很好的平行线证明题
平行线证明题
平行线证明题第一篇:平行线证明题平行线证明题直线ab和直线cd平行因为,∠aef=∠efd.所以ab平行于cd内错角相等,两直线平行em与fn平行因为em是∠aef的平分线,fn是∠efd的平分线,所以角mef=1/2角aef,角efn=1/2角efd因为,∠aef=∠efd,所以角mef=角efn所以em与fn平行,内错角相等,两直线平行2第五章相交线与平行线试卷一、填空题:1、平面内两条直线的位置关系可能是或。
2、“两直线平行,同位角相等”的题设是,结论是。
3、∠a和∠b是邻补角,且∠a比∠b大200,则∠a=度,∠b=度。
4、如图1,o是直线ab上的点,od是∠cob的平分线,若∠aoc=400,则∠bod= 0。
5、如图2,如果ab‖cd,那么∠b+∠f+∠e+∠d=0。
6、如图3,图中abcd-是一个正方体,则图中与bc所在的直线平行的直线有条。
7、如图4,直线‖,且∠1=280,∠2=500,则∠acb=0。
8、如图5,若a是直线de上一点,且bc‖de,则∠2+∠4+∠5=0。
9、在同一平面内,如果直线‖,‖,则与的位置关系是。
10、如图6,∠abc=1200,∠bcd=850,ab‖ed,则∠cde0。
二、选择题:各小题只有唯一一个正确答案,请将正确答案的代号填在题后的括号内11、已知:如图7,∠1=600,∠2=1200,∠3=700,则∠4的度数是()a、700b、600c、500d、40012、已知:如图8,下列条件中,不能判断直线‖的是()a、∠1=∠3b、∠2=∠3c、∠4=∠5d、∠2+∠4=180013、如图9,已知ab‖cd,hi‖fg,ef⊥cd于f,∠1=400,那么∠ehi=()a、400b、450c、500d、55014、一个角的两边分别平行于另一个角的两边,则这两个角()a、相等b、相等或互补c、互补d、不能确定15、下列语句中,是假命题的个数是()①过点p作直线bc的垂线;②延长线段mn;③直线没有延长线;④射线有延长线。
平行线证明题大综合
平行线的证明【1】1.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC()∴∠2=()∵∠1=∠2(已知)∴∠1=∠(等量代换)∴EF∥CD()∴∠AEF=∠()∵EF⊥AB(已知)∴∠AEF=90°()∴∠ADC=90°()∴CD⊥AB()2.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(),∴∠2=∠CGD(等量代换).∴CE∥BF().∴∠=∠C().又∵∠B=∠C(已知),∴∠=∠B(等量代换).∴AB∥CD().3.如图,∠1=60°,∠2=60°,∠3=100°.要使AB∥EF,∠4应为多少度?说明理由.4.如图,EF∥AD,∠1=∠2.求证:DG∥AB.5.如图,已知DE∥BC,EF平分∠AED,EF⊥AB,CD⊥AB,试说明CD平分∠ACB.6.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.平行线的证明【2】1.如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.2.如图,已知AB∥DE∥MN,AD平分∠CAB,CD⊥DE.(1)∠DAB=15°,求∠ACD的度数;(2)判断等式∠CDA=∠NCD+∠DAB是否成立,并说明理由.3.如图,已知AB∥CD∥EF,∠ABC=46°,∠CEF=154°,求:(1)∠ECD的度数;(2)∠BCE的度数.4.学着说点理,填空:如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.理由如下:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,()∴AD∥EG,()∴∠1=∠2,()∠E=∠3,(两直线平行,同位角相等)又∵∠E=∠1(已知)∴=(等量代换)∴AD平分∠BAC()5.如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.6.如图,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=27°.(1)求∠2的度数;(2)若∠3=18°,判断直线n和m的位置关系,并说明理由.7.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,(1)问直线EF与AB有怎样的位置关系?加以证明;(2)若∠CEF=70°,求∠ACB的度数.平行线的证明【3】1.如图,已知∠1=142°,∠ACB=38°,∠2=∠3,FH⊥AB于H,问AB与CD是否垂直?并说明理由.2.如图,已知∠1+∠2=180°,∠B=∠3,∠BAC与∠DCA相等吗?为什么?3.已知;如图,在四边形ABCD中,AB∥CD,∠BAD,∠ADC的平分线AE、DF分别与线段BC相交于点E、F,AE与DF相交于点G,求证:AE⊥DF.4.如图所示,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED的位置关系,并说明理由.5.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.6.完成下列推理过程:已知:如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()7.如图所示,折叠一个宽度相等的纸条,求∠1的度数.平行线的证明【4】1.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.2.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.3.MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB 和CD的位置关系,并说明理由.4.如图AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°.5.(1)如图1,已知AB∥CD,那么图1中∠P AB、∠APC、∠PCD之间有什么数量关系?并说明理由.(2)如图2,已知∠BAC=80°,点D是线段AC上一点,CE∥BD,∠ABD和∠ACE的平分线交于点F,请利用(1)的结论求图2中∠F的度数.6.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2(1)求证:AB∥CD(2)若∠D=∠3+50°,∠CBD=70°,求∠C的度数.7.如图,AB∥CD,∠CDE=122°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F.平行线的证明【5】1.如图,EF∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°.(1)问直线CD与AB有怎样的位置关系?并说明理由;(2)若∠CEF=70°,求∠ACB的度数.2.如图,AB∥DC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证:FE∥OC;(2)若∠BOC比∠DFE大20°,求∠OFE的度数.3.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,求:(1)∠FED的度数;(2)∠FEG的度数;(3)∠1和∠2的度数.4.已知△ABC各顶点的坐标为A(﹣4,﹣2),B(﹣1,﹣3),C(﹣2,﹣1),将△ABC 先向右平移4个单位长度,再向上平移3个单位长度得到△A′B′C′.(1)在直角坐标系中画出△A′B′C′;(2)求出△A′B′C′的面积.5.如图①,AB∥CD,点E在直线AB与CD之间,连结AE、BE,试说明∠BAE+∠DCE =∠AEC.【探究】当点E在如图②的位置时,其他条件不变,试说明∠AEC+∠BAE+∠DCE =360°;【应用】点E、F、G在直线AB与CD之间,连结AE、EF、FG和CG,其他条件不变,如图③.若∠EFG=36°,则∠BAE+∠AEF+∠FGC+∠DCG=°.平行线的证明【6】1.已知:如图,CD分别交AD、AE、BE于点D、F、C,连接AB、AC,AD∥BE,∠1=∠2,∠3=∠4.求证:AB∥CD.证明:∵AD∥BE(已知)∴∠3=∠CAD()∵∠3=∠4(已知)∴∠4=(等量代换)∵∠1=∠2(已知)∴∠1+∠CAE=∠2+∠CAE(等式的基本性质)即∠BAE=∴∠4=(等量代换)∴AB∥CD.2.如图(1),AB∥CD,试求∠BPD与∠B、∠D的数量关系,说明理由.(2)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D 的数量关系,并说明理由.(3)观察图(3)和(4),已知AB∥CD,直接写出图中的∠BPD与∠B、∠D的数量关系,不用说明理由.3.(1)如图①如果AB∥CD,求证:∠APC=∠A+∠C.(2)如图②,AB∥CD,根据上面的推理方法,直接写出∠A+∠P+∠Q+∠C=.(3)如图③,AB∥CD,若∠ABP=x,∠BPQ=y,∠PQC=z,∠QCD=m,则m=(用x、y、z表示)4.已知,如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上的一点且GH⊥EG.求证:PF∥GH.5.如图,把矩形纸片ABCD沿EF折叠后,使点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是;(2)若∠BFE=65°,求∠EBF的度数.。
(完整版)平行线证明(填理由)
平行线证明(填理由)、填空题(本大题共4小题,共12.0分)1. 已知,如图,BE平分/ ABC /仁/ 2,据提示填空.•/ BE平分/ ABC(已知)/•Z 1=7 3 (______________ )又•••/仁/ 2 (已知)•- _____ =7 2 (_____________ )•- _____ 〃______ ( _______________ )•••7 AED= _____ ( _______________ ).2. 根据解答过程填空:如图,已知7 DAF7 F,7 B=7 D,那么AB与DC平行吗? 解:•••/ DAF7 F (已知)•- _____ 〃______ ( _______ )•7 D=7 DCF( _____ )又•••/ D=7 B ( ______ )•7______ =7 DCF(等量代换)•AB// DC( ____ )3. 如图,已知FGLAB CD£AB 垂足分别为G D, 7仁7 2, 求证:7 CED-7 ACB=180 .请你将小明的证明过程补充完整.证明:••• FGLAB CD£AB垂足分别为G D (已知)•7 FGB7 CDB=90 ( ________ ),•GF// CD ( _____ ).••• GF// CD(已证)•7 2=7 BCD ( _____ )又仁72 (已知),•7 1=7 BCD ( _____ ),• _____ , ( _______ )•7 CED-7 ACB=180 _____ .4. 补全证明过程,即在横线处填上遗漏的结论或理由. 已知:如图,7 1=7 2,7 C=7 D.求证:7 A=7 F.证明:1=7 2 (已知)又7 仁7 DMN( _____ )•7 2=7 _____ (等量代换)•DB// EC ( ____ )•7 C=7 ABD( _____ )T7 C=7 D (已知)•7 D=7 ABD( _____ )• _____ (内错角相等,两直线平行)/•Z A=Z F ( _____ )二、解答题(本大题共 12小题,共96.0分)5. (1)问题发现:如图①,直线 AB//CD E 是AB 与AD 之间的一点,连接 BE CE 可 以发现 Z B+Z C=Z BEC请把下面的证明过程补充完整:证明:过点E 作EF// AB••• AB// DC (已知),EF// AB (辅助线的作法)./• EF// DC( _____ ).•••Z C=Z CEF( ____ )•/ EF// AB /Z B=Z BEF (同理).•Z B+Z C= ______ (等量代换)即 Z B+Z C=Z BEC(2) 拓展探究:如果点 E 运动到图②所示的位置,其他条件不变,进一步探究发现: Z B+Z C=360 - Z BEC 请说明理由.(3)解决问题:如图③,AB// DC Z C=12C ° , Z AEC=80,请直接写出ZA 的度数.6. 阅读下列推理过程,在括号中填写理由.已知:如图,点D E 分别在线段 AB BC 上, AC// DE DF// AE 交BC 于点F, AE 平分Z BAC 求 证:DF 平分Z BDE证明:••• AE 平分Z BAC(已知)• Z 1=Z2 ( ______________________________ )•/ AC// DE(已知)• Z 1=Z 3 () 故Z 2=Z 3 () •••DF// AE(已知)• Z 2=Z 5 () • Z 3=Z 4 ( )圉①••• DF平分/ BDE( _________________________ )7. 如图(1), AB// CD猜想/ BPD与/ B/D的关系,说出理由.解:猜想/ BPD/ B+/ D=360理由:过点P作EF// AB•/ B+/ BPE=180 (两直线平行,同旁内角互补)•/ AB// CD EF// AB•EF/ CD (如果两条直线都和第三条直线平行,那么这两条直线也互相平行. )•/ EPD/ D=180 (两直线平行,同旁内角互补)•••/ B+/ BPE/ EPD/ D=360•••/ B+/ BPD/ D=360(1)依照上面的解题方法,观察图(2),已知AB// CD猜想图中的/ BPD与/ B/D 的关系,并说明理由.(2)观察图(3)和(4),已知AB// CD猜想图中的/ BPD与/ B/D的关系,不需要说明理由.A ------------ BC—P (4)8.如图,已知,CD// EF, /仁/ 2,求证:/ 3=/ ACB请补全证明过程.证明:••• CD// EF,( _____ )•/ 2=/ DCB (两直线平行,同位角相等)•••/仁/ 2, ( _____ )•/ 仁/ DCB ( _______ )•GD/ CB ( _______ )•/ 3=/ ACB ( _______ )9.在横线上填写理由,完成下面的证明.如图,已知/ 1+/2=180°, / B=/ 3,求证/ C=/证明:T/ 1+/2=180°(已知),/ 1+/ DFE=180AED•/ 2=/ DFE( ______ )• AB// EF ( _____ )•/ 3=/ ADE( _____ )又•••/ B=/ 3 (已知)•/ B=/ ADE( _____ )•DE// BC ( _____ ))•••/ C=Z AED( ______ )10. 阅读下面的证明过程,在每步后的横线上填写该步推理的依据. 如图,/ E=Z 1,Z 3+Z ABC=180 , BE是/ ABC的角平分线,求证:DF// AB.证明:••• BE是/ ABC的角平分线•••/ 1=Z 2 ( ___________ )又•••/ E=Z1/•Z E=Z 2 ( ____________ )•AE// BC ( ____________ )•Z A+Z ABC=180 ( ____________ )又T Z 3+Z ABC=180•Z A=Z 3 ( ____________ )•DF// AB ( ____________ ).11. 填空:如图,已知DE// AC Z A=Z DEF试说明AB// EF. 解:••• DE// AC _____________ _•Z A=Z BDE ___T Z A=Z DEF _____•Z BDE Z DEF ___ .•AB// EF ______12. 