北师大版七年级上册数学期末考试题
北师大版七年级上册数学期末试卷及答案完整版 3套
七年级数学上册期末试卷及答案(考试时间100分钟,试卷满分100分)一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号直接填写在试卷相应位置上) 1.下列四个算式中,有一个算式与其他三个算式的计算结果不同,则该算式是 A .()21-B .21-C .()31- D .1--2.已知水星的半径约为24400000米,用科学记数法表示为( )米A .80.24410⨯ B .61044.2⨯ C .71044.2⨯ D .624.410⨯ 3.下列各式中,运算正确的是A .3a 2+2a 2=5a 4B .a 2+a 2=a 4C .6a -5a =1D .3a 2b -4ba 2=-a 2b4.如图所示几何体的左视图是5.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③180°-∠α;④12(∠α-∠β).正确的是: A .①②③④B .①②④C .①②③D .①②6.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是103,则m 的值是 A .9B .10C .11D .12二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置上)7.已知∠A =30°36′,它的余角 = . 8.如果a -3与a +1互为相反数,那么a = . 9.写出所有在652- 和1之间的负整数: . 10.如果关于x 的方程2x +1=3和方程032=--xk 的解相同,那么k 的值为________.11.点C 在直线AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点, 则线段MN 的长为 .12.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm”和“8cm”分别对应数轴上的-3和x ,那么x 的值为 .13.|x -3|+(y +2)2=0,则y x 为 .14.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .15.一个正方体的平面展开图如图,已知正方体相对两个面上的数之和为零,则a+b = .16.小明同学在某月的日历上圈出2×2个数(如图),正方形方框内的4个数的和是28,那么这4个数是三、解答题(本大题共9小题,共68分.请在试卷指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本题8分)计算: (1)9+5×(-3)-(-2)2 ÷ 4; (2)()()14-2-61-31-212⨯+⎪⎭⎫ ⎝⎛÷⎪⎭⎫⎝⎛ 18.(本题8分)解下列方程: (1)13421+=+x x ; (2)1612312-+=-x x . 19.(本题5分)先化简,再求值:)]2(23[25222b a ab abc b a abc -+--,其中a =21-,b =-1,c =3. 20.(本题6分)作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.21.(本题6分)在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为xcm,请用x来表示这个无盖长方体的容积;(2)当剪去的小正方体的边长x的值分别为3cm和3.5cm时,比较折成的无盖长方体的容积的大小.22.(本题7分)如图,在三角形ABC中,先按要求画图,再回答问题:(1)过点A画∠BAC的平分线交BC于点D;过点D画AC的平行线交AB于点E;过点D画AB的垂线,垂足为F.(画图时保留痕迹)(2)度量AE、ED的长度,它们有怎样的数量关系?(3)比较DF、DE的大小,并说明理由.23.(本题8分)如图,已知同一平面内∠AOB=90o,∠AOC=60o,(1)填空∠AOC= ;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60o改成∠AOC=2α(α<45o),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.24.(本题8分)我市为打造八圩港风光带,现有一段河道整治任务由A B 、两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成.现在A 工程队单独做6天后,B 工程队加入合做完成剩下的工程,问A 工程队一共做了多少天? (1)根据题意,万颖、刘寅两名同学分别列出尚不完整的方程如下: 万颖:=++⨯x )241161(6161________ ; 刘寅:()1241161=⨯+y根据万颖、刘寅两名同学所列的方程,请你分别指出未知数x y 、表示的意义,然后在,然后在方框中补全万颖、刘寅同学所列的方程:万颖:x 表示 ,刘寅:y 表示 ,万颖同学所列不完整的方程中的方框内该填 ,刘寅同学所列不完整的方程中的方框内该填 . (2)求A 工程队一共做了多少天.(写出完整的解答过程) 25.(本题10分)已知:线段AB=20 cm .(1)如图1,点P 沿线段AB 自A 点向B 点以2厘米/秒运动,点P 出发2秒后,点Q 沿线段BA 自B 点向A 点以3厘米/秒运动,问再经过几秒后P 、Q 相距5cm?(2)如图2:AO=4 cm , PO=2 cm , ∠POB=60o ,点P 绕着点O 以60度/秒的速度逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P 、Q 两点能相遇,求点Q 运动的速度 .参考答案一、选择题 ACDD BB 二、填空题7.59o 24′ 8.1 9.-2,-1 10.7 11.7cm 戓1cm 12.5 13.-8 14.870 15.-1 16.3,4,10,11 三、解答题17.(1)解:原式=9+(-15)-1 (2分)= -7(4分) (2)解:原式=()()()14-46-31-6-21⨯+⨯⨯=-3+2-56…………………3分 =-57 …………………4分 或原式=()()14-46-61⨯+⨯= -1-56=-57…………………4分 18.(1)解:去分母得 3(x+1)=8x+6………………………………1分 去括号、移项、合并同类项,得 -5x=3………………………………2分 系数化为1,得 x=53-. ………………………………4分 (2)解:去分母得 2(2x-1)=(2x+1)-6………………………………1分 去括号、移项、合并同类项,得 2x=-3………………………………2分 系数化为1,得 x=23-. ………………………………4分 19.解:原式=]243[25222b a ab abc b a abc -+-- (1分) = b a ab abc b a abc 22224325+--- (2分) = 242ab abc - (3分) 当a =21-,b =-1,c =3时. 原式= 2)1()21(43)1()21(2-⨯-⨯-⨯-⨯-⨯ (4分) =23+ =5 (5分) 20.(各2分)1121.(1)容积:2)216(x x - ……………3分(2)当x=3时,容积为300cm 3……………4分 当x=3.5时,容积为283.5 cm 3……………5分答 当剪去的小正方形的边长为3cm 时,无盖长方体的容积大些.……………6分 22.(1)画角平分线(2分),画平行线(3分),画垂线 (4分) (2)AE=ED (5分) (3)DF<DE , (6分)理由:直线外一点和直线上各点连接的所有线段中,垂线段最短.(7分) 23.(1)150° ………………………1分 (2)45° ………………………3分 (3)解:因为∠AOB =90°,∠AOC =2α 所以∠BOC =900+2α因为OD 、OE 平分∠BOC ,∠AOC 所以∠DOC =21∠BOC =45o +α,∠CO E=21∠AOC =α ……6分 所以∠DO E=∠DOC -∠CO E=450 ……8分 说明:其他解法参照给分.24.(1)x 表示A 、B 合做的天数(或者B 完成的天数);y 表示A 工程队一共做的天数; 1 ; y-6 . (每空1分共4分) (2)解:设A 工程队一共做的天数为y 天,由题意得:=-+)6(241161y y 1 …………………6分 解得y=12答:A 工程队一共做的天数为12天. ……8分 用另一种方法类似得分.(2)解答不完整只有答案扣2分. 25.解:(1)设再经过t s 后,点P 、Q 相距5cm , ①P 、Q 未相遇前相距5cm ,依题意可列223205t t +-()+=, 解得,t =115……2分 ②P 、Q 相遇后相距5cm ,依题意可列223205t t ++()+=, 解得,t =215……4分 答:经过115s 或215s 后,点P 、Q 相距5cm . 解:(2)点P ,Q 只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为12060=2s或120180560s += ……6分设点Q 的速度为y m/s ,当2秒时相遇,依题意得,2y 20218-==,解得y =9 当5秒时相遇,依题意得,5y 20614-==,解得y 2.8= 答:点Q 的速度为9m /s 2.8m /s 或. …………8 分 若只有一解得5分.数 学 试 卷 北 师 大 版 七 年 级 上 册一、精心选一选(每小题3分,共30分) 1.-21的相反数是( )A .2B .-2C .21 D .-212.下列式子正确的是( )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 3. 沿图1中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A B C D 图1 4.多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式5.桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②6.数a ,b 在数轴上的位置如图2所示,则b a +是( )A .正数B .零C .负数D .都有可能7. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米 8.图5是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( ) A .这天15点时的温度最高B .这天3点时的温度最低C .这天最高温度与最低温度的差是13℃D .这天21点时的温度是30℃9.一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( )温度/℃383430 26 22 15 18 21 24图3 O O O O A B C D 图4图210.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A .3瓶B .4瓶C .5瓶D .6瓶 二、细心填一填(每空3分,共30分)11.52xy -的系数是 。
北师大版七年级上册数学期末考试试卷及答案
北师大版七年级上册数学期末考试试题一、单选题1.2的相反数是( )A .2B .-2C .12 D .12- 2.如图所示的图形绕虚线旋转一周,所形成的几何体是( )A .B .C .D .3.数据680 000 000元,用科学记数法表示正确的是( )A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元4.下列各题运算正确的是( )A .2a+b=2abB .3x 2﹣x 2=2C .7mn ﹣7mn=0D .a+a=a 25.为了了解某市参加中考的25000名学生的视力情况,抽查了2000名学生的视力进行统计分析,下面四个判断正确的是( )A .2000名学生的视力是总体的一个样本B .25000名学生是总体C .每名学生是总体的一个个体D .样本容量是2000名6.根据图中提供的信息,可知每个杯子的价格是( )A .51元B .35元C .8元D .7.5元7.把两块三角板按如图所示那样拼在一起,那么∠ABC 的度数是( )A .120°B .125°C .130°D .135°8.若关于x 的方程|2|(3)30m m x ---=是一元一次方程,则m 值是( )A.1或2B.1 或3C.1D.39.在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.a+b<0B.a+b>0C.|a|>|b|D.ab>010.某个体商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件盈利25%,另一件亏本25%,则在这次买卖中,他()A.不赚不赔B.赔了12元C.赔了18元D.赚了18元二、填空题11.买单价m元的圆珠笔2支,付款10元(m﹤5),应找回_________元.12.若单项式﹣3x2my3与2x4yn是同类项,则m+n=_____.13.已知代数式x+2y+1的值是3,则代数式2x+4y+1的值是___.14.钟表上的时针和分针都绕其轴心旋转,从8点到8点40分,时针转了_____度,分针转了_____度,8点40分时针与分针所成的角是_____度.15.若x=1是方程2(a﹣x)=x的解,则a=_____.16.若A、B、C三点在同一直线上,且AB=5cm,BC=3cm,那么AC=_____cm.17.要锻造一个直径为8 cm,高为4 cm的圆柱形毛坯,至少应截取直径为4 cm的圆钢__________cm.18.已知:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52,…,根据前面各式的规律,以下等式(n为正整数),∠1+3+5+7+9+…+(2n-1)=n2;∠1+3+5+7+9+…+(2n+3)=(n+3)2;∠1+3+5+7+9+…+2013=10072;∠101+…+2013=10072-502其中正确的有______个.三、解答题19.画出如图由11个小正方体搭成的几何体从不同角度看得到的图形.20.计算:(1)(513638-+)×(﹣24). (2)﹣12018+4﹣(﹣2)3+3÷(﹣35). 21.解一元一次方程(1)4x+10=6(x ﹣2) (2)341125x x -+-=. 22.先化简,再求值:(1)2x+7+3x -2,其中x =2;(2)222322(2)m mn m mn n ----,其中m =﹣2,n =3.23.如图,点C 是线段AB 上一点,M 是线段AC 的中点,N 是线段BC 的中点.(1)如果AB =10cm ,AM =3cm ,求CN 的长;(2)如果MN =6cm ,求AB 的长.24.如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE .试求∠COE 的度数.25.A ,B 两地相距448km ,一列慢车从A 地出发,速度为60km/h ,一列快车从B 地出发,速度为80km/h ,两车相向而行,慢车先行28min ,快车开出多长时间后两车相遇?26.元旦节期间,百货商场为了促销,每件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件仍盈利20元,这批夹克每件的成本价是多少元?27.图∠是一个三角形,分别连接这个三角形三边的中点得到图∠;再分别连接图∠中间小三角形三边的中点,得到图∠.(1)图∠有个三角形;图∠有个三角形.(2)按上面的方法继续下去,第5个图形中有个三角形;第n个图形中有个三角形?(用含有n的式子表示结论)28.我县各学校九年级学生在体育测试前,都在积极训练自己的考试项目,王强就本班同学“自己选测的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;(2)补全条形统计图;(3)在扇形统计图中,“排球”部分所对应的圆心角度数为°;(4)若全校有3000名学生,请估算出全校“其他”部分的学生人数.参考答案1.B【详解】2的相反数是-2.故选:B.2.B【详解】解:上面的直角三角形旋转一周后是一个圆锥,下面的长方形旋转一周后是一个圆柱.所以应是圆锥和圆柱的组合体.故选B.3.B【详解】680 000 000元=6.8×108元.故选:B.【点睛】考点:科学记数法—表示较大的数.4.C【分析】根据合并同类项法则依次分析各项即可得到结果.【详解】A.2a与b不是同类项,无法合并,本选项正确;B.222-=,本选项正确;x x x32C.7mn-7nm=0,本选项正确;D.a+a=2a,本选项正确;故选C.考点:本题考查的是合并同类项【点睛】解答本题的关键是熟练掌握合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.5.A【分析】根据相关概念(总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目)进行分析.【详解】根据题意可得:2000名学生的视力情况是总体,2000名学生的视力是样本,2000是样本容量,每个学生的视力是总体的一个个体.故选A .【点睛】考查了总体、个体、样本、样本容量.解题关键是理解相差概念(总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目).6.C【分析】要求一个杯子的价格,就要先设出一个未知数,然后根据题中的等量关系列方程求解.题中的等量关系是:一杯+壶=43元;二杯二壶+一杯=94.【详解】解:设一杯为x ,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94解得:x=8(元)故选C .7.A【分析】∠ABC 等于30度角与直角的和,据此即可计算得到.【详解】∠ABC=30°+90°=120°.故选:A .【点睛】本题考查了角度的计算,理解三角板的角的度数是关键.8.C【分析】只含有一个未知数,且未知数的次数是1的整式方程是一元一次方程,根据定义解答.【详解】解:∠方程|2|(3)30m m x---=是一元一次方程, ∠20m -=,且30m -≠,∠m=1,故选:C .【点睛】此题考查一元一次方程的定义,熟记定义并应用解决问题是解题的关键.9.A【分析】根据点在数轴上的位置得到a >0,b <0,|a|<|b|,由此判断即可.【详解】解:∠a >0,b <0,|a|<|b|,∠a+b <0,ab <0,所以B ,C ,D 不正确,A 正确;故选:A .