2018年天津一中九年级月考试数学试卷及答案
2018年天津市中考数学真题试题答案解析版
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)计算的结果等于()1.C. 9D. A. 5 B.【答案】C【解析】分析:根据有理数的乘方运算进行计算.,详解:(-3) C.故选点睛:本题考查了有理数的乘方,比较简单,注意负号.)2=92.的值等于( C. 1 D. B. A.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()D.A. B.C.B【答案】n的值时,要a×10,的形式,其中1≤|a|<10n为整数.确定n【解析】分析:科学记数法的表示形式为na时,小数点移动了多少位,1时,n的绝对值与小数点移动的位数相同.当原数绝对值>看把原数变成 n1时,是负数.是正数;当原数的绝对值<用科学记数法表示为:77800详解:将.故选.B n n10的形式,其中1≤|a|<,a×10点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为 na为整数,表示时关键要正确确定的值以及的值.)下列图形中,可以看作是中心对称图形的是(4.1 A. C.B. D.A【答案】【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.、是中心对称图形,故本选项正确;详解:A B、不是中心对称图形,故本选项错误; C、不是中心对称图形,故本选项错误; D、不是中心对称图形,故本选项错误; A.故选: 180°后能够重合.本题考查了中心对称图形的特点,点睛:属于基础题,判断中心对称图形的关键是旋转)5个相同的正方体组成的立体图形,它的主视图是( 5. 下图是一个由A. B. D. C.A【答案】【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:A故选:.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.) 6. 估计的值在( 2A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.,<<81详解:∵64,<<9∴8故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题计算的结果为( 7. )A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案..=详解:原式.故选:C 点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.)的解是(8. 方程组A.B.C.D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,②得①- ,x=6 把x=6代入①,得 y=4,原方程组的解为.A.故选点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.)的图像上,则,,9. 若点在反比例函数,,的大小关系是(D.B.A.C.3【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.y=中,详解:∵反比例函数k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y<y<0<y,321∴.B故选:.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.,则下列落在的直线折叠,使点处,折痕为10. 如图,将一个三角形纸片边上的点沿过点结论一定正确的是()B.A.C. D.D【答案】.易得BC=BE.【解析】分析:由折叠的性质知, BC=BE.详解:由折叠的性质知,.∴. .故选:D点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.为对角线,11. 上的一个动点,则下列线段的长如图,在正方形中,,的中点,分别为最小值的是()等于D. A. B. C.4【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD 的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.,其对称轴在为常数,(12. 已知抛物线,,)经过点,轴右侧,有下列结论:;①抛物线经过点有两个不相等的实数根;②方程.③其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.,其对称轴在轴右侧,故抛物线不能为常数,(详解:抛物线)经过点,,,因此①错误;经过点,其对称轴在轴右侧,可知抛物线开口抛物线(,,为常数,)经过点, 5有两个交点,因此方程有两个不相等的实数根,故②正确;y=2 向下,与直线轴右侧,∵对称轴在>0∴∵a<0∴b>0经过点,∵a-b+c=0 ∴经过点∵,c=3 ∴a-b=-3 ∴a=b-3 ∴b=a+3,0<b<3 ∴-3<a<0,. ∴-3<a+b<3.故③正确C.故选点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)计算的结果等于__________.13.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.4+37.=2x 详解:原式=2x7.2x 故答案为:点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.计算的结果等于__________14. .3【答案】【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.22 -)(详解:原式=()=6-3=3,.故答案为:3 点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.从个黄球,.2个绿球,这些球除颜色外无其他差别361115. 不透明袋子中装有个球,其中有个红球,个球,则它是红球的概率是袋子中随机取出1__________.6【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 6个,详解:∵袋子中共有11个小球,其中红球有∴摸出一个球是红球的概率是,故答案为:.A种可能,而且这些事件的可能性相同,其中事件n点睛:此题主要考查了概率的求法,如果一个事件有).=种结果,那么事件A的概率P(A出现m.个单位长度,平移后直线的解析式为16. __________将直线向上平移2【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可. y=x+2.先向上平移详解:将直线y=x2个单位,所得直线的解析式为 y=x+2.故答案为点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.的中点,连于点中,17. 如图,在边长为4的等边,为分别为,,的中点, __________.的长为接,则【答案】. 的长DEGΔ是直角三角形,然后根据勾股定理即可求解DG,根据题意可得【解析】分析:连接DE ,DE详解:连接7BC的中点,AB、E分别是、∵D ACDE=DE∥AC,∴BC=4 ABC是等边三角形,且∵Δ,DE=2 DEB=60°∴∠,EC=2 C=60°⊥AC,∠∵EF EF=∴∠FEC=30°,°-30°=90∴∠DEG=180°-60°的中点,G是EF∵. ∴EG=中,DG= 在RtΔDEG .故答案为:点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是.解题的关键.均在格点上118. 如图,在每个小正方形的边长为,的网格中,,的顶点;__________(度)(1)的大小为是2边上任意一点.)在如图所示的网格中,为中心,取旋转角等于,把点(逆时针旋转,点的位置是如何找到的(不要求当最短时,请用无刻度的直尺,画出点,并简要说明点的对应点为.....__________证明)8 (1). ; (2). 见解析【答案】【解析】分析:(1)利用勾股定理即可解决问题;;取格点交,连接于点延长线于点;取格点交(2,)如图,取格点,,连,连接,则点即为所求交.延长线于点接详解:(1)∵每个小正方形的边长为1,AB=, BC=,∴,AC=∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)解不等式组19.请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.(Ⅳ) .;解:【答案】(Ⅰ);(Ⅱ)(Ⅲ)【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式9组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.从中随机抽取了一部分鸡,根据它们的质量(单位:)只鸡准备对外出售.,绘制20. 某养鸡场有2500出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;只鸡中,质量为的约有多少只?(Ⅲ)根据样本数据,估计这2500【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,1.52.∴这组数据的平均数是次,出现的次数最多,出现了∵在这组数据中,1.8161.8.∴这组数据的众数为,∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有10∴这组数据的中位数为1.5.的数量占(Ⅲ)∵在所抽取的样本中,质量为.的数量约占只鸡中,质量为.∴由样本数据,估计这2500.有只鸡中,质量为2500只。
2018天津中考数学试卷详细解析
2018年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共 12小题,每小题 3分,共36分。
在每小题给出的四个选项中,只 有一项是符合题目要求的)21. ( 3分)(2018?天津)计算(-3)的结果等于( )A . 5B . - 5C . 9D . - 9【考点】1E :有理数的乘方. 【专题】1:常规题型.【分析】根据有理数的乘方法则求出即可【解答】解:(-3) 2= 9,故选:C .【点评】本题考查了有理数的乘方法则,能灵活运用法则进行计算是解此题的关键.【考点】11:科学记数法一表示较大的数. 【专题】511:实数.【分析】科学记数法的表示形式为 a x 10n 的形式,其中1w |a|v 10, n 为整数.确定n 的值 时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当原数绝对值〉1时,n 是正数;当原数的绝对值v 1时,n 是负数.4【解答】 解:77800= 7.78 X 10 ,A . 一B一22【考点】 T5: 特殊角的三角函数值. 【分析】 根据特殊角的三角函数值直接解答即可【解答】解: cos30°= . ) C . 1故选:B .【点评】此题考查了特殊角的三角函数值,是需要识记的内容.3. (3分)(2018?天津)今年“五一”假期,我市某主题公园共接待游客 77800 人次,将 77800用科学记数法表示为5A . 0.778 X 10)4B . 7.78 X 10C . 77.8 X 103D . 778X 1022. ( 3分)(2018?天津)cos30°的值等于( 2故选:A .【点评】此题考查科学记数法的表示方法•科学记数法的表示形式为 1w |a|v 10,n 为整数,表示时关键要正确确定a 的值以及n 的值.【考点】R5:中心对称图形. 【专题】1:常规题型.【分析】根据中心对称图形的概念对各选项分析判断即可得解. 【解答】 解:A 、是中心对称图形,故本选项正确; B 、 不是中心对称图形,故本选项错误; C 、 不是中心对称图形,故本选项错误; D 、 不是中心对称图形,故本选项错误. 故选:A .【点评】本题考查了中心对称图形的概念, 中心对称图形是要寻找对称中心, 旋转180度后两部分重合.5. ( 3分)(2018?天津)如图是一个由5个相同的正方体组成的立体图形,【专题】55F :投影与视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形, 小正方形, a x I0n 的形式,其中它的主视图是()第三层右边一个4. ( 3分)(2018?天津)下列图形中,可以看作是中心对称图形的是(【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.故选:A.6. ( 3分)(2018?天津)估计 的值在( A . 5和6之间B . 6和7之间C . 7和8之间D . 8和9之间【考点】2B :估算无理数的大小. 【专题】1:常规题型.【分析】先估算出 三的范围,再得出选项即可. 【解答】解:8V .亍< 9, 即产在8到9之间, 故选:D .【点评】本题考查了估算无理数的大小,能估算出77的范围是解此题的关键.7. ( 3分)(2018?天津)计算-广--— 的结果为( )x+1 x+1 3A . 1B . 3C .l+l【考点】6B :分式的加减法. 【专题】11:计算题;513:分式.【分析】原式利用同分母分式的减法法则计算即可求出值. 【解答】解:原式=^ ■-=::,x+1x+1故选:C .【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.方程组利用加减消元法求出解即可. \+y=10 ① 2x+尸16②,②-①得:x = 6,把x = 6代入①得:y = 4, 则方程组的解为【点评】此题考查了解二元一次方程组, 利用了消元的思想, 消元的方法有:代入消元法与& ( 3分)(2018?天津)方程组“【考点】x=6B .- ,.尸498:解二元一次方程组. x+y=10的解是()12江+y 二16x=5 【专题】11:计算题. 【分析】 【解答】加减消元法.9. (3 分)(2018?天津)若点A (X1,- 6), B (X2,- 2), C (X3, 2)在反比例函数y = 2ZX 的图象上,贝y X1, X2, X3的大小关系是()A . X1< X2< X3B . X2< X1< X3 C. X2< X3V X i D . X3< X2< X i【考点】G6:反比例函数图象上点的坐标特征.【专题】1:常规题型.【分析】根据反比例函数图象上点的坐标特征,将A、B、C三点的坐标代入反比例函数的解析式y=_,分别求得X1, X2, X3的值,然后再来比较它们的大小.【解答】解:•••点A (X1,- 6), B (X2,- 2), C (X3, 2)在反比例函数y = 2Z的图象上,X二X1=—2, X2=_ 6, X3= 6;又•••- 6<—2< 6,• •• X2< X1< X3;故选:B.【点评】本题考查了反比例函数图象上点的坐标特征•经过反比例函数y=t的某点一定在该函数的图象上.10. (3分)(2018?天津)如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为BD,则下列结论一定正确的是()A . AD = BDB . AE = AC C. ED + EB = DB D . AE+CB = AB【考点】PB:翻折变换(折叠问题).【专题】46:几何变换.【分析】先根据图形翻折变换的性质得出BE = BC,根据线段的和差,可得AE+BE= AB, 根据等量代换,可得答案.【解答】解:•••△ BDE由厶BDC翻折而成,• BE = BC.•/ AE+BE = AB,••• AE+CB = AB,故D正确,故选:D.【点评】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.11. (3分)(2018?天津)如图,在正方形ABCD中,E, F分别为AD , BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是()A . AB B . DE C. BD D. AF【考点】LE:正方形的性质;PA :轴对称-最短路线问题.【专题】556:矩形菱形正方形.【分析】连接CP,当点E, P, C在同一直线上时,AP+PE的最小值为CE长,依据△ ABF CDE ,即可得到AP+EP最小值等于线段AF的长.【解答】解:如图,连接CP,由AD = CD,/ ADP = Z CDP = 45°, DP = DP,可得△ ADP◎△ CDP ,• AP = CP,• AP+PE = CP+PE,•当点E, P, C在同一直线上时,AP+PE的最小值为CE长,此时,由AB = CD,/ ABF = Z CDE , BF = DE,可得△ ABF ◎△ CDE ,• AF = CE,• AP+EP最小值等于线段AF的长,故选:D.【点评】本题考查的是轴对称,最短路线问题,根据题意作出 A 关于BD 的对称点 C 是解答此题的关键.212. (3分)(2018?天津)已知抛物线y = ax+bx+c (a, b, c为常数,0)经过点(-1,0),(0,3),其对称轴在y 轴右侧.有下列结论:①抛物线经过点(1,0);2②方程ax +bx+c= 2有两个不相等的实数根;③-3v a+b v3其中,正确结论的个数为()A . 0B . 1 C. 2 D . 3【考点】H3 :二次函数的性质;H5 :二次函数图象上点的坐标特征;HA :抛物线与x轴的交点.八、、•【专题】535:二次函数图象及其性质;536:二次函数的应用.