完成下面的证明:已知:如图,AB// DE 求证:Z D+Z BCD - Z B=180°, 证明:过点C作CF// AB.T AB// CF (已知),•Z B= _____ ( ______ ).T AB// DE CF// AB( 已知 ),•CF// DE ( ______ )•Z 2+ ____ =180 ( ______ )T Z 2=Z BCD- Z 1,•Z D+Z BCD- Z B=180°( _____ ).13. 完成下面推理过程.如图:在四边形ABCD中, Z A=106 - a,Z ABC=74+a,BDLDC于点D, EF±DC于点F,求证:Z仁Z2证明:T Z A=106 - a,Z ABC=74 + a(已知)•Z A+Z ABC=180•AD// ____ ( _____________ )•••/1= ______ ( _______________ )•/ BDL DC EF± DC(已知)•••/ BDF2 EFC=90 ( ________ )• BD// ______ ( _____________ )2= _____ ( _______________ )•••/ 仁/ 2 ( _______ )14. 完成下面的证明(在括号中填写推理理由) 如图,已知/ A=Z F,Z C=Z D,求证:BD// CE 证明:因为/ A=Z F,所以AC// DF ( ______ ),所以/ C+Z _____ =180 ( ________ ).因为/ C=Z D,所以Z D+Z _____ =180 ( ________ ),所以BD// CE ( ______ ).15. 如图AB// CD Z 仁Z 2,Z 3=Z 4,试说明AD// BE 解:••• AB// CD (已知)•Z 4=Z ______ ( _______ )•••Z 3=Z 4 (已知)•Z 3=Z ______ ( _______ )•Z仁Z 2 (已知)•Z 1+Z CAF Z 2+Z CAF( _____ )即Z _____ = Z_______ ( ______ )•Z 3=Z _____•AD// BE ( ____ )16. 如图,已知EF// AD Z 仁Z 2,Z BAC=70,求Z AGD(请填空)解:• EF// AD•Z 2= _____ ( ______又T Z 1=Z2•Z 1=Z 3 ( ______ )•AB// _____ ( _____ )•Z BAC+ ____ =180 ( ________ )•Z BAC=70 ( ______ )•Z AGD= ____ ( ______ )。
平行线的性质与判定典型例题
1.如图,CD平分∠ECF,∠B=∠ACB,求证:AB∥CE.证明:∵CD平分∠ECF,∴∠ECD=∠DCF,∵∠ACB=∠DCF,∴∠ECD=∠ACB,又∵∠B=∠ACB,∴∠B=∠ECD,∴AB∥CE.2.如图,AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE与BF平行吗?为什么?解:AE∥BF.理由如下:因为AC⊥AE,BD⊥BF〔〕,所以∠EAC=∠FBD=90°〔垂直的定义〕.因为∠1=∠2〔〕,所以∠EAC+∠1=∠FBD+∠2〔等式的性质〕,即∠EAB=∠FBG,所以AE∥BF〔同位角相等,两直线平行〕.3.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,F是BC延长线上一点,且∠DBC=∠F,求证:EC∥DF.证明:∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ABC,∠ECB=∠ACB,∴∠DBC=∠ECB.∵∠DBC=∠F,∴∠ECB=∠F,∴EC∥DF.4.如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC∥AB.证明:∵DE、BF分别是∠ABC,∠ADC的角平分线,∴∠3=∠ADC,∠2=∠ABC,∵∠ABC=∠ADC,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴DC∥AB.5.如下图,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED的位置关系,并说明理由.解:AB∥ED,理由:如图,过C作CF∥AB,∵∠B=25°,∴∠BCF=∠B=25°,∴∠DCF=∠BCD﹣∠BCF=42°,又∵∠D=42°,∴∠DCF=∠D,∴CF∥ED,∴AB∥ED.6.如图,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.试判断AD与BC的位置关系,并说明理由.解:BC∥AD.理由如下:∵DE平分∠ADC,CE平分∠BCD,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=2〔∠1+∠2〕=180°,∴AD∥BC.7.:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.证明:∵DG⊥BC,AC⊥BC,∴∠DGB=∠ACB=90°〔垂直定义〕,∴DG∥AC〔同位角相等,两直线平行〕,∴∠2=∠ACD〔两直线平行,内错角相等〕,∵∠1=∠2,∴∠1=∠DCA,∴EF∥CD〔同位角相等,两直线平行〕.8.将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.〔1〕①假设∠DCB=45°,那么∠ACB的度数为135°.②假设∠ACB=140°,那么∠DCE的度数为40°.〔2〕由〔1〕猜测∠ACB与∠DCE的数量关系,并说明理由.〔3〕当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值〔不必说明理由〕.解:〔1〕①∵∠DCE=45°,∠ACD=90°∴∠ACE=45°∵∠BCE=90°∴∠ACB=90°+45°=135°故答案为:135°;②∵∠ACB=140°,∠ECB=90°∴∠ACE=140°﹣90°=50°∴∠DCE=90°﹣∠ACE=90°﹣50°=40°故答案为:40°;〔2〕猜测:∠ACB+∠DCE=180°理由如下:∵∠ACE=90°﹣∠DCE又∵∠ACB=∠ACE+90°∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE即∠ACB+∠DCE=180°;〔3〕30°、45°.理由:当CB∥AD时,∠ACE=30°;当EB∥AC时,∠ACE=45°.9.:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO,证明:CF∥DO.证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO〔同位角相等,两条直线平行〕,∴∠EDO=∠BOD〔两直线平行,内错角相等〕,∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO〔同位角相等,两条直线平行〕.10.如图,∠A=∠C,∠E=∠F,试说明:AD∥BC.证明:∵∠E=∠F,∴AE∥CF,∴∠A=∠ADF,∵∠A=∠C,∴∠ADF=∠C,∴AD∥BC.11.:如图,EG∥FH,∠1=∠2.求证:∠BEF+∠DFE=180°.解:∵EG∥HF∴∠OEG=∠OFH,∵∠1=∠2∴∠AEF=∠DFE∴AB∥CD,∴∠BEF+∠DFE=180°.12.如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.解:AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,〔两直线平行,内错角相等〕∵∠B=70°,∴∠BCD=70°,〔等量代换〕∵∠BCE=20°,∴∠ECD=50°,∵CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,〔同旁内角互补,两直线平行〕∴AB∥EF.〔平行于同一直线的两条直线互相平行〕13.如图,AD∥BC,∠DAC=120°,∠ACF=20°,∠EFC=140°.求证:EF∥AD.证明:∵AD∥BC,∴∠DAC+∠ACB=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠BCF=∠ACB﹣∠ACF=40°,又∵∠EFC=140°,∴∠BCF+∠EFC=180°,∴EF∥BC,∵AD∥BC,∴EF∥AD.14.完成以下推理过程::如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°〔〕∠1+∠DFE=180°〔邻补角定义〕∴∠2=∠DFE〔同角的补角相等〕∴EF∥AB〔内错角相等,两直线平行〕∴∠3=∠ADE〔两直线平行,内错角相等〕又∵∠3=∠B〔〕∴∠B=∠ADE〔等量代换〕∴DE∥BC〔同位角相等,两直线平行〕∴∠EDG+∠DGC=180°〔两直线平行,同旁内角互补〕15.:如图,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大小.阅读下面的解答过程,并填空〔理由或数学式〕解:∵BE∥GF〔〕∴∠2=∠3〔两直线平行同位角相等〕∵∠1=∠3〔〕∴∠1=〔∠2〕〔等量代换〕∴DE∥〔BC〕〔内错角相等两直线平行〕∴∠EDB+∠DBC=180°〔两直线平行同旁内角互补〕∴∠EDB=180°﹣∠DBC〔等式性质〕∵∠DBC=〔70°〕〔〕∴∠EDB=180°﹣70°=110°16.如图,:E、F分别是AB和CD上的点,DE、AF分别交BC于点G、H,AB∥CD,∠A=∠D,试说明:〔1〕AF∥ED;〔2〕∠BED=∠A;〔3〕∠1=∠2〔1〕证明:∵AB∥CD,∴∠A=∠AFC,∵∠A=∠D,∴∠AFC=∠D,∴AF∥ED;〔2〕证明:∵AF∥ED,∴∠BED=∠A;〔3〕证明:∵AF∥ED,∴∠1=∠CGD,又∵∠2=∠CGD,∴∠1=∠2.17.阅读理解,补全证明过程及推理依据.:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.求证∠A=∠F证明:∵∠1=∠2〔〕∠2=∠DGF〔对顶角相等〕∴∠1=∠DGF〔等量代换〕∴BD∥CE〔同位角相等,两直线平行〕∴∠3+∠C=180°〔两直线平行,同旁内角互补〕又∵∠3=∠4〔〕∴∠4+∠C=180°〔等量代换〕∴AC∥DF〔同旁内角互补,两直线平行〕∴∠A=∠F〔两直线平行,内错角相等〕18.如图,∠α和∠β的度数满足方程组,且CD∥EF,AC⊥AE.〔1〕求∠α和∠β的度数.〔2〕求∠C的度数.解:〔1〕解方程组,得.〔2〕∵∠α+∠β=55°+125°=180°,∴AB∥CD,∴∠C+∠CAB=180°,∵AC⊥AE,∴∠CAE=90°,∴∠C=180°﹣90°﹣55°=35°.19.如图,直线a∥b,∠1=45°,∠2=30°,求∠P的度数.解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,20.如图,AB∥CD,∠A=60°,∠C=∠E,求∠E.解:∵AB∥CD,∠A=60°,∴∠DOE=∠A=60°,又∵∠C=∠E,∠DOE=∠C+∠E,∴∠E=∠DOE=30°.21.如图,∠1+∠2=180°,∠B=∠3,∠BAC与∠DCA相等吗?为什么?解:∠BAC=∠DCA,理由:∵∠CFE=∠2,∠2+∠1=180°,∴∠CFE+∠1=180°,∴DE∥BC,∴∠AED=∠B,∵∠B=∠3,∴∠3=∠AEF,∴AB∥CD,∴∠BAC=∠DCA.22.如图,EF⊥BC,∠1=∠C,∠2+∠3=180°.试说明直线AD与BC垂直.〔请在下面的解答过程的空格内填空或在括号内填写理由〕.理由:∵∠1=∠C,〔〕∴GD∥AC,〔同位角相等,两直线平行〕∴∠2=∠DAC.〔两直线平行,内错角相等〕又∵∠2+∠3=180°,〔〕∴∠3+∠DAC=180°.〔等量代换〕∴AD∥EF,〔同旁内角互补,两直线平行〕∴∠ADC=∠EFC.〔两直线平行,同位角相等〕∵EF⊥BC,〔〕∴∠EFC=90°,∴∠ADC=90°,∴AD⊥BC.23.如图1,BC⊥AF于点C,∠A+∠1=90°.〔1〕求证:AB∥DE;〔2〕如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.那么∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系〔不考虑点P与点A,D,C重合的情况〕?并说明理由.解:〔1〕如图1,∵BC⊥AF于点C,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB∥DE.〔2〕如图2,当点P在A,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;如下图,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;如下图,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.24.:如图,FE∥OC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.〔1〕求证:AB∥DC;〔2〕假设∠B=30°,∠1=65°,求∠OFE的度数.〔1〕证明:∵FE∥OC,∴∠1=∠C,∵∠1=∠A,∴∠A=∠C,∴AB∥DC;〔2〕解:∵AB∥DC,∴∠D=∠B,∵∠B=30°∴∠D=30°,∵∠OFE是△DEF的外角,∴∠OFE=∠D+∠1,∵∠1=65°,∴∠OFE=30°+65°=95°.25.〔2021秋•牡丹区期末〕如图,AB∥DG,∠1+∠2=180°,〔1〕求证:AD∥EF;〔2〕假设DG是∠ADC的平分线,∠2=150°,求∠B的度数.证明:〔1〕∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠2+∠BAD=180°,∴AD∥EF;〔2〕∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∵DG是∠ADC的平分线,∴∠GDC=∠1=30°,∵AB∥DG,∴∠B=∠GDC=30°.26.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?假设平分,请说明理由.平分.证明:∵AD⊥BC于D,EG⊥BC于G,〔〕∴∠ADC=∠EGC=90°,〔垂直的定义〕∴AD∥EG,〔同位角相等,两直线平行〕∴∠2=∠3,〔两直线平行,内错角相等〕∠E=∠1,〔两直线平行,同位角相等〕又∵∠E=∠3〔〕∴∠1=∠2〔等量代换〕∴AD平分∠BAC〔角平分线的定义〕.27.如图,EF∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°.〔1〕问直线CD与AB有怎样的位置关系?并说明理由;〔2〕假设∠CEF=70°,求∠ACB的度数.解:〔1〕CD和AB的关系为平行关系.理由如下:∵EF∥AB,∠EFB=130°,∴∠ABF=180°﹣130°=50°,又∵∠CBF=20°,∴∠ABC=70°,∵∠DCB=70°,∴∠DCB=∠ABC,∴CD∥AB;〔2〕∵EF∥AB,CD∥AB,∴EF∥CD,∵∠CEF=70°,∴∠ECD=110°,∵∠DCB=70°,∴∠ACB=∠ECD﹣∠DCB,∴∠ACB=40°.28.如图,BD是∠ABC的平分线,ED∥BC,∠4=∠5,那么EF也是∠AED的平分线.完成以下推理过程:证明:∵BD是∠ABC的平分线〔〕∴∠1=∠2〔角平分线定义〕∵ED∥BC〔〕∴∠5=∠2〔两直线平行,内错角相等〕∴∠1=∠5〔等量代换〕∵∠4=∠5〔〕∴EF∥BD〔内错角相等,两直线平行〕∴∠3=∠1〔两直线平行,同位角相等〕∴∠3=∠4〔等量代换〕∴EF是∠AED的平分线〔角平分线定义〕。
平行线典型例题
一.解答题(共21小题)
1.如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.
