=69ABD ∠--︒︒︒︒,又⊙=AD AD ,⊙==69ACD ABD ∠∠︒,故答案为:C .【点睛】本题主要考查了圆周角定理的推论,解题的关键是熟练掌握在同圆或等圆中同弧或等弧所对圆周角相等;直径所对圆周角等于90°.7.如图,圆与圆的位置关系没有( )A .相交B .相切C .内含D .外离 【答案】A 【分析】根据圆与圆的位置关系,寻找交点个数即可解题.【详解】解:圆与圆相交有两个交点,但是图像中没有两个交点的情况,所以圆与圆的位置关系没有相交,故选A.【点睛】本题考查了圆与圆的位置关系,属于简单题,熟悉位置关系的辨析方法是解题关键.8.已知在Rt ABC 中, 9034ACB AC BC ∠=︒==,,, 则Rt ABC 的外接圆的半径为( ) A .4B .2.4C .5D .2.5 Rt ABC 中,根据勾股定理得,223BC =直角三角形的外心为斜边中点,Rt ABC 的外接圆的半径为故选:D .【点睛】本题考查了直角三角形的外心的性质,勾股定理的运用,关键是明确直角三角形的斜边为三角形外接圆的直径.9.如图,12∠=∠,则AB CD =的是( ).A .B .C .D .【答案】C【分析】根据圆周角与弧的关系即可求解.【详解】解:根据同圆或等圆,相等的弧所对的圆周角相等,只有C 选项符合题意;⊙12∠=∠,⊙AB CD =.故选:C .【点睛】本题考查了圆周角与弧的关系,掌握同圆或等圆中,相等的圆周角所对的弧相等是解题的关键.10.ABC ∆中,10AB AC cm ==,12BC cm =,若要剪一张圆形纸片盖住这个三角形,则圆形纸片的最小半径为( )cm .A .5B .6C .152D .254 AB AC =BD DC ∴=连接OB ,在Rt⊙ABD 设圆形纸片的半径为【点睛】本题考查的是三角形的外接圆与外心、等腰三角形的性质,掌握等腰三角形的三线合一、三角形外接圆的性质及勾股定理是解题的关键. 11.如图所示,MN 是半圆O 的直径,MP 与半圆0相切于点M ,R 是半圆上一动点,RE MP ⊥于E ,连接MR .设MR x =,MR RE y -=,则下列函数图象能反映y 与x 之间关系的是( )A .B .C .D .,可得~EMR RNM ,设半圆2)r ,根据函数的解析式即可判断函数图象⊙~EMR RNM , ER MR MR MN=, 设半圆O 的半径为值2(02x y x x r=-+<<可得到y 是x 的二次函数,开口方向向下,对称轴12.如图,在平面直角坐标系中有一正方形AOBC ,反比例函数y=k x经过正方形AOBC 对角线的交点,半径为4-⊙ABC ,则k 的值为( ).A B .2 C .4 D .=4,⊙DN×NO=4,即:xy=k=4.故选C .考点:反比例函数图象上点的坐标特征;正方形的性质;三角形的内切圆与内心. 13.若5cm AB =,作半径为4cm 的圆,使它经过A 、B 两点,这样的圆能作( ) A .0个B .1个C .2个D .无数个【答案】C【分析】先作AB 的垂直平分线l ,再以点A 为圆心,4cm 为半径作圆交l 于O 1和O 2,然后分别以O 1和O 2为圆心,以4cm 为半径作圆即可;【详解】解:这样的圆能画2个.如图:作AB 的垂直平分线l ,再以点A 为圆心,4cm 为半径作圆交l 于O 1和O 2,然后分别以O 1和O 2为圆心,以4cm 为半径作圆,则⊙O 1和⊙O 2为所求【点睛】本题考查了点与圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有点P 在圆外⇔d >r ;点P 在圆上⇔d =r ;点P 在圆内⇔d <r . 14.如图,在ABC 中,3AB =,6BC =,60ABC ∠=︒,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( )A .3πB 2π-C πD 32πAB BD =ABD ∴是等边三角形,AD AB ∴=6BC =,3CD ∴=,AD CD ∴=C CAD ∴∠=∠C CAD ∠+∠30C ∴∠=BAC ∴∠=AC ∴=∴图中阴影部分的面积15.如图,已知AB 是O 的直径,弦CD AB ⊥,垂足为E ,且30BCD ∠=︒,CD = )A .24π-B .83π-C .43π-D .348π-故选:B .【点睛】本题考查了扇形的面积计算,勾股定理,含30︒角的直角三角形的性质,等边三角形的性质和判定等知识点,能把求不规则图形的面积转化成求规则图形的面积是解此题的关键.16.已知扇形的圆心角为120°,半径为6,则扇形的弧长是( ).A .3πB .4πC .5πD .6π17.如图,四边形ABCD 内接于O ,:2:1,2ABC ADC AB ∠∠== ,点C 为BD 的中点,延长AB 、DC 交于点E ,且60E ∠=,则O 的面积是( )A .πB .2πC .3πD .4π 【答案】D 【分析】连接BD ,根据圆内接四边形的外角等于其内对角可得∠D =∠CBE =60°,根据等边对等角以及三角形内角和定理求出∠BCE =60°,可得∠A =60°,点C 为BD 的中点,可得出∠BDC =∠CBD =30°,进而得出⊙ABD =90°,AD 为直径,可得出AD =2AB =4,再根据面积公式计算得出结论;【详解】解:连接BD ,∵ABCD 是⊙O 的内接四边形,∴∠CBE =∠ADC ,∠BCE =∠A⊙:2:1ABC ADC ∠∠=∴:2:1ABC CBE ∠∠=∴∠CBE =∠ADC=60°,∠CBA =120°⊙60E ∠=⊙⊙CBE 为等边三角形⊙∠BCE =∠A=60°,⊙点C 为BD 的中点,⊙∠CDB =∠DBC=30°⊙⊙ABD =90°,⊙ADB =30°⊙AD 为直径⊙AB =2⊙AD =2AB =4 ⊙O 的面积是=224ππ⨯=故答案选:D【点睛】本题考查了圆内接四边形的性质,圆周角定理,等边三角形的判定与性质,三角形内角和定理,掌握相关性质及公式是解题的关键.18.