【点睛】此题考查了利用数轴确定式子的符号,正确理解点在数轴上的位置得到a >0,b <0,|a|<|b|是解题的关键.10.C【分析】要知道赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后根据题中的等量关系列方程求解.【详解】设在这次买卖中第一件原价是x ,则可列方程:(1+25%)x =135,解得:x =108,比较可知,第一件赚了27元;设第二件原价是y ,第二件可列方程:(1﹣25%)y =135,解得:y =180,比较可知亏了45元,两件相比则一共亏了45﹣27=18元.故选:C .【点睛】此题考查了一元一次方程的应用,解题的关键是明白盈利与亏本的含义,准确列出计算式,计算结果,难度一般.11.()102m -【分析】根据题意可得:买圆珠笔2支为2m 元,即可求解.【详解】解:∠圆珠笔的单价m 元,∠买圆珠笔2支为2m 元,∠付款10元(m ﹤5),应找回()102m -元.故答案为:()102m -【点睛】本题主要考查了列代数式,明确题意,准确得到数量关系是解题的关键. 12.5【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得出m 、n 的值,代入代数式即可得出答案.【详解】∠单项式﹣3x 2my 3与2x 4yn 是同类项,∠2m =4,n =3,解得m =2,n =3,∠m+n =5.故答案为:5.【点睛】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项所含字母相同,并且相同字母的指数也相同.13.5【分析】根据题意,先求出2x y +的值,再利用等式的性质求出24x y +的值,最后求出241x y ++的值即可.【详解】解:∠213x y ++=∠22x y +=∠244x y +=∠2415x y ++=【点睛】本题主要考查了等式的性质,熟练掌握等式的性质是解答此题的关键.14. 20 240 20【分析】根据分针每分钟走6度,时针每分钟走0.5度,乘以走的时间即可求解【详解】钟表上的时针和分针都绕其轴心旋转,钟表一圈有360度、60分钟、12个小时,所以分针转动的速度等于360606÷= 度/分钟,时针转动的速度等于36012600.5÷÷= 度/分钟.由题意可知,时针和分针都走了40分钟,所以时针转了0.54020⨯= 度,分针转了640240⨯= 度,8点时时针与分针所形成的角是120度,所以8点40分时针与分针所形成的角是()3602402012020--+= 度.故答案为:20;240;20【点睛】本题考查钟面角,需注意一开始时针与分针的位置不一定重合15.32【分析】把x=1代入已知方程,列出关于a 的方程,通过解该方程即可求得a 的值.【详解】解:根据题意,得2(a ﹣1)=1,解得,a =32. 故答案是:32. 【点睛】本题考查了一元一次方程的解的定义.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.16.8或2##2或8【分析】此题没有指明点C 的具体位置故应该分情况进行分析从而求解.【详解】解:当点B 位于A ,C 中间时,AC =AB +BC =8cm ;当点C 位于A ,B 中间时,AC =AB−BC =2cm .故答案为:8或2.【点睛】本题主要考查两点间的距离的知识点,注意分类讨论思想的运用.17.16【分析】设截取直径为4cm 的圆钢xcm ,则根据体积相等可列方程并求解即可.【详解】设截取直径为4cm 的圆钢xcm ,则根据体积相等得方程:22442x ππ⨯=, 解得x=16.故答案为:16.【点睛】本题考查了一元一次方程的应用,找到其中隐含的相等关系:圆钢的体积=锻造后圆柱的体积,是解题的关键.18.3【分析】观察所给等式得到从1开始的连续的奇数的和等于奇数的个数的平方,则1+3+5+7+9+…+(2n -1)=n 2,1+3+5+7+9+…+(2n+3)=(n+2)2,1+3+5+7+9+…+(2×50-1)=502,1+3+5+7+9+…+(2×1007-1)=10072,则可对∠∠∠直接判断;通过求差可对∠进行判断.【详解】解:1+3+5+7+9+…+(2n -1)=n 2,所以∠正确;1+3+5+7+9+…+(2n+3)=(n+2)2,所以∠错误1+3+5+7+9+…+2013=1+3+5+7+9+…+(2×1007-1)=10072,所以∠正确;∠1+3+5+7+9+…+99=1+3+5+7+9+…+(2×50-1)=502,∠101+…+2013=10072-502,所以∠正确.故答案为3.【点睛】本题考查了规律型:数字的变化类:探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.19.见解析;【分析】利用组合体从不同的角度观察得出答案即可.【详解】解:如图所示:.【点睛】此题主要考查了三视图的画法,正确根据观察角度得出图形是解题关键.20.(1)﹣21(2)6【分析】(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算除法运算,最后算加减运算即可求出值.(1) 原式513(24)(24)(24)638=⨯--⨯-+⨯-2089=-+-21=-;(2) 原式51483()3=-+++⨯-385=+-6=.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.(1)x =11(2)x =﹣9【分析】(1)方程去括号,移项合并,将x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x 系数化为1,即可求出解.(1)去括号得:410612x x +=-,移项得:461210x x -=--,合并得:222x -=-,解得:11x =;(2)去分母得:5(3)2(41)10x x --+=,去括号得:5158210x x ---=,移项得:581017x x -=+,合并得:327x -=,解得:9x =-.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.22.(1)5x+5,15(2)2222m mn n ++,10【分析】(1)原式合并同类项得到最简结果,把x 的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把m 与n 的值代入计算即可求出值.(1)解:2x+7+3x -2=5x+5,当x=2时,原式=10+5=15;(2)解:222322(2)m mn m mn n ---- 22232242m mn m mn n =--++2222m mn n =++,当m=-2,n=3时,原式=4-12+18=10.【点睛】此题考查了整式的加减-化简求值,关键是掌握计算顺序,注意去括号时符号的变化.23.(1)CN =2(cm);(2)AB =12(cm).【分析】(1)根据点C 为中点求出AC 的长度,然后根据AB 的长度求出BC 的长度,最后根据点N 为中点求出CN 的长度;(2)根据中点的性质得出AC=2MC ,BC=2NC ,最后根据AB=AC+BC=2MC+2NC=2(MC+NC)=2MN得出答案.【详解】解:(1)∠M是线段AC的中点,∠CM=AM=3cm,AC=6cm.又AB=10cm,∠BC=4cm.∠N是线段BC的中点,∠CN=12BC=12×4=2(cm);(2)∠M是线段AC的中点,N是线段BC的中点,∠NC=12BC,CM=12AC,∠MN=NC+CM=12BC+12AC=12(BC+AC)=12AB,∠AB=2MN=2×6=12(cm).24.75°.【分析】先根据角平分线定义求出∠COB的度数,再求出∠BOD的度数,求出∠BOE的度数,即可得出答案.【详解】解:∠∠AOB=90°,OC平分∠AOB,∠∠COB=12∠AOB=45°,∠∠COD=90°,∠∠BOD=45°,∠∠BOD=3∠DOE,∠∠DOE=15°,∠∠BOE=30°,∠∠COE=∠COB+∠BOE=45°+30°=75°.【点睛】本题考查了角平分线定义和角的有关计算,掌握角平分线定义是解题的关键. 25.快车出发后3小时两车相遇【分析】利用两车行驶的距离和448,进而求出即可.【详解】设快车出发后x小时两车相遇,根据题意可得:2860×60+(60+80)x=448,解得:x=3,答:快车出发后3小时两车相遇.【点睛】此题主要考查了一元一次方程的应用,得出正确等量关系是解题关键.26.这批夹克每件的成本价是100元【分析】设成本价为x 元,根据提价打折之后盈利为20元,列出方程式,求解即可.【详解】设成本价为x元,依题意得:x(1+50%)×80%﹣x=20,解得:x=100,答:这批夹克每件的成本价是100元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.27.(1)5,9(2)17;1+4(n﹣1)【分析】(1)观察图形得到图∠中三角形的个数为1,图∠中三角形的个数为1+4,图∠中三角形的个数为1+4×2;(2)由(1)得到后面图形中的三角形个数比它前面它们的三角形个数多4,于是得到第n 个图形中三角形的个数为1+4(n﹣1),则可计算出n=5时三角形的个数.(1)图∠中三角形的个数为1,图∠中三角形的个数为1+4=5,图∠中三角形的个数为1+4×2=9;(2)图∠中三角形的个数为1+4×4=17;第n个图形中三角形的个数为1+4(n﹣1).故答案为5,9;17;1+4(n﹣1).【点睛】本题考查了规律型﹣图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.28.(1)50(2)补图见解析(3)115.2(4)全校“其他”部分的学生人数为600人【分析】(1)根据条形图可得跳绳人数为15人,根据扇形图可得跳绳人数占30%,然后利用1530%÷可得总人数;(2)首先计算出跳远人数和其它人数,然后再补全图形即可;(3)利用360︒乘以“排球”部分在总体中所占的比例即可;(4)利用样本估计总体的方法,用3000乘以调查的“其他”部分的人数所占百分比.(1)解:1530%50÷=(名).故答案为:50;(2)跳远人数:5018%9⨯=(名),其它人数:501516910---=(名).如图所示:(3)“排球”部分所对应的圆心角度数为:360°×1650=115.2°.故答案为:115.2;(4)10300060050⨯=(名).答:全校“其他”部分的学生人数为600名.。
北师大版七年级上册数学期末试卷(含答案)
北师大版七年级上册数学期末试卷(含答案)北师大版七年级上册数学期末试卷(含答案)第一部分:选择题(共50题,每题1分;共50分)1. 以下哪个数是无理数?A. √2B. 1C. 3/4D. 0答案:A解析:无理数是不能表示为有限小数或循环小数的实数。
√2 是一个无理数。
2. 在多项式 4x^3 + 3x – 2 中,x 的次数为:A. 2B. 3C. 1D. 0答案:B解析:多项式中最高次数的项决定了整个多项式的次数,所以 x 的次数为 3。
3. 下面哪个图形中的三角形是锐角三角形?A. B. C. D.答案:A解析:锐角是指小于90度的角,只有图形 A 中的三角形是锐角三角形。
4. 决算表中列出了一个公司在一年中的所有收入和支出。
决算表的目的是:A. 记录公司的股东信息B. 衡量公司盈利能力C. 统计员工的工资D. 呈现公司的年度计划答案:B解析:决算表用于衡量公司在一年中的盈利能力和财务状况。
5. 以下哪个数字是一个素数?A. 1B. 4C. 7D. 9答案:C解析:素数是指只能被 1 和自身整除的正整数,而 7 是一个素数。
6. 对于以下方程 4x + 12 = 20 ,解为:A. x = -2B. x = 2C. x = -8D. x = 8答案:B解析:通过变换方程,我们可以得到 x = 2。
7. 将一个正方形的边长增加 20%,那么面积将变为原来的:A. 100%B. 120%C. 140%D. 144%答案:D解析:边长增加 20% 相当于乘以 1.2,而面积是边长的平方,所以面积将变为原来的 1.2^2 = 1.44,即 144%。
8. 下图中,三角形 ABC 中,∠ACB 的度数为:A. 45°B. 60°C. 90°D. 180°答案:B解析:三角形的内角和为180度,而∠ABC = 90度,因此∠ACB = 180度 - 90度 - 30度 = 60度。
北师大版七年级上册数学期末考试试卷及答案
北师大版七年级上册数学期末考试试题一、单选题1.-2的倒数是()A .-2B .12-C .12D .22.下列调查中适合采用普查方式的是()A .了解一大批炮弹的杀伤半径B .调查全国初中学生的上网情况C .旅客登机前的安检D .了解成都市中小学生环保意识3.用一个平面去截下列的几何体,可以得到长方形截面的几何体有()A .1个B .2个C .3个D .4个4.如图所示,由A 到B 有①、②、③三条路线,最短的路线选①的理由是()A .两点确定一条直线B .两点间距离的定义C .两点之间,线段最短D .因为它直5.数据42600用科学记数法表示为()A .4.26×103B .4.26×104C .42.6×103D .0.426×1056.解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x+=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-7.如图,已知点D 在点O 的北偏西30°方向,点E 在点O 的北偏东50︒方向,那么DOE ∠的度数为()A .30°B .50︒C .80︒D .100︒8.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x 辆汽车到甲队,由此可列方程为()A .100﹣x =2(68+x)B .2(100﹣x)=68+xC .100+x =2(68﹣x)D .2(100+x)=68﹣x 9.某校七年级开展“阳光体育”活动,对爱好排球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.爱好排球的人数是21人,爱好足球的人数是爱好羽毛球的人数的4倍,则下列正确的是()A .喜欢篮球的人数为16人B .喜欢足球的人数为28人C .喜欢羽毛球的人数为10人D .被调查的学生人数为80人10.如图所示,直线,AB CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为1,2,3,4,5,6---….那么标记为“2021”的点在()A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上11.如图,把一张长方形纸片沿对角线BD 折叠,25CBD ∠=︒,则ABF ∠的度数是()A .25︒B .30°C .40︒D .50︒12.如图所示的运算程序中,如果开始输入的x 值为48-,我们发现第1次输出的结果为24-,第2次输出的结果为12-,…,第2021次输出的结果为()A .6-B .3-C .24-D .12-二、填空题13.如图所示在数轴上的点A 对应的数为a ,B 对应的数为b ,则a ,b 与0的大小关系为_____<0<_____.14.方程260x +=的解是______.15.如图,D 是AC 的中点,CB =4cm ,DB =7cm ,则AB 的长为___________cm .16.某地制作一年来每个月平均气温变化统计图,请你帮忙选择最恰当的统计图是_________.(从条形统计图、折线统计图、扇形统计图中选一个)17.已知A =2x 2+x+1,B =mx+1,若关于x 的多项式A+B 不含一次项,则常数m =_____.18.如图,是一个正方体的六个面的展开图形,则“力”所对的面是_____.19.如果代数式x+2y 的值是3,则代数式2x+4y+5的值是___________.三、解答题20.计算:(1)()211713-+--(2)214(3)()()39⎡⎤-⨯-+-⎢⎥⎣⎦.21.如图所示,已知线段AB ,点P 是线段AB 外一点.按要求画图,保留作图痕迹;(1)作射线PA ,作直线PB ;(2)延长线段AB 至点C ,使得AC=2AB .22.化简并求值:2(2a -3b)-(3a+2b+1),其中a=2,b=12-.23.解方程:(1)6234y y +=-(2)151136x x +--=24.如图,∠AOC 和∠BOD 都是直角.(1)如果∠DOC =35°,则∠AOB =;(2)找出图中一组相等的锐角为:;(3)选择,若∠DOC 变小,∠AOB 将变;(A .大B .小C .不变)25.某商店购进A 、B 两种商品共100件,花费3100元,其进价和售价如表:(元/件)售价(元/件)进价A2530B3545(1)B两种商品分别购进多少件?(2)两种商品售完后共获取利润多少元?26.如图,已知在数轴上有三个点A、B、C,O是原点,满足OA=AB=BC=20cm,动点P从点O出发向右以每秒2cm的速度匀速运动;同时,动点Q从点C出发,在数轴上向左匀速运动,速度为v(v>1);运动时间为t.(1)求:点P从点O运动到点C时,运动时间t的值.(2)若Q的速度v为每秒3cm,则经过多长时间P,Q两点相距30cm?此时|QB﹣QC|是多少?27.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)m=_____,E组对应的圆心角度数为______︒;(2)补全频数分布直方图;参考答案1.B 【分析】根据倒数的定义(两个非零数相乘积为1,则说它们互为倒数,其中一个数是另一个数的倒数)求解.【详解】解:-2的倒数是-12,故选:B .【点睛】本题难度较低,主要考查学生对倒数等知识点的掌握.2.C 【分析】根据全面调查与抽样调查的特点对四个选项进行判断.【详解】解:A 、具有破坏性,必须抽查,故选项错误;B 、人数多,不容易调查,适合抽查,故选项错误;C 、事关重大,是精确度要求高的调查,需全面调查,故本选项正确;D 、人数多,不容易调查,适合抽查,故选项错误;故选C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B 【分析】根据球、圆柱、圆锥、三棱柱的形状判断即可,可用排除法.【详解】解:球、圆锥不可能得到长方形截面,故能得到长方形截面的几何体有:圆柱、三棱柱,一共有2个.故选:B .【点睛】本题考查几何体的截面,关键要理解面与面相交得到线,注意:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.4.C 【分析】根据基本事实:两点之间,线段最短,直接作答即可.【详解】解:由A 到B 有①、②、③三条路线,最短的路线选①的理由是:两点之间,线段最短.