理由如下:∵AD⊥BC于D,EG⊥BC于G,(已知)
∴∠ADC=∠EGC=90°,(垂直的定义),
∴AD∥EG,(同位角相等,两直线平行)
∴∠1=∠2,(两直线平行,内错角相等)
∠E=∠3,(两直线平行,同位角相等)
解答:
解:AD与BC平行;理由如下:
∵BE∥DF,
∴∠B+∠BCD=180°(两直线平行,同旁内角互补)
∵∠B=∠D,
∴∠D+∠BCD=180°,
点评:
本题考查了平行线的性质及判定,熟记定理是正确解题的关键.
4.如图,已知BE∥DF,∠B=∠D,则AD与BC平行吗?试说明理由.
考点:
平行线的判定与性质.
专题:
探究型.
分析:
利用两直线平行,同旁内角互补可得∠B+∠C=180°,即∠C+∠D=180°;根据同旁内角互补,两直线平行可证得AD∥BC.
这是一道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论。本题可分为AB,CD之间或之外。
结论:①∠AEC=∠A+∠C②∠AEC+∠A+∠C=360°③∠AEC=∠C-∠A④∠AEC=∠A-∠C⑤∠AEC=∠A-∠C⑥∠AEC=∠C-∠A.
例、如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )
(3)如图3,点 、 是直线CM、DN内部的一个点,连结 、 、 .
试求 的度数;
(4)若按以上规律,猜想并直接写出 … 的度数(不必写出过程).
例、如图,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在AB上.
七年级数学平行线经典证明题
经典平行线经典证明题一、选择题:1.如图,能与∠α构成同旁内角的角有( ) A . 5个B .4个C . 3个D . 2个α2.如图,∥,直线与、分别交于点E 和点F ,⊥,∠1=130°,则∠2等于 ( ) A .50° B .40° C .30° D .65°3.如图,∥,∠31∠,∠75°,∠65°则∠是 ( ) A .70° B .65° C .60° D .55° 4.如图,如果∥,则α∠、β∠、γ∠之间的关系是( )A 、0180=∠+∠+∠γβαB 、0180=∠+∠-∠γβαC 、0180=∠-∠+∠γβαD 、0270=∠+∠+∠γβα 5.如图所示∥,则∠∠∠∠C 等于( )A.180°B.360°C.540°D.720°6.如图,∥∥,则下列各式中正确的是( )A 、∠1+∠2+∠3=180°B 、∠1+∠2-∠3=90°C 、∠1-∠2+∠3=90°D 、∠2+∠3-∠1=180° 7.如图,∥,那么∠于( )A 、∠2-∠1B 、∠1+∠2C 、180°+∠1-∠2D 、180°+∠2-2∠1二、填空题:8.把一副三角板按如图方式放置,则两条斜边所形成的钝角α=度.α45°30°9.求图中未知角的度数,,.10.如图,∥,平分∠,平分∠.(1)∠∠∠;(2)∠.11.如图,∥,∠120°,∠1=72°,则∠D的度数为.12.如图,∠90°,∥,∠1=∠B,则∠.13.如图,把长方形沿对折,若∠1=500,则∠的度数等于14.如图,已知∥,∠1=100°,∠2=120°,则∠α三、计算证明题:15.如图,在四边形中,∠104°-∠2,∠76°+∠2,⊥于D,⊥于F,能辨认∠1=∠2吗?试说明理由.16..如图,∥,∠70°,∠20°,∠130°,问直线与有怎样的位置关系,为什么?17.已知:如图23,平分∠,点F在上,∥交于G,交的延长线于E,求证:∠=∠E。
平行线证明题及答案
平行线证明题及答案【篇一:七年级数学平行线经典证明题】、选择题:1.如图,能与??构成同旁内角的角有() a. 5个b.4个c. 3个d. 2个16.如图,op∥qr∥st,则下列各式中正确的是()二、填空题:8.把一副三角板按如图方式放置,则两条斜边所形成的钝角??_______度.9.求图中未知角的度数,x=_______,y=_______.dec=________.三、计算证明题:17.已知:如图23,ad平分∠bac,点f在bd上,fe∥ad交ab于g,交ca的延长线于e,求证:∠age=∠e。
18. 如图,ab∥de,∠1=∠acb,∠cab=1∠bad,试说明:ad∥bc. 221.如图,已知:e、f分别是ab和cd上的点,de、af分别交bc于g、h,?a=?d,?1=?2,求证:?b=?c.22.已知:如图8,ab∥cd,求证:∠bed=∠b-∠d。
23.已知:∠1=∠2,∠3=∠4,∠5=∠6.求证:ad∥bc.25.如图所示,已知ab∥cd,分别探索下列四个图形中∠p与∠a,∠c的关系,?请你从所得的四个关系中任选一个加以说明.d c f图③图①求证:cd∥be。
求证:gh∥mn。
29、如图11,直线ab、cd被ef所截,∠1 =∠2,∠cnf =∠bme。
求证:ab∥cd,mp∥nq.e b a pc d q f图11【篇二:平行线的证明测试题】txt>一、填空题(每题4分,共32分)1.在△abc中,∠c=2(∠a+∠b),则∠c=________.2.如图,ab∥cd,直线ef分别交ab、cd于e、f,eg平分∠bef,若∠1=72o ,则∠2=;3.在△abc中,∠bac=90o,ad⊥bc于d,则∠b与∠dac的大小关系是________ aebcf12gd4.写出“同位角相等,两直线平行”的题设为_______,结论为_______.第2题5.如图,已知ab∥cd,bc∥de,那么∠b +∠d =__________.a b ec d b e 第7题第5题第6题6.如图,∠1=27o,∠2=95o,∠3=38o,则∠4=_______7.如图,写出两个能推出直线ab∥cd的条件________________________.8.满足一个外角等于和它相邻的一个内角的△abc是_____________二、选择题(每小题4分,共24分)9.下列语句是命题的是【】(a)延长线段ab(b)你吃过午饭了吗? (c)直角都相等 (d)连接a,b 两点10.如图,已知∠1+∠2=180o,∠3=75o,那么∠4的度数是【】(a)75o(b)45o(c)105o(d)135o11.以下四个例子中,不能作为反例说明“一个角的余角大于这个角”是假命题是【】12.若三角形的一个内角等于另外两个内角之差,则这个三角形是【】(a)锐角三角形 (b)直角三角形 (c)钝角三角形 (d)不能确定则∠dec等于【】(a)锐角三角形(b)钝角三角形 (c)直角三角形(d)无法确定三、(每小题10分,共20分)15.如图,ad=cd,ac平分∠dab,求证dc∥ab.的度数.四、(每小题12分,共24分)17.如图,be,cd相交于点a,∠dea、∠bca的平分线相交于f.(1)探求:∠f与∠b、∠d有何等量关系?(2)当∠b︰∠d︰∠f=2︰4︰x时,x为多少?18.如图,已知点a在直线l外,点b、c在直线l上.(1)点p是△abc内一点,求证:∠p∠a;(2)试判断:在△abc外又和点a在直线l同侧,是否存在一点q,使∠bqc∠a?试证明你的结论.c参考答案13、d;14、b;15、ad?cd??1??2????2??cab?dc平行ab;16、100o; ac平分?dab??1??cab?17、(1)连ce,记∠aec=∠1,∠ace=∠2,则∠d+∠2+∠1+∠dea=180o,∠b+∠1+∠2+∠bca=180o,∠f+∠1+∠2+11∠dea+∠bcd=180o. 2260o, 111(∠d+∠b)+∠1+∠2+∠bca+∠dea=180o, 222111∴∠1+∠2+∠bca+∠dea=180o-(∠d+∠b), 22211即∠f+180o-(∠d+∠b)=180o,∴∠f=(∠b+∠d); 22又∠b︰∠d︰∠f=2︰4︰x,∴x=3.18、(1)延长bp交ac于d,则∠bpc∠bdc,∠bdc∠a故∠bpc∠a;(2)在直线l同侧,且在△abc外,存在点q,使得∠bqc∠a成立.此时,只需在ab外,靠近ab中点处取点q,则∠bqc∠a(证明略).【篇三:平行线经典练习题-条件】xt>基础:cd3*.如图,∠1和∠d互余,ce⊥de,那么ab和cd平行吗?试说明理由.中等:10、如图,直线ef和ab、cd分别相交于k、h,且eg⊥ab,∠chf=60o,∠e=30o,试说明ab∥cd.(书)13.13.如图,直线ab、cd与ef相交于点g、h,且∠egb=∠ehd.(1)说明: ab∥cd(2)若gm是∠egb的平分线,fn是∠ehd的平分线,则gm与hn平行吗?说明理由11、如图,∠cda=∠cba,de平分∠cda,bf平分∠cba,且∠ade=∠aed.试说明de∥fb.规律20.(本题12分)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且?1=38o,则?2=_______o,?3_______o.(2)在(1)中,若?1=55o,则?3_______o;若?1=40o,则?3=_______o.(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角?3_______o时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?答案:(1)76,90 (2)90,90 (3)90。
平行线的证明试题总集含答案
《平行线的证明》单元测试题一、填空题1.在△ABC 中,∠C =2(∠A +∠B ),则∠C =________.2.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72º, 则∠2= ;3.在△ABC 中,∠BAC =90º,AD ⊥BC 于D ,则∠B 与∠DAC 的大小关系是________ 4.写出“同位角相等,两直线平行”的题设为_______,结论为_______. 5.如图,已知AB ∥CD ,BC ∥DE ,那么∠B +∠D =__________.6.如图,∠1=27º,∠2=95º,∠3=38º,则∠4=_______7.如图,写出两个能推出直线AB ∥CD 的条件________________________. 8.满足一个外角等于和它相邻的一个内角的△ABC 是_____________ 二、选择题9.下列语句是命题的是 【 】 (A)延长线段AB (B)你吃过午饭了吗? (C)直角都相等 (D)连接A ,B 两点 10.如图,已知∠1+∠2=180º,∠3=75º,那么∠4的度数是 【 】(A)75º (B)45º (C)105º(D)135º11.以下四个例子中,不能作为反例说明“一个角的余角大于这个角”是假命题是 【 】(A)设这个角是30º,它的余角是60°,但30°<60°(B)设这个角是45°,它的余角是45°,但45°=45°(C)设这个角是60°,它的余角是30°,但30°<60° (D)设这个角是50°,它的余角是40°,但40°<50°12.若三角形的一个内角等于另外两个内角之差,则这个三角形是 【 】 (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)不能确定 13.如图,△ABC 中,∠B =55°,∠C =63°,DE ∥AB , 则∠DEC 等于【 】(A )63° (B) 118° (C) 55°(D )62°14.三角形的一个外角是锐角,则此三角形的形状是 【 】 (A )锐角三角形(B)钝角三角形 (C)直角三角形(D )无法确定C A BDE E C D B A 1 3 24 第5题 第6题 第7题B第10题三、解答证明题15.如图,AD=CD,AC平分∠DAB,求证DC∥AB.16.如图,已知∠1=20°,∠2=25°,∠A=55°,求∠BDC的度数.17.如图,BE,CD相交于点A,∠DEA、∠BCA的平分线相交于F.(1)探求:∠F与∠B、∠D有何等量关系?(2)当∠B︰∠D︰∠F=2︰4︰x时,x为多少?CABD1218.如图,已知点A在直线l外,点B、C在直线l上.(1)点P是△ABC内一点,求证:∠P>∠A;(2)试判断:在△ABC外又和点A在直线l同侧,是否存在一点Q,使∠BQC>∠A?试证明你的结论.19、如图,已知∠B=142°,∠BFE=38°,∠EFD=40°,∠D=140°,求证:AB∥C D.20、已知:如图,∠BAF、∠CBD、∠ACE是△ABC的三个外角.求证:∠BAF+∠CBD+∠ACE=360°.21、如图,已知BE、CE分别是△ABC的内角、外角的平分线,∠A=40°,求∠E的度数.22、已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论。