一个圆锥的侧面展开图是半径为8,圆心角为120°的扇形,则这个圆锥的高为( )A cmB .163 cmC cmD .83cm19.⊙O 的半径为10cm, A 是⊙O 上一点, B 是OA 中点, C 点和B 点的距离等于5cm, 则C 点和⊙O 的位置关系是 ( )A .C 在⊙O 内B .C 在⊙O 上 C .C 在⊙O 外D .C 在⊙O 上或C 在⊙O 内【答案】D【详解】试题解析:因为⊙O 的半径是10cm ,A 是圆上一点,所以OA=10cm , 又B 是OA 的中点,所以BA=5cm .而BC=5cm ,所以点C 应在以B 为圆心,5cm 为半径的⊙B 上.⊙B 上的点除点A 在⊙O 上外,其它的点都在⊙O 内.故选D .20.如图,在ABC 中,90ACB ∠=︒.AC BC =,4cm AB =.CD 是中线,点E 、F 同时从点D 出发,以相同的速度分别沿DC 、DB 方向移动,当点E 到达点C时,运动停止,直线AE 分别与CF 、BC 相交于G 、H ,则在点E 、F 移动过程中,点G 移动路线的长度为( ).A .2B .πC .2πD .π2【答案】D 【详解】试题解析:如图,,90CA CB ACB AD DB =∠==,,⊙CD ⊙AB ,⊙⊙ADE =⊙CDF =90,CD =AD =DB ,在⊙ADE 和⊙CDF 中,AD CD ADE CDF DE DF ,=⎧⎪∠=∠⎨⎪=⎩⊙⊙ADE ⊙⊙CDF (SAS),⊙⊙DAE =⊙DCF ,⊙⊙AED =⊙CEG ,90,四点共圆,的运动轨迹为弧CD90,的运动轨迹的长为二、填空题21.如图,点C为半圆的中点,AB是直径,点D是半圆上一点,AC、BD交于点BD=,则AC=________.E,若1AD=,722.如图,将长为8cm 的铁丝首尾相接围成半径为2cm 的扇形.则S =扇形________2cm .23.如图,ABC ∆中,90,6,4,ACB BC AC D ∠=︒==是AC 边上的一个动点,过点C 作,CE BD ⊥垂足为,E 则AE 长的最小值为_______________________.【答案】2【分析】取BC 中点F ,连接AE 、EF .易得点E 在以BC 长为直径的圆周上上运动,24.如图,⊙O内接正五边形ABCDE与等边三角形AFG,则⊙FBC=__________.【分析】连接OA,OB,OF,OC,分别求出正五边形ABCDE和正三角形AFG的中心角,结合图形计算即可.【详解】解:连接OA,OB,OF,OC.25.如图,点A、B在半径为3的⊙O上,劣弧AB长为π2,则⊙AOB=____.26.如图,Rt⊙ABC中,⊙ACB=90°,⊙A=30°,BC=6,D,E分别是AB,AC边的中点,将⊙ABC绕点B顺时针旋转60°到⊙A′BC′的位置,则整个旋转过程中线段DE所扫过部分的面积(即图中阴影部分面积)为_____.【详解】27.四边形ABCD 是O 的内接四边形,2C A ∠=∠,则C ∠的度数为___.【答案】120°##120度【分析】根据圆内接四边形对角互补,再结合已知条件求解即可.【详解】解:四边形ABCD 是O 的内接四边形,180C A∴∠+∠=︒2C A∠=∠,120C∴∠=︒.故答案为:120︒.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形对角互补是解答本题的关键.28.如图,在Rt⊙ABC中,⊙C=90°,AB=13,AC=5,以点C为圆心r为半径作圆,如果⊙C与AB相切,则半径r的值是_______.【答案】6013##8413来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了勾股定理.29.如图,在⊙O中,点C在优弧ACB上,将弧沿BC折叠后刚好经过AB的中点D,若⊙O AB=4,则BC的长是_____.30.如图,AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直,垂足为,2D AB BC ==,则AOB ∠=_________.31.如图,在正方形网格中建立平面直角坐标系,一条圆弧经过点()()()0,4,4,4,6,2A B C --.(1)若该圆弧所在圆的圆心为D ,则AD 的长为__________.(2)该圆弧的长为___________.90255180π=【详解】解:(1)如图,易知点2425+=即D 的半径为AD CD ==2AD DC +ACD ∆为直角三角形,根据题意得90255180π=即该圆弧的长为5π.【点睛】本题主要考查圆,扇形等知识的综合应用,掌握确定圆心的方法,即确定出的坐标是解题的关键.OD BC,OD与32.如图,已知AB是半圆O的直径,C、D是半圆O上的两点,且//∠=______.AC交于点E,若E是OD中点,,则CAD【答案】30°【分析】先判定AC垂直平分OD,进而可判定⊙OAD是等边三角形,再由三线合一即可求出⊙CAD的度数.【详解】⊙AB是半圆O的直径,⊙⊙ACB=90°.OD BC,⊙//⊙⊙AED=90°.⊙E是OD中点,⊙AC垂直平分OD,⊙AD=OA,⊙OA=OD,⊙⊙OAD是等边三角形,⊙⊙OAD=60°,⊙⊙CAD=30°.故答案为:30°.【点睛】本题考查了圆周角定理,平行线的性质,线段垂直平分线的判定与性质,以及等边三角形的判定与性质,熟练掌握圆周角定理、线段垂直平分线的判定与性质是解答本题的关键.33.如图,在半径为2cm的扇形纸片AOB中,⊙AOB=90°,将其折叠使点B落在点O 处,折痕为DE,则图中阴影部分的面积为________cm2334.若点O 是等腰ABC 的外心,且60,BOC ∠=︒底边4,BC =则ABC 的边BC 上的高为 ____________________.E,如果点F是弧EC的中点,联结FB,那么tan⊙FBC的值为.关系;解直角三角形.