故选C【点睛】本题考查的是两点之间,线段最短的实际应用,掌握“几何基本事实或图形的性质在生活中的应用”是解本题的关键.5.B 【分析】用科学记数法表示较大的数时,一般形式为10n a⨯,其中11|0|a ≤<,n 为整数.【详解】解:44.264260010=⨯.故选B .6.D 【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x+1)=6﹣2x ,故选:D .【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.7.C 【分析】利用方向角的定义求解即可.【详解】解:∵D 在点O 的北偏西30°方向,点E 在点O 的北偏东50°方向,∴∠DOE=30°+50°=80°,故选:C .【点睛】本题主要考查了方向角,解题的关键是理解方向角的定义:方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.8.C 【分析】由题意得到题中存在的等量关系为:2(乙队原来的车辆-调出的车辆)=甲队原来的车辆+调入的车辆,根据此等式列方程即可.【详解】设需要从乙队调x 辆汽车到甲队,由题意得100+x =2(68﹣x),故选C .【点睛】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.9.B 【分析】先求出被调查的学生的人数,可求得喜欢篮球的人数,从而得到喜欢足球的和喜欢羽毛球的人数之和,根据爱好足球的人数是爱好羽毛球的人数的4倍,可求出喜欢足球的人数,喜欢羽毛球的人数,即可求解.【详解】解:根据题意得:被调查的学生的人数:2130%70÷=(人),故D 错误;∴喜欢篮球的人数为:7020%14⨯=(人),故A 错误;∴喜欢足球的和喜欢羽毛球的人数之和为:70211435--=,∵爱好足球的人数是爱好羽毛球的人数的4倍,∴喜欢羽毛球的人数为()35417÷+=(人),故C 错误;∴喜欢足球的人数为35728-=(人),故B正确;故选:B.【点睛】本题主要考查了扇形统计图,解题的关键是从扇形统计图中获取准确的信息.10.A【分析】由图可观察出奇数项在OA或OB射线上,根据每四条射线为一组,即可得出答案.【详解】解:观察图形的变化可知:奇数项:1、3、5、7,…,2n-1(n为正整数),偶数项:-2、-4、-6、-8,…,-2n(n为正整数),∵2021是奇数项,∴2n-1=2021,∴n=1011,∵每四条射线为一组,始边为OC,∴1011÷4=252...3,∴标记为“2021”的点在射线OA上,故选:A.【点睛】本题考查了规律型图形的变化类,解决本题的关键是观察图形的变化寻找规律.11.C【分析】利用折叠的特性可得:∠CBD=∠EBD=25°,再利用长方形的性质∠ABC =90°,则∠ABE=90°−∠EBC,结论可得.【详解】解:由折叠可得:∠CBD=∠EBD=25°,则∠EBC=∠CBD+∠EBD=50°,∵四边形ABCD是长方形,∴∠ABC=90°,∴∠ABF=90°−∠EBC=40°,故C正确.故选:C.【点睛】本题主要考查了角的计算,折叠的性质,利用折叠得出:∠CBD=∠EBD是解题的关键.12.A【分析】根据程序得出一般性规律,确定出第2021次输出结果即可.【详解】解:把x=-48代入得:12×(-48)=-24;把x=-24代入得:12×(-24)=-12;把x=-12代入得:12×(-12)=-6;把x=-6代入得:12×(-6)=-3;把x=-3代入得:-3-3=-6,依此类推,从第3次输出结果开始,以-6,-3循环,∵(2021-2)÷2=1009…1,∴第2021次输出的结果为-6,故选:A .【点睛】此题考查了代数式求值,理解题意,根据程序得出一般性规律是解本题的关键.13.a b 【分析】根据数轴上点的位置进行判断,0的右边大于0,0的左边小于0,据此分析即可【详解】解:∵在数轴上的点A 对应的数为a ,B 对应的数为b ,A 点在原点的左侧,B 点在原点的右侧,正数大于负数,∴0a b<<故答案为:,a b【点睛】本题考查了根据数轴判断有理数的大小,数形结合是解题的关键.14.x =−3【分析】方程移项,把x 系数化为1,即可求出解.【详解】解:2x +6=0,移项得:2x =−6,解得:x =−3.故答案为:x =−3.【点睛】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.15.10【分析】根据线段中点的性质可得AD DC =,由DC DB CB =-求得AD ,根据AB AD DB =+求解即可.【详解】解:∵743cm DC DB CB =-=-=,点D 为AC 的中点,∴3cmAD DC ==∴AB AD DB =+3710cm=+=故答案为:10【点睛】本题考查了线段中点的性质,线段和差的计算,数形结合是解题的关键.16.折线统计图【分析】首先要清楚每一种统计图的特点:频数直方图能够显示各组频数分布的情况;条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【详解】制作一年来每个月平均气温变化统计图,选择折线统计图合适.故答案为:折线统计图【点睛】本题考查统计图的选择,解答此题要熟练掌握统计图的特点,根据实际情况灵活选择.17.1-【分析】先计算A B +,合并同类项之后,根据题意令一次项系数为0,即可求得m 的值.【详解】A B +222112(1)2x x mx x m x ++++=+++=,若关于x 的多项式A+B 不含一次项,10m ∴+=,解得1m =-.故答案为:1-.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.18.我【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“力”字相对的面上的汉字是“我”.故答案为:我【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.19.11【分析】观察看出,所求的代数式是已知代数式变形得到的,利用代入法求得代数式的值即可.【详解】∵x+2y=3,∴代数式两边分别乘以2得:2x+4y=6,代入2x+4y+5,得:原式=6+5=11.故本题答案为:11.【点睛】考查代数式的变形及代入法的运用.注意整体思想的应用.20.(1)9(2)-7【解析】(1)()211713-+--413=-+9=(2)214(3)(()39⎡⎤-⨯-+-⎢⎥⎣⎦149939⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭34=--7=-21.(1)见解析(2)见解析【分析】(1)根据题意作射线PA ,作直线PB ;(2)以B 为圆心AB 的长为半径画弧,交AB 的延长线于点C ,连接BC ,则AC=2AB(1)如图所示,射线PA ,直线PB 即为所求作;(2)如图所示,延长线段AB 至点C ,使得AC=2AB22.a -8b -1;5【分析】根据去括号的法则去括号,然后合并同类项,然后代入求值即可.【详解】2(2a -3b )-(3a +2b +1)=4a -6b -3a -2b -1=a -8b -1.当a =2,b =-12,代入原式=2-8×(-12)-1=5考点:整式的化简求值23.(1)2y =-(2)1x =-【解析】(1)原方程可化为:6342y y -=--36y =-2y =-(2)原方程可化为:()21651x x +-=-2451x x -=-33x -=1x =-24.(1)145°(2)∠AOD 与∠BOC(3)A【分析】(1)根据题意可得90AOD DOC ∠=︒-∠,进而根据AOB AOD DOB ∠=∠+∠即可求解;(2)根据DOC ∠的余角相等求解即可;(3)由(1)可知AOB ∠180DOC =︒-∠,进而即可求得答案.(1)∠AOC 和∠BOD 都是直角∴90AOD DOC ∠=︒-∠,AOB AOD DOB ∠=∠+∠9090DOC =︒-∠+︒180DOC =︒-∠ ∠DOC =35°,∴AOB ∠=145°故答案为:145°(2)∠AOC 和∠BOD 都是直角∴90AOD AOC DOC DOC ∠=∠-∠=︒-∠,90BOC DOB DOC DOC ∠=∠-∠=︒-∠∴AOD ∠=BOC∠故答案为:AOD ∠与BOC∠(3)由(1)可知AOB ∠180DOC=︒-∠若∠DOC 变小,∠AOB 将变大故答案为:A【点睛】本题考查了几何图形中角度的计算,同角的余角相等,数形结合是解题的关键.25.(1)A 、B 两种商品分别购进40件、60件;(2)两种商品售完后共获取利润800元【分析】(1)设购进A 种商品a 件,则购进B 种商品(100a -)件,然后根据题意和表格中的数据即可列出相应的方程,从而可以求得A 、B 两种商品分别购进多少件;(2)根据(1)中的结果和表格中的数据可以计算出两种商品售完后共获取利润多少元.【详解】(1)设购进A 种商品a 件,则购进B 种商品(100a -)件,()25351003100a a +-=,解得,40a =,则10060a -=,答:A 、B 两种商品分别购进40件、60件;(2)()()302540453560-⨯+-⨯5401060=⨯+⨯200600800=+=(元),答:两种商品售完后共获取利润800元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.26.(1)30秒(2)经过6秒或18秒P ,Q 两点相距30cm ,此时|QB ﹣QC|是16cm 或20cm【分析】(1)根据题意求得OC 的长,进而根据时间等于路程除以速度列算式求解即可;(2)根据题意,分相遇前和相遇后相距30cm ,两种情形列一元一次方程求解即可.(1)由题意知:OC=OA+AB+BC=20+20+20=60(cm),∴当P运动到点C时,t=60÷2=30(秒);(2)①当点P、Q还没有相遇时,2t+3t=60﹣30,解得:t=6,此时,QC=3×6=18(cm),QB=BC﹣QC=20﹣18=2(cm),∴|QB﹣QC|=|2﹣18|=16(cm),②当点P、Q相遇后,2t+3t=60+30,解得:t=18,此时,QC=3×18=54(cm),QB=QC﹣BC=54﹣20=34(cm),∴|QB﹣QC|=|34﹣54|=20(cm),综上所述,经过6秒或18秒P,Q两点相距30cm,此时|QB﹣QC|是16cm或20cm【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数形结合以及分类讨论是解题的关键.27.(1)40;14.4(2)见解析【分析】(1)由B组有21人和B组占抽查学生总数的21%可计算出被抽查学生的总数,根据C组人数为40人,即可计算出C组占总数的百分比,从而得到:“m”的值;由E组人数4除以总人数再乘以360°即可得到扇形统计图中E组所对应的圆心角度数;(2)根据(1)计算出的被抽查学生的总数,由总数减去A、B、C、E各组的人数可得D 组的人数,即可补全频数直方图.(1)由题意可得:被抽查的总人数为:21÷21%=100(人),C组占总人数的百分比为:40100%=40% 100⨯,∴m=40;“E”组对应的圆心角度数为:4360=14.4 100⨯︒︒;故答案为:40;14.4.(2)D组的频数为:100-10-21-40-4=25(人),频数分布直方图补充完整如下:。
北师大版七年级上册数学期末考试试卷及答案
北师大版七年级上册数学期末考试试题一、单选题1.一个棱柱有18条棱,那么它的底面一定是()A.五边形B.六边形C.十边形D.十五边形2.化简x-2(x+1)的结果是()A.-x-2B.-x+2C.x+2D.x-23.下列式子中符合书写格式的是()A.ab÷c B.11ab2C.a+3D.m·324.如果多项式xm-3+5x-3是关于x的三次三项式,那么m的值为()A.0B.3C.6D.95.在扇形统计图中,各扇形面积之比为5︰4︰3︰2︰1,其中最大扇形的圆心角为()A.150°B.120°C.100°D.90°6.若气温为零上10℃记作+10℃,则−7℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃7.数据“2 021.3万”用科学记数法可表示为()A.20.213×106B.2.0213×107C.0.20213×108D.2.0213×1088.某车间有18名工人生产螺栓和螺母,每人每小时平均能生产螺栓24个或螺母36个,1个螺栓需要配2个螺母,若安排m名工人生产螺栓时每小时生产的螺栓和螺母刚好配套,那么可列方程为()A.24×m=36×(18-m)×2B.24×(18-m)=36×m×2C.24×m×2=36×(18-m)D.24×(18-m)×2=36×m9.一个底面半径为10cm、高为30cm的圆柱形大杯中存满了水,把水倒入底面直径为10cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为()A.6cm B.8cm C.10cm D.12 cm10.如图,℃AOD=84°,℃AOB=18°,OB平分℃AOC,则℃COD的度数是()A .48°B .42°C .36°D .33°二、填空题11.比-32大2的数是_______.12.3时30分时,时针与分针的夹角为_______________.13.若13xa +1y 3与-3x 3y 2b -1是同类项,则a =________,b =_______. 14.修高速公路时,为减小成本尽可能要将弯曲的公路改直,数学依据是___________.15.调查我市一批药品的质量是否符合国家标准.采用_____方式更合适.(填“全面调查”或“抽样调查”)16.已知a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,则2021a b x cd cd+-+的值为_______. 17.商家促销某套衣服,按标价的7折出售仍可获利40元,其成本价为100元,则标价为________元.18.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由_______个组成的,依此,第n 个图案是由___________个组成的.三、解答题19.计算:(1)|2-5|+23 (2)-14-16×[2-(-3)2](3)2-3(2-x)=5(4)31571 46x x---=20.已知m=1,n=-1,求代数式3m2n+mn-2(m2n-mn)的值.21.如图,已知AB=3 cm.(1)延长线段AB至点C,使BC=2AB,用尺规画出图形;(2)若点D是线段AC的中点,求线段BD的长度.22.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A,C两地的距离为10千米,求A,B两地的距离.23.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+”表示成绩大于15秒,“-”表示成绩小于15秒.问:(1)这个小组男生最优秀的成绩是多少秒?最差的成绩是多少秒?(2)这个小组男生的达标率为多少?(达标率=达标人数总人数)(3)这个小组男生的平均成绩是多少秒?24.为了解某中学男生的身高情况,随机抽取若干名男生进行身高测量,将所得到的数据整理后,画出频数分布直方图(如图),图中从左到右依次为第1,2,3,4,5组.(1)求抽取了多少名男生测量身高?(2)身高在哪个范围内的男生人数最多?(答出是第几小组即可)(3)若该中学有300名男生,请估计身高为170cm及170cm以上的人数.25.如图所示,OE,OD分别平分℃AOC和℃BOC.(1)如果℃AOB=90°,℃BOC=40°,求℃DOE的度数;(2)如果℃AOB=α,℃BOC=β(α、β均为锐角,α>β),其他条件不变,求℃DOE ;(3)从(1)、(2)的结果中,你发现了什么规律?26.线段和角是我们初中数学常见的平面几何图形,它们的表示方法、和差计算以及线段的中点、角的平分线的概念等有很多相似之处,所以研究线段或角的问题时可以运用类比的方法.(1)如图1,已知点M是线段AC的中点,点N是线段BC的中点,若AB=10cm,BC=6cm,求线段MN的长;(2)如图1,已知点M是线段AC的中点,点N是线段BC的中点,若AB=10m,BC=xcm,求线段MN的长;(3)如图2,OM平分℃AOC,ON平分℃BOC,设℃AOB=α,℃BOC=β,请用含α,β的代数式表示℃MON的大小.参考答案1.B【分析】根据题意利用n棱柱中棱的条数为3n,由棱的总条数为18,进行计算即可求出答案.【详解】解:n棱柱有3n条棱,又18÷3=6,因此底面是六边形.故选:B.【点睛】本题考查认识立体图形,熟练掌握棱柱的顶点、面数和棱的条数是正确判断的前提.2.A【分析】去括号合并同类项即可.【详解】解:x-2(x+1)=x-2x-2=-x-2.故选A.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.3.C【分析】根据代数式的书写要求逐项分析即可.【详解】解:A.ab÷c应写为:abc,故不正确;B.112ab2应写为:32ab2,故不正确;C.a+3,正确;D.m·3应写为:3m,故不正确;故选C.【点睛】本题考查了代数式的书写格式,数字与数字相乘时,中间的乘号不能用“·”代替,更不能省略不写;数字与字母相乘时,中间的乘号可以省略不写,并且数字放在字母的前面;两个字母相乘时,中间的乘号可以省略不写,字母无顺序性;当字母和带分数相乘时,要把带分数化成假分数;含有字母的除法运算中,最后结果要写成分数形式,分数线相当于除号.4.C【分析】直接利用多项式的定义得出m-3=3,进而求出即可.【详解】解:℃整式xm-3+5x-3是关于x的三次三项式,℃m-3=3,解得:m=6.故选:C.【点睛】本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.5.B【详解】根据题意得最大扇形占总体的百分比为51543213=++++,则它的圆心角度数为13×360°=120°.故选B.点睛:在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.6.D【分析】用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【详解】解:若气温为零上10℃记作+10℃,则-7℃表示气温为零下7℃.故选:D.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.7.B【分析】对于一个绝对值较大的数,用科学记数法写成a×10n的形式,其中1≤|a|<10,n是比原整数位数少1的数.【详解】解:2 021.3万=20213000=2.0213×107,故选B.