【分析】①由抛物线过点(-1, 0),对称轴在y轴右侧,即可得出当x= 1时y>0,结论① 错误;2②过点(0, 2)作x轴的平行线,由该直线与抛物线有两个交点,可得出方程ax +bx+c= 2有两个不相等的实数根,结论② 正确;③由当x= 1时y>0,可得出a+b>- c,由抛物线与y轴交于点(0, 3)可得出c= 3,进而即可得出a+b >- 3,由抛物线过点(-1, 0)可得出a+b= 2a+c,结合a v 0、c= 3可得出a+b v 3,综上可得出- 3v a+b v 3,结论③ 正确.此题得解.【解答】解:①•••抛物线过点(-1, 0),对称轴在y轴右侧,•••当x= 1时y> 0,结论①错误;②过点(0, 2)作x轴的平行线,如图所示.•••该直线与抛物线有两个交点,2•方程ax +bx+c= 2有两个不相等的实数根,结论②正确;③•••当x= 1 时y= a+b+c>0,• a+b>- c.2•••抛物线y= ax +bx+c (a, b, c为常数,a丰0)经过点(0, 3),•- c= 3,• a+b>- 3.•.•当x=- 1 时,y= 0,即 a - b+c= 0, b = a+c, a+b= 2a+c.•••抛物线开口向下,• a v 0,• a+ b v c= 3,•- 3v a+b v 3,结论③正确.故选:C.VI **【点评】本题考查了抛物线与x轴的交点、二次函数的性质以及二次函数图象上点的坐标特征,逐一分析三条结论的正误是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)4 3 713. (3分)(2018?天津)计算2x ?x的结果等于2x .【考点】49:单项式乘单项式.【专题】11:计算题.【分析】单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.依此即可求解.【解答】解:2X4?X3= 2x7.故答案为:2X7.【点评】考查了单项式乘单项式,注意:①在计算时,应先进行符号运算,积的系数等于各因式系数的积;②注意按顺序运算;③不要丢掉只在一个单项式里含有的字母因式;④此性质对于多个单项式相乘仍然成立.14. (3分)(2018?天津)计算(■■+ _;)(”和-「;)的结果等于 3 .【考点】79:二次根式的混合运算.【专题】11:计算题.【分析】利用平方差公式计算即可.【解答】解:(7+ 7)(7- 7)=(叮;)2-(_;)2=6 - 3=3,故答案为:3.【点评】本题考查的是二次根式的乘法,掌握平方差公式是解题的关键.15. (3分)(2018?天津)不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别. 从袋子中随机取出1个球,则它是红球的概率是—11 —一【考点】X4 :概率公式.【专题】1:常规题型;543 :概率及其应用.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解::•袋子中共有11个小球,其中红球有6个,•••摸出一个球是红球的概率是L故答案为:一.11【点评】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P (A)=^n16. (3分)(2018?天津)将直线y= x向上平移2个单位长度,平移后直线的解析式为_y =x+2 .【考点】F9: —次函数图象与几何变换.【专题】53:函数及其图象.【分析】直接根据“上加下减,左加右减”的平移规律求解即可.【解答】解:将直线y= 2x直线y= x向上平移2个单位长度,平移后直线的解析式为y= x+2 . 故答案为:y= x+2.【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”17. (3分)(2018?天津)如图,在边长为4的等边△ ABC中,D, E分别为AB, BC的中点,EF丄AC于点F, G为EF的中点,连接DG ,贝U DG【考点】KK :等边三角形的性质;KO :含30度角的直角三角形;KQ :勾股定理;KX :三角形中位线定理.【专题】1常规题型.【分析】直接利用三角形中位线定理进而得出DE = 2,且DE // AC,再利用勾股定理以及直角三角形的性质得出EG以及DG的长.【解答】解:连接DE ,•••在边长为4的等边△ ABC中,D , E分别为AB, BC的中点,••• DE是厶ABC的中位线,••• DE = 2,且DE // AC, BD = BE = EC= 2,•/ EF 丄AC 于点F,/ C = 60°,•••/ FEC = 30°,/ DEF = Z EFC = 90°,• FC = EC = 1,2故EF= . 丁 - —一;,••• G为EF的中点,• EG = ■,2•DG = •• I:「= 1.故答案为:「.2【点评】此题主要考查了勾股定理以及等边三角形的性质和三角形中位线定理,正确得出EG的长是解题关键.18. (3分)(2018?天津)如图,在每个小正方形的边长为1的网格中,△ ABC的顶点A, B,C均在格点上,(I)/ ACB的大小为90 (度);(n)在如图所示的网格中,P是BC边上任意一点,以A为中心,取旋转角等于/ BAC, 把点P逆时针旋转,点P的对应点为P',当CP'最短时,请用无刻度的直尺,画出点P ',并简要说明点P '的位置是如何找到的(不要求证明) 如图,取格点 D , E,连接DE交AB于点T;取格点M , N,连接MN交BC延长线于点G:取格点F,连接FG【考点】R8:作图-旋转变换.【专题】28:操作型;558:平移、旋转与对称;55D:图形的相似.【分析】(I)根据勾股定理可求AB, AC, BC的长,再根据勾股定理的逆定理可求/ ACB的大小;(n)通过将点B以A为中心,取旋转角等于/ BAC旋转,找到线段BC旋转后所得直线FG,只需找到点C到FG的垂足即为P '【解答】解:(1)由网格图可知AC= 二八_:吨BC =AB = ' :2 2 2•/ AC +BC = AB•••由勾股定理逆定理,△ ABC为直角三角形.•••/ ACB = 90°故答案为:90 °(n)作图过程如下:取格点D , E ,连接DE 交AB 于点T ;取格点 M , N ,连接MN 交BC 延长线于点 G :取格 点F ,连接FG 交TC 延长线于点P ',则点P '即为所求••• AC , CF 为正方形网格对角线 ••• A 、C 、F 共线「AC = ' “,BCp !; . ;■:•••/ GFC = Z B T AF = 5* ]= AB•••当BC 边绕点A 逆时针旋转/ CAB 时,点B 与点F 重合,点C 在射线FG 上. 由作图可知T 为AB 中点•••/ TCA =/ TAC•••/ F+ / P ' CF = / B+ / TCA =Z B+ / TAC = 90°• CP '丄 GF 此时,CP '最短故答案为:如图,取格点 D , E ,连接DE 交AB 于点T ;取格点 M , N ,连接MN 交BC 延 长线于点G :取格点F ,连接FG 交TC 延长线于点P ',则点P '即为所求【点评】本题考查了直角三角形的证明、 图形的旋转、三角形相似和最短距离的证明. 解题的关键在于找到并证明线段 BC 旋转后所在的位置.三、解答题(本大题共 7小题,共66分。
2018年天津市中考数学真题试卷(答案解析版)
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】 (1). ; (2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ). 【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
2018年天津市中考数学试题含答案解析(Word版)
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】(1). ;(2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ). 【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
2018年天津市中考数学试题含答案解析(Word版)
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】(1). ;(2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ). 【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
2018年天津市中考数学试卷-答案
天津市2018年初中毕业生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】2(3)9-=,故选C .【提示】熟记平方的运算法则是解题的关键. 【考点】本题考查平方的运算. 2.【答案】B 【解析】3cos30=,故选B . 【提示】熟记特殊角的三角函数值是解题的关键. 【考点】本题考查特殊角的三角函数值. 3.【答案】B【解析】4778007.7810=⨯,故选B .【提示】把一个数写成10n a ⨯的形式(其中1||10a ≤<,n 为整数),这种记数法叫做科学记数法. 【考点】本题考查科学记数法. 4.【答案】A【解析】选项A 中的图形为中心对称图形,选项B ,C ,D 中的图形为轴对称图形,但不是中心对称图形,故选A .【提示】轴对称图形沿某对称轴对折,对折的两部分能完全重合,中心对称图形绕其旋转中心旋转180后能与自身完全重合.【考点】本题考查中心对称图形的判断. 5.【答案】A【解析】主视图是从正面观察几何体看到的平面图形,观察题中几何体得A 选项中的图形符合题意,故选A .【提示】熟记几何体三视图的概念是解题的关键. 【考点】本题考查几何体的主视图. 6.【答案】D89,故选D..【提示】含根号的无理数大小的估算通常是将根号下的数和完全平方数比较大小得到结论. 【考点】本题考查无理数大小的估算. 7.【答案】C 【解析】23223231111x x x x x x x x ++--==++++,故选C . 【提示】同分母分式的加减,分母不变,分子相加减,然后进行约分、化简. 【考点】本题考查分式的化简. 8.【答案】A【解析】用方程组中第二个等式减去第一个等式得6x =,代入第一个等式解得4y =,所以方程组的解是6,4x y =⎧⎨=⎩,故选A . 【提示】熟记二元一次方程组的解法是解题的关键. 【考点】本题考查解二元一次方程组. 9.【答案】B【解析】因为反比例函数12y x=的图象在第一、三象限,且在每一象限内y 随x 的增大而减小,所以2130x x x <<<,故选B .【考点】本题考查反比例函数的图象与性质. 10.【答案】D【解析】因为BCD △沿BD 翻折得到BED △,所以CB EB =,所以AE CB AE EB AB +=+=,故选D . 【提示】折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 【考点】本题考查翻折的性质. 11.【答案】D【解析】连接AC ,PC ,则由正方形的性质易得BD 为线段AC 的垂直平分线,则AP CP =,则AP EP C P EP C E +=+≥,当点P 为EC 与BD 的交点时等号成立,所以AP EP +的最小值为CE ,又因为点E ,F 分别为AD ,BC 的中点,所以四边形AFCE 为平行四边形,则AF CE =,所以AP EP +的最小值为AF ,故选D .【提示】解决此类线段长度之和最小问题,一般要考虑对称点,结合“两点之间,线段最短”“垂线段最短”“三角形任意两边之和大于第三边”等求解. 【考点】本题考查正方形的性质. 12.【答案】C【解析】因为抛物线2y ax bx c =++经过点(10)-,,且抛物线的对称轴在y 轴右侧,所以抛物线与x 轴的另一个交点,即点(10)-,关于对称轴的对称点位于点(10),的右侧,①错误;因为抛物线2y ax bx c =++经过点(10)-,,(03),,且抛物线的对称轴在y 轴右侧,所以抛物线的开口向下,顶点的纵坐标大于3,则抛物线与直线2y =有两个不同的交点,则方程22ax bx c ++=有两个不相等的实数根,②正确;因为抛物线2y ax bx c =++经过点(03),,所以3c =,又因为抛物线与x 轴的另一个交点位于点(10),的右侧,且抛物线的开口向下,所以211330a b a b ⨯+⨯+=++>,所以3a b -+<,又因为抛物线过点(10)-,,所以30a b -+=,即3b a =+,则23a b a +=+,因为抛物线的开口向下,所以0a <,则233a b a +=+<,所以33a b -+<<,③正确,综上所述,正确结论的个数为2,故选C . 【考点】本题考查二次函数的图象和性质.第Ⅱ卷二.填空题 13.【答案】72x【解析】43437222x x x x +==.【提示】熟记整式的运算法则是解题的关键. 【考点】本题考查整式的运算. 14.【答案】3【解析】22(63)633-=-=-=.【提示】根据算式的特点选择平方差公式计算是解题的关键. 【考点】本题考查平方差公式的应用. 15.【答案】611【解析】由题意得随机取出1个球,它是红球的概率为6663211=++.【提示】熟记概率的计算公式是解题的关键. 【考点】本题考查概率的计算. 16.【答案】2y x =+【解析】将直线y x =向上平移2个单位长度得到的直线的解析式为2y x =+. 【提示】熟记直线的平移法则是解题的关键. 【考点】本题考查直线的平移.17.【解析】连接DE ,因为ABC △为边长为4的等边三角形,且D ,E 分别为AB ,BC 的中点,所以DE 为ABC △的中位线,122CE BC ==,则122DE AC ==,60DEB C ∠=∠=,又因为EF AC ⊥,所以30FEC ∠=,则18090D E G D E B F E C ∠=-∠-∠=,cos303EF EC ==,则12EG EF ==,则在Rt DEG △中,由勾股定理得222221924DG DE EG =+=+=,所以DG =【提示】根据等边三角形的性质确定相关线段的长度是解题的关键. 【考点】本题考查等边三角形的性质、勾股定理. 18.【答案】(1)90(2)如图,取格点D ,E ,连接DE 交AB 于点T ;取格点M ,N ,连接MN 交BC 延长线于点G ;取格点F ,连接FG 交TC 延长线于点P ',则P '即为所求.【解析】(1)观察图形易得2223318AC =+=,2221750AB =+=,2224432BC =+=,则222AC B CA B +=,所以90ACB ∠=.(2)由题意得过点C 作直线BC 旋转后对应直线的垂线,垂足即为所求.如图,连接两格点与BC 交于点H ,易得AF AB AH AG GF HB ===,,,且点F 为点B 旋转后的对应点,则GAH CAB ∠=∠,即直线GF 为直线BC 旋转后对应的直线,则FGC ∠等于旋转角,即FGC CAB ∠=∠,又由图易得点T 为AB 的中点,则CT TB =,则P CG TCB TBC '∠=∠=∠,所以90P CG FGC CAB TBC '∠+∠=∠+∠=,所以CP FG '⊥,则点'P 即为所求点.【提示】根据直线旋转的性质得到直线BC 旋转后对应的直线,进而确定点P '的位置是解题的关键. 【考点】本题考查勾股定理. 三、解答题19.【答案】(1)2x -≥. (2)1x ≤.(3)(4)21x -≤≤. 【解析】(1),(2)分别解两不等式得到结论;(3)用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈;(4)根据数轴上两解集的公共区域即为不等式组的解集得到结论. 【考点】本题考查一元一次不等式组的解法. 20.【答案】(1)28. (2)1.52 1.8 1.5 (3)200 【解析】(1)28. (2)观察条形统计图,1.05 1.211 1.514 1.8162.04511141641.52,x ⨯+⨯+⨯+⨯+⨯=++++=, ∴这组数据的平均数是1.52.在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有15 1.51.52+=, ∴这组数据的中位数为1.5.(3)在所抽取的样本中,质量为2.0 kg 的数量占8%,∴由样本数据,估计这2 500只鸡中,质量为2.0 kg 的数量约占8%,有25008%200⨯=. ∴这2 500只鸡中,质量为2.0 kg 的约有200只.【提示】(1)根据扇形统计图中所有组所占百分比之和为1求解;(2)平均数为所有数据的和除以数据的总个数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;中位数是将数据从小到大或从大到小重新排列后,最中间的那个数或最中间两个数的平均数; (3)以样本频率估算总体的分布情况.【考点】本题考查扇形统计图、条形统计图、平均数、众数、中位数的概念. 21.【答案】(1)5245【解析】(1)AB 是O 的直径,90ACB ∴∠=.90BAC ABC∴∠+∠=.又38BAC ∠=,903852ABC ∴∠=-=.由D 为AB 的中点,得AD BD =.1452ACD BCD ACB ∴∠=∠=∠=︒45ABD ACD ∴∠=∠=.(2)如图,连接OD .DP 切O 于点D ,OD DP ∴⊥,即90ODP ∠=.由DP AC ∥,又38BAC ∠=,38P BAC ∴∠=∠=.AOD ∠是ODP △的外角, 128AOD ODP P ∴∠=∠+∠=.1642ACD AOD ∴∠=∠=.又OA OC =,得38ACO A ∠=∠=.643826OCD ACD ACO ∴∠=∠-∠=-=【提示】(1)根据直径所对的圆周角为直角、等弧所对的圆周角相等得到角的等量关系求解; (2)根据圆的切线的性质、三角形外角的性质、圆心角的性质得到角的等量关系求解. 【考点】本题考查圆的性质、切线的性质. 22.【答案】125 m 38 m【解析】如图,过点D 作DE AB ⊥,垂足为E.