【答案】【详解】试题分析:连接CE交BF于H,连接BE,根据矩形的性质求出AB=CD=3,AD=BC=5=BE,⊙A=⊙D=90°,根据勾股定理求出AE=4,求出DE=1,根据勾股定理求出CE,求出CH,解直角三角形求出即可.解:连接CE交BF于H,连接BE,⊙四边形ABCD是矩形,AB=3,BC=5,⊙AB=CD=3,AD=BC=5=BE,⊙A=⊙D=90°,由勾股定理得:AE==4,DE=5﹣4=1,由勾股定理得:CE==,由垂径定理得:CH=EH=CE=,在Rt⊙BFC中,由勾股定理得:BH==,所以tan⊙FBC===.故答案为.36.O是ABC的外心,且140∠=________;若I是ABC的内心,∠=,则ABOC且140∠=________.BIC∠=,则A70100是ABC的外心,且140,如图所示:是ABC的内心,且140,如图所示:⊙I 是⊙ABC 的内心,⊙⊙A=180°-(⊙ABC+⊙ACB)= 180°-2(⊙IBC+⊙ICB)=180°-2(180°-140°)=100°. 故答案为70°;100°.【点睛】本题考查了三角形内外心的性质,熟知三角形内外心的性质是解题的关键. 37.冬天的雪是我们的乐园,一次下雪后,小伙伴们堆了一大雪人,准备给雪人制作一个底面半径为9cm ,母线长为30cm 的圆锥形礼帽,则这个圆锥形礼帽的侧面积为____________cm 2 .(结果保留π)【答案】270π.【详解】试题分析:S=πrl=9×30π=270π(2cm ).考点:圆锥的侧面积计算.38.已知O 的直径10AB =cm ,CD 是O 的弦,AE CD ⊥,垂足为点E ,BF CD ⊥,垂足为点F ,且8CD =cm ,则BF AE -的长为________cm .39.如图,I 是直角ABC 的内切圆,切点为D 、E 、F ,若10AF ,3BE =,则ABC 的面积为_____.的值,再利用三角形的面积公式求得ABC 的面积即可.【详解】解:I 是直角ABC 的内切圆,且10AF ,BE =3,10AF AD ==,CE 13=,x ,则3BC x ,AC 中,222AC BC AB +=,即)22313x +=,(不符题意,舍去)ABC ∴的面积为故答案为:【点睛】本题考查了切线长定理、勾股定理、一元二次方程的应用,熟记切线长定理是解题的关键.40.如图,正六边形ABCDEF内接于半径为1cm的⊙O,则图中阴影部分的面积为_____cm2(结果保留π).三、解答题41.如图,在边长为4的正方形ABCD中,以AD为直径作⊙O,以C为圆心,CD长为半径作⊙C,两圆交于正方形内一点E,连CE并延长交AB于F.(1)求证:CF 与⊙O 相切;(2)求△BCF 和直角梯形ADCF 的周长之比. 【答案】(1)证明见详解;(2)6:7.【分析】(1)连接OE 、DE ,根据等腰三角形性质推出⊙ODE =⊙OED ,⊙CDE =⊙CED ,推出⊙OED +⊙CED =90°,根据切线的判定推出即可;(2)过F 作FM⊙DC 于M ,得出四边形ADMF 是矩形,推出AD =FM =4,AF =DM ,求出AF =EF ,设AF =EF =x ,DM =x ,在Rt △FMC 中,由勾股定理得出方程()()222444x x +-=+,求出x 的值,即可求出△BCF 的周长和直角梯形ADCF 的周长.【详解】(1)证明:连接OE ,DE ,⊙OD =OE ,CE =CD ,⊙⊙ODE =⊙OED ,⊙CDE =⊙CED ,⊙四边形ABCD 是正方形,⊙⊙ADC =90°,⊙⊙ADC =⊙ODE +⊙CDE =90°,⊙⊙OED +⊙CED =90°,即OE⊙CF ,⊙OE 为半径,⊙CF 与⊙O 相切.(2)解:如图:过F 作FM⊙DC 于M ,⊙四边形ABCD 是正方形,⊙AD =DC =BC =AB =CE =4,⊙FAD =⊙ADM =⊙FMD =⊙FMC =90°,⊙四边形ADMF 是矩形,⊙AD =FM =4,AF =DM⊙⊙OAF =90°,OA 为半径,⊙AF 切⊙O 于A ,CF 切⊙O 于E ,⊙AF =EF ,设AF =EF =x ,DM =x ,在Rt △FMC 中,由勾股定理得:222FM MC CF +=,()()222444x x +-=+, 解得:x =1,⊙AF =EF =DM =1,⊙CF =4+1=5,⊙⊙BCF 的周长是BC +CF +BF =4+5+4−1=12,直角梯形ADCF 的周长是AD +DC +CF +AF =4+4+5+1=14,⊙⊙BCF 和直角梯形ADCF 的周长之比是12:14=6:7.【点睛】本题考查了正方形性质,切线的性质和判定,矩形的性质和判定,勾股定理的应用,主要考查学生综合运用定理进行推理的能力.42.已知ABC 内接于O ,BAC ∠的平分线交O 于点D ,连接DB ,DC . (1)如图⊙,当120BAC ∠=时,请直接写出线段AB ,AC ,AD 之间满足的等量关系式: ;(2)如图⊙,当90BAC ∠=时,试探究线段AB ,AC ,AD 之间满足的等量关系,并证明你的结论;(3)如图⊙,若BC=5,BD=4,求AD AB AC+ 的值.43.如图,在Rt⊙ABC中,⊙C=90°,BE平分⊙ABC交AC于点E,点D在AB边上且DE⊙BE.(1)判断直线AC与⊙DBE外接圆的位置关系,并说明理由;(2)若AD=6,BC的长.【答案】(1)直线AC与⊙DBE外接圆相切.(2)BC=4.【分析】(1)取BD的中点O,连接OE,证明⊙OEB=⊙CBE后可得OE⊙AC;(2)设OD=OE=OB=x,利用勾股定理求出x的值,再证明△AOE⊙⊙ABC,利用线段比求解.【详解】(1)直线AC与⊙DBE外接圆相切.理由:⊙DE⊙BE⊙BD为⊙DBE外接圆的直径取BD的中点O(即⊙DBE外接圆的圆心),连接OE⊙OE=OB⊙⊙OEB=⊙OBE⊙BE平分⊙ABC⊙⊙OBE=⊙CBE⊙⊙OEB=⊙CBE⊙⊙CBE+⊙CEB=90°⊙⊙OEB+⊙CEB=90°,即OE⊙AC44.