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.C【分析】设出安排m名工人生产螺栓,则(18-m)人生产螺母,由一个螺栓配两个螺母可知,螺母的个数是螺栓个数的2倍从而得出等量关系,就可以列出方程.【详解】解:设安排m 名工人生产螺栓,则(18-m)人生产螺母,由题意得24×m×2=36×(18-m),故选:C .【点睛】此题主要考查了由实际问题抽象出一元一次方程,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.9.C【分析】通过理解题意可知本题的等量关系,即大杯的体积=12个小杯的体积,再利用圆柱体的体积公式列方程求解即可解答.【详解】解:设小杯的高为x ,根据题意得:π×102×30=π×(10÷2)2•x×12解得:x=10则小杯的高为10cm .故选C .【点睛】本题考查了圆柱面积公式的实际应用,准确理解题意找到等量关系式是解题的关键.10.A【分析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果.【详解】解:OB 平分AOC ∠,18AOB ∠=︒,236AOC AOB ∴∠=∠=︒,又84AOD ∠=︒,843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.故选:A .【点睛】本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.11.-30【分析】列加法计算即可.【详解】解:-32+2=-30,故答案为:-30.【点睛】此题考查了有理数的加法计算法则,正确理解题意是解题的关键.12.75︒##75度【分析】由题意知,3时30分时,时针与分针的夹角在表盘上如图所示,夹角为3.5到6之间的角度,计算求解即可.【详解】解:如图,3时30分时,时针指向3和4的中点,分针指向6,℃夹角为()3606 3.57512︒-⨯=︒ 故答案为:75°.【点睛】本题考查了钟面角.解题的关键在于找出时针与分针的位置.13. 2 2【分析】根据同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项,据此求解即可.【详解】解:℃1313a x y +与3213b x y --是同类项, ℃13213a b +=⎧⎨-=⎩, ℃22a b =⎧⎨=⎩, 故答案为:2;2.【点睛】本题主要考查了同类项的定义,解题的关键在于能够熟练掌握同类项的定义.14.两点之间,线段最短【分析】根据线段的性质:两点之间线段最短解答.【详解】在修高速公路时,为减小成本尽可能要将弯曲的公路改直,数学依据是:两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查了两点之间线段最短的性质,是基础题,比较简单.15.抽样调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:调查我市一批药品的质量是否符合国家标准.采用抽样调查方式更合适, 故答案为抽样调查.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 16.0或-2【分析】根据a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,可以得到a+b=0,cd=1,x=±1,从而可以求得所求式子的值.【详解】解:℃a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,℃a+b=0,cd=1,x=±1,℃x 2021=±1, ℃2021a b x cd cd +-+=1-1+0=0; 或2021a b x cd cd+-+ =-1-1+0=-2.故答案为:0或-2.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 17.200【分析】设这套运动服的标价是x 元.此题中的等量关系:按标价的7折出售仍可获利40元,即标价的7折-成本价=40元.【详解】解:设这套运动服的标价是x 元.根据题意得:0.7x -100=40,解得:x=200.故答案为:200元.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.18.163n+1【分析】观察不难发现,后一个图案比前一个图案多3个基础图形,然后写出第5个和第n 个图案的基础图形的个数即可.【详解】由图可得,第1个图案基础图形的个数为4,第2个图案基础图形的个数为7,7=4+3,第3个图案基础图形的个数为10,10=4+3×2,…,第5个图案基础图形的个数为4+3(5−1)=16,第n个图案基础图形的个数为4+3(n−1)=3n+1.故答案为16,3n+1.【点睛】本题考查了规律型:图形的变化类,根据图像发现规律是解题的关键.19.(1)11;(2)16;(3)x=3;(4)x=-1【分析】(1)先算绝对值和乘方,再算加法即可;(2)先算乘方和括号,再算乘法,后算加减即可;(3)根据去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可;(4)根据去分母、去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可.【详解】解:(1)|2-5|+23=3+8=11;(2)-14-16×[2-(-3)2]=-1-16×(2-9)=-1-16×(-7)=7 16 -+=16;(3)2-3(2-x)=5 ,去括号,得2-6+3x=5,移项,得3x=5+6-2,合并同类项,得3x=9,未知数的系数化为1,得x=3;(4)3157146x x ---=, 去分母,得3(3x -1)-2(5x -7)=12,去括号,得9x -3-10x+14=12,移项,得9x -10x=12+3-14,合并同类项,得-x=1,未知数的系数化为1,得x=-1.【点睛】本题考查了有理数的混合运算,以及解一元一次方程,熟练掌握有理数的运算法则以及一元一次方程的解题步骤是解答本题的关键.20.-4【分析】根据题意先运用整式的加减运算对代数式化简,进而代入m =1,n =-1进行计算即可.【详解】解:3m 2n +mn -2(m 2n -mn )22322m n mn m n mn +-=+23m n mn =+将m =1,n =-1,代入可得2231(1)31(1)134m n mn +=⨯-+⨯⨯-=--=-.【点睛】本题考查代数式化简求值,熟练掌握整式的加减运算与合并同类项的方法是解题的关键.21.(1)见解析;(2)BD =1.5cm【分析】(1)延长AB ,在AB 上用圆规截取即可;(2)根据线段中点定义求出AD ,再由AD -AB 求出BD .【详解】解:(1)如图,(2)℃AB =3 cm ,BC =2AB ,℃AC=3AB=9cm ,℃点D 是线段AC 的中点, ℃1 4.52AD AC cm ==, ℃ 1.5BD AD AB cm =-=.【点睛】此题考查了线段的作图,线段的中点定义,线段的加减,正确画出图形掌握线段中点的定义是解题的关键.22.A ,B 两地的距离为20km 或203km . 【分析】此题的关键是公式:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,根据速度、时间、路程之间的关系,列式计算即可解答.【详解】解:设A 、B 两地之间的距离为x 千米,若C 在A 的上游时:142.57.57.5 2.50x x -++=+, 解得x=203; 若C 在A ,B 之间时:142.57.57.5 2.50x x --+=+, 解得x=20答:A 、B 两地的距离为20千米或203千米. 【点睛】本题考查了一元一次方程的应用-行程问题,解题关键是要读懂题目的意思,根据题目给出的条件,正确对三地的位置关系进行分类,是解决本题的关键.23.(1)这个小组男生最优秀的成绩是13.8秒,最差的成绩是15.6秒;(2)75%;(3)这个小组男生的平均成绩是14.8秒.【详解】试题分析:(1)先比较大小,进一步得到这个小组男生最优秀的成绩是多少秒,最差的成绩是多少秒;(2)根据非正数是达标成绩,可得达标人数,根据达标人数除以总人数,可得达标率;(3)根据有理数的加法,可得总成绩,根据总成绩除以人数,可得平均分.试题解析:(1)15−1.2=13.8(秒),15+1=16(秒).答:这个小组男生最优秀的成绩是13.8秒,最差的成绩是16秒;(2)−0.8,+1,−1.2,−0.1,−0.6,+0.6,−0.3,−0.2,得达标人数是6.达标率是:6÷18×100%=75%.答:这个小组男生的达标率为75%;(2)平均成绩为:15+(−0.8+1−1.2−0.1−0.6+0.6−0.3−0.2)÷8=15−0.2=14.8(秒).答:这个小组男生的平均成绩是14.8秒.24.(1)抽取了50名男生测量身高;(2)身高在第3小组内的男生人数最多,为16人;(3)身高为170cm及170cm以上的人数=300×0.36=108名.【分析】首先理解频数分布直方图横纵轴表示的意义,横轴表示身高,纵轴表示频数,即:每组中包含个体的个数.我们可以依据频数分布直方图,了解数据的分布情况,知道每段所占的比例.【详解】解:(1)6+10+16+12+6=50(名),即抽取了50名男生测量身高;(2)身高在第3小组内的男生人数最多,为16人;(3)身高为170cm及170cm的频率=126180.36 5050+==,℃身高为170cm及170cm以上的人数=300×0.36=108名.【点睛】正确理解频数分布直方图横纵轴表示的意义,由频数分布直方图可以得到什么结论是学习中需要掌握的关键.25.(1)45°;(2)45°;(3)℃DOE=12℃AOB【分析】()1根据角平分线的定义,求得COE ∠和COD ∠的度数,结合图形,知DOE COE COD ;∠=∠-∠()2和()1的计算方法一样;()3综合()1和()2的结论,发现规律:12DOE AOB ∠=∠. 【详解】(1)90,40,AOB BOC ∠=∠=9040130.AOC AOB BOC ∴∠=∠+∠=+= 又℃OE ,OD 分别平分℃AOC 和℃BOC ,113065,2COE AOC ∴∠=∠=⨯= 114020.22COD BOC ∠=∠=⨯= 652045,DOE COE COD ∴∠=∠-∠=-=(2),AOB BOC αβ∠=∠=,℃℃AOC=℃AOB+℃BOC=α+β.又℃OE ,OD 分别平分℃AOC 和℃BOC ,()1122COE AOC αβ∴∠=∠=+, 11.22COD BOC β∠=∠= ()111111222222DOE COE COD αββαββα∴∠=∠-∠=+-=+-=, (3)℃DOE 的大小与℃BOC 的大小无关,即1.2DOE AOB ∠=∠ 【点睛】此题主要是考查了角平分线的定义和角的和、差计算方法.26.(1)线段MN 的长为5cm ;(2)线段MN 的长为5cm ;(3)℃MON 可以用式子2α表示. 【分析】(1)先求出16cm AC AB BC =+=,再由线段中点的定义得到1=8cm 2MC AC =,13cm 2NC BC ==,则5cm MN MC NC =-=; (2)同(1)求解即可;(3)先求出℃AOC=α+β,再由角平分线的定义得到()11=22MOC AOC αβ=+∠∠,11=22NOC BOC β=∠∠,则122MON MOC NOC AOC α∠=∠-=∠=∠.【详解】解:(1)℃10cm AB =,6cm BC , ℃16cm AC AB BC =+=,℃M 、N 分别是AC 和BC 的中点, ℃1=8cm 2MC AC =,13cm 2NC BC ==,℃5cm MN MC NC =-=;(2)℃10cm AB =,cm BC x =, ℃()10cm AC AB BC x =+=+, ℃M 、N 分别是AC 和BC 的中点, ℃11=5cm 22MC AC x ⎛⎫=+ ⎪⎝⎭,11cm 22NC BC x ==,℃5cm MN MC NC =-=;(3)℃℃AOB =α,℃BOC =β, ℃℃AOC=α+β,℃OM 平分℃AOC ,ON 平分℃BOC , ℃()11=22MOC AOC αβ=+∠∠,11=22NOC BOC β=∠∠, ℃122MON MOC NOC AOC α∠=∠-=∠=∠.。
北师大版七年级数学上册期末考试试卷(附带答案)
北师大版七年级数学上册期末考试试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.∠A =60°,则∠A 的补角是A .160°B .120°C .60°D .30° 2.点M 是线段AB 上一点,下面的四个等式中,不能判定M 一定是AB 中点的是( )A .12MB AB = B .AM MB = C .AM MB AB += D .2AM AB =3.若∠A =36°,则∠A 的余角等于( ) A .144° B .64° C .54° D .44°4.单项式224a b 的系数是( )A .2B .3C .4D .55.如图是一个正方体的平面展开图,每个面分别标有相应的字母,字母E 所对的面所标的字母应该是()A .LB .OC .VD .Y6.近似数4.50所示的数值a 的取值范围是( )A .4.495 4.505a ≤<B .4.040 4.60a ≤<C .4.495 4.505a ≤≤D .4.500 4.5056a ≤≤7.在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( )A .0B .1C .2D .38.如图,直线AB 、CD 相交于点O ,90AOE ∠=︒则EOC ∠和AOD ∠的关系( )A .相等B .互补C .互余D .以上三种都有可能9.小马虎在下面的计算中,只做对了一道题,他做对的题目是( )A .-(a -1)=a -1B .a 4+a 4=a 8C .6a 2b -6ab 2=0D .2ab -2ba =0A.4个B.3个C.2个D.1个二、填空题(共8小题,满分32分)14.如图,图形都是由同样大小的小圆圈按一定规律所组成的,其中第1个形中一共有4个小圆圈,第2个图形中一共有10个小圆圈,第3个图形中一有19个小圆圈,…,按此规律排列,则第n个图形中小圆圈的个数.15.已知点C在直线AB上,若AC=6cm,BC=8cm,E,F分别是线段AC,BC的中点,则线段EF的长是cm.16.据统计,韶关1月份的历史最低温是零下4℃,用数表示这个温度是℃.17.在迎来了中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下,12800个贫困村全部出列.将数据12800用科学记数法表示应为 .18.如图,长方形ABCD 中,E 是AB 的中点,F 是BC 上的一点,且13CF BC =,则长方形ABCD 的面积是阴影部分面积的 倍.三、解答题(共6小题,每题8分,满分48分)19.如图,直线,,AB CD EF 相交于点O ,且OG CD ⊥.(1)已知3812'AOC ∠=︒,求BOG ∠的度数;(2)如果OC 是AOE ∠的平分线,那么OG 是EOB ∠的平分线吗?说明理由.20.阅读材料:我们知道,4x+2x -x=(4+2-1)x=5x ,类似地,我们把(a+b )看成一个整体,则4(a+b )+2(a+b )-(a+b )-(4+2-1)(a+b )=5(a+b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)BC=______;(2)若以B为原点,写出点A,C,D所对应的数,并求出它们所对应数的和;(3)若点C所对应的数为10-,求出点A,B,D所对应数的和.24.计算(1)149 0.52335⎛⎫-⨯+÷-⨯⎪⎝⎭;(2)2222153(5)933⎛⎫⎛⎫-⨯-+--÷⎪ ⎪⎝⎭⎝⎭.参考答案:1.B2.C3.C4.C5.B6.A7.B8.C9.D 10.C 11.7.78×104 12.5 13.1920.14.()212n nn++15.7或116.4-17.41.2810⨯18.319.(1) 51°48′,(2). OG是EOB∠的平分线20.(1)-2(a-b)2;(2)1812;(3)16.21.(1)66;98(2)()0.6150a a ≤ ()0.830150a a ->(3)小张家这个月用电180度.22.(1)前5个台阶上的数的和为-1.(2)答:第6个台阶上的数x 为-3,从下往上前2022个台阶上的数的和为-409.(3)第51k -次出现标“1”所在的台阶数.23.(1)2 (2)点A ,C ,D 分别对应-2,2,4,和为4 (3)-34 24.(1)1- (2)10-。
北师大版数学七年级上册期末测试卷(含答案)
北师大版数学七年级上册期末测试卷(含答案)七年级数学上册期末试卷一、选择题(每小题3分,共30分)1.(3分)(-2)^3表示()A。
2乘以-3B。
2个-3相加C。
3个-2相加D。
3个-2相乘2.(3分)下列各式中,与3÷4÷5运算结果相同的是()A。
3÷(4÷5)B。
3÷(4×5)C。
3÷(5÷4)D。
4÷3÷53.(3分)数轴上表示-5和3的点分别是A和B,则线段AB的长为()A。
-8B。
-2C。
2D。
84.(3分)将正方体展开需要剪开的棱数为()A。
5条B。
6条C。
7条D。
8条5.(3分)用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是()A。
圆锥B。
五棱柱C。
正方体D。
圆柱6.(3分)2019年9月25日,北京大兴国际机场正式投入运营。
预计2022年实现年旅客吞吐量xxxxxxxx次。
数据xxxxxxxx科学记数法表示为()A。
4.5×10^6B。
45×10^6C。
4.5×10^7D。
0.45×10^87.(3分)如图,填在下面每个正方形中的四个数之间都有相同的规律,则m的值为()A。
107B。
118C。
146D。
1668.(3分)小明种了一棵小树,想了解小树生长的过程,记录小树每周的生长高度,将这些数据制成统计图,下列统计图中较好的是()A。
折线图B。
条形图C。
扇形图D。
不能确定9.(3分)下列调查中,适合用普查方式收集数据的是()A。
要了解我市中学生的视力情况B。
要了解某电视台某节目的收视率C。
要了解一批灯泡的使用寿命D。
要保证载人飞船成功发射,对重要零部件的检查10.(3分)已知,每本练本比每根水性笔便宜2元,小刚买了6本练本和4根水性笔正好用去18元,设水性笔的单价为x元,下列方程正确的是()A。
6(x+2)+4x=18B。
北师大版七年级上学期数学《期末考试卷》及答案
二.填空题(共7小题)
11.多项式 次数是______.