则90AED BED ∠=∠=.由题意可知,7848589090BC ADE ACB ABC DCB =∠=∠=∠=∠=,,,,. 可得四边形BCDE 为矩形.78ED BC DC EB ∴===,.在Rt ABC △中,tan ABACB BC∠=, tan5878 1.60125AB BC ∴=⨯=≈.在Rt AED △中,tan AEADE ED∠=, tan48AE ED ∴=.tan58tan4878 1.6078 1.1138EB AB AE BC ED ∴=-=-⨯-⨯≈≈.38DC EB ∴=≈.答:甲建筑物的高度AB 约为125 m ,乙建筑物的高度DC 约为38 m. 【提示】利用直角三角形中角的正切概念求解. 【考点】本题考查解直角三角形的应用. 23.【答案】(1)200,5100x +,180,9x . (2)方式一:5100270x +=,解得34x =. 方法二:9270x =,解得30x =.3430>,∴ 小明选择方式一游泳次数比较多.(3)当2025x <<时,有0y >,小明选择方式二更合算;当25x >时,有0y <,小明选择方式一更合算. 【解析】(1)200,5100x +,180,9x . (2)方式一:5100270x +=,解得34x =. 方法二:9270x =,解得30x =.3430>,∴ 小明选择方式一游泳次数比较多.(3)设方式一与方式二的总费用的差为y 元.则(5100)9y x x =+-,即4100y x =-+. 当0y =时,即41000x -+=,得25x =.∴当25x =时,小明选择这两种方式一样合算. 40-<,∴y 随x 的增大而减小.∴当2025x <<时,有0y >,小明选择方式二更合算;当25x >时,有0y <,小明选择方式一更合算. 【提示】(1)根据题意得到一次函数关系填表;(2)根据两种付费方式的解析式,令270y =,分别求出两种付费方式对应的x 的值进行比较即可得到结论;(3)构造两种付费方式的费用差与游泳次数的函数关系,根据一次函数的性质得到结论. 【考点】本题考查利用一次函数解决实际问题. 24.【答案】(1)(1,3)(2)①证明:由四边形ADEF 是矩形,得90ADE ∠=. 又点D 在线段BE 上,得90ADB ∠=. 由(1)知,AD AO =, 又90AB AB AOB =∠=,,Rt Rt ADB AOB ∴△≌△.②17(3)5,(3S 【解析】(1)点A (5,0),点B (0,3),5 3.B OA O ∴==,四边形AOBC 是矩形,35AC OB BC OA ∴====,, 90.OBC C ∠=∠=矩形ADEF 是由矩形AOBC 旋转得到的,5AD AO ∴==.在Rt ADC △中,有222AD AC DC =+,4DC ∴==.1BD BC DC ∴=-=.∴点D 的坐标为(1,3).(2)①证明:由四边形ADEF 是矩形,得90ADE ∠=. 又点D 在线段BE 上,得90ADB ∠=. 由(1)知,AD AO =, 又90AB AB AOB =∠=,,Rt Rt ADB AOB ∴△≌△.②由ADB AOB △≌,得BAD BAO ∠=∠. 又在矩形AOBC 中,OA BC ∥,CBA OAB ∴∠=∠. BAD CBA ∴∠=∠..BH AH ∴=.设BH t =,则5AH t HC BC BH t ==-=-,.在Rt AHC △中,有222AH AC HC =+,22235.t t ∴=+-()解得175t =. 175BH ∴=. ∴点H 的坐标为17(3)5,.(3S 【提示】(1)根据旋转的性质和勾股定理求解相关线段的长度进而得到点的坐标;(2)①在直角三角形中利用(HL )证明两三角形全等;②根据三角形全等和勾股定理求解相关线段的长度进而得到点的坐标;(3)结合旋转的性质可知,当点K 在线段AD 上时,点K 到DE 的距离最小,S 最小,当点K 在线段DA 的延长线上时,点K 到DE 距离最大,S 最大,利用三角形面积公式计算可得S 的取值范围.【考点】本题考查矩形的性质、图形的旋转、三角形全等的判定和性质、勾股定理.25.【答案】(1)顶点P 的坐标为19(,)24--. (2)10m =-.抛物线解析式为21020.y x x =-+(3)145m =-或223m =-. 故抛物线解析式为2142855y x x =-+或22244.33y x x =-+ 【解析】(1)抛物线22y x mx m =+-经过点(10)A ,, 012m m ∴=+-,解得1m =.∴抛物线的解析式为22y x x =+-.219224y x x x =+-=+-2(), ∴顶点P 的坐标为19(,)24--.(2)抛物线22y x mx m =+-的顶点P 的坐标为28(,)24m m m +--.由点(10)A ,在x 轴正半轴上,点P 在x 轴下方, 45AOP ∠=,知点P 在第四象限.过点P 作PQ x ⊥轴于点Q ,则45POQ OPQ ∠=∠=.可知PO OQ =,即2842m m m +=-, 解得12010m m ==-,.当0m =时,点P 不在第四象限,舍去.10m ∴=-.∴抛物线解析式为21020.y x x =-+(3)由222(2)y x mx m x m x =+-=-+可知,当2x =时,无论m 取何值,y 都等于4.得点H 的坐标为(24),. 过点A 作AD AH ⊥,交射线HP 于点D ,分别过点D ,H 作x 轴的垂线,垂足分别为E ,G ,则90DEA AGH ∠=∠=.9045DAH AHD ∠=∠=,,45.ADH AH AD ∴∠=∴=90DAE HAG AHG HAG ∠+∠=∠+∠=,.DAE AHG ADE HAG ∴∠=∠∴△≌△14DE AG AE HG ∴====,.可得点D 的坐标为(31)-,或(51)-,. ①当点D 的坐标为(31)-,时, 可得直线DH 的解析式为31455y x =+. 点28(,)24m m m P +--在直线31455y x =+上, 28314()4525m m m +∴-=⨯-+. 解得14m =-,2145m =-. 当4m =-时,点P 与点H 重合,不符合题意,14.5m ∴=- ②当点D 的坐标为(51)-,时, 可得直线DH 的解析式为52233y x =-+. 点28(,)24m m m P +--在直线52233y x =-+上, 285m 22()4323m m +∴-=-⨯-+. 解得14m =-(舍),2223m =-. 22.3m ∴=- 综上,145m =-或223m =-. 故抛物线解析式为2142855y x x =-+或22244.33y x x =-+ 【提示】(1)根据抛物线经过的点的坐标确定抛物线的解析式,进而确定抛物线的顶点坐标;(2)根据抛物线方程得到抛物线的含参数的顶点坐标,根据已知角得到线段的等量关系,进而得到关于参数的方程,解方程得到参数的值,进而得到抛物线方程;(3)转化抛物线的解析式得到点H 的坐标,作AD AH ⊥,交射线HP 于点D ,从而根据已知角得到线段间的关系,进而证明ADE HAG △≌△,从而得到点D 的坐标,分情况讨论,根据点P 在直线DH 上得到方程求解.【考点】本题考查二次函数的图象和性质.。
2018年天津市中考数学试卷有答案
天津市2018年初中毕业生学业考试数 学(本试卷满分120分,考试时间100分钟)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算2(3)-的结果等于( ) A .5 B .5-C .9D .9-2.cos30的值等于( )AB.2 C .1 D3.2018年“五一”假期,天津市某主题公园共接待游客77 800人次,将77 800用科学记数法表示为 ( )A .50.77810⨯B .47.7810⨯C .377.810⨯ D .277810⨯4.下列图形中,可以看作是中心对称图形的是 ( )ABCD 5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )BC D 6.( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间7.计算23211x xx x +-++的结果为 ( )A .1B .3C .31x + D .31x x ++ 8.方程组10,216x y x y +=⎧⎨+=⎩的解是( )A .6,4x y =⎧⎨=⎩B .5,6x y =⎧⎨=⎩C .3,6x y =⎧⎨=⎩D .2,8x y =⎧⎨=⎩ 9.若点123(,6),(2),(2)A x B x C x --,,在反比例函数12y x=的图象上,则123,,x x x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x << 10.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是( ) A .AD =BD B .AE =AC C .ED EB DB += D .AE CB AB +=11.如图,在正方形ABCD 中,E ,F 分别为AD ,BC 的中点,P 为对角线BD 上的一个动点,则下列线段的长等于AP EP +最小值的是( )A .ABB .DEC .BDD .AF12.已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ≠)经过点(-1,0),(0,3),其对称轴在y 轴右侧.有下列结论:①抛物线经过点(1,0);②方程2=2ax bx c ++有两个不相等的实数根;③33a b -+<<. 其中,正确结论的个数为( )A .0B .1C .2D .3第Ⅱ卷(非选择题共84分)毕业学校_____________ 姓名________________ 考生号________________ _____________________________二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 13.计算432x x 的结果等于 .14.计算的结果等于 .15.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 . 16.将直线y x =向上平移2个单位长度,平移后直线的解析式为 .17.如图,在边长为4的等边ABC △中,D ,E 分别为AB ,BC 的中点,EF AC ⊥于点F ,G 为EF 的中点,连接DG ,则DG 的长为 .18.如图,在每个小正方形的边长为1的网格中,ABC △的顶点A ,B ,C 均在格点上.(1)ACB ∠的大小为 (度); (2)在如图所示的网格中,P 是BC 边上任意一点.以A 为中心,取旋转角等于BAC ∠,把点P 逆时针旋转,点P 的对应点为P '.当CP '最短时,请用无刻度的直尺,画出点P ',并简要说明点P '的位置是如何找到的(不要求证明) . 三、解答题(本大题共7小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤) 19.(本小题满分8分) 解不等式组31,413.x x x +⎧⎨+⎩≥①≤②请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 . 20.(本小题满分8分)某养鸡场有2 500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:(1)图1中m 的值为 ;(2)求统计的这组数据的平均数、众数和中位数;(3)根据样本数据,估计这2 500只鸡中,质量为2.0 kg 的约有多少只?21.(本小题满分10分)已知AB 是O 的直径,弦CD 与AB 相交,38BAC ∠=. (1)如图1,若D 为AB 的中点,求ABC ∠和ABD ∠的大小;(2)如图2,过点D 作O 的切线,与AB 的延长线交于点P ,若D P A C ∥,求O C D ∠的大小.22.(本小题满分10分)如图,甲、乙两座建筑物的水平距离BC 为78 m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48,测得底部C 处的俯角为58,求甲、乙建筑物的高度AB 和DC (结果取整数).参考数据:tan48 1.11tan58 1.60≈,≈.23.(本小题满分10分)某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x (x 为正整数). (1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当20x >时,小明选择哪种付费方式更合算?并说明理由.24.(本小题满分10分)在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图1,当点D 落在BC 边上时,求点D 的坐标; (2)如图2,当点D 落在线段BE 上时,AD 与BC 交于点H . ①求证ADB AOB △≌△; ②求点H 的坐标.(3)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).25.(本小题满分10分)在平面直角坐标系中,点(0,0)O ,点(1,0)A .已知抛物线22y x mx m =+-(m 是常数),顶点为P .(1)当抛物线经过点A 时,求顶点P 的坐标;(2)若点P 在x 轴下方,当45AOP ∠=时,求抛物线的解析式;(3)无论m 取何值,该抛物线都经过定点H .当45AHP ∠=时,求抛物线的解析式.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------天津市2018年初中毕业生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】2(3)9-=,故选C .【提示】熟记平方的运算法则是解题的关键. 【考点】本题考查平方的运算. 2.【答案】B 【解析】3cos30=,故选B . 【提示】熟记特殊角的三角函数值是解题的关键. 【考点】本题考查特殊角的三角函数值. 3.【答案】B【解析】4778007.7810=⨯,故选B .【提示】把一个数写成10n a ⨯的形式(其中1||10a ≤<,n 为整数),这种记数法叫做科学记数法.【考点】本题考查科学记数法. 4.【答案】A【解析】选项A 中的图形为中心对称图形,选项B ,C ,D 中的图形为轴对称图形,但不是中心对称图形,故选A .【提示】轴对称图形沿某对称轴对折,对折的两部分能完全重合,中心对称图形绕其旋转中心旋转180后能与自身完全重合. 【考点】本题考查中心对称图形的判断. 5.【答案】A【解析】主视图是从正面观察几何体看到的平面图形,观察题中几何体得A 选项中的图形符合题意,故选A .【提示】熟记几何体三视图的概念是解题的关键.【考点】本题考查几何体的主视图. 6.【答案】D89,故选D..【提示】含根号的无理数大小的估算通常是将根号下的数和完全平方数比较大小得到结论.【考点】本题考查无理数大小的估算. 7.【答案】C 【解析】23223231111x x x x x x x x ++--==++++,故选C . 【提示】同分母分式的加减,分母不变,分子相加减,然后进行约分、化简.【考点】本题考查分式的化简. 8.【答案】A【解析】用方程组中第二个等式减去第一个等式得6x =,代入第一个等式解得4y =,所以方程组的解是6,4x y =⎧⎨=⎩,故选A .【提示】熟记二元一次方程组的解法是解题的关键. 【考点】本题考查解二元一次方程组. 9.【答案】B【解析】因为反比例函数12y x=的图象在第一、三象限,且在每一象限内y 随x 的增大而减小,所以2130x x x <<<,故选B . 【考点】本题考查反比例函数的图象与性质. 10.【答案】D【解析】因为B C D △沿BD 翻折得到BED △,所以C B E B=,所以AE CB AE EB AB +=+=,故选D .【提示】折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【考点】本题考查翻折的性质. 11.【答案】D【解析】连接AC ,PC ,则由正方形的性质易得BD 为线段AC 的垂直平分线,则AP CP =,则AP EP CP EP CE +=+≥,当点P 为EC 与BD 的交点时等号成立,所以AP EP +的最小值为CE ,又因为点E ,F 分别为AD ,BC 的中点,所以四边形AFCE 为平行四边形,则AF CE =,所以AP EP +的最小值为AF ,故选D .【提示】解决此类线段长度之和最小问题,一般要考虑对称点,结合“两点之间,线段最短”“垂线段最短”“三角形任意两边之和大于第三边”等求解. 【考点】本题考查正方形的性质. 12.【答案】C【解析】因为抛物线2y ax bx c =++经过点(10)-,,且抛物线的对称轴在y 轴右侧,所以抛物线与x 轴的另一个交点,即点(10)-,关于对称轴的对称点位于点(10),的右侧,①错误;因为抛物线2y ax bx c =++经过点(10)-,,(03),,且抛物线的对称轴在y 轴右侧,所以抛物线的开口向下,顶点的纵坐标大于3,则抛物线与直线2y =有两个不同的交点,则方程22ax bx c ++=有两个不相等的实数根,②正确;因为抛物线2y ax bx c =++经过点(03),,所以3c =,又因为抛物线与x 轴的另一个交点位于点(10),的右侧,且抛物线的开口向下,所以211330a b a b ⨯+⨯+=++>,所以3a b -+<,又因为抛物线过点(10)-,,所以30a b -+=,即3b a =+,则23a b a +=+,因为抛物线的开口向下,所以0a <,则233a b a +=+<,所以33a b -+<<,③正确,综上所述,正确结论的个数为2,故选C .【考点】本题考查二次函数的图象和性质.第Ⅱ卷二.填空题 13.【答案】72x【解析】43437222x x x x +==.【提示】熟记整式的运算法则是解题的关键. 