如图,已知AB是⊙O的直径,⊙O交⊙ABE边AE于点D,点P在BA的延长线上,PD交BE于点C.现有3个选项:⊙AB=BE,⊙PC⊙BE,⊙PD是⊙O的切线.(1)请从3个选项中选择两个作为条件,余下一个作为结论,得到一个真命题,并证明;你选择的两个条件是,结论是(只要填写序号);(2)在(1)的条件下,连接OC,如果P A=2,sin⊙ABC=45,求OC的长.=AB BE∴∠=BAE∴∥OD BE∴∠=ODP∴PD是⊙4CP =2,PA OD∴=OD OA45.如图,BD是⊙O的直径,过点D的切线交⊙O的弦BC的延长线于点E,弦AC⊙DE交BD于点G(1)求证:BD平分弦AC;(2)若弦AD=5㎝,AC=8㎝,求⊙O的半径.46.如图,⊙ABC 为⊙O 的内接三角形,其中AB 为⊙O 的直径,过点A 作⊙O 的切线P A .(1)求证:⊙P AC =⊙ABC ;(2)若⊙P AC =30°,AC =3,求劣弧AC 的长.603180π=π.【点睛】本题考查了切线的性质,圆周角定理的推论,弧长公式,熟练掌握相关知识是解题的关键.47.如图,在⊙ABC中,AB=AC,以AB为直径的半圆分别交AC,BC边于点D,E,连结BD,(1)求证:DE BE=;(2)当AB=10,BD=8,求CD和BE的长.48.在复习菱形的判定方法时,某同学进行了画图探究,其作法和图形如下:⊙画线段AB;⊙分别以点A,B为圆心,大于AB长的一半为半径作弧,两弧相交于M、N两点,作直线MN交AB于点O;⊙在直线MN上取一点C(不与点O重合),连接AC、BC;⊙过点A作平行于BC的直线AD,交直线MN于点D,连接B D.(2)该同学在图形上继续探究,他以点O为圆心作四边形ADBC的内切圆,构成如图所示的阴影部分,若AB=⊙BAD=30°,求图中阴影部分的面积.1149.如图,AB是⊙O的直径,CD与⊙O相切于点C,且与AB的延长线交于点D,连接AC.作CE⊙AB于点E.(1)求证:⊙BCE=⊙BCD;(2)若AD=8,12BCAC=,求CD的长.【答案】(1)见解析;(2)CD=4【分析】(1)连接OC,如图,利用圆周角定理得到⊙ACB=90°,利用切线的性质得到⊙DCO=90°,则根据等角的余角相等得到⊙ACO=⊙BCD,同样方法证明⊙A=⊙BCE,从而得到⊙BCE=⊙BCD;(2)证明⊙ACD⊙⊙CBD,然后利用相似比求CD的长.【详解】(1)证明:连接OC,如图,⊙AB是⊙O的直径,⊙⊙ACB=90°,即⊙ACO+⊙OCB=90°,⊙CD与⊙O的相切于点C,⊙⊙DCO=90°,即⊙BCD+⊙OCB=90°,⊙⊙ACO=⊙BCD,⊙OC=OA,⊙⊙A=⊙ACO,50.如图,ABC 中,90ACB ∠=︒,30A ∠=︒,2AB =,点P 从点A 出发,以每秒12个单位长度的速度沿AB 向点B 运动,到点B 停止.同时点Q 从点A 出发,沿AC CB -的线路向点B 运动,在边AC BC 上的速度为每秒2个单位长度,到B 停止,以PQ 为边向右或右下方构造等边PQR ,设P 的运动时间为t 秒,解答下列问题:(1)填空:BC =__________,AC =__________.(2)当Q 在AC 上,R 落在BC 边上时,求t 的值.(3)连结BR .⊙当Q 在边AC 上,BR 与ABC 的一边垂直时,求PQR 的边长.⊙当Q 在边BC 上且R 不与点B 重合时,判断BR 的方向是否变化,若不变化,说明理由.理由见解析⊙ABC中,90,30∠,ABA=,3作QD⊙AB59⊙⊙QPR是等边三角形,⊙⊙QRP=60°,⊙⊙ABC=90°-⊙A=60°,⊙⊙QBP=⊙QRP=60°,⊙Q、P、B、R四点共圆,⊙⊙QBR=⊙QPR=60°,⊙BR的方向不变.【点睛】本题主要考查了等边三角形的性质,含30度角的直角三角形的性质,四点共圆等等,解题的关键在于能够熟练掌握相关知识进行求解.。
初中数学-圆的综合典型例题
A C E AD与圆有关的综合试题D A B CE O P F一、圆的定义 定义:(1)在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一端点A 随之旋转所形成的图形叫做圆,其中点O 叫做圆心,OA 叫做半径.(2)圆可以看成是所有到定点O 的距离等于定长r 的点组成的图形.(3)确定圆有两个要素:一是圆心;二是半径.圆心确定圆的位置,半径确定圆的大小.(4)圆上任一点到定点(圆心)的距离都等于定长半径,到圆心的距离等于半径的点都在同一个圆上. 半径相等的圆是等圆,圆心相同的圆叫同心圆. 二、圆的概念1. 连接圆上任意两点的线段叫做弦.2. 经过圆心的弦叫做直径,直径长等于半径长的2倍.3. 圆上任意两点间的部分叫做圆弧,简称弧.(等弧指能够完全重合的两条弧,即指弧的度数和长度相等.等弧只能出现在同圆或等圆中) 4. 圆的任意一条直径的两个端点把圆分成两条弧,每一条弧叫做半圆. 5. 圆是轴对称(有无数条对称轴);又是中心对称,对称中心是圆心.考点分析1.圆的相关概念和性质;2.圆中的计算;3.圆的证明典型例题分析与练习类型1. 圆的有关概念 例1. 如图所示,点A、O、D 以及点B、O、C 分别在一条直线上,则圆中弦的条数( ) A. 2条 B. 3条 C. 4条 D. 5条例2. 如图在⊙O 中,AB、CD 为直径,请判断AD 与BC 的位置关系.类型2. 圆中的有关计算例1. 如图,CD 是⊙O 的直径, 84EOD ,AE 交⊙O 于B ,且OC AB ,求A 的度数.例4cm,最大距离为9cm,则该圆的直径是( )A. 2.5cm 或6.5cmB. 2.5cmC. 6.5cmD. 5cm 或13cm例3. 导火索长18cm,爆破时导火索燃烧的速度是每秒0.9cm,点燃导火索的人需要跑到离爆破点120m以外的安全区域,这个点燃导火索的人每秒跑6.5m 是否安全?例4. 如图,AB、CD 是⊙O 的两条互相垂直的直径.(1)试判断四边形ACBD 是什么特殊的四边形,为什么?(2)若⊙O 的半径r=2cm,求四边形ADBC 的面积.