12.如果x=2是关于x 方程 x﹣a=1的解,那么a的值是_____.
13.A为数轴上表示2的点,将点A沿数轴向左平移5个单位到点B,则点B所表示的数的绝对值为_____.
14.由若干个相同的小立方体搭成的几何体三视图如图所示,则搭成这个几何体的小立方体的个数是_____.
∴买4个足球、7个篮球共需要(4m+7n)元.
故选A.
[点睛]注意代数式的正确书写:数字写在字母的前面,数字与字母之间的乘号要省略不写.
6.已知线段AB=10cm,C为直线AB上的一点,且BC=4cm,则线段AC=()
A.14cmB.6cmC.14cm或6cmD.7cm
[答案]C
[解析]
[分析]
根据点C在直线AB上,可分两种情况,即点C在点B的左侧和右侧,分别计算即可.
故选A.
考点:几何体的展开图.
5.买一个足球需要m元,买一篮球需要n元,则买4个足球和7个篮球共需要多少元()
A.4m+7nB.28mnC.7m+4nD.11mn
[答案]A
[解析]
[分析]
根据题意可知4个足球需4m元,7个篮球需7n元,故共需(4m+7n)元.
[详解]∵一个足球需要m元,买一个篮球需要n元.
3.下列运算中,正确的是()
A.(-2)+(+1)=-3B.(-2)-(-1)=-1
C.(-2)×(-1)=-2D.(-2)÷(-1)=-2
[答案]B
[解析]
A.(-2)+(+1)=-1,故A选项错误;B.(-2)-(-1)=-1,正确;C.(-2)×(-1)=2,故C选项错误;D.(-2)÷(-1)=2,故D选项错误,
北师大版七年级上册数学期末考试卷【含答案】
北师大版七年级上册数学期末考试卷【含答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .02.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°3.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣a|+|b﹣c|的结果是________.2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.若()2320m n -++=,则m+2n 的值是________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.5.若x 的相反数是3,y =5,则x y +的值为_________. 三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2(x +3)=5(x -3) 2123x -()=435x --x2.若不等式组0122x a x x +≥⎧⎨->-⎩①有解;②无解.请分别探讨a 的取值范围.3.如图,∠AOB =120°,射线OC 从OA 开始,绕点O 逆时针旋转,旋转的速度为每分钟20°;射线OD 从OB 开始,绕点O 逆时针旋转,旋转的速度为每分钟5°,OC 和OD 同时旋转,设旋转的时间为t (0≤t ≤15).(1)当t 为何值时,射线OC 与OD 重合;(2)当t 为何值时,∠COD =90°;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.4.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、A4、D5、C6、C7、C8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、55°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、-15、2或2.56、2或-8三、解答题(本大题共6小题,共72分)1、(1)x=7;(2)x=1 2.2、①a>-1②a≤-13、(1)t=8min时,射线OC与OD重合;(2)当t=2min或t=14min时,射线OC⊥OD;(3)存在,略.4、证明略5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)略。
北师大版七年级上册数学期末考试试卷及答案
北师大版七年级上册数学期末考试试题一、单选题1.比-1小的数是( ) A .0 B .12C .-0.5D .-2 2.若气温升高5C ︒时,记作5C +︒,则气温下降10C ︒时,记作( ) A .10C +︒ B .10C -︒ C .5C -︒ D .5C +︒ 3.下列各式,正确的是( )A .2a+3b=5abB .x+2x=3x 2C .2(a+b)=2a+bD .-(m-n)=-m+n 4.下列调查最适合用普查的是( )A .了解七年级1班每位学生身高情况B .检测一款新手机的待机时长C .了解全国中学生最喜爱的图书种类D .调查全市人民对政府服务的满意程度 5.一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是( ) A .5 B .6 C .7 D .8 6.若x =1是关于x 的方程2x+a =0的解,则a 的值为( ) A .﹣1 B .﹣2 C .1 D .27.如图,120AOB ∠=︒,13AOC BOC ∠=∠,OM 平分BOC ∠,则AOM ∠的度数为( )A .45︒B .65︒C .75︒D .80︒ 8.下列说法正确的是( ) A .0是最小的有理数B .若有理数m >n ,则数轴上表示m 的点一定在表示n 的点的左边C .一个有理数在数轴上表示的点离原点越远,这个有理数就越大D .既没有最小的正数,也没有最大的负数.9.如图,用同样大小的棋子按以下规律摆放,若第n 个图中有2022枚棋子,则n 的值是( )A .675B .674C .673D .67210.如图1所示,在一个边长为a 的正方形纸片上剪去两个小长方形,得到一个如图2的图案所示,再将剪下的两个小长方形拼成一个新的长方形,如图3所示,则新长方形的周长可表示为( )A .23a b -B .410-a bC .24a b -D .48a b - 二、填空题11.数轴上,将表示5-的点向右移动3个单位后,对应点表示的数是________. 12.若方程213x -=和方程42x a -=的解相同,则=a _________.13.用一个平面去截一个几何体,得到的截面是一个三角形,这个几何体可能是_____(写出一个即可);14.如果3x 2myn 与﹣5x 4y 3是同类项,则代数式m-n 的值为_______. 15.计算:1039036'︒-︒=__________.16.如图,把一张边长为15cm 的正方形纸板的四个角各剪去一个同样大小的正方形,再折成一个无盖的长方体盒子(纸板的厚度忽略不计),当剪去的正方形边长从4cm 变为6cm 后,长方体纸盒容积变小了____3cm .17.如图,点C 是线段AB 上任意一点(不与端点重合),点M 是AB 中点,点P 是AC 中点,点Q 是BC 中点,则下列说法:①PQ MB =;①1()2PM AM MC =-;①1()2PQ AQ AP =+;①1()2MQ MB MC =+.其中正确的是_______.18.如图,在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么①AOB =_____.三、解答题19.计算:22840.255(3)5⎡⎤-÷-⨯--⎣⎦20.如图,是由6个大小相同的小立方体块搭建的几何体,请你在下方的指定方格中画出这个几何体从不同方向分别看到的图形:21.解方程 ()()1112533412x x -=--22.先化简,再求值:()()222212442232xy xy x y xy x y --+-,其中x 1,y 2==-.23.某工厂计划用100张白板纸制作某种型号的长方体纸箱.如图,每张白板纸可以用A B C ,,三种方法中的一种剪裁,其中方法A :一张白板纸裁成5个侧面;方法B :一张白板纸裁成4个侧面与3个底面;方法C :一张白板纸裁成3个侧面与6个底面.且四个侧面和两个底面恰好能做成一个纸箱.设按方法A 剪裁的有x 张白板纸,按方法B 剪裁的有y 张白板纸.(1)按方法C 剪裁的有_______张白板纸.(用含,x y 的代数式表示)(2)将100张白板纸裁剪完后,一共可以裁出多少个侧面与多少个底面?(用含,x y 的代数式表示,结果要化简)(3)当2107x y +=时,最多可以制作该种型号的长方体纸箱多少个?24.如图1,正方形ABCD 和长方形EFGH 的周长相等,且各有一条边在数轴上,点,,,B C F G 对应的数分别是13,5,2,8--.正方形ABCD 以每秒2个单位长度的速度向右移动,同时长方形EFGH 以每秒1个单位长度的速度向左移动.设正方形ABCD 和长方形EFGH 重叠部分的面积为S ,移动时间为t .(1)长方形EFGH 的面积是______.(2)当S 是长方形EFGH 面积的一半时,求t 的值.(3)如图2,当正方形ABCD 和长方形EFGH 运动到点B 和点F 重合时,停止运动,将正方形ABCD 绕点B 顺时针旋转,旋转角度为()0180αα<<︒,点M N 、分别在线段GB 、线段EB 的延长线上,BP 平分CBE ∠,判断ABP ∠和CBN ∠之间的数量关系,用等式表示,并说明理由.25.某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:()1学校这次调查共抽取了名学生;()2求m的值并补全条形统计图;()3在扇形统计图中,“围棋”所在扇形的圆心角度数为;()4设该校共有学生1000名,请你估计该校有多少名学生喜欢足球.26.已知如图,在数轴上有A,B两点,所表示的数分别为10-,4-,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B在数轴上表示的数分别为和;(用含t 的代数式表示)(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值;若不存在,请说明理由.参考答案1.D2.B3.D4.A5.C6.B7.C8.D9.C10.D11.-2【详解】解:由题意得:-5+3=-2,①对应点表示的数是-2;故答案为-2.12.6【详解】解方程2x−1=3,得:x=2,把x=2代入4x−a=2,得:4×2−a=2,解得:a=6.故答案为:6.13.圆锥.【详解】用一个平面去截一个几何体,得到的截面是一个三角形, 这个几何体可能是圆锥、棱柱、正方体等,任选一个作答.故答案为:圆锥.14.-1【详解】解:①3x 2myn 与﹣5x 4y 3是同类项, ①24,3m n == , 解得:2,3m n == , ①231m n -=-=-. 故答案为:-1 15.1224'︒【详解】1039036'102609036=1224'''︒-︒=︒-︒︒ 故答案为: 1224'︒ 16.142【详解】 解:当剪去的正方形边长从4cm 变为6cm 后,长方体的纸盒容积从(15-4×2)2×4=196cm 3变为(15-6×2)2×6=54cm 3.故长方体的纸盒容积变小了196-54=142cm 3. 故答案为:142.17.①①①【分析】根据线段中点的定义得到12AM BM AB ==,12==AP CP AC ,12==CQ BQ BC ,然后根据线段之间的和差倍分关系逐个求解即可. 【详解】解:①M 是AB 中点, ①12AM BM AB ==, ①P 是AC 中点, ①12==AP CP AC , ①点Q 是BC 中点, ①12==CQ BQ BC ,对于①:11()=22=+=+=PQ PC CQ AC BC AB BM ,故①正确; 对于①:11()22=-=-=PM AM AP AB AC BC ,11()22=-=-=PM AM AP AB AC BC ,故①正确;对于①:11+=(+)22==PQ PC CQ AC BC AB ,而[]111111()=()()()222222+++=+=+=+>AQ AP AP PQ AP AP PQ AC PQ AC BM AB , 故①错误;对于①:111()()222+=+=MB MC MA MC AC ,11111()()22222=+=-+=--+=-=MQ MC CQ AC AM BC AB BC AB BC AB BC AC ,故①正确;故答案为:①①①.18.141°【分析】首先计算出①3的度数,再计算①AOB 的度数即可. 【详解】解:由题意得:①1=54°,①2=15°,①①3=90°﹣54°=36°, ①①AOB =36°+90°+15°=141°. 故答案为:141°.19.9-【分析】根据有理数的加减乘除及乘方的运算法则计算即可. 【详解】解:原式1=16(59)458-⨯-⨯-=10+1-=9.20.见解析【分析】直接利用三视图的画法得出符合题意的答案. 【详解】解:三视图如图所示:21.x=2.【分析】先在等式的两边乘以最小公分母12,然后通过去括号,移项、合并同类项,化未知数的系数为1解方程. 【详解】解:由原方程去分母,得 4(2x-5)=3(x-3)-1, 去括号,得 8x-20=3x-9-1, 移项、合并同类项,得 5x=10,化未知数的系数为1,得 x=2.【点睛】此题考查了一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、合并同类项、系数化为1等. 22.2244xy x y -,-24【详解】解:原式=222222+246xy xy x y xy x y -+-=2244xy x y -, 当x=1,y=-2时,原式=4×1×(-2)-4×1×(-2)2=-8-16=-24.【点睛】本题考查了整式的加减-化简求值,一般先把所给整式去括号合并同类项,再把所给字母的值或代数式的值代入计算. 23.(1)100-x-y(2)一共可以裁出的侧面个数为(2x+y+300)个,一共可以裁出的底面个数为(600-6x-3y )个(3)最多可以制作该种型号的长方体纸箱101个【分析】(1)根据题意用100张白板纸减去按方法A 剪裁的x 张白板纸,再减去按方法B 剪裁的有y 张白板纸即可;(2)由题意把x 张白板纸,y 张白板纸,(100-x-y )张白板纸可以裁剪出的侧面个数和底面个数分别相加即可;(3)由题意把2x+y=107代入(2)中求出的侧面和底面的代数式,即可解答.(1)解:由题意得:按方法C剪裁的有(100-x-y)张白板纸,故答案为:100-x-y.(2)由题意得:x张白板纸可以裁剪出5x个侧面,y张白板纸可以裁剪出4y个侧面,3y个底面,(100-x-y)张白板纸可以裁剪出3(100-x-y)个侧面,6(100-x-y)个底面,所以:一共可以裁出的侧面个数为:5x+4y+3(100-x-y)=2x+y+300(个),一共可以裁出的底面个数为:3y+6(100-x-y)=600-6x-3y(个),答:一共可以裁出的侧面个数为(2x+y+300)个,一共可以裁出的底面个数为(600-6x-3y)个.(3)①2x+y=107,①一共可以裁出的侧面个数为:2x+y+300=107+300=407(个),一共可以裁出的底面个数为:600-6x-3y=600-3(2x+y)=279(个),①四个侧面和两个底面恰好能做成一个纸箱,①最多可以制作该种型号的长方体纸箱101个,答:最多可以制作该种型号的长方体纸箱101个.【点睛】本题考查认识立体图形,整式的加减,列代数式,代数式求值,根据题目的已知条件并结合图形求出一共可以裁出的侧面个数和底面个数是解题的关键.24.(1)60(2)t的值为4312或234(3)①ABP=12①CBN或2①ABP+①CBN=360゜,理由见解析.【分析】(1)由数轴上两点间的距离求出BC=8,FG=6,进而可得正方形ABCD的周长为32,再根据正方形ABCD和长方形EFGH周长相等,即可求EF长,进而求其面积;(2)分情况讨论:①当点F在正方形BC边上时;①当点F在正方形BC边左边时两种情况即可;(3)分情况讨论:0゜<α<90゜及90゜<α<180゜,由旋转的性质及角的和差关系、角平分线的性质即可求得两角间的关系.(1)①四边形ABCD是正方形,BC=-5-(-13)=8,①正方形ABCD的周长为32,①四边形EFGH是长方形,FG=8-2=6,①长方形EFGH的周长为2(EF+FG)= 2(EF+6),①正方形ABCD和长方形EFGH周长相等,①2(EF+6)=32,①EF=10,①S长方形EFGH=10×6=60,故答案为:60(2)①当点F在正方形BC边上时,如图:①正方形ABCD以每秒2个单位长度的速度向右移动,同时长方形EFGH以每秒1个单位长度的速度向左移动,移动时间为t,①CC1=2t,FF1=t,CF=2-(-5)=7,①F1C1= CC1+ FF1- CF=2t+t-7=3t-7,①重叠部分的面积=F1C1·C1D1=12×60=30,且C1D1=8,①F1C1=154,①3t -7=154,①t=4312;①当点F在正方形BC边左边时,如图:正方形ABCD以每秒2个单位长度的速度向右移动,同时长方形EFGH以每秒1个单位长度的速度向左移动,移动时间为t,①BB2=2t,GG2=t,BG=8-(-13)=21,①B2G2= BG - BB2- GG2=21-3t,①重叠部分的面积=B2G2·A2B2=30,且A2B2=8,①B2G2=154,①21-3t=154,①t=234,故t的值为4312或234;(3)①ABP=12①CBN或2①ABP+①CBN=360゜理由如下:①当0゜<α<90゜时由旋转的性质得:①ABE=①CBG=α①BP平分CBE,①①EBP=12①CBE,①①ABE=180º-①ABC-①CBN=90º-①CBN,①①ABP=①EBP-①ABE=12①CBE-90º+①CBN=12(180º-①CBN)-90º+①CBN=12①CBN,即①ABP=12①CBN①当90゜< α <180゜时,如图由旋转的性质得:①ABE=①CBG=α①11190(36090)90225222 ABP CBP ABC EBC ABEα∠=∠+∠=∠+︒=︒-︒-∠+︒=︒-,①CBN=①CBG−①NBG=α−90゜①2①ABP+①CBN=360゜综上所述,①ABP=12①CBN或2①ABP+①CBN=360゜25.(1)100;(2)m=20,补图见解析;(3)36°;(4)250.【分析】(1)用“围棋”的人数除以其所占百分比可得;(2)用总人数乘以“书法”人数所占百分比求得其人数,据此即可补全图形;(3)用360°乘以“围棋”人数所占百分比即可得;(4)用总人数乘以样本中“舞蹈”人数所占百分比可得.【详解】(1)学校本次调查的学生人数为10÷10%=100(名).故答案为:100;(2)m=100﹣25﹣25﹣20﹣10=20,①“书法”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“书法”所在扇形的圆心角度数为360°×10%=36°.故答案为:36°;(4)估计该校喜欢舞蹈的学生人数为1000×25%=250人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.26.(1)6;4(2)510t-;34t-(3)3t=(4)12t=或112t=【分析】(1)根据数轴上两点间的距离等于右边的数减去左边的数求出AB的长,且求出1秒后AB的长即可;(2)根据路程=时间×速度分别表示出A,B运动的距离,用原来表示的是加上运动的距离,即可表示出A,B表示的数;(3)根据A,B表示的数相同列出方程,求出方程的解即可得到t的值;(4)存在,分两种情况分别求出t的值即可.(1)解:运动前线段AB的长为(﹣4)﹣(﹣10)=6;运动1秒后线段AB的长为(﹣1)﹣(﹣5)=4;故答案为:6;4.(2)解:运动t秒后,用t表示A,B分别为5t﹣10,3t﹣4;故答案为:5t﹣10,3t﹣4.(3)解:根据题意得:5t ﹣10=3t ﹣4, 解得:3t =;答:当3t =时,点A 与点B 恰好重合.(4)解: 存在.当A 没追上B 时,可得由题意:()()345105t t ---= , 解得:12t =;当A ,B 错开后,可得()()510345t t ---=, 解得:112t =,①t 的值为12或112秒时,线段AB 的长为5.。
北师大版七年级上册数学期末考试卷带答案