【考点】本题考查整式的运算. 14.【答案】3【解析】22(63)633-=-=-=.【提示】根据算式的特点选择平方差公式计算是解题的关键. 【考点】本题考查平方差公式的应用.15.【答案】611【解析】由题意得随机取出1个球,它是红球的概率为6663211=++.【提示】熟记概率的计算公式是解题的关键. 【考点】本题考查概率的计算. 16.【答案】2y x =+【解析】将直线y x =向上平移2个单位长度得到的直线的解析式为2yx =+. 【提示】熟记直线的平移法则是解题的关键. 【考点】本题考查直线的平移. 17. 【解析】连接DE ,因为ABC △为边长为4的等边三角形,且D ,E 分别为AB ,BC 的中点,所以DE 为ABC △的中位线,122C E B C ==,则122D E A C ==,60DEB C ∠=∠=,又因为EF AC ⊥,所以30FEC ∠=,则1809D E G D E B F E C ∠=-∠-∠=,cos303EF EC ==,则12EG EF ==,则在Rt DEG △中,由勾股定理得222221924DG DE EG =+=+=,所以DG = 【提示】根据等边三角形的性质确定相关线段的长度是解题的关键. 【考点】本题考查等边三角形的性质、勾股定理. 18.【答案】(1)90(2)如图,取格点D ,E ,连接DE 交AB 于点T ;取格点M ,N ,连接MN 交BC 延长线于点G ;取格点F ,连接FG 交TC 延长线于点P ',则P '即为所求.【解析】(1)观察图形易得2223318AC =+=,2221750AB =+=,2224432BC =+=,则222AC BC AB +=,所以90ACB ∠=.(2)由题意得过点C 作直线BC 旋转后对应直线的垂线,垂足即为所求.如图,连接两格点与BC 交于点H ,易得AF AB AH AG GF HB ===,,,且点F 为点B 旋转后的对应点,则GAH CAB ∠=∠,即直线GF 为直线BC 旋转后对应的直线,则FGC ∠等于旋转角,即FGC CAB ∠=∠,又由图易得点T 为AB 的中点,则CT TB =,则P CG T CB T BC'∠=∠=∠,所以90P CG FGC CAB TBC '∠+∠=∠+∠=,所以CP FG '⊥,则点'P 即为所求点.【提示】根据直线旋转的性质得到直线BC 旋转后对应的直线,进而确定点P '的位置是解题的关键.【考点】本题考查勾股定理. 三、解答题19.【答案】(1)2x -≥. (2)1x ≤.(3)(4)21x -≤≤.【解析】(1),(2)分别解两不等式得到结论;(3)用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈;(4)根据数轴上两解集的公共区域即为不等式组的解集得到结论. 【考点】本题考查一元一次不等式组的解法. 20.【答案】(1)28. (2)1.52 1.8 1.5 (3)200 【解析】(1)28. (2)观察条形统计图,1.05 1.211 1.5141.8162.04511141641.52,x⨯+⨯+⨯+⨯+⨯=++++=, ∴这组数据的平均数是1.52.在这组数据中, 1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有151.51.52+=,∴这组数据的中位数为1.5.(3)在所抽取的样本中,质量为2.0 kg 的数量占8%,∴由样本数据,估计这2 500只鸡中,质量为2.0 kg 的数量约占8%,有25008%200⨯=. ∴这2 500只鸡中,质量为2.0 kg 的约有200只.【提示】(1)根据扇形统计图中所有组所占百分比之和为1求解;(2)平均数为所有数据的和除以数据的总个数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;中位数是将数据从小到大或从大到小重新排列后,最中间的那个数或最中间两个数的平均数; (3)以样本频率估算总体的分布情况.【考点】本题考查扇形统计图、条形统计图、平均数、众数、中位数的概念. 21.【答案】(1)5245【解析】(1)AB 是O 的直径,90ACB ∴∠=.90BAC ABC ∴∠+∠=.又38BAC ∠=,903852ABC ∴∠=-=.由D 为AB 的中点,得AD BD =.1452ACD BCD ACB ∴∠=∠=∠=︒45ABD ACD ∴∠=∠=.(2)如图,连接OD .DP 切O 于点D ,OD DP ∴⊥,即90ODP ∠=.由DP AC ∥,又38BAC ∠=,38P BAC ∴∠=∠=.AOD ∠是ODP △的外角, 128AOD ODP P ∴∠=∠+∠=.1642ACD AOD ∴∠=∠=.又OA OC =,得38ACO A ∠=∠=.643826OCD ACD ACO ∴∠=∠-∠=-=【提示】(1)根据直径所对的圆周角为直角、等弧所对的圆周角相等得到角的等量关系求解;(2)根据圆的切线的性质、三角形外角的性质、圆心角的性质得到角的等量关系求解. 【考点】本题考查圆的性质、切线的性质. 22.【答案】125 m 38 m【解析】如图,过点D 作DE AB ⊥,垂足为E.则90AED BED ∠=∠=.由题意可知,7848589090BC ADE ACB ABC DCB =∠=∠=∠=∠=,,,,. 可得四边形BCDE 为矩形.78ED BC DC EB ∴===,.在Rt ABC △中,tan ABACB BC∠=, tan5878 1.60125AB BC ∴=⨯=≈.在Rt AED △中,tan AEADE ED∠=,tan48AE ED ∴=.tan58tan4878 1.6078 1.1138EB AB AE BC ED ∴=-=-⨯-⨯≈≈.38DC EB ∴=≈.答:甲建筑物的高度AB 约为125 m ,乙建筑物的高度DC 约为38 m. 【提示】利用直角三角形中角的正切概念求解. 【考点】本题考查解直角三角形的应用. 23.【答案】(1)200,5100x +,180,9x . (2)方式一:5100270x +=,解得34x =. 方法二:9270x =,解得30x =.3430>,∴ 小明选择方式一游泳次数比较多.(3)当2025x <<时,有0y >,小明选择方式二更合算;当25x >时,有0y <,小明选择方式一更合算.【解析】(1)200,5100x +,180,9x .(2)方式一:5100270x +=,解得34x =. 方法二:9270x =,解得30x =.3430>,∴ 小明选择方式一游泳次数比较多.(3)设方式一与方式二的总费用的差为y 元. 则(5100)9y x x =+-,即4100y x =-+.当0y =时,即41000x -+=,得25x =.∴当25x =时,小明选择这两种方式一样合算.40-<,∴y 随x 的增大而减小.∴当2025x <<时,有0y >,小明选择方式二更合算;当25x >时,有0y <,小明选择方式一更合算.【提示】(1)根据题意得到一次函数关系填表;(2)根据两种付费方式的解析式,令270y =,分别求出两种付费方式对应的x 的值进行比较即可得到结论;(3)构造两种付费方式的费用差与游泳次数的函数关系,根据一次函数的性质得到结论.【考点】本题考查利用一次函数解决实际问题. 24.【答案】(1)(1,3)(2)①证明:由四边形ADEF 是矩形,得90ADE ∠=. 又点D 在线段BE 上,得90ADB ∠=. 由(1)知,AD AO =, 又90AB AB AOB =∠=,,Rt Rt ADB AOB ∴△≌△.②17(3)5,(3S . 【解析】(1)点A (5,0),点B (0,3),5 3.B OA O ∴==,四边形AOBC 是矩形,35AC OB BC OA ∴====,, 90.OBC C ∠=∠=矩形ADEF 是由矩形AOBC 旋转得到的,5AD AO ∴==.在Rt ADC △中,有222AD AC DC =+,4DC ∴=.1BD BC DC ∴=-=. ∴点D 的坐标为(1,3).(2)①证明:由四边形ADEF 是矩形,得90ADE ∠=. 又点D 在线段BE 上,得90ADB ∠=. 由(1)知,AD AO =, 又90AB AB AOB =∠=,,Rt Rt ADB AOB ∴△≌△.②由ADB AOB △≌,得BAD BAO ∠=∠. 又在矩形AOBC 中,OA BC ∥,CBA OAB ∴∠=∠.BAD CBA ∴∠=∠..BH AH ∴=.设BH t =,则5AH t HC BC BH t ==-=-,. 在Rt AHC △中,有222AH AC HC =+,22235.t t ∴=+-()解得175t =.175BH ∴=.∴点H 的坐标为17(3)5,.(3)303044S -+≤. 【提示】(1)根据旋转的性质和勾股定理求解相关线段的长度进而得到点的坐标; (2)①在直角三角形中利用(HL )证明两三角形全等;②根据三角形全等和勾股定理求解相关线段的长度进而得到点的坐标;(3)结合旋转的性质可知,当点K 在线段AD 上时,点K 到DE 的距离最小,S 最小,当点K 在线段DA 的延长线上时,点K 到DE 距离最大,S 最大,利用三角形面积公式计算可得S 的取值范围.【考点】本题考查矩形的性质、图形的旋转、三角形全等的判定和性质、勾股定理.25.【答案】(1)顶点P 的坐标为19(,)24--.(2)10m =-.抛物线解析式为21020.y x x =-+(3)145m =-或223m =-. 故抛物线解析式为2142855y x x =-+或22244.33y x x =-+【解析】(1)抛物线22y x mx m =+-经过点(10)A ,, 012m m ∴=+-,解得1m =. ∴抛物线的解析式为22y x x =+-.219224y x x x =+-=+-2(),∴顶点P 的坐标为19(,)24--.(2)抛物线22y x mx m =+-的顶点P 的坐标为28(,)24m m m+--.由点(10)A ,在x 轴正半轴上,点P 在x 轴下方, 45AOP ∠=,知点P 在第四象限.过点P 作PQ x ⊥轴于点Q , 则45POQ OPQ ∠=∠=.可知PO OQ =,即2842m m m+=-,解得12010m m ==-,.当0m =时,点P 不在第四象限,舍去.10m ∴=-.∴抛物线解析式为21020.y x x =-+(3)由222(2)y x mx m x m x =+-=-+可知,当2x =时,无论m 取何值,y 都等于4.得点H 的坐标为(24),. 过点A 作AD AH ⊥,交射线HP 于点D ,分别过点D ,H 作x 轴的垂线,垂足分别为E ,G , 则90DEA AGH ∠=∠=.9045DAH AHD ∠=∠=,, 45.ADH AH AD ∴∠=∴=90DAE HAG AHG HAG ∠+∠=∠+∠=, .DAE AHG ADE HAG ∴∠=∠∴△≌△14DE AG AE HG ∴====,. 可得点D 的坐标为(31)-,或(51)-,. ①当点D 的坐标为(31)-,时, 可得直线DH 的解析式为31455y x =+. 点28(,)24m m m P +--在直线31455y x =+上,28314()4525m m m +∴-=⨯-+.解得14m =-,2145m =-.当4m =-时,点P 与点H 重合,不符合题意,14.5m ∴=-②当点D 的坐标为(51)-,时, 可得直线DH 的解析式为52233y x =-+.点28(,)24m m m P +--在直线52233y x =-+上, 285m 22()4323m m +∴-=-⨯-+. 解得14m =-(舍),2223m =-.22.3m ∴=-综上,145m =-或223m =-.故抛物线解析式为2142855y x x =-+或22244.33y x x =-+【提示】(1)根据抛物线经过的点的坐标确定抛物线的解析式,进而确定抛物线的顶点坐标;(2)根据抛物线方程得到抛物线的含参数的顶点坐标,根据已知角得到线段的等量关系,进而得到关于参数的方程,解方程得到参数的值,进而得到抛物线方程;,交射线HP于点D,从而根(3)转化抛物线的解析式得到点H的坐标,作AD AH△≌△,从而得到点D的坐标,据已知角得到线段间的关系,进而证明ADE HAG分情况讨论,根据点P在直线DH上得到方程求解.【考点】本题考查二次函数的图象和性质.数学试卷第21页(共22页)数学试卷第22页(共22页)。
2018-2019年天津一中九年级(下)月考数学试卷(3月份)解析版
2018-2019学年天津一中九年级(下)月考数学试卷(3月份)一、填空题1.(3分)使有意义的x的取值范围是()A.x>3B.x<3C.x≥3D.x≠32.(3分)sin60°的值等于()A.B.C.D.13.(3分)人体中成熟的红细胞平均直径为0.00077厘米,将数字0.00077用科学记数法表示为()A.7.7×10﹣3B.77×10﹣4C.77×10﹣3D.7.7×10﹣4 4.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.5.(3分)若一个正六边形的周长为24,则该正六边形的面积为()A.B.C.12D.246.(3分)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE =40°,则∠P的度数为()A.140°B.70°C.60°D.40°7.(3分)分式方程=1的解为()A.x=1B.x=2C.x=﹣1D.x=﹣28.(3分)若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1B.m≤1C.m>1D.m<19.(3分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0D.﹣a>b10.(3分)如图,已知点E、F、G、H分别是菱形ABCD各边的中点,则四边形EFGH是()A.正方形B.矩形C.菱形D.平行四边形11.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0B.x1<0<x2C.x2<x1<0D.x2<0<x1 12.(3分)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0;②b>a>c;③若﹣1<m<n<1,则m+n<﹣;④3|a|+|c|<2|b|.其中正确的结论是()A.①②③B.①③C.①③④D.①④二、填空题13.(3分)因式分解:a2﹣2ab+b2=.14.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.15.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.16.(3分)若一次函数y=(k﹣2)x+1(k是常数)中y随x的增大而增大,则k的取值范围是.17.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD 与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是18.(3分)如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图1中画出一个面积最小的平行四边形PAQB.(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.三、解答题19.求不等式组的正整数解.20.某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数21.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,(I)如图①,若D为的中点,求∠ABC和∠ABD的大小;(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD 的大小.22.随着航母编队的成立,我国海军日益强大.2018年4月12日,中央军委在南海海域隆重举行海上阅兵,在阅兵之前我军加强了海上巡逻,如图,我军巡逻舰在某海域航行到A 处时,该舰在观测点P的南偏东45°的方向上,且与观测点P的距离P A为400海里;巡逻舰继续沿正北方向航行一段时间后,到达位于观测点P的北偏东30°方向上的B处,问此时巡逻舰与观测点P的距离PB为多少海里?(参考数据:≈1.414,≈1.732,结果精确到1海里).23.某商场试销一种成本为60元/件的T恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y(件)不销售单价x(元/件)符合一次函数y=kx+b,且x=70时,y=50;x=80时,y=40;(1)写出销售单价x的取值范围;(2)求出一次函数y=kx+b的解析式;(3)若该商场获得利润为w元,试写出利润w与销售单价x之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少?24.对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好不点D重合(如图②)(1)根据以上操作和发现,则=;(2)将该矩形纸片展开,如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°.25.已知:二次函数y=ax2﹣2ax﹣3(a>0),当2≤x≤4时,函数有最大值5.(1)求此二次函数图象与坐标轴的交点;(2)将函数y=ax2﹣2ax﹣3(a>0)图象x轴下方部分沿x轴向上翻折,得到的新图象,若点P(x0,y0)是翻折得到的抛物线弧部分上任意一点,若关于m的一元二次方程m2﹣y0m+k﹣4+y0=0恒有实数根时,求实数k的最大值.2018-2019学年天津一中九年级(下)月考数学试卷(3月份)参考答案与试题解析一、填空题1.【解答】解:由题意,得x﹣3≥0,解得x≥3,故选:C.2.【解答】解:根据特殊角的三角函数值可知:sin60°=.故选:C.3.