圆的定义及练习题 A类型3.圆中证明例1. 如图,∠A=∠C=∠D=900,求证:A、B、C、D、E 在同一个圆上.例2. 如图,点A、D、G、M 在半圆O 上,四边形ABOC,DEOF,HMNO 均为矩形.设BC=a ,EF=b ,NH=c ,则下列各式中正确的是( ) A. c b a B. c b a C. b a c D. a c b巩固练习1.下列说法中:(1)直径相等的两个圆是等圆;(2)长度相同的两条弧是等弧;(3)园中最长的弦是通过圆心的弦;(4)一条弦把圆分成两条弧,这两条弧不可能是等弧.正确的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个2.如图,CD 是⊙O 的直径, 84EOD ,AE 交⊙O 于B ,且OC AB ,求A 的度数.3. 求证:菱形四条边中点在以对角线的交点为圆心的同一圆上.4.已知:如图,两同心圆的直径AC、BD 相交于O 点.求证:AB=CD.A E BCDNOFC MBH E GDA ABCDOD。
中考数学点对点-涉及圆的证明与计算问题(解析版)
专题27 涉及圆的证明与计算问题专题知识点概述圆的证明与计算是中考必考点,也是中考的难点之一。
纵观全国各地中考数学试卷,能够看出,圆的证明与计算这个专题内容有三种题型:选择题、填空题和解答题。
一、与圆有关的概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
2.圆心角:顶点在圆心上的角叫做圆心角。
圆心角的度数等于它所对弧的度数。
3.圆周角:顶点在圆周上,并且两边分别与圆相交的角叫做圆周角。
4. 外接圆和外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。
外接圆的圆心,叫做三角形的外心。
外心是三角形三条边垂直平分线的交点。
外心到三角形三个顶点的距离相等。
5.若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。
6.和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
内心是三角形三个角的角平分线的交点。
内心到三角形三边的距离相等。
二、与圆有关的规律1.圆的性质:(1)圆具有旋转不变性;(2)圆具有轴对称性;(3)圆具有中心对称性。
2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
3.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.4.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
5.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.圆内接四边形的特征①圆内接四边形的对角互补;②圆内接四边形任意一个外角等于它的内对角。
初中数学圆的知识点(通用4篇)
初中数学圆的知识点〔通用4篇〕篇1:初中数学圆知识点 1.圆的定义(1)在一个平面内,线段OA绕它的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。
固定的端点O 叫做圆心,线段OA叫做半径,如右图所示。
(2)圆可以看作是平面内到定点的间隔等于定长的点的集合,定点为圆心,定长为圆的半径。
说明:圆的位置由圆心确定,圆的大小由半径确定,半径相等的两个圆为等圆。
2.圆的有关概念(1)弦:连结圆上任意两点的线段。
(如右图中的CD)。
(2)直径:经过圆心的弦(如右图中的AB)。
直径等于半径的2倍。
(3)弧:圆上任意两点间的局部叫做圆弧。
(如右图中的CD、CAD)其中大于半圆的弧叫做优弧,如CAD,小于半圆的弧叫做劣弧。
(4)圆心角:如右图中∠COD就是圆心角。
3.圆心角、弧、弦、弦心距之间的关系。
(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。
(2)推论:在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
4.过三点的圆。
(1)定理:不在同一条直线上的三点确定一个圆。
(2)三角形的外接圆圆心(外心)是三边垂直平分线的交点。
5.垂径定理。
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:(1)①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弦的直径,垂直平分弦,并且平分弦所对的另一条弧。
(2)圆的两条平行弦所夹的弧相等。
6.与圆相关的角(1)与圆相关的角的定义①圆心角:顶点在圆心的角叫做圆心角②圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。
③弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。
(2)与圆相关的角的性质AB①圆心角的度数等于它所对的弦的度数;②一条弧所对的圆周角等于它所对的圆心角的一半; ③同弧或等弧所对的圆周角相等; ④半圆(或直径)所对的圆周角相等; ⑤弦切角等于它所夹的弧所对的圆周角;⑥两个弦切角所夹的弧相等,那么这两个弦切角也相等;⑦圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
初二数学圆练习题
初二数学圆练习题圆的练习题1. 已知圆的直径为10 cm,求圆的半径。
解析:圆的半径是直径的一半。
所以,半径 = 直径 / 2 = 10 cm / 2 = 5 cm。
2. 已知圆的半径为8 m,求圆的直径。
解析:圆的直径是半径的两倍。
所以,直径 = 半径 × 2 = 8 m × 2 = 16 m。