北师大版七年级上册数学期末考试卷带答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有()A.1个B.2个C.3个D.4个2.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<3.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣19 4.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3) 6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A.70°B.180°C.110°D.80°7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x个字,则下面所列方程正确的是().A.x+2x+4x=34 685 B.x+2x+3x=34 685C.x+2x+2x=34 685 D.x+12x+14x=34 6858.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°10.将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.52二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是.2.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4+x x -有意义,+1x =___________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.求满足不等式组()32813 1322x x x x ⎧--≤⎪⎨--⎪⎩<的所有整数解.2.解不等式组:2(3)47{22x x x x +≤++>并写出它的所有整数解.3.如图①,已知AD ∥BC ,∠B=∠D=120°.(1)请问:AB 与CD 平行吗?为什么?(2)若点E 、F 在线段CD 上,且满足AC 平分∠BAE ,AF 平分∠DAE ,如图②,求∠FAC 的度数.(3)若点E 在直线CD 上,且满足∠EAC=12∠BAC ,求∠ACD :∠AED 的值(请自己画出正确图形,并解答).4.如图,已知A、O、B三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、D5、B6、C7、A8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、10.3、0.4、15、16、5三、解答题(本大题共6小题,共72分)1、不等式组的解集:-1≤x<2,整数解为:-1,0,1.2、原不等式组的解集为122x-≤<,它的所有整数解为0,1.3、(1)平行,理由略;(2)∠FAC =30°;(3)∠ACD:∠AED=2:3或2:1.4、(1)∠BOD =138°;(2)∠COE=21°.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.。
北师大版七年级数学上册期末考试(含答案)
北师大版七年级数学上册期末考试(含答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有()A.1个B.2个C.3个D.4个2.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<3.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.如果a与1互为相反数,则|a+2|等于()A.2 B.-2 C.1 D.-15.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB6.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合()A.0 B.1 C.2 D.37.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm8.实数a、b在数轴上的位置如图所示,则化简|a-b|﹣a的结果为()A.-2a+b B.b C.﹣2a﹣b D.﹣b 9.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l410.若x﹣m与x+3的乘积中不含x的一次项,则m的值为()A.3 B.1 C.0 D.﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC三条边长为a,b,c,化简:|a-b-c|-|a+c-b|=__________.2.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.若|a|=5,b=﹣2,且ab>0,则a+b=________.4.已知直线AB∥x轴,点A的坐标为(1,2),并且线段AB=3,则点B的坐标为________.5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)252x y x y -=⎧⎨--=⎩ (2)3()2()7x y x y x y x y -=+⎧⎨-++=⎩2.已知关于x 、y 的二元一次方程组21222x y m x y m +=+⎧⎨+=-⎩的解满足不等式组81x y x y -<⎧⎨+>⎩则m 的取值范围是什么?3.如图①,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .(1)图①中有几个等腰三角形?猜想:EF 与BE 、CF 之间有怎样的关系.(2)如图②,若AB ≠AC ,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF 与BE 、CF 间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、C6、B7、B8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、203、-74、(4,2)或(﹣2,2).5、40°6、54°三、解答题(本大题共6小题,共72分)1、(1)=13xy⎧⎨=-⎩;(2)=21xy⎧⎨=-⎩2、0<m<3.3、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.4、60°5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件。
2022-2023年北师大版初中数学七年级上册期末考试检测试卷及答案(共五套)
2022-2023年北师大版数学七年级上册期末考试测试卷及答案(一)一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣22.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.3.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0 4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.67.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣aC.b<﹣b<﹣a<a D.b<a<﹣a<﹣b9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为.(用含n的代数式表示)15.(3分)单项式﹣的系数是,次数是.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=.17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是(填序号).三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.参考答案:一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0【解答】解:A、2a、3b不是同类项,不能合并,此选项错误;B、2a﹣3b=﹣(a﹣b),此选项错误;C、2a2b、﹣2ab2不是同类项,不能合并,此选项错误;D、3ab﹣3ba=0,此选项正确;故选:D2.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣2【解答】解:由题意可知:2x3y2与﹣x3m y2是同类项,∴3=3m,∴m=1,∴4m﹣24=4﹣24=﹣20,故选(B)3.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.【解答】解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D.4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选C5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④【解答】解:方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x﹣x﹣2x=4+1;③合并同类项,得x=5;④化系数为1,x=5.其中错误的一步是②.故选B.6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.6【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故选:C.7.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选D.8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣a C.b<﹣b<﹣a<a D.b<a<﹣a<﹣b 【解答】解:根据图示,可得b<﹣a<a<﹣b.故选:A.9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后【解答】解:设x年后父亲的年龄是儿子的年龄的2倍,根据题意得:39+x=2(12+x),解得:x=15.答:15年后父亲的年龄是儿子的年龄的2倍.故选D.10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm【解答】解:(1)点C在线段AB上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=BM﹣BN=5﹣4=1cm;(2)点C在线段AB的延长线上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=MB+BN=5+4=9cm,故选:D.二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为150°.【解答】解:设这个角为x°,则它的余角为(90﹣x)°,90﹣x=2x解得:x=30,180°﹣30°=150°,答:这个角的补角为150°,故答案为:150°.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=﹣1.【解答】解:把x=1代入方程3x+2b+1=x﹣(3b+2)得:3+2b+1=1﹣(3b+2),解得:b=﹣1,故答案为:﹣1.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=3.【解答】解:∵(a﹣2)x a﹣2+6=0是关于x的一元一次方程,∴a﹣2=1,解得:a=3,故答案为:3.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为2+3n.(用含n的代数式表示)【解答】解:观察图形发现:第1个图案中有白色瓷砖5块,第2个图案中白色瓷砖多了3块,依此类推,第n个图案中,白色瓷砖是5+3(n﹣1)=3n+2.15.(3分)单项式﹣的系数是﹣,次数是3.【解答】解:∵单项式﹣的数字因数是﹣,所有字母指数的和=2+1=3,∴此单项式的系数是﹣,次数是3.故答案为:﹣,3.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=﹣b+c+a.【解答】解:由数轴可知:c<b<0<a,∴b<0,c+b<0,b﹣a<0,∴原式=﹣b+(c+b)﹣(b﹣a)=﹣b+c+b﹣b+a=﹣b+c+a,故答案为:﹣b+c+a17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是26或5.【解答】解:∵按逆时针方向有8﹣6=2;11﹣8=3;15﹣11=4;∴这个数可能是20+6=26或6﹣1=5.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是①②④(填序号).【解答】解:如图,①CE=CD+DE,故①正确;②CE=BC﹣EB,故②正确;③CE=CD+BD﹣BE,故③错误;④∵AE+BC=AB+CE,∴CE=AE+BC﹣AB=AB+CE﹣AB=CE,故④正确;故答案是:①②④.三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.【解答】解:(1)原式=﹣10+2=﹣8;(2)原式=﹣1+0﹣0.5×(﹣8)=﹣1+4=3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.【解答】解:(1)去括号,得:3x+6﹣1=x﹣3,移项,得:3x﹣x=﹣3﹣6+1,合并同类项,得:2x=﹣8,系数化为1,得:x=﹣4;(2)去分母,得:3(x+1)﹣6=2(2﹣x),去括号,得:3x+3﹣6=4﹣2x,移项,得:3x+2x=4+6﹣3,合并同类项,得:5x=7,系数化为1,得:x=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【解答】解:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2)=4x2﹣4y2﹣3x2y2﹣3x2+3x2y2+3y2=x2﹣y2,当x=﹣1,y=2时,原式=(﹣1)2﹣22=﹣3.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?【解答】解:设小拖拉机每小时耕地x亩,则大拖拉机每小时耕地(30﹣x)亩,根据题意得:30﹣x=1.5x,解得:x=12.答:小拖拉机每小时耕地12亩.23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.【解答】解:(1)根据C、D的运动速度知:BD=2,PC=1,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(2)根据C、D的运动速度知:BD=4,PC=2,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(3)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处,即AP=4cm;(4)如图:∵AQ ﹣BQ=PQ ,∴AQ=PQ +BQ ;又∵AQ=AP +PQ ,∴AP=BQ ,∴PQ=AB=4cm ;当点Q'在AB 的延长线上时,AQ′﹣AP=PQ′,所以AQ′﹣BQ′=PQ=AB=12cm .综上所述,PQ=4cm 或12cm .2022-2023年北师大版数学七年级上册期末考试测试卷及答案(二)一.选择题(每小题3分)1.下列选项中,比3-小的数是()A.1- B.0 C.21 D.5-2.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()3.下列各式符合代数式书写规范的是()A.a b B.7⨯a C.12-m 元 D.x 2134.2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学计数法表示为()A.1110395.0⨯元B.101095.3⨯元C.91095.3⨯元D.9105.39⨯元5.下列计算正确的是()A.2624a a a =+ B.ab ba ab =-67 C.ab b a 624=+ D.325=-a a 6.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短8.深圳市12月上旬每天平均空气质量指数(AQI)分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数直方图C.条形统计图D.扇形统计图9.如图,AB=24,点C 为AB 的中点,点D 在线段AC 上,且AD:CB=1:3,则DB 的长度为()A.12B.18C.16D.2010.若2=x 是方程01424=-+m x 的解,则m 的值为()A.10B.4C.3D.-311.在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是()A.86B.78C.60D.10112.下列叙述:①最小的正整数是0;②36x π的系数是π6;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C 是线段AB 的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.5二、填空题(每小题3分)13.已知323y x m 和n y x 22-是同类项,则式子n m +的值是.14.在数轴上,与表示数1-的点的距离是三个单位长度的点表示的数是.15.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.16.如图所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为.三、解答题17.(本题15分)计算:(1);15)9()18(16--+--(2)-(;5324)8312761-⨯-+(3).6)5()2(322---⨯-+-18.(本题4分)先化简,再求值:),244(21)53(22----a a a a 其中a=31.19.(本题8分)解方程(1));3(1)2(2+-=+x x21.(本题5分):如图,∠AOC=21∠BOC=50°,OD 平分∠AOB,求∠AOB 和∠COD 的度数.22.(本题5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,期中中型汽车有x辆.(1)则小型汽车的车辆数为(用含x的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?23.(本题8分)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为__,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?参考答案2022-2023年北师大版数学七年级上册期末考试测试卷及答案(三)一、选择题(每题3分,共30分)1.在0,-2,1,5这四个数中,最小的数是()A.0B.-2C.1D.52.下列调查中,适宜采用抽样调查方式的是()A.调查奥运会上女子铅球参赛运动员兴奋剂的使用情况B.调查某校某班学生的体育锻炼情况C.调查一批灯泡的使用寿命D.调查游乐园中一辆过山车上共40个座位的稳固情况3.下列运算正确的是()A.6a2-a2=5B.2a+b=2abC.4ba2-3a2b=a2b D.2a2+3a4=5a64.如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A.a<1<-a B.a<-a<1C.1<-a<a D.-a<a<15.如图,两块三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD 的度数为()A.45°B.120°C.135°D.150°6.某市获“全国文明城市”提名,为此小王特制了一个正方体玩具,其表面展开图如图所示,正方体中与“全”字相对的字是()A.文B.明C.城D.市7.有一篮苹果平均分给若干人,若每人分2个,则还余下2个苹果,若每人分3个,则少7个苹果,设有x人分苹果,则可列方程为()A.3x+2=2x+7B.2x-2=3x+7C.3x-2=2x-7D.2x+2=3x-78.如图,把一根绳子对折成线段AB,从P处把绳子剪断,已知PB=2P A,若剪断后的各段绳子中最长的一段为40cm,则绳子的原长为()A.30cmB.60cmC.120cmD.60cm或120cm9.小王去早市为餐馆选购蔬菜,他指着标价为每千克3元的豆角问摊主:“这豆角能便宜吗?”