【解答】解:0.00077=7.7×10﹣4.故选:D.4.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.5.【解答】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为24,∴BC=24÷6=4,∴OB=BC=4,∴BM=BC=2,∴OM==2,∴S△OBC=×BC×OM=×4×2=4,∴该六边形的面积为:4×6=24.故选:D.6.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选:B.7.【解答】解:去分母得:3x=x+4,解得:x=2,经检验x=2是分式方程的解,故选:B.8.【解答】解:∵方程x2﹣2x+m=0有两个不相同的实数根,∴△=(﹣2)2﹣4m>0,解得:m<1.故选:D.9.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.10.【解答】解:连接AC、BD.AC交FG于L.∵四边形ABCD是菱形,∴AC⊥BD,∵DH=HA,DG=GC,∴GH∥AC,HG=AC,同法可得:EF=AC,EF∥AC,∴GH=EF,GH∥EF,∴四边形EFGH是平行四边形,同法可证:GF∥BD,∴∠OLF=∠AOB=90°,∵AC∥GH,∴∠HGL=∠OLF=90°,∴四边形EFGH是矩形.故选:B.11.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选:A.12.【解答】解:∵抛物线开口向下,∴a<0,∴2a<0,对称轴x=﹣>1,﹣b<2a,∴2a+b>0,故选项①正确;∵﹣b<2a,∴b>﹣2a>0>a,令抛物线解析式为y=﹣x2+bx﹣,此时a=c,欲使抛物线与x轴交点的横坐标分别为和2,则=﹣,解得:b=,∴抛物线y=﹣x2+x﹣,符合“开口向下,与x轴的一个交点的横坐标在0与1之间,对称轴在直线x=1右侧”的特点,而此时a=c,(其实a>c,a<c,a=c都有可能),故②选项错误;∵﹣1<m<n<1,﹣2<m+n<2,∴抛物线对称轴为:x=﹣>1,>2,m+n<,故选项③正确;当x=1时,a+b+c>0,2a+b>0,3a+2b+c>0,∴3a+c>﹣2b,∴﹣3a﹣c<2b,∵a<0,b>0,c<0(图象与y轴交于负半轴),∴3|a|+|c|=﹣3a﹣c<2b=2|b|,故④选项正确.故选:C.二、填空题13.【解答】解:原式=(a﹣b)2故答案为:(a﹣b)214.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故选:.15.【解答】解:根据题意,从4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.16.【解答】解:∵一次函数y=(k﹣2)x+1(k是常数)中y随x的增大而增大,∴k﹣2>0,解得k>2,故答案为:k>2.17.【解答】解:∵△ABC是等腰直角三角形,∴=,∠BAC=45°,同理,=,∠EAD=45°,∴=,∠BAE=∠CAD,∴△BAE∽△CAD,①正确;∵△BAE∽△CAD,∴∠BEA=∠CDA,又∠PME=∠AMD,∴△PME∽△AMD,∴=,∴MP•MD=MA•ME,②正确;∵∠BEA=∠CDA,∴P、E、D、A四点共圆,∴∠APM=∠AED=90°,∵∠BAC=∠EAD=45°,∴∠CAM=90°,∴△CAP∽△CMA,∴=,∴AC2=CP•CM,∵AC2=2CB2,∴2CB2=CP•CM,③正确,故答案为:①②③.18.【解答】解:(1)如图,平行四边形PAQB为所;(2)如图,四边形PCQD为所作.三、解答题19.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.20.【解答】解:(1)根据题意得:(80×1000×60%+82.5×1000×40%)÷1000=81(分),答:该校九年级学生本次数学测试成绩的平均数是81分;(2)A、根据统计图不能求出九年级学生成绩的众数,故本选项错误;B.根据统计图不能求出九年级学生成绩的中位数,故本选项错误;C.随机抽取一个班,该班学生成绩的平均数不一定等于九年级学生成绩的平均数,故本选项错误;D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数,故本选项正确;故选D.21.【解答】解:(Ⅰ)∵AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(Ⅱ)连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,由DP∥AC,又∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.22.【解答】解:在△APC中,∠ACP=90°,∠APC=45°,则AC=PC.∵AP=400海里,∴由勾股定理知,AP2=AC2+PC2=2PC2,即4002=2PC2,故PC=200海里.又∵在直角△BPC中,∠PCB=90°,∠BPC=60°,∴PB==2PC=400≈566(海里).答:此时巡逻舰与观测点P的距离PB约为566海里.23.【解答】解:(1)根据题意得,60≤x≤60×(1+40%),即60≤x≤84;(2)由题意得:,∴.∴一次函数的解析式为:y=﹣x+120;(3)w=(x﹣60)(﹣x+120)=﹣x2+180x﹣7200=﹣(x﹣90)2+900,∵抛物线开口向下,∴当x<90时,w随x的增大而增大,而60≤x≤84,∴当x=84时,w=(84﹣60)×(120﹣84)=864.答:当销售价定为84元/件时,商场可以获得最大利润,最大利润是864元.24.【解答】(1)解:由图①,可得∠BCE=∠BCD=45°,又∵∠B=90°,∴△BCE是等腰直角三角形,∴=cos45°=,即CE=BC,由图②,可得CE=CD,∵四边形ABCD是矩形,∴AD=BC,∴CD=AD,∴=,故答案为:;(2)证明:设AD=BC=a,则AB=CD=a,BE=a,∴AE=(﹣1)a,如图③,连接EH,则∠CEH=∠CDH=90°,∵∠BEC=45°,∠A=90°,∴∠AEH=45°=∠AHE,∴AH=AE=(﹣1)a,设AP=x,则BP=a﹣x,由翻折可得,PH=PC,即PH2=PC2,∴AH2+AP2=BP2+BC2,即[(﹣1)a]2+x2=(a﹣x)2+a2,解得:x=a,即AP=BC,在Rt△APH和Rt△BCP中,,∴Rt△APH≌Rt△BCP(HL),∴∠APH=∠BCP,又∵Rt△BCP中,∠BCP+∠BPC=90°,∴∠APH+∠BPC=90°,∴∠CPH=90°.25.【解答】解:(1)抛物线y=y=ax2﹣2ax﹣3(a>0)的对称轴为:x==1∵a>0,抛物线开口向上:∴当x≥1时,y随x增大而增大;由已知:当2≤x≤4时,函数有最大值5.∴当x=4时,y=5,∴16a﹣8a﹣3=5,解得a=1;∴y=x2﹣2x﹣3,令x=0,得y=﹣3,令y=0,得x=﹣1或x=3,∴抛物线与y轴交于(0,﹣3),抛物线与x轴交于(﹣1,0)、(3,0)(2)若关于m的一元二次方程m2﹣y0m+k﹣4+y0=0 恒有实数根,则须,即4k≤恒成立,即k恒成立.∵点p(x0,y0)是(2)中翻折得到的抛物线弧部分上任意一点,且抛物线y=x2﹣2x﹣3的顶点坐标为(1,﹣4),∴0<y0≤4,∴3≤≤4,(k取的值之下限)∴实数k的最大值为3.。
精品解析:天津市2018年中考数学试题(解析版)
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】(1). ;(2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
2018年天津中考数学试题及答案
2018年市初中毕业生学业考试试卷数学第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算2(3)-的结果等于( )A .5B .5-C .9D .9- 2. cos30︒的值等于( )A B .1 D3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为( )A .50.77810⨯ B .47.7810⨯ C .377.810⨯ D . 277810⨯ 4.下列图形中,可以看作是中心对称图形的是( ) A . B . C. D .5.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B . C. D .6. )A .5和6之间B .6和7之间 C. 7和8之间 D .8和9之间7.计算23211x xx x +-++的结果为( ) A .1 B .3 C. 31x + D .31x x ++8.方程组10216x y x y +=⎧⎨+=⎩的解是( )A .64x y =⎧⎨=⎩ B .56x y =⎧⎨=⎩ C. 36x y =⎧⎨=⎩ D .28x y =⎧⎨=⎩9.若点1(,6)A x -,2(,2)B x -,3(,2)C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x << C. 231x x x << D .321x x x << 10.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是( )A .AD BD =B .AE AC = C.ED EB DB += D .AE CB AB +=11.如图,在正方形ABCD 中,E ,F 分别为AD ,BC 的中点,P 为对角线BD 上的一个动点,则下列线段的长等于AP EP +最小值的是( )A .AB B .DE C.BD D .AF12.已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ≠)经过点(1,0)-,(0,3),其对称轴在y 轴右侧,有下列结论: ①抛物线经过点(1,0);②方程22ax bx c ++=有两个不相等的实数根; ③33a b -<+<.其中,正确结论的个数为( )A .0B .1 C.2 D .3第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.计算432x x ⋅的结果等于 .14.计算的结果等于 .15.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 . 16.将直线y x =向上平移2个单位长度,平移后直线的解析式为 .17.如图,在边长为4的等边ABC △中,D ,E 分别为AB ,BC 的中点,EF AC ⊥于点F ,G 为EF 的中点,连接DG ,则DG 的长为 .18.如图,在每个小正方形的边长为1的网格中,ABC △的顶点A ,B ,C 均在格点上.(1)ACB ∠的大小为 (度);(2)在如图所示的网格中,P 是BC 边上任意一点.A 为中心,取旋转角等于BAC ∠,把点P 逆时针旋转,点P 的对应点为'P .当'CP 最短时,请用无刻度...的直尺,画出点'P ,并简要说明点'P 的位置是如何找到的(不要求证明) .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组31(1)413(2)x x x +≥⎧⎨≤+⎩请结合题意填空,完成本题的解答. (Ⅰ)解不等式(1),得 . (Ⅱ)解不等式(2),得 .(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m 的值为 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只? 21. 已知AB 是O 的直径,弦CD 与AB 相交,38BAC ∠=︒.(Ⅰ)如图①,若D 为AB 的中点,求ABC ∠和ABD ∠的大小; (Ⅱ)如图②,过点D 作O 的切线,与AB 的延长线交于点P ,若//DP AC ,求OCD ∠的大小.22. 如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48︒,测得底部C 处的俯角为58︒,求甲、乙建筑物的高度AB 和DC (结果取整数).参考数据:tan 48 1.11︒≈,tan58 1.60︒≈.23.某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元. 设小明计划今年夏季游泳次数为x (x 为正整数). (Ⅰ)根据题意,填写下表: 游泳次数1015 20 (x)方式一的总费用(元) 150 175 … 方式二的总费用(元) 90135…(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当20x >时,小明选择哪种付费方式更合算?并说明理由.24.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标; (Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H . ① 求证ADB AOB △△≌; ② 求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值围(直接写出结果即可).25.在平面直角坐标系中,点(0,0)O ,点(1,0)A .已知抛物线22y x mx m =+-(m 是常数),定点为P .(Ⅰ)当抛物线经过点A 时,求定点P 的坐标;(Ⅱ)若点P 在x 轴下方,当45AOP ∠=︒时,求抛物线的解析式;(Ⅲ) 无论m 取何值,该抛物线都经过定点H .当45AHP ∠=︒时,求抛物线的解析式.试卷答案一、选择题1-5:CBBAA 6-10:DCABD 11、12:DC二、填空题13.72x 14. 3 15.61116.2y x =+ 17.1918. (Ⅰ)90︒;(Ⅱ)如图,取格点D ,E ,连接DE 交AB 于点T ;取格点M ,N ,连接MN 交BC 延长线于点G ;取格点F ,连接FG 交TC 延长线于点'P ,则点'P 即为所求.三、解答题19. 解:(Ⅰ)2x ≥-; (Ⅱ)1x ≤; (Ⅲ)(Ⅳ)21x -≤≤. 20. 解:(Ⅰ)28. (Ⅱ)观察条形统计图, ∵ 1.05 1.211 1.514 1.816 2.041.5251114164x ⨯+⨯+⨯+⨯+⨯==++++,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多, ∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.51.52+=, ∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg 的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%. 有25008%200⨯=.∴这2500只鸡中,质量为2.0kg 的约有200只。
2018年天津市中考数学真题试题(答案解析版)
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】 (1). ; (2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ). 【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
天津市2018年中考数学试题及解析(精品资料).doc