3. 已知圆的半径为12 cm,求圆的周长和面积。
解析:圆的周长可以用公式C = 2πr 计算,其中 r 为圆的半径。
所以,周长= 2 × 3.14 × 12 cm ≈ 75.36 cm。
圆的面积可以用公式A = πr² 计算,其中 r 为圆的半径。
所以,面积= 3.14 × 12 cm × 12 cm ≈ 452.16 cm²。
4. 已知圆的周长为30 cm,求圆的直径和面积。
解析:圆的周长可以用公式C = 2πr 计算,其中 r 为圆的半径。
由于直径是半径的两倍,所以直径 = 周长/ π ≈ 30 cm / 3.14 ≈ 9.55 cm。
圆的面积可以用公式A = πr² 计算,其中 r 为圆的半径。
由于直径是半径的两倍,所以面积= π × (直径/ 2)² ≈ 3.14 × (9.55 cm / 2)² ≈ 71.38 cm²。
5. 已知圆的面积为1256 cm²,求圆的半径和直径。
解析:圆的面积可以用公式A = πr² 计算,其中 r 为圆的半径。
所以,半径= √(面积/ π) = √(1256 cm² / 3.14) ≈ √(400 cm²) = 20 cm。
由于直径是半径的两倍,所以直径 = 2 ×半径 = 2 × 20 cm = 40 cm。
6. 已知圆的直径为15 m,求圆的周长和面积。
解析:圆的周长可以用公式C = 2πr 计算,其中 r 为圆的半径。
(2021年整理)初三数学九上圆所有知识点总结和常考题型练习题
初三数学九上圆所有知识点总结和常考题型练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三数学九上圆所有知识点总结和常考题型练习题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三数学九上圆所有知识点总结和常考题型练习题的全部内容。
圆知识点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线.二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上; 3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;A四、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。
初中数学《圆的公式汇总》知识点
It is important to formulate the right strategy, but more important is the execution of the strategy.通用参考模板(页眉可删)初中数学《圆的公式汇总》知识点圆的定义几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。
有关圆的计算公式1.圆的'周长C=2πr=πd2.圆的面积S=πr2;3.扇形弧长l=nπr/1804.扇形面积S=nπr2;/360=rl/25.圆锥侧面积S=πrl圆的相关量圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.14159265358979323846264338327950288419716939937510582 09749445923078164062862089986280348253421170679……,通常用π表示,计算中常取3.14为它的近似值(但奥数常取3或3.1416)。
圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
圆锥侧面展开图是一个扇形。
这个扇形的半径成为圆锥的母线。
圆和圆的相关量字母表示方法圆—⊙;半径—r;弧—⌒;直径—d;扇形弧长/;圆锥母线—l;周长—C;面积—S【圆和其他图形的位置关系】圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
圆的切线性质、圆与四边形的关系及弧长、面积计算中考专题复习(知识点+题型分类练习)
圆的切线性质、圆与四边形的关系及弧长、⾯积计算中考专题复习(知识点+题型分类练习)圆的切线性质、圆与四边形的关系及弧长、⾯积计算专题复习知识点复习:⼀、切线的相关知识点1.切线的性质:①圆的切线到圆⼼的距离等于半径。
②定理:圆的切线垂直于过切点的半径。
③切线长定理:从圆外⼀点引圆的两条切线,它们的切线长相等,这⼀点和圆⼼的连线平分两条切线的夹⾓。
2.切线的判定:①利⽤切线的定义。
②到圆⼼的距离等于半径的直线是圆的切线。
③定理:经过半径的外端并且和这条半径垂直的直线是圆的切线。
⼆、圆与三⾓形1.三⾓形的外接圆(1)定义:经过三⾓形的三个顶点的圆叫做三⾓形的外接圆。
(2)三⾓形外⼼的性质:①是三⾓形三条边垂直平分线的交点;②到三⾓形各顶点距离相等;③外⼼的位置:锐⾓三⾓形外⼼在三⾓形内,直⾓三⾓形的外⼼恰好是斜边的中点,钝⾓三⾓形外⼼在三⾓形外⾯。
2、三⾓形的内切圆(1)定义:与三⾓形各边都相切的圆叫做三⾓形的内切圆。
(2)三⾓形内⼼的性质:①是三⾓形⾓平分线的交点;②到三⾓形各边的距离相等;③都在三⾓形内。
三、圆与多边形1.圆与四边形(1)由圆周⾓定理可以得到:圆内接四边形对⾓互补。
*(2)由切线长定理可以得到:圆的外切四边形两组对边的和相等。
2.圆与正多边形正多边形的定义:各边相等,各⾓也相等的多边形叫做正多边形,其外接圆的圆⼼叫做这个正多边形的中⼼,外接圆的半径叫正多边形的半径。
(1)正多边形与圆的关系把圆分成n(n≥3)等份,依次连结各分点所得的多边形是这个圆的内接正n边形,这时圆叫做正n 边形的外接圆。
(2)正n多边形的有关计算(11个量)边数n,内⾓和(n-2)×180°;每个内⾓度数(n-2)×180°÷n或180°-360°÷n,外⾓和n·180°-(n-2)·180°=360°;每个外⾓度数360°÷n.;中⼼⾓360°÷n ;定理:正n 边形的半径和边⼼距把正n 边形分成2n 个全等的直⾓三⾓形。