平行线的判定专项练习60题(有答案)
平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗?请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB和CD平行吗?为什么?45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?(2)AB∥CD吗?为什么?56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行?平行线的判定60题参考答案:1.∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BC∥DE2.∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).3.∵AB⊥BC(已知),∴∠ABC=90°(垂直定义);∵BC⊥CD(已知),∴∠BCD=90°(垂直定义),∴∠ABC=∠DCB;∵∠1=∠2(已知),∴∠ABC﹣∠2=∠DCB﹣∠1,即∠FBC=∠ECB,∴BF∥CE(内错角相等,两直线平行)4.∵AB⊥BC,∴∠3+∠4=90°.∵∠2=∠3,∠1+∠2=90°,∴∠1=∠4,∴BE∥DF.5.AB平行于ON.证明:∵OP平分∠MON,∴∠BOA=∠NOA,∵∠BOA=∠BAO,∴∠BAO=∠NOA,∴AB∥ON6.∵∠1=∠2,∴DC∥AB,∴∠A+∠ADC=180°.又∵∠A=∠C,∴∠ADC+∠C=180°,∴AE∥BC.7.∵BC是∠ABE的平分线,∴∠ABC=∠CBE(角平分线定义),∵∠ABE=∠D+∠E=∠ABC+∠CBE,∠D=∠E,∴∠ABC=∠D,∴DE∥BC8.过点E作EF∥AB.∵EF∥AB,∴∠A=∠AEF;又∵∠AEC=∠A+∠C,∴∠AEC=∠AEF+∠C;而∠AEC=∠AEF+∠CEF,∴∠CEF=∠C,∴EF∥CD,∴AB∥CD.9.∵AC∥ED,∴∠1=∠4;∵∠1=∠2,∴∠2=∠4;又∵EB平分∠AED,∴∠3=∠4;∴∠2=∠3,∴AE∥BD10.∵∠1+∠BEF=180°,∠1=105°,∴∠BEF=75°,∵∠2=75°,∴∠BEF=∠2,∴AB∥CD.11.∵∠D=∠A,∴ED∥AB;∵∠B=∠BCF,∴AB∥CF;∴ED∥CF.12.∵AB⊥BC,CD⊥BC(已知),∴∠ABC=∠BCD=90°(垂直定义);又∵∠1=∠2(已知),∴∠ABC﹣∠1=∠BCD﹣∠2(等量减等量,差相等),∴∠EBC=∠FCB,∴EB∥FC(内错角相等,两直线平行)13.∵BE是∠B的平分线,∴∠1=∠CBE,∵∠1=∠2,∴∠2=∠CBE,∴DE∥BC.14.AC与DF平行,理由如下:∵BD∥EC,∴∠DBC+∠C=180°,又∠C=∠D,∴∠DBC+∠D=180°,∴AC∥DF.15.∵AC⊥AE,BD⊥BF,∴∠1+∠3=∠2+∠4=90°,∵∠1=35°,∠2=35°,∴∠3=∠4,∴AE∥BF.16.∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等);∵∠1=∠2,∴∠ABC﹣∠1=∠BCD﹣∠2,即∠EBC=∠BCF,∴BE∥CF(内错角相等,两直线平行).17.∵∠BAD=DCB,∠1=∠3(已知),∴∠BAD﹣∠1=∠DCB﹣∠3(等式性质),即∠2=∠4,∴AD∥BC(内错角相等,两直线平行)18.DF∥AB.理由:∵DE∥CA,∴∠1=∠CAD,∵AD是三角形ABC的角平分线,∴∠BAD=∠CAD,∵∠1=∠2,∴∠2=∠BAD,∴DF∥AB19.AB∥DF(2分)理由:∵∠C=∠DAE,(已知)∴AD∥BC,(内错角相等,两直线平行)(2分)∴∠D=∠DFC,(两直线平行,内错角相等)∴∠B=∠D,(已知)∴∠B=∠DFC,(2分)∴AB∥DF(同位角相等,两直线平行)20.CF∥BD.理由如下:∵BD⊥BE,∴∠1+∠2=90°;∵∠1+∠C=90°,∴∠2=∠C.∴CF∥BD.21.AB∥CD.(1分)理由如下:∵∠1+∠MNC=180°,∠MNC=∠1,∴∠1=135°.(2分)又∵∠AMN=∠2=45°,(3分)∴∠1+∠AMN=180°.(4分)∴AB∥CD22.∵BF平分∠ABD,DG平分∠CDE,∴∠1=∠ABD,∠2=∠CDE,又∵∠ABD=∠CDE,∴∠1=∠2,∴BF∥DG(同位角相等,两直线平行).23.ED∥BF;证明如下:∵四边形ABCD中,∠A=∠C=90°,∴∠ADC+∠ABC=180°,∵BF、DE分别平分∠ABC、∠ADC,∴∠ADC+∠ABC=2∠ADE+2∠ABF=180°,∴∠ADE+∠ABF=90°,又∵∠A=90°,∠ADE+∠AED=90°,∴∠AED=∠ABF,∴ED∥BF(同位角相等,两直线平行).24.在△ECD中∵∠C+∠CED+∠CDE=180°(三角形内角和定理),又∵∠CAB=∠CED+∠CDE(已知),∴∠C+∠CAB=180°(等量代换),∴AB∥CD(同旁内角互补,两直线平行)25.∵CD⊥AB,GF⊥AB,∴CD∥FG,∴∠2=∠DCG;又∵∠1=∠2,∴∠DCG=∠1,∴DE∥BC26.∵∠CAD=∠ACB,∴AD∥BC,∵EF⊥CD,∴∠EFC=90°∵∠D=90°,∴∠EFC=∠D,∴AD∥EF,∴BC∥EF,∴∠AEB=∠B.27.∵∠E=∠F,∴AE∥FP,∴∠PAE=∠APF;又∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,即∠2+∠PAE=∠1+∠APF;∴∠2=∠128.∵DC⊥EC,∴∠1+∠2=90°,又∠D=∠1,∠E=∠2,∴∠D+∠1+∠E+∠2=180°.根据三角形的内角和定理,得∠A+∠B=180°,∴AD∥BE29.∵∠A+∠ABC+∠C+∠CDA=360°而∠A=∠C,BE平分∠ABC,DF平分∠CDA∴2∠A+2∠ABE+2∠ADF=360°即∠A+∠ABE+∠ADF=180°又∠A+∠ABE+∠AEB=180°∴∠AEB=∠ADF∴BE∥DF30.∠C=∠D.理由如下:∵∠A=∠F,∴DF∥AC,∴∠D=∠DBA.∵∠1=∠DGF,又∵∠1=∠2,∴∠2=∠DGF,∴DB∥EC,∴∠DBA=∠C,∴∠C=∠D31.∵四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠CDA=180°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∵∠A=90°,∴∠1+∠AEB=90°,∵∠1=∠2,∴∠AEB=∠3,∴BE∥FD.32.∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴a∥b.33.CF∥OD.理由:∵DE⊥AO,BO⊥AO,∴DE∥BO,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴CF∥OD34.∵∠DOB是△COD的外角,∴∠C+∠CDO=∠DOB,又∵∠DOB=∠1+∠2,而∠1=∠2,∠C=∠CDO,∴∠2=∠C,∴CD∥OP35.(1)∵DE平分∠BDF,AF平分∠BAC,∴∠BDF=2∠1,∠BAC=2∠2,又∵∠1=∠2,∴∠BDF=∠BAC,∴DF∥AC;(2)∵AF平分∠BAC,∴∠BAF=∠2.又∵∠1=∠2,∴∠1=∠BAF,∴DE∥AF.36.DE∥AB,∵AD平分∠BAC,∴∠BAC=2∠1,∵EF平分∠DEC,∴∠DEC=2∠2,∵∠1=∠2,∴∠BAC=∠DEC,∴DE∥AB.37.∵∠BDE+∠CDE=∠A+∠ACD,又DE是∠BDC的平分线,∠ACD=∠A,∴∠A=∠BDE,∴DE∥AC.38.∠2与∠B相等时,AC∥BD.理由如下:∵∠A=∠1,∠1=∠2,∴∠A=∠2,∵∠2=∠B,∴∠A=∠B,∴AC∥BD.39.MN与EF平行.理由如下:∵∠1=∠A,∴MN∥AB,∵∠2=∠B,∴EF∥AB,∴MN∥EF.40.∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4,∴AB∥CD.41.∵∠E=∠F,∴BE∥CF,∴∠EBC=∠BCF,∵∠1=∠2,∴∠CBA=∠DCB,∴AB∥CD.42.∵EF⊥CD于F,∴∠EFG=90°,∵∠GEF=25°,∴∠EGF=65°,∵∠1=65°,∴∠1=∠EGF,∴AB∥CD.43.图中共有2对平行线.①AB∥CD.理由如下:∵∠1=∠2=90°,∴AB∥CD(在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行);②∵∠2=90°,∴∠4+∠5=90°,又∵∠3=30°,∠4=60°,∴∠3=∠5,∴EF∥HG(同位角相等,两直线平行).综上所述,图中共有2对平行线,它们是:AB∥CD、EF∥HG44.AB∥CD,理由:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴AB∥CD.45.∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFC=90°(垂直的定义),∴∠B=90°﹣∠1(直角三角形两锐角互余),∠GFC=90°﹣∠2(互余的定义),∵∠1=∠2(已知),∴∠B=∠GFC(等角的余角相等),∴AB∥GF(同位角相等,两直线平行)46.∵∠B=∠1,∴AB∥DE(同位角相等,两直线平行),∴∠2=∠ADE(两直线平行,内错角相等)∵∠2=∠E,∴∠E=∠ADE,∴AD∥CE(内错角相等,两直线平行).47.∵EM平分∠BEF,FN平分∠DFH,∴∠BEF=2∠MEF,∠DFH=2∠NFH,∵∠BEF=∠DFH,∴∠MEF=∠NFH,∴EM∥FN48.BE∥CF,理由是:∵BE,CF分别平分∠ABC和∠BCD,∴∠1=∠ABC,∠2=∠BCD,∵∠ABC=∠BCD,∴∠1=∠2,∴BE∥CF.49.DB与EC的位置关系是平行,理由:∵∠1=∠3,∠2=∠4(对顶角相等),又∵∠1=∠2,∴∠3=∠4,∴BD∥EC.50.(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.(2)DG∥BC,理由是:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC.51.GH∥MN.理由如下:∵HG平分∠AHM,MN平分∠DNH(已知),∴∠GHM∠AHM,∠NMH=∠DMH(角平分线定义),而∠AHM=∠DMH(已知)∴∠GHM=∠NMH(等量代换),∴GH∥MN.(内错角相等,两直线平行) 52.∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD53.∵EG⊥FG,∴∠G=90°,∴∠1+∠3=90°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴AB∥CD.54.:∵∠1+∠2=180°,∠1=130°,∴∠2=50°,∵∠A=50°,∴∠A=∠2,∴AB∥CD.55.(1)∵DE⊥AC,BF⊥AC,∴∠AED=∠CFB=90°,∴∠DAE+∠1=90°,∠BCF+∠2=90°,∵∠1=∠2,∴∠DAE=∠BCF,∴AD∥BC;(2)AB∥CD.理由如下:∵∠DAE=∠BCF,∠DAB=∠DCB,∴∠DAB﹣∠DAE=∠DCB﹣∠BCF,即∠CAB=∠ACD,∴AB∥CD.56.(1)AD与BC一定平行.理由如下:∵AB⊥AC,∴∠BAC=90°,∵∠1=30°,∠B=60°,∴∠1+∠BAC+∠B=180°,即∠BAD+∠B=180°,∴AD∥BC.(2)AB与CD不一定平行.57.∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.58.EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=2(已知),∴EF∥AD(内错角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC于点D(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,所以EF与BC的位置关系是垂直.59.∵CE平分∠ACD,∴∠1=∠2,∵∠1=∠B,∴∠2=∠B,∴AB∥CE.60.∵∠1=∠2,∴AB∥CD,∵∠3=∠4,∴AD∥BC,故可以判定AB∥CD,AD∥BC.。