【最新整理,下载后即可编辑】2018年天津市初中毕业生学业考试试卷数学第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算2(3)-的结果等于()A.5 B.5-C.9 D.9-2. cos30︒的值等于()A.22B.32C.1 D.33. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A.50.77810⨯B.47.7810⨯C.377.810⨯D.277810⨯4.下列图形中,可以看作是中心对称图形的是()A.B. C.D.5.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B . C.D .6.65)A .5和6之间B .6和7之间 C. 7和8之间 D .8和9之间 7.计算23211x xx x +-++的结果为( )A .1B .3 C.31x + D .31x x ++ 8.方程组10216x y x y +=⎧⎨+=⎩的解是()A .64x y =⎧⎨=⎩ B .56x y =⎧⎨=⎩ C. 36x y =⎧⎨=⎩ D .28x y =⎧⎨=⎩9.若点1(,6)A x -,2(,2)B x -,3(,2)C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是()A .123x x x <<B .213x x x <<C.231x x x << D .321x x x <<10.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是( )A .AD BD =B .AE AC = C.ED EB DB += D .AE CB AB +=11.如图,在正方形ABCD 中,E ,F 分别为AD ,BC 的中点,P 为对角线BD 上的一个动点,则下列线段的长等于AP EP +最小值的是( )A .AB B .DE C.BD D .AF12.已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ≠)经过点(1,0)-,(0,3),其对称轴在y 轴右侧,有下列结论:①抛物线经过点(1,0);②方程22ax bx c ++=有两个不相等的实数根; ③33a b -<+<.其中,正确结论的个数为( )A.0 B.1 C.2 D.3第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.计算432x x⋅的结果等于.14.计算(63)(63)+-的结果等于.15.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.将直线y x=向上平移2个单位长度,平移后直线的解析式为.17.如图,在边长为4的等边ABC△中,D,E分别为AB,BC的中点,EF AC⊥于点F,G为EF的中点,连接DG,则DG的长为.18.如图,在每个小正方形的边长为1的网格中,ABC△的顶点A,B,C均在格点上.(1)ACB∠的大小为(度);(2)在如图所示的网格中,P是BC边上任意一点.A为中心,取旋转角等于BAC∠,把点P逆时针旋转,点P的对应点为'P.当'CP最短时,请用无刻度...的直尺,画出点'P ,并简要说明点'P 的位置是如何找到的(不要求证明) .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.) 19.解不等式组31(1)413(2)x x x +≥⎧⎨≤+⎩请结合题意填空,完成本题的解答. (Ⅰ)解不等式(1),得 . (Ⅱ)解不等式(2),得 .(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?21. 已知AB是O的直径,弦CD与AB相交,38∠=︒.BAC(Ⅰ)如图①,若D为AB的中点,求ABC∠的大小;∠和ABD(Ⅱ)如图②,过点D作O的切线,与AB的延长线交于点P,若//∠的大小.DP AC,求OCD22. 如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A 处测得乙的顶部D处的俯角为48︒,测得底部C处的俯角为58︒,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48 1.11︒≈.︒≈,tan58 1.6023.某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(Ⅰ)根据题意,填写下表:费方式,他游泳的次数比较多?(Ⅲ)当20x 时,小明选择哪种付费方式更合算?并说明理由.24.在平面直角坐标系中,四边形AOBC是矩形,点(0,0)A,O,点(5,0)点(0,3)B.以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(Ⅰ)如图①,当点D落在BC边上时,求点D的坐标;(Ⅱ)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证ADB AOB≌;△△②求点H的坐标.(Ⅲ)记K为矩形AOBC对角线的交点,S为KDE△的面积,求S的取值范围(直接写出结果即可).25.在平面直角坐标系中,点(0,0)A.已知抛物线O,点(1,0)22=+-(m是常数),定点为P.y x mx m(Ⅰ)当抛物线经过点A时,求定点P的坐标;(Ⅱ)若点P在x轴下方,当45∠=︒时,求抛物线的解析式;AOP(Ⅲ)无论m取何值,该抛物线都经过定点H.当45∠=︒时,AHP求抛物线的解析式.2018年天津市初中毕业生学业考试试卷参考答案一、选择题1-5:CBBAA 6-10:DCABD 11-12:DC 二、填空题13.72x14. 3 15.61116.2y x=+17. 19218. (Ⅰ)90︒;(Ⅱ)如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G;取格点F,连接FG 交TC延长线于点'P,则点'P即为所求.三、解答题19. 解:(Ⅰ)2x≥-;(Ⅱ)1x≤;(Ⅲ)(Ⅳ)21x -≤≤.20. 解:(Ⅰ)28.(Ⅱ)观察条形统计图, ∵ 1.05 1.211 1.514 1.816 2.04 1.5251114164x ⨯+⨯+⨯+⨯+⨯==++++, ∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多, ∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.5 1.52+=, ∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg 的数量占8%. ∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%. 有25008%200⨯=.∴这2500只鸡中,质量为2.0kg 的约有200只。
2018天津中考数学试卷详细解析
2018年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2018•天津)计算(﹣3)2的结果等于()A.5 B.﹣5 C.9 D.﹣9【考点】1E:有理数的乘方.【专题】1:常规题型.【分析】根据有理数的乘方法则求出即可.【解答】解:(﹣3)2=9,故选:C.【点评】本题考查了有理数的乘方法则,能灵活运用法则进行计算是解此题的关键.2.(3分)(2018•天津)cos30°的值等于()A.B.C.1 D.【考点】T5:特殊角的三角函数值.【分析】根据特殊角的三角函数值直接解答即可.【解答】解:cos30°=.故选:B.【点评】此题考查了特殊角的三角函数值,是需要识记的内容.3.(3分)(2018•天津)今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为()A.×105B.×104C.×103D.778×102【考点】1I:科学记数法—表示较大的数.【专题】511:实数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:77800=×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2018•天津)下列图形中,可以看作是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】1:常规题型.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)(2018•天津)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55F:投影与视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,第三层右边一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.(3分)(2018•天津)估计的值在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间【考点】2B:估算无理数的大小.【专题】1:常规题型.【分析】先估算出的范围,再得出选项即可.【解答】解:8<<9,即在8到9之间,故选:D.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.7.(3分)(2018•天津)计算的结果为()A.1 B.3 C.D.【考点】6B:分式的加减法.【专题】11:计算题;513:分式.【分析】原式利用同分母分式的减法法则计算即可求出值.【解答】解:原式==,故选:C.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.(3分)(2018•天津)方程组的解是()A.B.C.D.【考点】98:解二元一次方程组.【专题】11:计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:y=4,则方程组的解为,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.(3分)(2018•天津)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1【考点】G6:反比例函数图象上点的坐标特征.【专题】1:常规题型.【分析】根据反比例函数图象上点的坐标特征,将A、B、C三点的坐标代入反比例函数的解析式y=,分别求得x1,x2,x3的值,然后再来比较它们的大小.【解答】解:∵点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,∴x1=﹣2,x2=﹣6,x3=6;又∵﹣6<﹣2<6,∴x2<x1<x3;故选:B.【点评】本题考查了反比例函数图象上点的坐标特征.经过反比例函数y=的某点一定在该函数的图象上.10.(3分)(2018•天津)如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为BD,则下列结论一定正确的是()A.AD=BD B.AE=AC C.ED+EB=DB D.AE+CB=AB【考点】PB:翻折变换(折叠问题).【专题】46:几何变换.【分析】先根据图形翻折变换的性质得出BE=BC,根据线段的和差,可得AE+BE=AB,根据等量代换,可得答案.【解答】解:∵△BDE由△BDC翻折而成,∴BE=BC.∵AE+BE=AB,∴AE+CB=AB,故D正确,故选:D.【点评】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.11.(3分)(2018•天津)如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是()A.AB B.DE C.BD D.AF【考点】LE:正方形的性质;PA:轴对称﹣最短路线问题.【专题】556:矩形菱形正方形.【分析】连接CP,当点E,P,C在同一直线上时,AP+PE的最小值为CE长,依据△ABF≌△CDE,即可得到AP+EP最小值等于线段AF的长.【解答】解:如图,连接CP,由AD=CD,∠ADP=∠CDP=45°,DP=DP,可得△ADP≌△CDP,∴AP=CP,∴AP+PE=CP+PE,∴当点E,P,C在同一直线上时,AP+PE的最小值为CE长,此时,由AB=CD,∠ABF=∠CDE,BF=DE,可得△ABF≌△CDE,∴AF=CE,∴AP+EP最小值等于线段AF的长,故选:D.【点评】本题考查的是轴对称,最短路线问题,根据题意作出A关于BD的对称点C是解答此题的关键.12.(3分)(2018•天津)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③﹣3<a+b<3其中,正确结论的个数为()A.0 B.1 C.2 D.3【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征;HA:抛物线与x轴的交点.【专题】535:二次函数图象及其性质;536:二次函数的应用.【分析】①由抛物线过点(﹣1,0),对称轴在y轴右侧,即可得出当x=1时y>0,结论①错误;②过点(0,2)作x轴的平行线,由该直线与抛物线有两个交点,可得出方程ax2+bx+c=2有两个不相等的实数根,结论②正确;③由当x=1时y>0,可得出a+b>﹣c,由抛物线与y轴交于点(0,3)可得出c=3,进而即可得出a+b>﹣3,由抛物线过点(﹣1,0)可得出a+b=2a+c,结合a<0、c=3可得出a+b<3,综上可得出﹣3<a+b<3,结论③正确.此题得解.【解答】解:①∵抛物线过点(﹣1,0),对称轴在y轴右侧,∴当x=1时y>0,结论①错误;②过点(0,2)作x轴的平行线,如图所示.∵该直线与抛物线有两个交点,∴方程ax2+bx+c=2有两个不相等的实数根,结论②正确;③∵当x=1时y=a+b+c>0,∴a+b>﹣c.∵抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(0,3),∴c=3,∴a+b>﹣3.∵当x=﹣1时,y=0,即a﹣b+c=0,∴b=a+c,∴a+b=2a+c.∵抛物线开口向下,∴a<0,∴a+b<c=3,∴﹣3<a+b<3,结论③正确.故选:C.【点评】本题考查了抛物线与x轴的交点、二次函数的性质以及二次函数图象上点的坐标特征,逐一分析三条结论的正误是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2018•天津)计算2x4•x3的结果等于2x7.【考点】49:单项式乘单项式.【专题】11:计算题.【分析】单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.依此即可求解.【解答】解:2x4•x3=2x7.故答案为:2x7.【点评】考查了单项式乘单项式,注意:①在计算时,应先进行符号运算,积的系数等于各因式系数的积;②注意按顺序运算;③不要丢掉只在一个单项式里含有的字母因式;④此性质对于多个单项式相乘仍然成立.14.(3分)(2018•天津)计算(+)(﹣)的结果等于 3 .【考点】79:二次根式的混合运算.【专题】11:计算题.【分析】利用平方差公式计算即可.【解答】解:(+)(﹣)=()2﹣()2=6﹣3=3,故答案为:3.【点评】本题考查的是二次根式的乘法,掌握平方差公式是解题的关键.15.(3分)(2018•天津)不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【考点】X4:概率公式.【专题】1:常规题型;543:概率及其应用.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.【点评】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.(3分)(2018•天津)将直线y=x向上平移2个单位长度,平移后直线的解析式为y =x+2 .【考点】F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】直接根据“上加下减,左加右减”的平移规律求解即可.【解答】解:将直线y=2x直线y=x向上平移2个单位长度,平移后直线的解析式为y=x+2.故答案为:y=x+2.【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17.(3分)(2018•天津)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.【考点】KK:等边三角形的性质;KO:含30度角的直角三角形;KQ:勾股定理;KX:三角形中位线定理.【专题】1:常规题型.【分析】直接利用三角形中位线定理进而得出DE=2,且DE∥AC,再利用勾股定理以及直角三角形的性质得出EG以及DG的长.【解答】解:连接DE,∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点,∴DE是△ABC的中位线,∴DE=2,且DE∥AC,BD=BE=EC=2,∵EF⊥AC于点F,∠C=60°,∴∠FEC=30°,∠DEF=∠EFC=90°,∴FC=EC=1,故EF==,∵G为EF的中点,∴EG=,∴DG==.故答案为:.【点评】此题主要考查了勾股定理以及等边三角形的性质和三角形中位线定理,正确得出EG的长是解题关键.18.(3分)(2018•天津)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上,(I)∠ACB的大小为90 (度);(Ⅱ)在如图所示的网格中,P是BC边上任意一点,以A为中心,取旋转角等于∠BAC,把点P逆时针旋转,点P的对应点为P′,当CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要求证明)如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G:取格点F,连接FG交TC延长线于点P′,则点P′即为所求.【考点】R8:作图﹣旋转变换.【专题】28:操作型;558:平移、旋转与对称;55D:图形的相似.【分析】(I)根据勾股定理可求AB,AC,BC的长,再根据勾股定理的逆定理可求∠ACB的大小;(Ⅱ)通过将点B以A为中心,取旋转角等于∠BAC旋转,找到线段BC旋转后所得直线FG,只需找到点C到FG的垂足即为P′【解答】解:(1)由网格图可知AC=BC=AB=∵AC2+BC2=AB2∴由勾股定理逆定理,△ABC为直角三角形.∴∠ACB=90°故答案为:90°(Ⅱ)作图过程如下:取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G:取格点F,连接FG交TC延长线于点P′,则点P′即为所求证明:连CF∵AC,CF为正方形网格对角线∴A、C、F共线∴AF=5=AB由图形可知:GC=,CF=2,∵AC=,BC=∴△ACB∽△GCF∴∠GFC=∠B∵AF=5=AB∴当BC边绕点A逆时针旋转∠CAB时,点B与点F重合,点C在射线FG上.由作图可知T为AB中点∴∠TCA=∠TAC∴∠F+∠P′CF=∠B+∠TCA=∠B+∠TAC=90°∴CP′⊥GF此时,CP′最短故答案为:如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G:取格点F,连接FG交TC延长线于点P′,则点P′即为所求【点评】本题考查了直角三角形的证明、图形的旋转、三角形相似和最短距离的证明.解题的关键在于找到并证明线段BC旋转后所在的位置.三、解答题(本大题共7小题,共66分。
天津市2018年中考数学试题含解析
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.4. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】(1). ;(2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ). 【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