简单的圆内角与圆周角的计算知识点总结
简单的圆内角与圆周角的计算知识点总结在数学中,圆内角和圆周角是与圆相关的重要概念。
理解和计算圆内角和圆周角对于解决与圆相关的问题和证明定理非常有帮助。
本文将对圆内角和圆周角的计算知识点进行总结和归纳。
1. 圆的基本性质首先,我们需要了解一些关于圆的基本性质,以便更好地理解圆内角和圆周角的计算方法。
以下是一些重要性质:- 圆周率π:圆周率π 是一个重要的数学常数,通常取近似值3.14。
- 圆心角:以圆心为顶点的角称为圆心角,它对应的弧度长度等于该角所对应的弧长的长度。
- 弧长:圆上两点之间的弧长是连接这两点的圆弧的长度。
- 弧度制:弧度制是一种角度的度量方式,1 弧度等于圆的半径所对应的弧长。
2. 圆内角的计算公式圆内角是指位于圆的内部的两条弧所对应的角。
圆内角的计算可以根据弧所对应的圆心角进行推导。
以下是一些常见的圆内角计算公式:- 同一个圆的圆内角相等:同一个圆中的任意两个圆内角相等。
- 圆内角和为180度:对于任意一个在同一个圆上的锐角∠A,其余的两个圆内角和为180度,即∠A + ∠B + ∠C = 180度。
3. 圆周角的计算公式圆周角是指位于圆周上两条弧所对应的角。
与圆内角不同,圆周角的计算不直接依赖于圆心角,而是通过弧长与圆周长的比例来计算。
以下是一些常用的圆周角计算公式:- 圆周角的弧度计算:对于长为L 的弧所对应的圆周角(弧度制),其弧度数为 L / r,其中 r 表示圆的半径。
- 圆周角的度数计算:对于长为L 的弧所对应的圆周角(度数制),其角度数为(L / r) * 180 / π,其中 r 表示圆的半径。
4. 应用示例下面通过几个应用示例来说明圆内角和圆周角的计算方法:示例1:已知圆的半径为 5 cm,弧 AB 的弧长为 15 cm,求弧 AB对应的圆周角(度数制)。
解:根据圆周角的度数计算公式,我们可以得到圆周角的角度数为(15 / 5) * 180 / π ≈ 171.887°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学:与圆相关计算1.理解直线与圆的位置关系;2.能够证明切线及利用切线解决相关问题.美丽的扇形这是一张美丽的扇形画,你会计算它的面积吗?模块一 与圆有关的计算 与圆有关的面积和长度计算:设O ⊙的半径为R ,n ︒圆心角所对弧长为l ,弧长公式:π180n Rl =扇形面积公式:21π3602n S R lR ==扇形圆柱体表面积公式:22π2πS R Rh =+圆锥体表面积公式:2ππS R Rl =+(l 为母线) 常见组合图形的周长.面积的几种常见方法:① 公式法;② 割补法;③ 拼凑法;④ 等积变换法☞求弧长例题精讲重难点课前预习【例1】 (2011•珠海)圆心角为60°,且半径为3的扇形的弧长为( )A .B .πC .D .3π【巩固】(2011•綦江县)如图,PA .PB 是O e 的切线,切点是A B 、,已知60P ∠=︒,3OA =,那么AOB ∠所对弧的长度为( )PBAOA .6πB .5πC .3πD .2π【巩固】(2011•安徽)如图,⊙半径是1,A B C 、、是圆周上的三点,36BAC ∠=︒,则劣弧»BC 的长是( ) CBOAA .B .C .D .【拓展】(2011•烟台)如图,六边形ABCDEF 是正六边形,曲线1234567FK K K K K K K ……叫做“正六边形的渐开线”,其中¼1FK,¼12K K ,¼23K K ,¼34K K ,¼45K K ,¼56K K ,……的圆心依次按点A B C D E F ,,,,,循环,其弧长分别记为123456l l l l l l ,,,,,,….当1AB =时,2011l 等于( ) K 7K 6K 5K 4K 3K 2K 1FE D CB AA .B .C .D .【例2】 (2010•肇庆)75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是cm .【巩固】(2010•梧州)120︒的圆心角所对的弧长是12πcm ,则此弧所在的圆的半径是 cm .【例3】 (2009•潍坊)如图,已知Rt ABC △中,90ABC ∠=︒30BAC ∠=︒,23AB =cm ,将ABC △绕顶点C 顺时针旋转至A B C '''△的位置,且'A B C 、、三点在同一条直线上,则点A 过的最短路线的长度是( )cm .B'A'CBAA .8B .43C .323πD .83π【巩固】(2010•枣庄)在Rt ABC △中,90C ∠=︒,4BC cm =,3AC cm =.把ABC △绕点A 顺时针旋转90︒后,得到11AB C △,如图所示,则点B 所走过的路径长为( )A .52B .54πcmC .52πcmD .5πcm【例4】 (2011•黔南州)如图,把Rt ABC △的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到A B C ''''''△的位置.若13BC AC ==,,则顶点A 运动到点A ''的位置时,点A 两次运动所经过的路程.(计算结果不取近似值)【巩固】矩形ABCD 的边86AB AD ==,,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置1111A B C D 时(如图所示),则顶点A 所经过的路线长是_________.【拓展】(2011•桂林)如图,将边长为a 的正六边形A 1A 2A 3A 4A 5A 6在直线l 上由图1的位置按顺时针方向向右作无滑动滚动,当A 1第一次滚动到图2位置时,顶点A 1所经过的路径的长为( )A 423a + B 843a + C 43a + D 423a +☞求面积【例5】 (2011•江津区)如图,点A B C 、、在直径为3的O e 上,45BAC ∠=︒,则图中阴影部分的面积等于 .