平行线的性质专项练习60题有答案
平行线的性质专项练习60题(有答案)1.如图,AB∥CD,证明:∠A=∠C+∠P.2.如图,已知AB∥ED,∠1=35°,∠2=80°,求∠ACD的度数.3.已知:如图所示,直线AD∥BC,AD平分∠CAE,求证:∠B=∠C.4.已知∠E=∠F,AD∥EF,问:AD是∠BAC平分线吗?为什么?5.如图所示,AB∥CD,∠3:∠2=3:2,求∠1的度数.6.如图,直线AB∥CD,直线AB、CD被直线EF所截,EG平分∠BEF,FG平分∠DFE,求证:EG⊥FG.7.如图所示,AB∥DF,DE∥BC,∠1=65°,求∠2,∠3的度数,并说明理由.8.已知AB∥CD,FE⊥AB交AB于G点,∠GEH=138°,求∠EHD的度数.9.如图,AD∥BC,∠B=25°,∠C=30°,求∠EAC的度数.10.如图,AB∥CD,AC⊥BC,∠BAC=65°,求∠BCD度数.11.如图,AB∥CD,∠BAE=∠DCE=45°,说明AE⊥CE.12.如图,AB∥CD∥EF,∠ABC=55°,∠CEF=150°,求∠BCE的度数.13.如图,DE∥BC,∠D:∠DBC=2:1,∠1=∠2,求∠DEB的度数.14.已知:如图AB∥CD,EF⊥AB于E,FH交CD于H,∠CHG=130度.求∠EFH度数.15.已知:如图,AC∥BD,∠A=∠D,求证:∠E=∠F.16.已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°.17.如图,已知AB⊥AC,垂足为A,AD∥BC,且∠1=30°,试求∠2与∠B的度数.18.如图所示,AB∥CD,若∠B=45°,∠D=20°,求∠1的度数.19.如图,△ABC中,角平分线BO与CO的相交点O,OE∥AB,OF∥AC,△OEF的周长=10,求BC的长.20.如图,若AB∥CD,∠C=60°,求∠A+∠E的度数.21.如图所示,已知AB∥CD,BC∥DE,若∠B=55°,求∠D的度数.22.如图所示,已知∠ACB=60°,∠ABC=50°,BO,CO分别平分∠ABC,∠ACB,EF经过点O且平行于BC,求∠BOC的度数.23.已知:如图所示,AB∥CD,∠B=120°,CA平分∠BCD.求证:∠1=30°.24.如图,AB∥CD,∠A=40°,∠C=65°,求∠E的度数.25.如图所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC的度数.26.如图,点A在直线MN上,且MN∥BC,求证:∠BAC+∠B+∠C=180°.27.已知:如图,OP平分∠AOB,MN∥OB.求证:∠1=∠3.28.如图所示,AB∥CD,∠1=55°,∠D=∠C,求出∠D,∠C,∠B的度数.29.已知,如图,AD∥BC,∠1=∠2,∠A=120°,且BD⊥CD,求∠C的度数.30.如图,已知直线AB∥CD,直线m与AB、CD相交于点E、F,EG平分∠FEB,∠EFG=50°,求∠FEG的度数.31.如图,已知CD∥AB,OE平分∠BOD,∠D=52°,求∠BOE的度数.32.如图所示,直线l1∥l2,∠A=90°,∠ABF=25°,求∠ACE的度数.33.如图,AB∥CD,∠1=45°,∠D=∠C,求∠D、∠C、∠B的度数.34.如图,CD∥AB,CD∥EF,∠A=105°,∠ACE=51°,求∠E的度数.35.如图:a∥b,∠1=122°,∠3=50°,求∠2和∠4的度数.36.如图,已知AB∥CD,∠1=50°,BD平分∠ADC,求∠A的度数.37.已知,如图所示,DE∥BC,BE平分∠ABC,且∠ABC=∠ACB,∠AED=72°,求∠CEB的度数.38.如图,若AB∥EF,∠C=90°,求x+y﹣z度数.39.如图,已知AB∥DE,∠B=70°,CM平分∠DCB,CM⊥CN,垂足为C,求∠NCE的度数.40.如图,DE∥AB,∠1=∠2,那么∠A=∠3吗?说明理由.41.如图,已知DB∥FG∥EC,∠ABD=84°,∠ACE=60°,AP是∠BAC的平分线.求∠PAG的度数.42.已知:如图AB∥CD,∠1=∠A,∠2=∠C,B、E、D在一条直线上.求∠AEC的度数.43.已知:如图,直线l1∥l2,AB⊥l1垂足为O,BC与l2相交于点D,∠1=43°,求∠2的度数.44.如图,直线AB∥MN,分别交直线EF于点C、D,∠BCD、∠CDN的角平分线交于点G,求∠CGD的度数.45.如图所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF.求∠BEG和∠DEG.46.如图AE∥BD,∠CBD=57°,∠AEF=125°,求∠C的度数,并说明理由.47.已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.求证:∠A=∠B.48.如图,∠ABD和∠BDC的平分线相交于点E,BE交CD于F,∠1+∠2=90°,试问:直线AB、CD在位置上有什么关系?∠2与∠3在数量上有什么关系?49.如图,已知直线AB∥CD,直线GH分别与直线AB、CD交于点E、G,直线CF交直线GH于点F,已知∠CFG=30°,∠HEB=50°,求∠FCG的度数.50.如图,AB∥CD,BC∥ED,求:∠B+∠D的度数.51.如图,已知AB∥CD,∠B=∠DCE,求证:CD平分∠BCE.52.如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.53.如图,在△ABC中,D是∠BAC的平分线上一点,BD⊥AD于D,DE∥AC交AB于E,请说明AE=BE.54.如图所示,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=55°,求∠BED的度数.55.如图,CD⊥AB,DE∥AC,EF⊥AB,EF平分∠BED,求证:CD平分∠ACB.56.如图,△ABC中,EB平分∠ABC,EC平分△ABC的外角∠ACG,过点E作DF∥BC交AB于D,交AC于F,求证:DB﹣CF=DF.57.已知:如图所示,AB∥CD,EF平分∠GFD,GF交AB于M,∠GMA=52°,求∠BEF的度数.58.如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.59.如图,已知DE∥AB,DF∥AC,∠EDF=85°,∠BDF=63°.(1)∠A的度数;(2)∠A+∠B+∠C的度数.60.如图,已知AB∥CD,∠1=∠2,∠EFD=56°,求∠EGD的度数.11 / 17第11页共17 页平行线的性质60题参考答案:1.∵AB∥CD,∴∠A=∠PED,(两直线平行,同位角相等)又∠PED为△PCE的外角,∴∠P+∠C=∠PED,∴∠P+∠C=∠A.2.解法一:过C点作CF∥AB,则∠1=∠ACF=35°(两直线平行,内错角相等),∵AB∥ED,CF∥AB(已知),∴CF∥ED(平行于同一直线的两直线平行)∴∠FCD=180°﹣∠2=180°﹣80°=100°(两直线平行,同旁内角内角互补)∴∠ACD=∠ACF+∠FCD=35°+100°=135°;解法二:延长DC交AB于F∵AB∥ED(已知),∴∠BFC=∠2=80°(两直线平行,内错角相等),∵∠ACF=∠BFC﹣∠1=80°﹣35°=45°(三角形一个外角等于它不相邻的两个内角的和)∴∠ACD=180°﹣∠ACF=180°﹣45°=135°(1平角=180°).解法三:延长AC、ED交于F∵AB∥ED,∴∠DFC=∠1=35°∵∠CDF=180°﹣∠2=180°﹣80°=100°∴∠ACD=∠CDF+∠DFC=100°+35°=135°.3.∵AD∥BC,∴∠C=∠CAD,∠B=∠DAE,又∵AD平分∠CAE,∴∠CAD=∠DAE,即∠C=∠B.4.∵AD∥EF(已知)∴∠BAD=∠E(两直线平行,同位角相等)∠DAC=∠F(两直线平行,内错角相等)∵∠E=∠F(已知)∴∠BAD=∠DAC(等量代换)∴AD是∠BAC的平分线.5.设∠3=3x,∠2=2x,由∠3+∠2=180°,可得3x+2x=180°,∴x=36°,∴∠2=2x=72°;∵AB∥CD,∴∠1=∠2=72°6.∵AB∥CD,∴∠BEF+∠EFD=180°,∵EG平分∠BEF,FG平分∠DFE,∴∠1=∠BEF,∠2=∠EFD,∴∠1+∠2=(∠BEF+∠EFD)=×180°=90°,在△EFG中,∠G=180°﹣∠1﹣∠2=90°,∴EG⊥FG.7.∵DE∥BC,∴∠1+∠2=180°,又∵∠1=65°,∴∠2=115°;∵AB∥DF,∴∠3=∠2=115°.8.如图,过点E作EP∥AB,而AB∥CD,则EP∥CD,∴∠FEP=∠FGB,∵EF⊥AB,∴∠FGB=90°,∵∠GEH=138°,∴∠PEH=138°﹣90°=48°∵EP∥CD,∴∠EHD=180°﹣∠PEH=132°9.∵AD∥BC,∴∠EAD=∠B=25°,∠DAC=∠C=30°,∴∠EAC=∠EAD+∠DAC=25°+30°=55°.10.∵AB∥CD,∴∠ACD=180°﹣65°=115°,∵AC⊥BC,∴∠BCD=115°﹣90°=25°.11.过点E作EF∥AB,∴∠AEF=∠BAE=45°,∵AB∥CD,∴EF∥CD,∴∠FEC=∠DCE=45°,∴∠AEC=∠AEF+∠FEC=90°,∴AE⊥CE.12.∵AB∥CD,∠ABC=55°,∴∠BCD=∠ABC=55°,∵EF∥CD,∴∠ECD+∠CEF=180°,∵∠CEF=150°,∴∠ECD=180°﹣∠CEF=180°﹣150°=30°,∴∠BCE=∠BCD﹣∠ECD=55°﹣30°=25°,∴∠BCE的度数为25°.13.设∠1为x,∵∠1=∠2,∴∠2=x,∴∠DBC=∠1+∠2=2x,∵∠D:∠DBC=2:1,∴∠D=2×2x=4x,∵DE∥BC,∴∠D+∠DBC=180°,即2x+4x=180°,解得x=30°,∵DE∥BC,∴∠DEB=∠1=30°.14.∵EF⊥AB于E,MN∥AB∴EF⊥MN即∠EFM=90°.∵MN∥CD∴∠NFH=∠GHD=180°﹣130°=50°∴∠EFH=∠EFM+∠NFH=90°+50°=140°.15.∵AC∥BD,∴∠1=∠2.又∵∠A=∠D,∠A+∠1+∠E=180°,∠D+∠2+∠F=180°,∴∠E=∠F.16.∵HG∥AB(已知),∴∠1=∠3(两直线平行,内错角相等),又∵HG∥CD(已知),∴∠2=∠4(两直线平行,内错角相等),∵AB∥CD(已知),∴∠BEF+∠EFD=180°(两直线平行,同旁内角互补),又∵EG平分∠BEF(已知),∴∠1=∠BEF(角平分线的定义),又∵FG平分∠EFD(已知),∴∠2=∠EFD(角平分线的定义),∴∠1+∠2=(∠BEF+∠EFD),∴∠1+∠2=90°,∴∠3+∠4=90°(等量代换)即∠EGF=90°17.∵AD∥BC,∴∠2=∠1=30°,∵AB⊥AC,∴∠B=90°﹣∠2=60°.18.过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠BEF=45°,∠DEF=∠D=20°,∴∠1=∠BEF+∠DEF=45°+20°=65°.19.∵OB,OC分别是∠ABC,∠ACB的平分线,∴∠1=∠2,∠4=∠5,∵OE∥AB,OF∥AC,13 / 17第13页共17 页∴∠1=∠3,∠4=∠6,∴BE=OE,OF=FC,∴BC=BE+EF+FC=OF+OE+EF,∵△OEF的周长=10,∴BC=10.20.∵AB∥CD,∠C=60°,∴∠EFB=∠C=60°;∵∠EFB=∠A+∠E,∴∠A+∠E=60°.21.∵AB∥CD,∴∠C=∠B.∵∠B=55°,∴∠C=55°.∵BC∥DE,∴∠C+∠D=180°,即∠D=180°﹣∠C=180°﹣55°=125°.22.∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×60°=30°.∴∠EOB=25°,∠FOC=30°.又∵∠EOB+∠BOC+∠FOC=180°,∴∠BOC=180°﹣∠EOB﹣∠FOC=180°﹣25°﹣30°=125°23.∵AB∥CD,∴∠B+∠BCD=180°,∵∠B=120°,∴∠BCD=60°;又∵CA平分∠BCD,∴∠2=30°,∵AB∥CD,∴∠1=∠2=30°24.∵AB∥CD,∴∠EFB=∠C=65°,∵∠EFB=∠A+∠E,∴∠E=∠EFB﹣∠A=65°﹣40°=25°.25.∵CD是∠ACB的平分线,∠ACB=40°,∴∠DCB=∠ACD=20°,又DE∥BC,∴∠EDC=∠DCB=20°,在△BCD中,∵∠B=70°,∴∠BDC=90°.∴∠EDC和∠BDC的度数分别为20°、90°26.∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC,∵∠MAB+∠BAC+∠NAC=180°,∴∠BAC+∠B+∠C=180°27.∵OP平分∠AOB,(已知)∴∠1=∠2(角平分线定义)∵MN∥OB(已知)∴∠2=∠3(两直线平行,内错角相等)∴∠1=∠3(等量代换).28.∵AB∥CD,∴∠D=∠1=55°,∵∠C=∠D,∴∠C=55°;∵AB∥CD,∴∠B+∠C=180°,∴∠B=180°﹣∠C=180°﹣55°=125°.29.∵AD∥BC,∴∠ABC=180°﹣∠A=60°,∠ADB=∠2,∵∠1=∠2,∴∠1=∠ADB=∠2=30°,∵BD⊥CD,∴∠BDC=90°,∠C=180°﹣(30°+90°)=60°,故∠C的度数为60°.30.∵AB∥CD(已知)∴∠EFG+∠FEB=180°(两直线平行,同旁内角互补)∵∠EFG=50°(已知)∴∠FEB=130°(等式的性质)∵EG平分∠FEB(已知)∴∠FEG=∠FEB=65°(角平分线的定义).31.∵CD∥AB,∴∠BOD=∠D=52°;∵OE平分∠BOD,∴∠BOE=26°32.如答图所示,∵L1∥L2,∴∠ECB+∠CBF=180°.∴∠ECA+∠ACB+∠CBA+∠ABF=180°.∵∠A=90°,∴∠ACB+∠CBA=90°.又∠ABF=25°,∴∠ECA=180°﹣90°﹣25°=65°33.∠D=∠C=45°,∠B=135°.理由:∵AB∥CD,∴∠D=∠1=45°(两直线平行,同位角相等)∴∠B+∠C=180°(两直线平行,同旁内角互补)∵∠D=∠C=45°,∴∠B=180°﹣∠C=180°﹣45°=135°.34.∵CD∥AB,∴∠A+∠ACD=180°,又∵CD∥EF,∴∠E=∠ECD=∠ACD﹣∠ACE=75°﹣51°=24°.35.∵a∥b,∠1=122°,∴∠2=∠5=180°﹣∠1=180°﹣122°=58°;∵a∥b,∠3=50°,∴∠3=∠6=50°;又∵∠6=∠4,∴∠4=50°.36.∵BD平分∠ADC,∴∠CDB=∠1=50°,∠ADC=100°,又AB∥CD,∴∠ADC+∠A=180°,∴∠A=80°.37.∵DE∥BC,∴∠C=∠AED=72°,∵BE平分∠ABC,且∠ABC=∠ACB,∴∠EBC=∠ABC=×72°=36°,在△BEC中,∠CEB=180°﹣72°﹣36°=72°38.如图,过点C、D分别作CM、DN平行于AB、EF,则x=∠5,4=∠3,1=∠z,又∠1+∠3=y,∠4+5=90°,即x+∠4=90°,又∠4=∠3=y﹣∠1=y﹣z,∴x+y﹣z=90°39.∵AB∥DE,∠B=70°,∴∠DCB=180°﹣∠B=180°﹣70°=110°,∠BCE=∠B=70°,∵CM平分∠DCB,∴∠BCM=∠DCB=×110°=55°,∵CM⊥CN,垂足为C,∴∠BCN=90°﹣∠BCM=90°﹣55°=35°,∴∠NCE=∠BCE﹣∠BCN=70°﹣35°=35°.40.∠A=∠3.理由如下:∵DE∥AB,∴∠1=∠A,∠2=∠3,又∵∠1=∠2,∴∠A=∠341.∵DB∥FG∥EC,∴∠BAG=∠ABD=84°,∠GAC=∠ACE=60°;∴∠BAC=∠BAG+∠GAC=144°,∵AP是∠BAC的平分线,∴∠PAC=∠BAC=72°,∴∠PAG=∠PAC﹣∠GAC=72°﹣60°=12°42.过E作EF平行于AB,则EF∥CD,∵AB∥EF,∴∠A=∠AEF=∠1,∵CD∥EF,∴∠C=∠FEC=∠2,∵∠BED=180°,∴∠1+∠AEF+∠FEC+∠2=180°,即∠AEF+∠CEF=°=90°.43.解法一:延长AB交l2于点E.∵AB⊥l1,l1∥l2,∴AB⊥l2.∵∠2是△BED的外角,∴∠2=90°+∠1=90°+43°=133°.解法二:过点B作BF∥l1,利用平行线的性质求出∠2的度数.∵l1∥l2,∴BF∥l2,∴∠ABF=180°﹣90°=90°,∠FBC=∠1=43°,∴∠2=∠ABF+∠FBC=90°+43°=133°.15 / 17第15页共17 页44.∵AB∥MN(已知)∴∠BCD+∠CDN=180°(两直线平行,同旁内角互补)∵CG、DG是角平分线∴∠1=∠BCD,∠2=∠CDN(角平分线定义)∴∠1+∠2=90°∵∠1+∠2+∠CGD=180°(三角形内角和等于180°)∴∠CGD=90°45.由题意得:∠BEC=80°,∠BED=100°,∠BEF=∠BEC=40°,∴∠BEG=90°﹣∠BEF=50°,∠DEG=∠BED﹣50°=50°.∴∠BEG和∠DEG都为50°46.∵∠AEF=125,∴∠CEA=55°∵AE∥BD,∠CDB=∠CEA=55°,在△BCD中,∵∠CBD=57°,∴∠C=68°.47.∵CE是∠DCB的角平分线,∴∠1=∠2.∵CE∥AB,∴∠1=∠A,∠2=∠B,∴∠A=∠B.48.AB∥CD,∠2+∠3=90°.理由如下:∵BE、DE分别平分∠ABD、∠CDB,∴∠ABD=2∠1,∠BDC=2∠2.∵∠2+∠1=90°,∴∠ABD+∠CDB=180°,∴AB∥CD.∴∠3=∠ABF.∵∠1=∠ABF,∠2+∠1=90°.∴∠2+∠3=90°.49.由题意可知,AB∥CD,∠HEB=50°,∴∠FGD=50°,又∵∠CFG=30°,∴∠FCG=20°50.∵AB∥CD,BC∥ED,∴∠B=∠C,∠C+∠D=180°,∴∠B+∠D=180°.51.∵AB∥CD(已知),∴∠B=∠BCD(两直线平行,内错角相等)又∵∠B=∠DCE(已知),∴∠BCD=∠DCE(等量代换)即CD平分∠BCE.52.∵AB∥CD,∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°,∵CN是∠BCE的平分线,∴∠BCN=∠BCE=×140°=70°,∵CM⊥CN,∴∠BCM=20°53.∵DE∥AC,∴∠ADE=∠CAD,∵AD是∠BAC的平分线,∴∠EAD=∠CAD,∴∠ADE=∠EAD,∴AE=DE,∵BD⊥AD,∴∠ADE+∠BDE=90°,∠EAD+∠ABD=90°,∴∠ABD=∠BDE,∴BE=DE,∴AE=BE.54.如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1;又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=55°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×55°=110°.55.∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠BCD=∠BEF,∠DEF=∠CDE;∵DE∥AC,∴∠ACD=∠CDE,∴∠ACD=∠DEF;∵EF平分∠BED,∴∠DEF=∠BEF,∴∠ACD=∠BCD,即CD平分∠ACB56.∵EB平分∠ABC,EC平分∠ACG,∴∠DBE=∠CBE,∠FCE=∠GCE,∵DF∥BC,∴∠DEB=∠CBE,∠FEC=∠GCE,∴∠DEB=∠DBE,∠FEC=∠FCE,∴DB=DE,FE=FC,∵DE﹣EF=DF,∴DB﹣CF=DF57.∵AB∥CD,(已知)∴∠GFC=∠GMA.(两直线平行,同位角相等)∵∠GMA=52°,(已知)∴∠GFC=52°.(等量代换)∵CD是直线,(已知)∴∠GFC+∠GFD=180°.(邻补角定义)∴∠GFD=180°﹣52°=128°.(等式性质)∵EF平分∠GFD,(已知)∴∠EFD=∠GFD=64°.(角平分线定义)∵AB∥CD,(已知)∴∠BEF+∠EFD=180°.(两直线平行,同旁内角互补)∴∠BEF=180°﹣64°=116°.(等式性质)答:∠BEF=116°58.∵∠BAP+∠APD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行).∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠FPA=∠EAP,∴AE∥PF(内错角相等,两直线平行).∴∠E=∠F(两直线平行,内错角相等).59.(1)∵DF∥AC,∴∠EDF=∠DEC=85°.∵DE∥AB,∴∠A=∠DEC=85°.(2)∵DF∥AC,DE∥AB,∴∠EDC=∠B,∠BDF=∠C,又∠A=∠EDF,∴∠A+∠B+∠C=∠EDF+∠EDC+∠BDF=180°.60.∵AB∥CD,∠EFD=56°,∴∠BEF=180°﹣∠EFD=124°;∵∠1=∠2,∴∠1=∠BEF=62°;∵∠EGD=∠1+∠EFD,∴∠EGD=118°17 / 17第17页共17 页。
平行线的证明试题总集含答案
《平行线的证明》单元测试题一、填空题1.在△ABC 中,∠C =2(∠A +∠B ),则∠C =________.2.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72º , 则∠2= ;3.在△ABC 中,∠BAC =90º,AD ⊥BC 于D ,则∠B 与∠DAC 的大小关系是________ 4.写出“同位角相等,两直线平行”的题设为_______,结论为_______. 5.如图,已知AB ∥CD ,BC ∥DE ,那么∠B +∠D =__________.6.如图,∠1=27º,∠2=95º,∠3=38º,则∠4=_______7.如图,写出两个能推出直线AB ∥CD 的条件________________________. 8.满足一个外角等于和它相邻的一个内角的△ABC 是_____________ 二、选择题9.下列语句是命题的是 【 】 (A)延长线段AB (B)你吃过午饭了吗? (C)直角都相等 (D)连接A ,B 两点 10.如图,已知∠1+∠2=180º,∠3=75º,那么∠4的度数是 【 】(A)75º (B)45º (C)105º(D)135º11.以下四个例子中,不能作为反例说明“一个角的余角大于这个角”是假命题是 【 】(A)设这个角是30º,它的余角是60°,但30°<60°(B)设这个角是45°,它的余角是45°,但45°=45°(C)设这个角是60°,它的余角是30°,但30°<60° (D)设这个角是50°,它的余角是40°,但40°<50°12.若三角形的一个内角等于另外两个内角之差,则这个三角形是 【 】 (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)不能确定 13.如图,△ABC 中,∠B =55°,∠C =63°,DE ∥AB , 则∠DEC 等于【 】(A )63° (B) 118° (C) 55°(D )62°14.三角形的一个外角是锐角,则此三角形的形状是 【 】 (A )锐角三角形(B)钝角三角形 (C)直角三角形(D )无法确定C A BDE E CD BA1 324 第5题第6题第7题ABCDEFG 12ABCE第10题三、解答证明题15.如图,AD=CD ,AC 平分∠DAB ,求证DC ∥AB .16.如图,已知∠1=20°,∠2=25°,∠A =55°,求∠BDC 的度数.17.如图,BE ,CD 相交于点A ,∠DEA 、∠BCA 的平分线相交于F .(1)探求:∠F 与∠B 、∠D 有何等量关系? (2)当∠B ︰∠D ︰∠F =2︰4︰x 时,x 为多少?CABD1 218.如图,已知点A在直线l外,点B、C在直线l上.(1)点P是△ABC内一点,求证:∠P>∠A;(2)试判断:在△ABC外又和点A在直线l同侧,是否存在一点Q,使∠BQC>∠A?试证明你的结论.19、如图,已知∠B=142°,∠BFE=38°,∠EFD=40°,∠D=140°,求证:AB∥C D.20、已知:如图,∠BAF、∠CBD、∠ACE是△ABC的三个外角.求证:∠BAF+∠CBD+∠ACE=360°.21、如图,已知BE 、CE 分别是△ABC 的内角、外角的平分线,∠A =40°,求∠E 的度数.22、已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论。