(真题)天津市2018年中考数学试题(有答案)
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】(1). ;(2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
2017-2018学年天津一中九年级(下)第三次月考数学试卷(解析版)
2017-2018学年天津一中九年级(下)第三次月考数学试卷一、选择题1.sin60°+tan45°的值等于( )A .B .C .D .12.在下面的四个设计图案中,可以看作是中心对称图形的是( )A .B .C .D .3.如图是由相同小正方形搭的几何体的俯视图(小正方形中所标的数字表示在该位置上小正方体的个数),则这个几何体的左视图是( )A .B .C .D .4.若m =,则估计m 的值所在的范围是( ) A .4<m <5 B .5<m <6 C .6<m <7 D .7<m <85.下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等6.已知a =2,则代数式的值等于( )A .﹣3B .3﹣C .4﹣3D .47.已知关于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有两个不相等的实数根,则m的取值范围是()A.m>B.m≥C.m>且m≠2D.m≥且m≠28.如图,CD是⊙O的直径,A、B是⊙O上的两点,若∠ABD=20°,则∠ADC的度数为()A.40°B.50°C.60°D.70°9.将边长为3cm的正三角形的各边三等分,以这六个分点为顶点构成一个正六边形,再顺次连接这个正六边形的各边中点,又形成一个新的正六边形,则这个新的正六边形的面积等于()A.cm2B.cm2C.cm2D.cm210.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④11.如图,点G,D,C在直线a上,点E,F,A,B在直线b上,若a∥b,Rt△GEF 从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中△GEF与矩形ABCD重合部分的面积(S)随时间(t)变化的图象大致是()A.B.C.D.12.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表所示.下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴在y轴的右侧;③抛物线一定经过点(3,0);④在对称轴左侧,y随x增大而减小.⑤不等式ax2+(b﹣3)x+c﹣6>0解集为﹣2<x<0.其中说法正确的有()A.1 个B.2 个C.3 个D.4 个二、填空题13.计算:(a10)5+a20•a30=.14.若分式的值为零,则x的值等于.15.已知一次函数y=2x﹣6与y=﹣x+3的图象交于点P,则点P的坐标为.16.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是.17.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线交于P.下面结论:①,②∠A=∠BHE,③AB=BH,④△BHD∽△BDP.请你把你认为正确的结论的番号都填上(填错一个该题得0分)18.如图,已知方格纸中的每个小方格都是相同的正方形(边长为1),方格纸上有一个角∠AOB,A,O,B均为格点,请回答问题并只用无刻度直尺和铅笔,完成下列作图并简要说明画法:(1)OA=;(2)作出∠AOB的平分线并在其上标出一个点Q,使OQ=.三、解答题19.解不等式组:20.物理兴趣小组20位同学在实验操作中的得分情况如下表:(Ⅰ)求这组数据的众数、中位数;(Ⅱ)求这组数据的平均数;(Ⅲ)将此次操作得分按人数制成如图所示的扇形统计图.扇形①的圆心角度数是多少?21.一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数,若售价30元,能卖200台/月,若售价35元,能卖150台/月.(1)求y与x的函数关系式.(2)为清理库存,在不赔钱的情况下,售价定为多少元时,每月可获得最大销售量?(3)如果想要每月获得2000元的利润,那么销售单价应定为多少元?22.已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.23.如图所示,小明准备测量学校旗杆AB的高度,他发现阳光下,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,测得水平地面上的影长BC=20m,斜坡坡面上的影长CD=8m,太阳光线AD与水平地面成锐角为26°,斜坡CD与水平地面所成的锐角为30°,求旗杆AB的高度(精确到1m).(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)24.在平面直角坐标系中,已知M1(3,2),N1(5,﹣1),线段M1N1平移至线段MN处(注:M1与M,N1与N分别为对应点).(1)若M(﹣2,5),请直接写出N点坐标.(2)在(1)问的条件下,点N在抛物线上,求该抛物线对应的函数解析式.(3)在(2)问条件下,若抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC:OF=2:,求m的值.(4)在(3)问条件下,动点P从B点出发,沿x轴正方向匀速运动,点P运动到什么位置时(即BP长为多少),将△ABP沿边PE折叠,△APE与△PBE重叠部分的面积恰好为此时的△ABP面积的,求此时BP的长度.25.已知二次函数y1=ax2+bx+1(a>0),一次函数y2=x.(Ⅰ)若二次函数y1的图象与一次函数y2的图象只有一个交点,求a与b之间的关系;(Ⅱ)在(Ⅰ)的条件下,y1的图象与y2图象的交点为P,且点P的横坐标是2,若将y2向上平移t个单位,与y1交于两点Q,R,△PQR面积为2,求t;(Ⅲ)二次函数y1图象与一次函数y2图象有两个交点(x1,y1)(x2,y2),且满足x1<2<x2<4,此时设函数y1的对称轴为x=m,求m的范围.2017-2018学年天津一中九年级(下)第三次月考数学试卷参考答案与试题解析一、选择题1.sin60°+tan45°的值等于()A.B.C.D.1【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:sin60°+tan45°=+1=.故选:B.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.2.在下面的四个设计图案中,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的性质得出图形旋转180°,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可.【解答】解:A.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;B.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;C.旋转180°,与原图形能够完全重合是中心对称图形;故此选项正确;D.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;故选:C.【点评】此题主要考查了中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键.3.如图是由相同小正方形搭的几何体的俯视图(小正方形中所标的数字表示在该位置上小正方体的个数),则这个几何体的左视图是()A.B.C.D.【分析】根据俯视图得到几何体的形状,进而得出从左面看所得到的图形.【解答】解:由俯视图可得,从左看可得三列正方形,到从左到右分别是1,3,2个正方形,故选:C.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.4.若m=,则估计m的值所在的范围是()A.4<m<5B.5<m<6C.6<m<7D.7<m<8【分析】将m化简后,估算出的范围,即可确定出所求.【解答】解:m==5+,∵4<6<9,∴2<<3,即7<5+<8,则m的范围是7<m<8,故选:D.【点评】此题考查了无理数的估算方法,弄清无理数的估算方法是解本题的关键.5.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等【分析】根据全等三角形的判定定理(AAS、ASA、SSS等)进行判断.【解答】解:A、当两个三角形中两角及一边对应相等时,其中如果边是这两角的夹边时,可用ASA来判定两个三角形全等,如果边是其中一角的对边时,则可用AAS来判定这两个三角形全等,故此选项正确;B、当两个三角形中两条边及一角对应相等时,其中如果这组角是两边的夹角时两三角形全等,如果不是这两边的夹角的时候不一定全等,故此选项错误;C、有两边和其中一边上的中线对应相等的两个三角形,符合“ASA”判定方法,所以,两个三角形必定全等.故本选项正确;D、利用SSS.可以判定三角形全等.故D选项正确;故选:B.【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.6.已知a=2,则代数式的值等于()A.﹣3B.3﹣C.4﹣3D.4【分析】对代数式代值,分母有理化,再化简即可.【解答】解:当a=2时,=2﹣=2﹣=2﹣3﹣2=﹣3.故选:A.【点评】注意根据a=(a≥0),能约分的要约分,可以简便计算.此类题中,要熟练进行分母有理化.熟悉二次根式的加减乘除运算法则.7.已知关于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有两个不相等的实数根,则m的取值范围是()A.m>B.m≥C.m>且m≠2D.m≥且m≠2【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足△=b2﹣4ac>0.【解答】解:根据题意列出方程组,解之得m>且m≠2.故选:C.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.如图,CD是⊙O的直径,A、B是⊙O上的两点,若∠ABD=20°,则∠ADC的度数为()A.40°B.50°C.60°D.70°【分析】由已知可求得∠C的度数,再根据圆周角定理及三角形内角和定理即可求得∠ADC的度数.【解答】解:∵∠ABD=20°∴∠C=∠ABD=20°∵CD是⊙O的直径∴∠CAD=90°∴∠ADC=90°﹣20°=70°.故选:D.【点评】熟练运用圆周角定理及其推论.9.将边长为3cm的正三角形的各边三等分,以这六个分点为顶点构成一个正六边形,再顺次连接这个正六边形的各边中点,又形成一个新的正六边形,则这个新的正六边形的面积等于()A.cm2B.cm2C.cm2D.cm2【分析】可画出草图解题,新的正六边形有三个顶点在正三角形的三边上,且是三边的中点,连接正三角形的顶点与它对边的中点,可以看出新的正六边形的面积六个小正三角形的面积之和.【解答】解:∵新的正六边形有三个顶点在正三角形的三边上,且是三边的中点,∴连接AH,CF,BN,可以看出新的正六边形EFGHMN的面积是六个小正三角形的面积之和,∴小正三角形的边长为cm,∴每个小正三角形的面积是cm2,∴新的正六边形的面积等于×6=.故选:B.【点评】此题主要考查了正三角形的性质及三角形的面积公式.10.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【解答】解:∵反比例函数的图象位于一三象限,∴m>0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y=得到h=﹣m,2k=m,∵m>0∴h<k故③正确;将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上故④正确,故选:C.【点评】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.11.如图,点G,D,C在直线a上,点E,F,A,B在直线b上,若a∥b,Rt△GEF 从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中△GEF与矩形ABCD重合部分的面积(S)随时间(t)变化的图象大致是()A.B.C.D.【分析】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.【解答】解:根据题意可得:①F、A重合之前没有重叠面积,②F、A重叠之后到E与A重叠前,设AE=a,EF被重叠部分的长度为(t﹣a),则重叠部分面积为S=(t﹣a)•(t﹣a)tan∠EFG=(t﹣a)2tan∠EFG,∴是二次函数图象;③△EFG完全进入且F与B重合之前,重叠部分的面积是三角形的面积,不变,④F与B重合之后,重叠部分的面积等于S=S△EFG﹣(t﹣a)2tan∠EFG,符合二次函数图象,直至最后重叠部分的面积为0.综上所述,只有B选项图形符合.故选:B.【点评】本题考查动点问题的函数图象,学会分段讨论是解题的关键,需要构建函数解决问题,属于中考常考题型.12.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表所示.下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴在y轴的右侧;③抛物线一定经过点(3,0);④在对称轴左侧,y随x增大而减小.⑤不等式ax2+(b﹣3)x+c﹣6>0解集为﹣2<x<0.其中说法正确的有()A.1 个B.2 个C.3 个D.4 个【分析】由表格可知(0,6),(1,6)两点纵坐标相等,抛物线对称轴为x==,且抛物线开口向下,根据抛物线的开口方向,对称轴解题.【解答】解:观察表格可知,抛物线与y轴的交点为(0,6),故①正确;观察表格可知,抛物线对称轴为x==>0,对称轴在y轴的右侧,故②正确;抛物线的对称轴为x=,点(﹣2,0)的对称点是(3,0),所以抛物线一定经过点(3,0),故③正确;观察表格可知,对称轴左侧,y随x增大而增大,故④错误;整理得ax2+bx+c>3x+6,∵直线y=3x+6与x轴的交点为(﹣2,0),与y轴的交点为(0,6),∴直线y=3x+6与抛物线y=ax2+bx+c的交点为(2,0),(0,6),由表格可知抛物线开口向下,∴不等式ax2+(b﹣3)x+c﹣6>0解集为﹣2<x<0,故⑤正确;故选:D.【点评】本题考查了二次函数的性质.关键是根据表格,判断二次函数的对称轴及开口方向.二、填空题13.计算:(a10)5+a20•a30=2a50.【分析】利用幂的乘方法则和积的乘方法则计算即可.【解答】解:(a10)5+a20•a30=a50+a50=2a50.故答案为:2a50.【点评】本题考查了幂的乘方与积的乘方,同底数幂的乘法,熟练掌握幂的乘方法则和积的乘方法则是本题的关键.14.若分式的值为零,则x的值等于﹣1.【分析】若分式的值为0,须同时具备两个条件:①分式的分子为0;②分式的分母不等于0,这两个条件缺一不可.【解答】解:由题意可得|x|﹣1=0且x﹣1≠0,解得x=﹣1.故若分式的值为零,则x的值等于﹣1.【点评】由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.15.已知一次函数y=2x﹣6与y=﹣x+3的图象交于点P,则点P的坐标为(3,0).【分析】一次函数y=2x﹣6与y=﹣x+3的图象的交点坐标,即是以这两个一次函数的解析式为方程组的解.【解答】解:由题意得:,解得:,∴点P的坐标为(3,0)【点评】考查的是一次函数与方程组的综合应用,是一道中档题.16.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是.【分析】首先根据题意画树状图,然后由树状图求得所有等可能的结果与两球标号恰好相同的情况,即可根据概率公式求解.【解答】解:画树状图得:∴一共有6种等可能的结果,两球标号恰好相同的有1种情况,∴两球标号恰好相同的概率是.【点评】此题考查了树状图法与列表法求概率.树状图法与列表法适合两步完成的事件,可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.17.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线交于P.下面结论:①,②∠A=∠BHE,③AB=BH,④△BHD∽△BDP.请你把你认为正确的结论的番号都填上①②③(填错一个该题得0分)【分析】通过判断△BDE为等腰直角三角形,得到BE=DE,BD=BE,则可对①进行判断;根据等角的余角相等得到∠BHE=∠C,再根据平行四边形的性质得到∠A =∠C,则∠A=∠BHE,于是可对②进行判断;根据“AAS”可证明△BEH≌△DEC,得到BH=CD,接着由平行四边形的性质得AB=CD,则AB=BH,运算可对③进行判断;利用平行线的性质可得AP∥BC,则∠ADP=∠DBC=45°,利用三角形外角性质得∠P<45°,而∠BDH=45°,加上△BHD与△BDP有一个公共角,则可判断△BHD与△BDP不相似,于是可对④进行判断;【解答】解:∵∠DBC=45°,DE⊥BC,∴△BDE为等腰直角三角形,∴BE=DE,BD=BE,所以①正确;∵BF⊥CD,∴∠C+∠CBF=90°,而∠BHE+∠CBF=90°,∴∠BHE=∠C,∵四边形ABCD为平行四边形,∴∠A=∠C,∴∠A=∠BHE,所以②正确;在△BEH和△DEC中,,∴△BEH≌△DEC,∴BH=CD∵四边形ABCD为平行四边形,∴AB=CD,∴AB=BH,所以③正确;∵AP∥BC,∴∠ADP=∠DBC=45°,∴∠BDP=135°,∴∠P<45°,而∠BDH=45°,∴∠BDGP≠∠P,∴△BHD与△BDP不相似,所以④错误;∴正确的有①②③;故答案为:①②③.