摊主说:“多买按八折,你要多少千克?”小王报了质量后,摊主同意按八折卖给小王,并说:“之前有一人只比你少买5kg就是按标价,还比你多花了3元呢!”小王购买豆角的质量是()A.25kg B.20kgC.30kg D.15kg10.如图所示的图案均是由长度相同的木棒按一定规律拼搭而成的,第1个图案需7根木棒,第2个图案需13根木棒,…以此规律,第11个图案需要木棒的根数是()A.156B.157C.158D.159二、填空题(每题3分,共24分)11.22.5°=________°________′;12°24′=________°.12.某中学要了解七年级学生的视力情况,在全校七年级学生中抽取了25名学生进行检查,在这个问题中,总体是________________________,样本是________________________.13.我国“南仓”级远洋综合补给舰满载排水量为37000t ,把数37000用科学记数法表示为_______________________________________.14.若a +b =2,则代数式3-2a -2b =________.15.从中午12时开始,时钟的时针转过了80°的角,则此时的时间是________.16.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1dm 的正方体摆放在课桌上,如图所示,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为________.17.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC内,且∠BOE =13∠EOC ,∠DOE =60°,则∠EOC =________.18.某市为提倡节约用水,采取分段收费.若每户每月用水量不超过20m 3,每立方米收费2元;若用水量超过20m 3,超过的部分每立方米加收1元.小明家5月份缴水费64元,则他家该月用水________.三、解答题(19~23题每题6分,24~26题每题12分,共66分)19.计算:(1)-32-(-17)-|-23|+(-15);÷9121-+23--24).20.解方程:(1)3x+7=32-2x;(2)x-1-x3=x+5 6.21.化简求值:已知|2x+1|+=0,求4x2y-[6xy-3(4xy-2)-x2y]+1的值.22.如图是由小立方块搭成的几何体,请画出从正面、左面和上面看到的平面图形.23.如图,OC是∠AOD的平分线,∠BOC=12∠COD,那么∠BOC是∠AOD 的几分之几?说明你的理由.24.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分学生的兴趣爱好进行调查,将收集的数据整理并绘制成如图所示的两幅统计图.请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为________.25.某班计划购买一些乒乓球和乒乓球拍,现了解到的情况如下:甲、乙两家店出售同样品牌同种型号的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副乒乓球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需乒乓球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家店购买更合算?26.在数轴上,表示数m与n的点之间的距离可以表示为|m-n|.例如:在数轴上,表示数-3与2的点之间的距离是5=|-3-2|,表示数-4与-1的点之间的距离是3=|-4-(-1)|.利用上述结论解决如下问题:(1)若|x-5|=3,求x的值;(2)点A,B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a-b|=6(b>a),点C表示的数为-2.若A,B,C三个点中的某一个点是另两个点所连线段的中点,求a,b的值.参考答案:一、1.B2.C3.C4.A5.C6.B7.D8.D9.C点拨:设小王购买豆角的质量是x kg,则3×80%x=3(x-5)-3,整理得2.4x=3x-18,解得x=30.所以小王购买豆角的质量是30kg.10.B点拨:第1个图案需7根木棒,7=1×(1+3)+3,第2个图案需13根木棒,13=2×(2+3)+3,第3个图案需21根木棒,21=3×(3+3)+3,……第n个图案需[n(n+3)+3]根木棒,所以第11个图案需11×(11+3)+3=157(根)木棒.故选B.二、11.22;30;12.412.该中学七年级学生的视力情况;抽取的25名学生的视力情况13.3.7×10414.-115.14时40分16.33dm217.90°点拨:设∠BOE=x°,则∠EOC=3x°,∠DOB=60°-x°.由OD平分∠AOB,得∠AOB=2∠DOB,故3x+x+2(60-x)=180,解方程得x=30,所以∠EOC=90°,故答案为90°.18.28m3点拨:设小明家5月份用水x m3,因为20×2=40(元),64>40,所以x>20.根据题意可得2×20+(2+1)(x-20)=64,解得x=28.三、19.解:(1)原式=-32+17-23-15=-53.(2)原式=-11-[12×(-24)+23×(-24)-34×(-24)]=-11-(-12-16+18)=-1.20.解:(1)移项,得3x+2x=32-7.合并同类项,得5x=25.系数化为1,得x=5.(2)去分母,得6x-2(1-x)=x+5,去括号,得6x-2+2x=x+5,移项、合并同类项,得7x=7,系数化为1,得x=1.21.解:由|2x+1|+=0得2x+1=0,y-14=0,即x=-12,y=14.原式=4x2y-6xy+12xy-6+x2y+1=5x2y+6xy-5.当x=-12,y=14时,原式=5x2y+6xy-5=516-34-5=-5716.22.解:如图.23.解:∠BOC是∠AOD的四分之一.理由如下:因为OC是∠AOD的平分线,所以∠COD=12∠AOD.因为∠BOC=12∠COD,所以∠BOC=12×12∠AOD=14∠AOD.24.解:(1)100(2)喜欢民乐的人数为100×20%=20(人),补全条形统计图如图所示.(3)36°25.解:(1)设该班购买乒乓球x盒,则在甲店付款:100×5+(x-5)×25=(25x+375)元,在乙店付款:0.9×100×5+25×0.9×x=(22.5x+450)元,由25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样.(2)当购买20盒乒乓球时,在甲店付款:25×20+375=875(元),在乙店付款:22.5×20+450=900(元),875<900,故在甲店购买更合算;当购买40盒乒乓球时,在甲店付款:25×40+375=1375(元),在乙店付款:22.5×40+450=1350(元),1350<1375,故在乙店购买更合算.答:购买20盒时,去甲店购买更合算;购买40盒时,去乙店购买更合算。
北师大版初中数学七年级上册期末测试卷(标准难度)(含答案解析)
北师大版初中数学七年级上册期末测试卷考试范围:全册;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.一个无盖的正方体纸盒,将它展开成平面图形,可能的情形共有( )A. 11种B. 9种C. 8种D. 7种2.某车间原计划用13小时生产一批零件,实际每小时多生产了10件,用了12小时不但完成了任务,而且还多生产了60件,设原计划每小时生产x个零件,那么下列方程正确的是( )A. 13x=12(x+10)+60B. 12(x+10)=13x+60C. 113x=112(x+10)+60 D. 112(x+10)=113x+603.中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是( )A. 10B. 89C. 165D.2944.在我国远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,类似现在我们熟悉的“进位制”.如图所示是远古时期一位母亲记录孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满五进一,根据图示可知,孩子已经出生的天数是( )A. 27B. 42C. 55D. 2105.由襄阳东站到汉口站的某趟高铁,运行途中停靠的车站依次是:襄阳东站—枣阳—随州南—新安陆西—孝感东—汉口站,那么铁路运营公司要为这条线路制作的车票有( )A. 6种B. 12种C. 15种D. 30种6.按如图所示的运算程序,能使输出y值为1的是( )A. m=1,n=1B. m=1,n=0C. m=1,n=2D. m=2,n=17.一个两位数,个位上的数字是a,十位上的数字比个位的数字小1,则这个两位数可以表示为( )A. a(a−1)B. (a+1)aC. 10(a−1)+aD. 10a+(a−1)8.如图,C,D是线段AB上两点,M,N分别是线段AD,BC的中点,下列结论: ①若AD=BM,则AB=3BD; ②若AC=BD,则AM=BN; ③AC−BD=2(MC−DN); ④2MN=AB−CD.其中正确的结论是( )A. ① ② ③B. ③ ④C. ① ② ④D. ① ② ③ ④9.中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是( )A. 羊B. 马C. 鸡D. 狗10.已知关于x的一元一次方程1x+3=2x+b的解为x=−3,那么关于y的一元一次方程20201(y+1)+3=2(y+1)+b的解为( )2020A. y=1B. y=−1C. y=−3D. y=−411.某市今年共有8万名学生参加了体育健康测试,为了了解这8万名考生的体育健康成绩,从中抽取了2000名学生的成绩进行统计分析.下列说法中正确的个数为( )①这种调查采用了抽样调查的方式;②8万名学生是总体;③2000名学生是总体的一个样本;④每名学生的体育健康成绩是个体.A. 2个B. 3个C. 4个D. 0个12.从1980年初次征战冬奥会,到1992年取得首枚冬奥会奖牌,再到2022年北京冬奥会金牌榜前三,中国的冰雪体育事业不断取得突破性成绩.历届冬奥会的比赛项目常被分成两大类:冰项目和雪项目.根据统计图提供的信息,有如下四个结论:①中国队在2022年北京冬奥会上获得的金牌数是参加冬奥会以来最多的一次;②中国队在2022年北京冬奥会上获得的奖牌数是参加冬奥会以来最多的一次;③中国队在冬奥会上的冰上项目奖牌数逐年提高;④中国队在冬奥会上的雪上项目奖牌数在2022年首次超越冰上项目奖牌数.上述结论中,正确的有( )A. 1个B. 2个C. 3个D. 4个第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如图,长方形的长为3cm,宽为2cm,以该长方形的一边所在直线为轴,将其旋转一周,形成圆柱,其体积为______ cm3.(结果保留π)14.单项式(−2)3x m y2z的次数8,则m的值是.15.如图,已知线段AB=8cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=1.5cm,则线段MP=cm.16.当x=时,代数式x+3与2−5x的差是−5.三、解答题(本大题共9小题,共72.0分。
北师大版七年级上册数学期末考试试卷含答案
北师大版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.下列各式中运算正确的是()A.651a a-=B.224a a a+=C.235325a a a+=D.22234-=-a b ba a b3.下列方程中,一元一次方程是()A.2y=1 B.3x﹣5 C.3+7=10 D.x2+x=14.如果m、n互为相反数,a,b互为倒数,等于()A.0B.2C.1D.-1 5.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b>0B.a+b<0C.b-a>0D.a·b>0 6.用科学记数法表示“8500亿”为()A.85×1010B.8.5×1010C.8.5×1011D.0.85×10127.方程114xx--=-去分母正确的是().A.x-1-x=-1B.4x-1-x=-4 C.4x-1+x=-4 D.4x-1+x=-18.如图,已知AO⊥OC,OB⊥OD,⊥COD=38°,则⊥AOB的度数是()A.30ºB.145ºC.150ºD.142º9.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是( ) A .32824x x =- B .32824x x =+ C .2232626x x +-=+ D .2232626x x +-=- 10.如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A .大B .美C .丰D .宁 二、填空题11.比较大小:32- ________34-.12.单项式14ab π-的系数是_______,次数是______.13.8点20分,钟表上时针与分针所成的角是____度. 14.若13m xy +与3n-1x y 是同类项,则m n = ____.15.若1x =是方程53x a x +=-的解,则a =________. 16.已知|a+3|+(b -1)2=0,则3a+b=__________. 17.如果x -2y =-3,那么5+x -2y =________.18.观察下列数据,按某种规律在横线上填上适当的数:1,34-,59,716-,925,_____,…19.如图OA⊥OB ,⊥BOC =40°,OD 平分⊥AOC ,则⊥BOD 的度数是_____°三、解答题 20.计算:(1)17-23-(-9)+(-15) (2) 3116(2)()(4)8÷---⨯-21.解方程:(1)3(1)12x x -=+ (2)3142125x x +--=- 22.先化简,再求值:()()224a 3a 14a 4a ---+,其中a 2.=-23.如图,O 为直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.(1)求出BOD ∠的度数.(2)请通过计算 OE 是否平分BOC ∠.24.一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?25.如图,已知平面上两条线段AB ,CD 及一点P ,请利用尺规按下列要求作图:(1)画射线AC ,延长线段CD 交线段AB 于点E ;连接BD ,并用圆规在线段AB 上求一点F ,使BF BD =(保留画图痕迹):(2)在直线AB 上求作一点Q ,使点Q 到C ,P 两点的距离之和最小.26.如图,已知数轴上的点C 表示的数为6,点A 表示的数为-4,点B 是AC 的中点,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x 秒()0x >.(1)点B 表示的数是_________,x =_________秒时,点P 到达点B . (2)运动过程中点P 表示的数是_________.(用含x 的代数式表示)(3)若另一动点Q ,从B 出发,以每秒1个单位长度的速度沿数轴匀速运动,且P ,Q 同时出发,当x 为多少秒时,点P 与点Q 之间的距离为2个单位长度?27.为迎接“全民阅读日“系列活动,某校围绕学生日人均阅读时间这一问题,对八年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次共抽查了八年级学生多少人;(2)请直接将条形统计图补充完整;(3)在扇形统计图中,1〜1.5小时对应的圆心角是多少度;(4)根据本次抽样调查,估计全市50000名八年级学生日人均阅读时间状况,其中在0.5〜1.5小时的有多少人?参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,-=,所以22故选A.2.D【详解】A.6a-5a=(6-5)a=a,故该项错误;B.a2+a2=(1+1)a2=2a2,故该项错误;C.3a2+2a3=(3+2a)a2,故该项错误;D.22234a b ba a b,故该项正确;-=-故选D.【点睛】合并同类项的数学理论依据实际上是分解因式方法中的提公因式法的逆推.3.A【详解】一元一次方程所具备的条件:等号两边必须是整式,必须只有一个字母,而且字母的指数必须是1,只有A符合.4.C【详解】解:根据题意,得01m n ab+==,,011m n ab∴+-=-=.故选:C.5.B【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘法法则对各选项分析判断后利用排除法求解.【详解】解:由图可知,b<0<a,且|b|>|a|,所以a+b<0,A选项错误,B选项正确;b-a<0,故C选项错误,a·b<0,故D选项错误,故选:B.【点睛】本题考查了数轴,熟练掌握数轴的特点并判断出a、b的正负情况以及绝对值的大小是解题的关键.6.C【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】8 500亿=108×8.5×103=8.5×1011.故选C.7.C【详解】1144(1)4 414xxx xx x--=---=--+=-方程左右两边各项都要乘以4,故选C 8.D【分析】根据垂直的定义得到⊥AOC=⊥DOB=90°,由互余关系得到⊥BOC=52°,然后计算⊥AOC+⊥BOC 即可.【详解】解:⊥AO⊥OC ,OB⊥OD , ⊥⊥AOC=⊥DOB=90°, 而⊥COD=38°,⊥⊥BOC=90°-⊥COD=90°-38°=52°, ⊥⊥AOB=⊥AOC+⊥BOC=90°+52°=142°. 故选:D .【点睛】本题考查了余角的概念:若两个,角的和为90°,那么这两个角互余. 9.A【分析】轮船航行问题中的基本关系为:⊥船的顺水速度=船的静水速度+水流速度;⊥船的逆水速度=船的静水速度-水流速度,则从A 港顺流行驶到B 港所用时间为262x+小时,从B 港返回A 港用262x- 小时,根据题意列方程求解. 【详解】解:根据题意,得3262262x x+=+- 故选A【点睛】本题考查了一元一次方程的应用,考验学生对顺水速度,逆水速度的理解,注意:船的顺水速度、逆水速度、静水速度、水流速度之间的关系. 10.B【分析】根据正方体的侧面展开图可直接进行求解.【详解】解:由正方体侧面展开图可知:与“我”字所在面相对的面上的汉字是“美”; 故选:B .【点睛】本题主要考查正方体侧面展开图,熟练掌握正方体侧面展开图是解题的关键. 11.<【分析】两个负数,绝对值大的其值反而小,据此判断即可. 【详解】⊥|32-|=32=64,|34-|=34,而32﹥34, ⊥32-﹤34-故答案为:﹤.【点睛】此题主要考查了有理数大小比较,熟记有理数大小比较的方法是解答本题的关键. 12. 4π-2 【分析】根据单项式的次数与系数的定义解决此题.【详解】解:根据单项式的次数与系数的定义,单项式14ab π-系数是4π-,次数是2.故答案为:4π-,2. 【点睛】本题主要考查单项式的次数与系数,熟练掌握单项式的次数与系数的定义是解决本题的关键.单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数. 13.130【分析】在8时20分时,时针过8,分针指向4,因为每一个大格子的夹角度数为360°÷12=30°,时针每小时走一个大格,即30°,20分钟走一小时的2060,即13,是30°×13=10°,所以时针过8成10°夹角,再加上从4到8有4个大格子的夹角的度数即可. 【详解】解:在8时20分时,时针过8,在8与9之间,分针指向4, 时针走20分所走的度数为30°×13=10°,分针与8点之间的夹角为4×30=120°,所以此时时钟面上的时针与分针的夹角是120°+10°=130°. 故答案为: 130.【点睛】本题考查钟面角的计算;用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度. 14.16【分析】先根据同类项的定义求出n 、m 的值,再把m 、n 的值代入代数式进行计算即可. 【详解】解:因为13m xy +与3n-1x y 是同类项,所以13m +=,且13-=n , ⊥2m =,4n =, ⊥m n =16, 故答案为:16.【点睛】本题考查的是同类项的定义,乘方,能根据同类项的定义求出m 、n 是解答此题的关键.15.