五道平行线证明题
五道平行线证明题
以下是五道平行线证明题:
1.在一个平面内,两条直线平行,如果第三条直线与其中一条直线平行,那么
第三条直线也平行于另一条直线。
2.在一个平面内,两条直线互相垂直,如果第三条直线与其中一条直线垂直,
那么第三条直线也垂直于另一条直线。
3.在一个平面内,两条直线与同一条直线相交,并且所成的角相等,那么这两
条直线平行。
4.在一个平面内,两条直线与同一条直线相交,并且所成的角的和为180°,
那么这两条直线平行。
5.在一个平面内,两条直线与另一条直线相交,并且所成的角的和等于90°,
那么这两条直线互相垂直。
这些证明题都是基于平面几何的基本原理,例如平行线公理、垂直线公理、角的度量等。
平行线的性质证明题
平行线的证明试题总集含答案
一、填空题1.在△ABC 中,∠C =2(∠A +∠B ),则∠C =________.2.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72º , 则∠2= ;3.在△ABC 中,∠BAC =90º,AD ⊥BC 于D ,则∠B 与∠DAC 的大小关系是________ 4.写出“同位角相等,两直线平行”的题设为_______,结论为_______. 5.如图,已知AB ∥CD ,BC ∥DE ,那么∠B +∠D =__________.6.如图,∠1=27º,∠2=95º,∠3=38º,则∠4=_______7.如图,写出两个能推出直线AB ∥CD 的条件________________________. 8.满足一个外角等于和它相邻的一个内角的△ABC 是_____________ 二、选择题9.下列语句是命题的是 【 】 (A)延长线段AB (B)你吃过午饭了吗? (C)直角都相等 (D)连接A ,B 两点 10.如图,已知∠1+∠2=180º,∠3=75º,那么∠4的度数是 【 】 (A)75º (B)45º (C)105º (D)135º11.以下四个例子中,不能作为反例说明“一个角的余角大于这个角”是假命题是 【 】(A)设这个角是30º,它的余角是60°,但30°<60°(B)设这个角是45°,它的余角是45°,但45°=45°(C)设这个角是60°,它的余角是30°,但30°<60° (D)设这个角是50°,它的余角是40°,但40°<50°12.若三角形的一个内角等于另外两个内角之差,则这个三角形是 【 】 (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)不能确定 13.如图,△ABC 中,∠B =55°,∠C =63°,DE ∥AB , 则∠DEC 等于【 】(A )63° (B) 118° (C) 55°(D )62°14.三角形的一个外角是锐角,则此三角形的形状是 【 】 (A )锐角三角形(B)钝角三角形(C)直角三角形(D )无法确定三、解答证明题15.如图,AD=CD ,AC 平分∠DAB ,求证DC ∥AB .CA B DEE C D BA1 324 第5题第6题第7题A BCDE FG12ABCE第10题16.如图,已知∠1=20°,∠2=25°,∠A =55°,求∠BDC 的度数.17.如图,BE ,CD 相交于点A ,∠DEA 、∠BCA 的平分线相交于F .(1)探求:∠F 与∠B 、∠D 有何等量关系? (2)当∠B ︰∠D ︰∠F =2︰4︰x 时,x 为多少?18.如图,已知点A 在直线l 外,点B 、C 在直线l 上.CABD1 2(1)点P是△ABC内一点,求证:∠P>∠A;(2)试判断:在△ABC外又和点A在直线l同侧,是否存在一点Q,使∠BQC>∠A?试证明你的结论.19、如图,已知∠B=142°,∠BFE=38°,∠EFD=40°,∠D=140°,求证:AB∥C D.20、已知:如图,∠BAF、∠CBD、∠ACE是△ABC的三个外角.求证:∠BAF+∠CBD+∠ACE=360°.21、如图,已知BE 、CE 分别是△ABC 的内角、外角的平分线,∠A =40°,求∠E 的度数.22、已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论。
平行线的判定专项练习60题(有答案)
1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC 于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE 分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD .25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗?请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB 和CD平行吗?为什么?45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC 和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD 于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?(2)AB∥CD吗?为什么?56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行?。
七年级10道平行线证明题
七年级10道平行线证明题
以下是七年级的10道平行线证明题:
题目:已知直线AB与CD相交于点O,且∠AOC = ∠BOD。
求证:AB ∥ CD。
题目:在直线AB上取一点O,作射线OC,使∠AOC = ∠BOC。
求证:OA ∥ OC。
题目:已知∠1 = ∠2,∠2 = ∠3,且∠1和∠3是内错角。
求证:AB ∥ CD。
题目:在△ABC中,若∠A = ∠B,则BC边上的中线AD等于BC的一半。
求证:AD ∥ BC。
题目:已知∠1 = ∠2,∠3 = ∠4,且∠1和∠3是同位角。
求证:EF ∥ GH。
题目:在梯形ABCD中,若AD ∥ BC,且∠A = ∠B,求证:梯形ABCD是等腰梯形。
题目:在△ABC中,若∠C = 90°,且AC = BC,D为AB的中点。
求证:CD ⊥ AB。
题目:已知∠1 + ∠2 = 180°,∠2 + ∠3 = 180°,求证:AB ∥ CD。
题目:在△ABC中,若∠A = ∠B = ∠C,则△ABC是等边三角形。
求证:AB ∥ BC ∥ CA。
题目:已知∠1 = ∠2,∠3 = ∠4,且∠1和∠3是同旁内角。
求证:EF ∥ GH。
这些题目涵盖了平行线的多种性质和判定方法,通过练习这些题目,学生可以加深对平行线概念的理解,提高解题能力。
初中数学平行线证明专题训练含答案
平行线证明专题训练一.选择题(共16小题)1.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O.若∠BOC=130°,则∠A的度数为()A.100°B.90°C.80°D.70°2.下列命题为假命题的是()A.直角都相等B.对顶角相等C.同位角相等D.同角的余角相等3.下列命题中:正确的说法有()①成轴对称的两个图形一定全等;②直线l经过线段AB的中点,则l是线段AB的垂直平分线;③一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形;④等腰三角形是轴对称图形,对称轴是顶角的角平分线.A.1个B.2个C.3个D.4个4.下列命题是真命题的是()A.如果a>b,a>c,那么b=cB.相等的角是对顶角C.一个角的补角大于这个角D.一个三角形中至少有两个锐角5.如图,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB,要使DF∥BC,只需再有下列条件中的()即可.A.∠1=∠2B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD 6.如图,已知∠1=∠2,则有()A.AD∥BC B.AB∥CD C.∠ABC=∠ADC D.AB⊥CD7.如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.36°B.72°C.50°D.46°8.在△ABC中,∠A=35°,∠B=80°,则∠C=()A.85°B.75°C.65°D.55°9.如图,将木条a,b与c钉在一起,∠1=85°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.15°B.25°C.35°D.50°10.图中,∠2的度数是()A.110°B.70°C.60°D.40°11.如图,在△ABC中,AD平分∠BAC,AE是高,若∠B=40°,∠C=60°,则∠EAD 的度数为()A.30°B.10°C.40°D.20°12.如图,BD是∠ABC的角平分线,CD是∠ACB的角平分线,∠BDC=120°,则∠A的度数为()A.40°B.50°C.60°D.75°13.如图,△ABC中,∠A=75°,∠B=65°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为()A.40°B.45°C.50°D.60°14.对于命题“若a>b,则a2>b2”,能说明它属于假命题的反例是()A.a=2,b=1B.a=﹣1,b=﹣2C.a=﹣2,b=﹣1D.a=﹣1,b=1 15.能说明命题“若a2=b2,则a=b”是假命题的一个反例可以是()A.a=2,b=﹣2B.a=2,b=3C.a=﹣2,b=﹣2D.a=﹣2,b=﹣3 16.如图,下列条件中能得到AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠1=∠4D.∠2=∠3二.填空题(共3小题)17.如图,△ABC中,∠A=80°,△ABC的两条角平分线交于点P,∠BPD的度数是_____.18.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠AOB=_____.19.如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=75°,则∠BDF的度数为_____.三.解答题(共8小题)20.已知:如图∠B=40°,∠B=∠BAD,∠C=∠ADC,求∠DAC的度数.21.如图,在下列解答中,填写适当的理由或数学式:(1)∵AD∥BE,(已知)∴∠B=∠_____.(_____)(2)∵∠E+∠_____=180°,(已知)∴AC∥DE.(_____)(3)∵_____∥_____,(已知)∴∠ACB=∠DAC.(_____)22.如图,在△ABC中,∠B=60°,∠C=40°,AD是∠BAC的角平分线,AE是高,求∠EAD的度数.23.如图,∠1=∠2,∠A=∠F,求证:∠C=∠D.请阅读下面的解答过程,并填空(理由或数学式)证明:∵∠1=∠2(已知)∠1=∠3(_____)∴∠2=∠3(等量代换)∴BD∥_____(_____)∴∠4=_____(_____)又∵∠A=∠F(已知)∴AC∥_____(_____)∴∠4=_____(_____)∴∠C=∠D(等量代换)24.如图,在△ABC中,BO,CO分别平分∠ABC和∠ACB.(Ⅰ)若∠A=60°,则∠BOC的度数为_____;(Ⅱ)若∠A=100°,则∠BOC的度数_____;(Ⅲ)若∠A=α,求∠BOC的度数,并说明理由.25.已知:如图,∠1+∠2=180°,∠A=∠D.求证:AB∥CD.(在每步证明过程后面注明理由)26.(1)如图,在三角形纸片ABC中.