【点评】本题考查了平行四边形的性质和相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.18.如图,已知方格纸中的每个小方格都是相同的正方形(边长为1),方格纸上有一个角∠AOB,A,O,B均为格点,请回答问题并只用无刻度直尺和铅笔,完成下列作图并简要说明画法:(1)OA=5;(2)作出∠AOB的平分线并在其上标出一个点Q,使OQ=.【分析】(1)依据勾股定理即可得到OA的长;(2)取格点C,D,连接AB,CD,交于点P,作射线OP即为∠AOB的角平分线;取格点E,F,G,连接FE,交OP于Q,则点Q即为所求.【解答】解:(1)由勾股定理,可得AO==5,故答案为:5;(2)如图,取格点C,D,连接AB,CD,交于点P,作射线OP即为∠AOB的角平分线;如图,取格点E,F,G,连接FE,交OP于Q,则点Q即为所求.理由:由勾股定理可得OG=2,由△FQG∽△EQO,可得==,∴OQ=OG=.【点评】本题考查作图﹣复杂作图、角平分线的性质等知识,解题的关键是熟练掌握等腰三角形的性质的应用,角平分线的性质的应用,勾股定理以及相似三角形的性质.三、解答题19.解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x<3,解不等式②得:x≥﹣6,∴不等式组的解集为﹣6≤x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.20.物理兴趣小组20位同学在实验操作中的得分情况如下表:(Ⅰ)求这组数据的众数、中位数;(Ⅱ)求这组数据的平均数;(Ⅲ)将此次操作得分按人数制成如图所示的扇形统计图.扇形①的圆心角度数是多少?【分析】(Ⅰ)得9分的有8人,频数最多;20个数据的中位数是第10个和第11个同学的得分的平均数.(Ⅱ)平均分=总分数÷总人数.(Ⅲ)扇形①的圆心角=百分比×360°.【解答】解:(Ⅰ)得9分的有8人,频数最多;20个数据的中位数是第10个和第11个同学的得分的平均数即(9+9)÷2=9.所以众数为9,中位数为9.(Ⅱ)平均分==8.75分;(Ⅲ)扇形①的圆心角度数=(1﹣25%﹣40%﹣20%)×360°=54°.【点评】考查了扇形统计图,本题用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数.扇形的圆心角=扇形百分比×360度.21.一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数,若售价30元,能卖200台/月,若售价35元,能卖150台/月.(1)求y与x的函数关系式.(2)为清理库存,在不赔钱的情况下,售价定为多少元时,每月可获得最大销售量?(3)如果想要每月获得2000元的利润,那么销售单价应定为多少元?【分析】(1)根据题意可以求出相应的函数解析式;(2)根据(1)中的函数解析式和题目中的条件可以解答本题;(3)根据题意可以列出相应的方程,从而可以解答本题.【解答】解:(1)设y与x的函数关系式为y=kx+b,,得,即y与x的函数关系式是y=﹣10x+500;(2)∵y=﹣10x+500,∴该函数y随x的增大而减小,又∵x≥20,∴当x=20时,y取得最大值,此时y=300,即在不赔钱的情况下,售价定为20元时,每月可获得最大销售量;(3)2000=(x﹣20)(﹣10x+500),解得,x1=30,x2=40,答:每月获得2000元的利润,那么销售单价应定为30元或40元.【点评】本题考查一元二次方程的应用、一次函数的应用,解答本题的关键是明确题意,利用函数和方程的思想解答.22.已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.【分析】(Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5;(Ⅱ)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5.【解答】解:(Ⅰ)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如图②,连接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.【点评】本题综合考查了圆周角定理,勾股定理以及等边三角形的判定与性质.此题利用了圆的定义、有一内角为60度的等腰三角形为等边三角形证得△OBD是等边三角形.23.如图所示,小明准备测量学校旗杆AB的高度,他发现阳光下,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,测得水平地面上的影长BC=20m,斜坡坡面上的影长CD=8m,太阳光线AD与水平地面成锐角为26°,斜坡CD与水平地面所成的锐角为30°,求旗杆AB的高度(精确到1m).(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)【分析】延长AD交BC于E点,则BE即为AB的影长.然后根据物长和影长的比值计算即可.【解答】解:延长AD交BC于E点,则∠AEB=30°,作DQ⊥BC于Q,在Rt△DCQ中,∠DCQ=30°,DC=8,∴DQ=4,QC=8cos30°=4,在Rt△DQE中,QE=≈8.16(米)∴BE=BC+CQ+QE=(20+4+8.16)米,在Rt△ABE中,AB=BE tan26°≈17(米).答:旗杆的高度约为17米.【点评】本题查了解直角三角形的应用,解决本题的关键是作出辅助线得到AB的影长.24.在平面直角坐标系中,已知M1(3,2),N1(5,﹣1),线段M1N1平移至线段MN处(注:M1与M,N1与N分别为对应点).(1)若M(﹣2,5),请直接写出N点坐标.(2)在(1)问的条件下,点N在抛物线上,求该抛物线对应的函数解析式.(3)在(2)问条件下,若抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC:OF=2:,求m 的值.(4)在(3)问条件下,动点P 从B 点出发,沿x 轴正方向匀速运动,点P 运动到什么位置时(即BP 长为多少),将△ABP 沿边PE 折叠,△APE 与△PBE 重叠部分的面积恰好为此时的△ABP 面积的,求此时BP 的长度.【分析】(1)首先根据点M 的移动方向和单位得到点N 的平移方向和单位,然后按照平移方向和单位进行移动即可;(2)将点N 的坐标代入函数的解析式即可求得k 值;(3)配方后确定点B 、A 、E 的坐标,根据CO :OF =2:用m 表示出线段CO 、FO和BF 的长,利用S △BEC =S △EBF +S △BFC =得到有关m 的方程求得m 的值即可; (4)分当∠BPE >∠APE 时、当∠BPE =∠APE 时、当∠BPE <∠APE 时三种情况分类讨论即可.【解答】解:(1)由于图形平移过程中,对应点的平移规律相同,由点M 到点M ′可知,点的横坐标减5,纵坐标加3,故点N ′的坐标为(5﹣5,﹣1+3),即(0,2).N (0,2);(2)∵N (0,2)在抛物线y =x 2+x +k 上∴k =2∴抛物线的解析式为y =x 2+x +2(3)∵y =x 2+x +2=(x +2)2∴B (﹣2,0)、A (0,2)、E (﹣,1)∵CO :OF =2:∴CO =﹣m ,FO =﹣m ,BF =2+m∵S △BEC =S △EBF +S △BFC =∴(2+m )(﹣m +1)=整理得:m 2+m =0∴m =﹣1或0∵m <0∴m =﹣1(4)在Rt △ABO 中,tan ∠ABO ===∴∠ABO =30°,AB =2AO =4 ①当∠BPE >∠APE 时,连接A 1B 则对折后如图2,A 1为对折后A 的所落点,△EHP 是重叠部分.∵E 为AB 中点,∴S △AEP =S △BEP =S △ABP∵S △EHP =S △ABP∴=S △EHP =S △BHP =S △ABP∴A 1H =HP ,EH =HB =1∴四边形A 1BPE 为平行四边形∴BP =A 1E =AE =2即BP =2②当∠BPE =∠APE 时,重叠部分面积为△ABP 面积的一半,不符合题意; ③当∠BPE <∠APE 时.则对折后如图3,A 1为对折后A 的所落点.△EHP 是重叠部分∵E 为AB 中点,∴S △AEP =S △BEP =S △ABP∵S △EHP =S △ABP ∴S △EBH =S △EHP ==S △ABP ∴BH =HP ,EH =HA 1=1又∵BE =EA =2∴EHAP , ∴AP =2在△APB 中,∠ABP =30°,AB =4,AP =2.∴∠APB =90°,∴BP =,综合①②③知:BP =2或; 【点评】此题主要考查了点的平移、二次函数解析式的确定,图形折叠问题及图形面积等重要知识点,同时还考查了分类讨论的数学思想,难度较大.25.已知二次函数y 1=ax 2+bx +1(a >0),一次函数y 2=x .(Ⅰ)若二次函数y 1的图象与一次函数y 2的图象只有一个交点,求a 与b 之间的关系;(Ⅱ)在(Ⅰ)的条件下,y 1的图象与y 2图象的交点为P ,且点P 的横坐标是2,若将y 2向上平移t 个单位,与y 1交于两点Q ,R ,△PQR 面积为2,求t ;(Ⅲ)二次函数y 1图象与一次函数y 2图象有两个交点(x 1,y 1)(x 2,y 2),且满足x 1<2<x 2<4,此时设函数y 1的对称轴为x =m ,求m 的范围.【分析】根据二次函数、一次函数、正比例函数的性质,求出交点坐标即可.【解答】解:(1)若二次函数y 1的图象与一次函数y 2的图象只有一个交点,即:ax 2+bx +1=x ,△=(b ﹣1)2﹣4a =0,解得:b 2﹣2b +1=4a ,…①答:a与b之间的关系是b2﹣2b+1=4a;(2)图象如上图所示,若将y2向上平移t个单位后所在直线为PR所在直线为y=x+t,将P点坐标(2,2)代入二次函数方程得:4a+2b+1=2…②联立方程①②解得:b=0,a=,点Q、R的坐标由方程③和二次函数联立得:x2﹣x+1﹣t=0,则:|x Q﹣x P|=4,S△PQR=•|x Q﹣x P|•PH=2,解得:t=1,答:t=1;(3),即:ax2+(b﹣1)x+1=0,方程有两个根x1<2<x2<4,根据函数得:解得:﹣1<﹣<2,答:m的范围为﹣1<m<2.【点评】本题综合考查二次函数、一次函数、正比例函数的性质,是一道难度较大的题目.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津一中2017-2018学年九年级一月考试
数学试卷
一.选择题:(3’×10)
1.下列图形中,既是轴对称图形又是中心对称图形的是()
2.同圆中两条弦长为10 和12,它们的弦心距为m 和n,则()
A.m>n B.m<n
C.m=n D.m、n的大小无法确定
3.下面给出五个命题
(1)正多边形都有内切圆和外接圆,且这两个圆是同心圆;
(2)各边相等的圆外切多边形是正多边形
(3)各角相等的圆内接多边形是正多边形
(4)正多边形既是轴对称图形又是中心对称图形
(5)正n 边形的中心角
360
n
a
n
=,且与每一个外角相等
其中真命题有()
A.2 个 B.3 个 C.4 个 D.5 个
4.二次函数y=a2x+bx+c 的图象如图所示,则点(a+b, ac)在
平面直角坐标中的()
A.第一象限 B.第二象限
C.第三象限 D.第四象限
5.一个扇形的圆心角是120,它的面积为3π2
cm,那么这个扇形的半径为()A. 3 cm B.3cm C.6cm D.9cm
6.如图,已知点A、B、C、D均在已知圆上,AD//BC,AC平分∠BCD,∠ADC =120,四边形ABCD的周长为10cm.图中阴影部分的面积为()
7.一个圆锥的侧面展开图是一个半圆,则此圆锥母线长与底面半径之比为( )
A .2:1
B .1:2
C .3:1
D .1:3 8.已知二次函数y =2x −4x + a ,下列说法错误..
的是( ) A .当x<1 时,y 随x 的增大而减小.
B .若图像与x 轴有交点,则a ≤4.
C .当 a=3时,不等式2x −4x +a >0的解集是1<x <3.
D .若将图像向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3.
9.在平面直角坐标系中,将抛物线y =2x +x −2关于原点中心对称变换后所得的新抛物线
的解析式为 ( )
A . y =−2x −x +2
B . y =−2
x +x −2 C . y =−2x +x +2 D . y =2x +x +2 10.如图,在等边△ABC 中,AC=9,点O 在AC 上,且AO=3,
P 是AB 上一动点,连接OP,将线段OP 绕点O 逆时针旋转60
得到线段OD ,若使点D 恰好落在BC 上,则线段AP 的长为( )
A .4
B .5
C .6
D .8
二.填空题:(3’×8)
11.一条弦把圆分成5:1 两部分,若圆的半径为2cm,此弦长为_______.
12.如图,已知:PA 、PB 、EF 分别切⊙O 于A 、B 、D ,若PA=10cm,那么
△PEF 周长是______ cm.若∠P=35°,那么∠AOB=______,∠EOF=______.
13.如图,⊙C 经过原点,并与坐标轴分别交于A 、D 两点.已知
∠OBA =30,点D 的坐标为(0,2),则点A 、C 的坐标分别
为A
、C .
14.AB 是⊙O 的直径,且AB=10,弦MN 的长为8,若弦MN 的
两端在圆上滑动时,始终与AB 相交,记点A 、B 到MN 的距离分别
为1h ,2h ,则|1h -2h | 等于___________.
15.已知函数 y =(m +3)24m m x +-,当m=_______时,它的图象是
一条抛物线,且当x=_____时,函数y 有最_______值.
16.如图,⊙O 的半径为2,1C 是函数y=
212x 的图象,2C
是函数y=—212
x 的图象,则阴影部分的面积是 . 17.已知二次函数y=a 2x +bx+c (a ≠0),若2a+b=0,且当x=-1
时,y=3,那么当x=3 时,y=__________.
18.AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另
一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上。
①若正方
形的顶点F 也在半圆弧上,则半圆的半径与正方形边长的比是
______________;②若正方形DEFG 的面积为100,且ΔABC 的
内切圆半径r =4,则半圆的直径AB = __________
三.解答题:
19.如图,正方形网格中,ΔABC 为格点三角形(顶点都是格点),将ΔABC 绕点A 按逆时针方向旋转90°得到Δ111A B C .
(1)在正方形网格中,作出Δ111A B C ;
(2)设网格小正方形的边长为1,求旋转过程中动点B 所经过的路径长.
20.如图,AB=BC ,以AB 为直径的⊙O 交AC 于点D ,过D 作DE ⊥BC ,垂足为E .
(1) 求证:DE 是⊙O 的切线;
(2) 作DG ⊥AB 交⊙O 于G ,垂足为F ,若∠A =30°,AB =8,求弦DG 的长.
21.如图,已知抛物线与x 交于A(-1,0)、E(5,0)两点,与y 轴交于点B(0,5).(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB 的面积.
22.如图,已知矩形ABCD 中,AB=1cm,BC=2cm,以B 为圆心,BC 为半径作1
4
圆弧交AD 于F,交BA 的
延长线于E,求扇形BCE 被矩形所截剩余部分的面积.
23.如图,已知矩形ABCD,以A 为圆心,AD 为半径的圆交AC、AB 于M、E,CE 的延长线交⊙A 于F,CM=2,AB=4.
(1)求⊙A 的半径;
(2)求CE 的长和△AFC 的面积.
24.在直角梯形ABCD 中,AD∥BC,∠B=90°,AD=13cm,BC=16cm,CD=5cm,AB为⊙O的直径,动点P,沿AD从点A开始向点D以1cm/s的速度运动,动点Q沿CB从点C开始向点B以2cm/s的速度运动.点P、Q分别从A、C两点同时出发,当其中一点停止时,另一点也随之停止运动.
(1)求⊙O 的直径;
(2)求四边形PQCD 的面积S 关于P、Q 点运动的时间t 的函数关系式,并求出四边形
PQCD 为等腰梯形时,四边形PQCD 的面积;
(3)是否存在某一时刻t,使直线PQ与⊙O相切?若存在,求出t的值;若不存在,说明理由.
参考答案
一.选择题:
1.D 2.A 3.A 4.D 5.B 6.D 7.A 8.C 9.C 10.C
二.填空题:
11.2cm
14.6
15.2;0;小
16.2π
17.3
18.① 2 ;②21
19.(1)如图
(2)旋转过程中动点B 所经过的路径为一段圆弧.
BC =3,∴AB =5. 又
1BAB ∠= 90,
∴动点B 所经过的路径长为
52
π 20. 证明: (1)连接OD ,证明OD ⊥DE .
(2)21.(1) y = 2
x -+4x +5
(2)D(2,9) AEDB S =30
22.解:连接BF ,Rt △ABF , ∠ABF =60°,
23.(1)设 ⊙A 的半径为r , 2224(2)r r +=+
所以⊙A 的半径为3.
(2)CE=
AG ⊥EF 于G ,CE ·AG=AE ·3
24.(1)过点D 作DE ⊥BC 于E ,EC=3,DE=4, ⊙O 的直径是4.
四边形PQCD 为等腰梯形时,四边形PQCD 的面积s=116 3
(3)PQ 与⊙O 相切.。