(结果中保留π).OA【巩固】(2011•达州)如图,在等腰直角三角形ABC 中,90C ∠=︒,点D 为AB 的中点,已知扇形EAD 和扇形FBD 的圆心分别为点A 、点B ,且2AC =,则图中阴影部分的面积为 (结果不取近似值).FEBAC【巩固】(2010•江汉区)如图,等腰Rt ABC △的直角边长为4,以A 为圆心,直角边AB 为半径作弧BC 1,交斜边AC 于点1C ,11C B AB ⊥于点1B ,设弧1BC ,11C B ,1B B 围成的阴影部分的面积为1S ,然后以A 为圆心,1AB 为半径作弧22B C ,交斜边AC 于点2C ,22C B AB ⊥于点2B ,设弧122221B C C B B B ,,围成的阴影部分的面积为2S ,按此规律继续作下去,得到的阴影部分的面积3S = .S 3S 2S 1C 3C 2C 132B 1BA【例6】 (09河南)如图,在半径为5,圆心角等于45︒的扇形AOB 内部作一个正方形CDEF ,使点C 在OA上,点D E 、在OB 上,点F 在»AB 上,则阴影部分的面积为____________.OFE DCB A【巩固】将ABC △绕点B 逆时针旋转到A BC ''△使A B C '、、在同一直线上,若90BCA ∠=°,4cm 30AB BAC ︒=∠=,,则图中阴影部分面积为 cm 2A'C'A☞与圆锥有关的计算【例7】 (2011•漳州)如图是一个圆锥形型的纸杯的侧面展开图,已知圆锥底面半径为5cm ,母线长为15cm ,那么纸杯的侧面积为 cm 2.(结果保留π)【巩固】(2010•扬州)一个圆锥的底面半径为4cm ,将侧面展开后所得扇形的半径为5cm ,那么这个圆锥的侧面积等于 cm 2(结果保留π).【巩固】(2011•铜仁地区)某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,底面半径OB=6米,则圆锥的侧面积是平方米(结果保留π).AOB【巩固】(2011•宜宾)一个圆锥形零件的母线长为4,底面半径为1.则这个圆锥形零件的全面积是.【例8】(2010•锦州)将一块含30°角的三角尺绕较长直角边旋转一周得一圆锥,这个圆锥的高是33,则圆锥的侧面积是.【巩固】(2011•广西)在Rt△ABC中,∠C=90°,AC=3,BC=4,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是.【例9】(2011•宿迁)如图,把一个半径为12cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是cm.【巩固】(2011•哈尔滨)若圆锥的侧面展开时一个弧长为l6π的扇形,则这个圆锥的底面半经是.【巩固】(2011•本溪)若用半径为12,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥底面圆的半径的长.【例10】(2011•鸡西)将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.【巩固】(2010•襄阳)一个圆锥的侧面积是底面积的2倍,则该圆锥的侧面展开图扇形的圆心角度数是度.【巩固】(2010•红河州)已知圆锥的底面直径为4,母线长为6,则它的侧面展开图的圆心角为度.【巩固】(2010•哈尔滨)将一个底面半径为5cm,母线长为12cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.【例11】(2011•攀枝花)用半径为9cm,圆心角为120°的扇形纸片围成一个圆锥,则该圆锥的高为cm.【巩固】(2010•盐城)已知圆锥的底面半径为3,侧面积为15π,则这个圆锥的高为.【巩固】(2011•内江)如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°.则圆锥的母线是.1.如图,有一长为4cm ,宽为3cm 的长方形木板在桌面上做无滑动的翻滚(顺时针方向),木板上的顶点A 的位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板边沿A 2C 与桌面成30°角,则点A 翻滚到A 2位置时,共走过的路径长为( ) A .10cm B .3.5πcm C .4.5πcm D .2.5πcmA1A 2A2.如图,在Rt ABC △中,90BAC ∠=o ,6BC =,点D 为BC 中点,将ABD △绕点A 按逆时针方向旋转120o 得到AB D ''△,则点D 在旋转过程中所经过的路程为 .(结果保留π)3. 一个扇形所在圆的半径为3cm ,扇形的圆心角为120°,则扇形的面积是 cm 2.1.通过本堂课你学会了 . 2.掌握的不太好的部分 . 3.老师点评:① .② .③ .1.如图7,在Rt ABC ∆中,9042C AC BC ∠=︒==,,分别以AC BC ,为直径画半圆,则图中阴影部B AC DD ' B '课后作业课堂检测总结复习分的面积为.(结果保留π)2.如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x=的图象上,则图中阴影部分的面积于 。
3. 正n 边形内接于半径为R 的圆,这个n 边形的面积为23R ,则n 等于____________.4.O ⊙的内接多边形周长为3,O ⊙的外切多边形周长为3.4,则下列各数中与此圆的周长最接近的是( )A 6B 8C 10D 17 5.如图,已知:边长为1的圆内接正方形ABCD 中,P 为边CD 的中点,直线AP 交圆于E 点. ⑴求弦DE 的长.⑵若Q 是线段BC 上一动点,当BQ 长为何值时,三角形ADP 与以Q C P ,,为顶点的三角形相似.BAD E P C图1FBADEPC图2Q BAD EPC图3(BADEPC。