-7【分析】把x=1代入方程5x+a=x-3得出5+a=1-3,求出方程的解即可.【详解】解:把x=1代入方程5x+a=x-3得:5+a=1-3,解得:a=-7,故答案为:-7.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a的方程是解此题的关键.16.-8【分析】根据非负数的和为零则它们均为零的性质,即可完成求值.【详解】⊥|a+3|≥0,(b﹣1)2≥0,且|a+3|+(b﹣1)2=0,⊥a+3=0,b-1=0,⊥a=-3,b=1,⊥3a+b=﹣9+1=﹣8,故答案为:﹣8.【点睛】本题考查了求代数式的值,非负数的性质:几个非负数的和为0时,这几个非负数都为0.七年级所学的两类常见非负数:平方数非负、绝对值非负.17.2【详解】⊥x-2y=-3,⊥5+x-2y=5+(-3)=2.18.-11 36【分析】分别从分子、分母和符号来分析数据的变化规律,进而得出答案.【详解】解:由题意得,分子是从1开始连续的奇数,分母是从1开始连续自然数的平方,奇数位置为正数,偶数位置为负数,⊥第6个数为:11 36 -,故答案为:11 36 -.【点睛】此题考查数字的变化规律,找出分子、分母和符号的变化规律,利用规律解决问题.19.25【详解】解:由题意可知,角AOB是90度,且⊥BOC=40°故130AOC ∠=,且OD 平分⊥AOC 所以,65COD BOD BOC ∠=︒=∠+∠ ⊥⊥BOD=25° 故答案是:25. 20.(1)-12,(2)52-【详解】解:(1)原式=17(23)9(15)+-++- =179(23)(15)++-+- =26(38)+- =12-;(2)原式=1116()()(4)88⨯---⨯-=122-- =52- 【点睛】本题考查有理数的混合运算.掌握有理数混合运算的运算顺序和每一步的运算法则是解题关键.注意一般减法化加法,除法化乘法. 21.(1)25x =;(2)197x =-【详解】解:(1)去括号得:3312x x -=+, 移项得:2313x x --=-, 合并同类项得:52x -=-, 系数化为1得:25x =; (2)去分母得:5(31)2(42)10x x +--=-, 去括号得:1558410x x +-+=-, 移项得:1581054x x -=---, 合并同类项得:719x =-, 系数化为1得:197x =-. 【点睛】本题考查解一元一次方程.掌握解一元一次方程的基本步骤是解题关键. 22.a -1;-3.【分析】原式利用去括号法则去括号后,合并得到最简结果,将a 的值代入计算即可求出值.【详解】()()224a 3a 14a 4a ---+=4a 2-3a -1+4a -4a 2 =a -1当a=-2时,原式=-2-1=-3.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键. 23.(1) 155︒;(2)平分,见解析【分析】(1)由角平分线求出⊥AOD=12⊥AOC=25︒,利用邻补角的性质求出BOD ∠的度数;(2)根据角度的和差计算求出⊥BOE 和⊥COE 的度数,即可得到结论. 【详解】(1)⊥50AOC ∠=︒,OD 平分AOC ∠, ⊥⊥AOD=12⊥AOC=25︒,⊥BOD ∠=180155AOD ︒-∠=︒; (2)⊥90DOE ∠=︒,⊥AOD=25︒, ⊥⊥BOE=18065AOD DOE ︒-∠-∠=︒, ⊥OD 平分AOC ∠, ⊥⊥COD=⊥AOD=25︒, ⊥⊥COE=9065COD ︒-∠=︒, ⊥⊥BOE=⊥COE , ⊥OE 平分BOC ∠.【点睛】此题考查几何图形中角度的计算,角平分线的定义,平角的性质,邻补角的性质,掌握图形中各角之间的数量关系是解题的关键. 24.200【详解】解:设这件商品的成本价是x 元,根据题意得方程: ()8140%22410x +⨯= 解方程得:x=200答:这件商品的成本价是200元 25.(1)见解析 (2)见解析【分析】(1)根据射线的定义,线段的延长线的定义画出图形即可,以B 为圆心,BD 为半径作弧,交AB 于点F ,点F 即为所求作.(2)连接PC 交AB 于点Q ,点Q 即为所求作.(1)解:如图,射线AC ,射线CE 即为所求作,如图,点F 即为所求作.(2)解:如图,点Q 即为所求作.【点睛】本题考查作图-复杂作图,轴对称-最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(1)1;52(2)42x -+(3)当x 为1或3或73或7秒时,点P 与点Q 之间的距离为2个单位长度 【分析】(1)由()642+-可得到点B 表示的数,由题意知421x -+=,求解x 的值,即为点P 到达点B 的时间;(2)由题意知,运动过程中点P 表示的数是42x -+,即为所求;(3)根据点Q 的运动方向不同,分两种情况求解:情况⊥:点Q 向右匀速运动;由题意知,运动过程中点Q 表示的数是1x +,由2PQ =可得:()()1422x x +--+=,计算求解即可;情况⊥:点Q 向左匀速运动;由题意知,运动过程中点Q 表示的数是1x -,由2PQ =可得:()()1422x x ---+=,计算求解即可.(1)解:⊥()6412+-= ⊥点B 表示的数是1由题意知421x -+=,解得52x =⊥52x =秒时,点P 到达点B 故答案为:1,52. (2)解:由题意知,运动过程中点P 表示的数是42x -+故答案为:42x -+.(3)解:根据点Q 的运动方向不同,分两种情况求解:情况⊥:点Q 向右匀速运动;由题意知,运动过程中点Q 表示的数是1x +由2PQ =可得:()()1422x x +--+= ⊥52x -=去绝对值得52x -=±解得13x =,27x =⊥当x 为3或7秒时,点P 与点Q 之间的距离为2个单位长度;情况⊥:点Q 向左匀速运动;由题意知,运动过程中点Q 表示的数是1x -由2PQ =可得:()()1422x x ---+= ⊥532x -=去绝对值得532x -=±解得11x =,273x = ⊥当x 为1或73秒时,点P 与点Q 之间的距离为2个单位长度; 综上所述,当x 为1或3或73或7秒时,点P 与点Q 之间的距离为2个单位长度. 【点睛】本题考查了数轴上的点与距离,列代数式,绝对值等知识.解题的关键在于对知识的灵活运用.易错点是不能全面考虑点Q 的两个运动方向.27.(1)本次共抽查了八年级学生是150人;(2)条形统计图补充见解析;(3)108;(4)估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的40000人.【分析】(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.【详解】(1)本次共抽查了八年级学生是:30÷20%=150人;故答案为150;(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75.(3)人均阅读时间在1~1.5小时对应的圆心角度数是:45 360108150︒⨯=︒;故答案为108;(4)75455000040000150+⨯=(人),答:估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的40000人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。
北师大版七年级数学上册期末考试题(附答案)
北师大版七年级数学上册期末考试题(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°3.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +4.用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是( )A .SASB .AASC .ASAD .SSS5.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°6.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个7.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .108.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为( )A .0.439×106B .4.39×106C .4.39×105D .139×103910+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间10.关于x 的不等式组12x x m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m 的取值范围为( )A .m >-3B .m <-2C .m -3≤<-2D .m -3<≤-2二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.12与最简二次根式51a +是同类二次根式,则a=________.5.若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是________. 5.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为________.6.一个正多边形的一个外角为30°,则它的内角和为________.三、解答题(本大题共6小题,共72分)1.解方程组:20346x y x y +=⎧⎨+=⎩2.先化简再求值:22(3)(3)(3)6(2)a b b a a b b b ⎡⎤+-+--÷-⎣⎦ 其中13a =-,2b =-.58.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D , BE ⊥MN 于E .(1)当直线MN绕点C旋转到图1的位置时,求证:△ADC≌△CEB;(2)当直线MN绕点C旋转到图2的位置时,试问DE、AD、BE的等量关系?并说明理由.4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.请根据图中提供的信息,回答下列问题.(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、D5、A6、B7、B8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、82、203、24、a>﹣156、1800°三、解答题(本大题共6小题,共72分)1、原方程组的解为=63 xy⎧⎨=-⎩2、-3 .3、(1)略;(2)DE=AD-BE,理由略4、(1)与∠D相等的角为∠DCG,∠ECF,∠B(2)155°(3)25°或155°5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)一个暖瓶30元,一个水杯8元;(2)到乙家商场购买更合算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 学 试 卷(北师大版)七年级上册注意事项: 本试卷共八个大题,满分100分,考试时间为90分钟.第一部分 试试你的基本功一、精心选一选(每小题3分,共30分)1.-21的相反数是( ) A .2 B .-2 C .21 D .-21 2.下列式子正确的是( )A .-0.1>-0.01B .—1>0C.21<31D .-5<33.沿图1中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A B C D 4.多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式5.桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②6.数a ,b 在数轴上的位置如图2所示,则b a 是( )A .正数B .零C .负数D .都有可能7. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米 8.图5是某市一天的温度变化曲线图,通过该图可 知,下列说法错误的是( )A .这天15点时的温度最高B .这天3点时的温度最低C .这天最高温度与最低温度的差是13℃D .这天21点时的温度是30℃ 9.一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( )10.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A .3瓶B .4瓶C .5瓶D .6瓶二、细心填一填(每空3分,共15分)阅卷人 得分温度/℃3 6 9 12 时间/时图5 3834 30 26 22 15 18 21 24 图3O O O O A B C D 图4 图211.52xy -的系数是 。
12.某公园的成人单价是10元,儿童单价是4元。
某旅行团有a 名成人和b 名儿童;则旅行团的门票费用总和为 元。
13.已知(a +1)2+|b -2|=0,则1+ab 的值等于 。
14.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第四次后剩下的绳子的长度是 米。
15.如图,点A 、O 、B 在一条直线上,且∠AOC =50°,OD 平分∠AOC 、,则图中∠BOD= 度。
三、对号入座(6分)16.(1)把下列各整式填入相应的圈里:ab +c ,2m ,ax 2+c ,-ab 2c ,a ,0,-x21,y +2.(2)把能用一副三角尺直接画出(或利用其角的加减可画出)的角的度数从左边框内挑出写入右边框内.第二部分 挑战技能15°,20°,50°,75° 105°,120°,150°. AOBCD 单项式多项式四、认真算一算(每小题5分,共15分)17.计算 521)21(21)75(÷-+⨯-18.先化简,再求值: )441()34(22a a a a +--- 其中a =-2。
19.已知:线段AB =6厘米,点C 是AB 的中点,点D 在AC 的中点,求线段BD 的长。
]A B C D五、把道理说明白(20题5分,21题4分,共9分)20.知识是用来为人类服务的,我们应该把它们用于有意义的方.下面就两个情景请你作出评判.情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题。
情景二:A 、B 是河流l 两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P 的位置,并说明你的理由:你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?lAB2+2, 2×23+23, 3×23 4+34, 4×345+45, 5×45……, ……(1)同一行中两个算式的结果怎样? (2)算式2005+20042005和2005×20042005的结果相等吗? (3)请你试写出算式,试一试,再探索其规律,并用含自然数n 的代数式表示这一规律。
第三部分 数学就在你身边七、(23题5分,24题6分,共11分)23.有一天,某检察院接到报案,称某厂厂长提了五千万元现金,装在一个小手提箱里,准备潜逃,检察官们经过分析,认为这是不可能的,后经调查,确实有人报了假案。
从数学的角度看,你知道这是为什么不可能的吗?小常识:一张100元人民币常约为15.5cm ,宽约为7.7聪明,100张100元的人民币的厚度约为0.9cm 。
24.运动时心跳速率通常和人的年龄有关。
用a 表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,则 .)220(8.0a b -=.(1)正常情况下,一个14岁的少年运动时所能承受的每分钟心跳的最高次数是多少?(2)当一个人的年龄增加10岁时,他运动时承受的每分钟心跳最高次数有何变化?变化次数是多少?(3)一个45岁的人运动时,10秒心跳次数为22次,请问他有危险吗?为什么?八、(8分)25.心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,一般地,学生的注意力y 随时间t 的变化情况如下表:上课时间t (分) 0 5 10 15 20 25 30 35 40 45 学生的注意力y10019124024024020517013510065(1)讲课开始后第5分钟时与讲课开始后第25分钟时比较,何时学生的注意力更集中? (2)从表中观察,讲课开始后,学生的注意力最集中的时间是那一段?(3)从表中观察,讲课开始后,学生的注意力从第几分钟起开始下降?猜想注意力下降过程中y 与t 的关系,并用式子表示出来。
(4)用(3)题中的关系式,求当t =27分时,学生的注意力y 的值是多少。
现有一道数学难题,需要讲解20分钟,为了效果更好,要求学生的注意力最低达到190,那么老师能否在学生注意力达到所需状态下讲完这道题目,试着说明理由。
数学试卷参考答案及评分标准一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案CBBDACABCA二、填空题(每小题3分,共15分)11、51-12、b a 410+ 13、-1 14、155 15、1 三、(每小题6分,共12分)16、解:)441()34(22a a a a +---=2244134a a a a -+--………………2分=1-a …………………………………… 4分阅卷人 得分当2-=a 时,)441()34(22a a a a +---=1-a= -2-1 = -3…………6分17、解:依题意得:362121=⨯==AB AC (厘米)…………………………2分 5.132121=⨯==AC AD (厘米)………………………4分所以 BD = AB -AD = 6-1.5 = 4.5(厘米) …………………………6分四、(8分)18、解:(1)单项式:2m ,-ab 2c ,a ,0,-x 21……………………………2分 多项式:ab +c ,ax 2+c ,y +2…………………………………… 4分 (2)15°,75°,105°,120°,150°…………………………… 8分五、(19题6分,20题5分,共11分)19、解:情景一:两点之间的所有连线中,线段最短; ……………………………… 2分 情景二:(需画出图形,并标明P 点位置)………………………………………3分 理由:两点之间的所有连线中,线段最短.……………………………4分 5分 6分说明:只要能比较准确的画出题中所述的两个角,并标出C 点位置即可得全分(5分)。
六、(8分)21、解(1)处在同一行的两个算式,计算结果相等。
………………………… 3分 (2)相等…………………………………………………………………… 5分 (3)nn n n n n 1)1(1)1(+⨯+=+++…………………………………… 8分 七、(8分)22、解:(1)当14=a 时,该少年运动时所能承受的每分钟心跳的最高次数是1648.164)14220(8.0≈=-⨯=b ………………………………3分(2)如果一个人的年龄为x 岁,他运动时承受的每分钟心跳的最高次数是 )220(8.0x -⨯当这个人的年龄增加10岁时,他运动时承受的每分钟心跳的最高次数是 )]10(220[8.0+-⨯x由于 )]10(220[8.0+-⨯x -)220(8.0x -⨯= -8………… 5分 所以,当一个人的年龄增加10岁时,他运动中承受的每分钟心跳的最高次数减少,减少的次数是8次。
……………………………6分(3)当45=a 时,该人运动时所能承受的每分钟心跳的最高次数是132226140)45220(8.0=⨯>=-⨯=b所以,此时无危险。
………………………………………………8分 八、(8分)23、解:(1)讲课开始后第25分钟时学生的注意力更集中;………………… 2分 (2)讲课开始后,学生的注意力最集中的时间是10~20分钟;………4分七年级数学试卷 第 11 页 (共 11 页) (3)学生的注意力从第20分钟起开始下降,………………………… 5分 t t y 7380535)20(240-=⨯--=………………………………6分 (4)当t =27时,学生的注意力y = 191,所以,学生注意力不低于191的时间是27-5=22分钟。
………7分 即学生注意力不低于190的时间远大于20分钟,所以老师能在学生注意力达到所需状态下讲完这道题目。
…… 8分(5)。