∠A=64°,∠B=76°,将纸片的一角折叠,使点C落在△ABC内部,折痕为MN.如果∠1=17°,求∠2的度数;(2)小明在(1)的解题过程中发现∠1+∠2=2∠C,小明的这个发现对任意的三角形都成立吗?请说明理由.27.如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.试说明:∠A=∠F.请同学们补充下面的解答过程,并填空(理由或数学式).解:∵∠AGB=∠DGF(_____)∠AGB=∠EHF(已知)∴∠DGF=∠EHF(_____)∴_____∥_____(_____)∴∠D=_____(_____)∵∠D=∠C(已知)∴_____=∠C(_____)∴_____∥_____(_____)∴∠A=∠F(_____)平行线证明专题训练参考答案与试题解析一.选择题(共16小题)1.解:在△OBC中,∠OBC+∠OCB=180﹣∠BOC=180﹣130=50°,又∵∠ABC、∠ACB的平分线交于点O.∴∠ABC+∠ACB=2∠OBC+2∠OCB=2(∠OBC+∠OCB)=100°∴∠A=180﹣(∠ABC+∠ACB)=180﹣100=80°故选:C.2.解:A、直角都相等,是真命题;B、对顶角相等,是真命题;C、两直线平行,同位角相等,则同位角相等是假命题;D、同角的余角相等,是真命题;故选:C.3.解:①成轴对称的两个图形一定全等,故符合题意;②直线l经过线段AB的中点且垂直线段,则l是线段AB的垂直平分线,故不符合题意;③一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,故符合题意;④等腰三角形是轴对称图形,对称轴是顶角的角平分线所在的直线.故不符合题意故选:B.4.解:A、如果a>b,a>c,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、个三角形中至少有两个锐角,原命题是真命题;故选:D.5.解:∵EF∥AB,∴∠1=∠2,∵∠1=∠DFE,∴∠2=∠DFE,∴DF∥BC,故选:B.6.解:∵∠1=∠2,∴AB∥CD,故选:B.7.解:由折叠的性质得:∠D=∠C=36°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+72°,则∠1﹣∠2=72°.故选:B.8.解:∵∠A=35°,∠B=80°,∴∠C=180°﹣∠A﹣∠B=180°﹣35°﹣80°=65°,故选:C.9.解:∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是85°﹣50°=35°.故选:C.10.解:∵∠1=60°+20°=80°,∴∠2=180°﹣60°﹣80°=40°,故选:D.11.解:∵∠B=40°,∠C=60°,∠B+∠C+∠BAC=180°∴∠BAC=80°又∵AD平分∠BAC∴∠CAD=40°∵AE⊥BC,∠C=60°∴∠AEC=90°,∠CAE=30°∴∠EAD=10°,故选:B.12.解:∵BD、CD是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠D=180°﹣(∠DBC+∠DCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=120°,∴∠A=60°;故选:C.13.解:∵∠A=75°,∠B=65°,∴∠C=180°﹣(65°+75°)=40°,∴∠CDE+∠CED=180°﹣∠C=140°,∴∠2=360°﹣(∠A+∠B+∠1+∠CED+∠CDE)=360°﹣300°=60°.故选:D.14.解:对于命题“若a>b,则a2>b2”,能说明它属于假命题的反例是a=﹣1,b=﹣2,a>b,但(﹣1)2<(﹣2)2,故选:B.15.解:能说明命题“若a2=b2,则a=b”是假命题的一个反例是a=2,b=﹣2,a2=b2,但a=﹣b,故选:A.16.解:A,∠1=∠2不能判定两条直线平行;不符合题意;B,∠3=∠4不能判定两条直线平行,不符合题意;C,∠1=∠4可以判定AD∥BC,不符合题意;D,∠2=∠3可以判定AB∥CD,根据内错角相等,两条直线平行,符合题意.故选:D.二.填空题(共3小题)17.解:∵△ABC中,∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∵△ABC的两条角平分线交于点P,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=(∠ABC+ACB)=×100°=50°,∴∠BPD=∠PBC+∠PCB=50°;故答案为:50°.18.解:∵AD平分∠BAC,CE平分∠ACB,∠DAC=30°,∠ECA=35°,∴∠BAC=2∠DAC=60°,∠ACB=2∠ECA=70°,∴∠ABC=180°﹣∠BAC﹣∠ACB=50°.∵△ABC的三条角平分线交于一点,∴BO平分∠ABC,∴∠ABO=∠ABC=25°,∴∠AOB=180°﹣25°﹣30°=125°故答案为125°19.解:∵DE∥BC,∴∠ADE=∠B=75°,又∵∠ADE=∠EDF=75°,∴∠BDF=180°﹣75°﹣75°=30°,故答案为30°.三.解答题(共8小题)20.解:∵∠B=40°,∴∠B=∠BAD=40°,∴∠ADC=80°,∴∠C=∠ADC=80°,∴∠DAC=180°﹣80°﹣80°=20°.21.解:(1)∵AD∥BE,(已知)∴∠B=∠F AD.(两直线平行,同位角相等)(2)∵∠E+∠ACE=180°,(已知)∴AC∥DE.(同旁内角互补,两直线平行)(3)∵AD∥BE,(已知)∴∠ACB=∠DAC.(两直线平行,内错角相等)故答案为:(1)F AD;两直线平行,同位角相等;(2)ACE;同旁内角互补,两直线平行;AD;BE;两直线平行,内错角相等.22.解:∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∵AD是角平分线,∴∠BAD=∠BAC=×80°=40°,∵AE是高,∴∠BEA=90°,∴∠BAE=90°﹣∠B=90°﹣60°=30°,∴∠EAD=∠BAD﹣∠BAE=40°﹣30°=10°.23.解:∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠4=∠C(两直线平行,同位角相等)又∵∠A=∠F(已知)∴AC∥DF(内错角相等,两直线平行)∴∠4=∠D(两直线平行,内错角相等)∴∠C=∠D(等量代换);故答案为:对顶角相等;CE;同位角相等,两直线平行;∠C;两直线平行,同位角相等;DF;内错角相等,两直线平行;∠D;两直线平行,内错角相等.24.解:(Ⅰ)∵BO、CO分别平分∠ABC和∠ACB,∠A=60°,∴∠CBO+∠BCO=(180°﹣∠A)=(180°﹣60°)=60°,∴∠BOC=180°﹣(∠CBO+∠BCO)=180°﹣60°=120°;故答案为:120°;(Ⅱ)同理,若∠A=100°,则∠BOC=180°﹣(180°﹣∠A)=90°+∠A=140°,故答案为140°;(Ⅲ)同理,若∠A=α,则∠BOC=180°﹣(180°﹣∠A)=90°+.25.证明:∵∠1与∠CGD是对顶角,∴∠1=∠CGD(对顶角相等),∵∠1+∠2=180°(已知),∴∠CGD+∠2=180°(等量代换),∴AE∥FD(同旁内角互补,两直线平行),∴∠A=∠BFD(两直线平行,同位角相等),又∵∠A=∠D(已知),∴∠BFD=∠D(等量代换),∴AB∥CD(内错角相等,两直线平行).26.解:(1)∵△ABC中,∠A=64°,∠B=76°,∴∠C=180°﹣∠A﹣∠B=180°﹣64°﹣76°=40°,∵∠1=17°,∴∠CNM=,在△CMN中,∠CMN=180°﹣∠C﹣∠CNM=180°﹣40°﹣81.5°=58.5°,∴∠2=180°﹣2∠CMN=180°﹣2×58.5°=63°.(2)由题意可知:2∠CNM+∠1=180°,2∠CMN+∠2=180°,∴2(∠CNM+∠CMN)+∠1+∠2=360°,∵∠C+∠CNM+∠CMN=180°,∴∠CMN+∠CMN=180°﹣∠C,∴2(180°﹣∠C)=360°﹣(∠1+∠2),∴∠1+∠2=2∠C.27.解:∵∠AGB=∠DGF(对顶角相等)∠AGB=∠EHF(已知)∴∠DGF=∠EHF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠D=∠CEF(两直线平行,同位角相等)∵∠D=∠C(已知)∴∠CEF=∠C(等量代换)∴DF∥AC(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等)故答案为:对顶角相等;等量代换;BD;CE;同位角相等,两直线平行;∠CEF;两直线平行,同位角相等;∠CEF;等量代换;DF;AC;内错角相等,两直线平行;两直线平行,内错角相等.。
平行线经典证明题
1.如图, AB//CD , AE均分BAD,CD与 AE订交于 F , CFE E 。
求证: AD // BC 。
( 12 分)
2 如图 EB∥ DC,∠ C=∠E,请你说出∠ A=∠ADE的原因。
3如图, AD是∠ EAC的均分线, AD∥ BC,∠ B=30o,求∠ EAD、∠ DAC、∠ C 的度数。
4 图,AOC 与BOC 是邻补角,OD、OE分别是AOC 与BOC 的均分线
若 AOC =30°判断OD与OE的地点关系,并说明原因.
若不知道AOC 的大小,你还可以判断OD与 OE的地点
关系吗,并说明原因.
5 如图( 7),已知∠ AEC=∠ A+∠C,试说明: AB∥CD。
A B
E
.如图,已知:AB360 (2)BE 与 DE平行吗 ?为何 ?C
D
(1)判断 CD与 AB的地点关系 ;
7如图 (19 ), ∠1+∠2=180°, ∠DAE=∠BCF,DA均分∠ BDF.
(1)AE 与 FC会平行吗 ?说明原因 .
(2)AD 与 BC的地点关系怎样 ?为何 ?
(3)BC 均分∠ DBE吗 ?为何 .
8读理解并在括号内填注原因:
如图,已知AB∥ CD,∠1=∠2,试说明 EP∥ FQ.
证明:∵AB∥CD,
∴∠ MEB=∠ MFD()
又∵∠1=∠ 2,
∴∠ MEB-∠1=∠ MFD-∠2,
即∠ MEP=∠______
∴EP∥ _____.()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图,EF ∥AD ,∠1=∠2,∠BAC =70°.将求∠AGD 的过程填写
完整.
∵EF ∥AD ( )
∴∠2= .( )
又∵∠1=∠2,( )
∴∠1=∠3.( )
∴AB ∥ .( )
∴∠BAC + = 180°.( )
又∵∠BAC =70°,( )
∴∠AGD = .( )
2.如图,46BAF =∠,136ACE =∠,CE CD ⊥.问CD AB ∥吗?为什么?
3.已知:如图,∠ABC =∠ADC ,BF 、DE 是∠ABC 、∠ADC 的角平分线,DE // BF . 求证:DC // AB .
4.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光
线与平面镜所夹的锐角相等.
(1) 如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若
被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °.
(2) 在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.
(3) 由(1)、(2),请你猜想:当两平面镜a 、b 的夹角∠3= °时,可以使任何
射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射
光线n 平行.请简要说明理由.
321n
m b a
A B E
C D 5. 如图,已知:∠A +∠C =∠E . 求证: AB //CD .
6. 如图, 已知:AD ⊥BC 于D ,EG ⊥BC 于G ,∠E =∠1,求证:AD 平分∠BAC .
E D C B A
G 3
21
5题图 6题图
7.如图,已知: AB ∥DE ,∠1=∠ACB ,AC 平分∠BAD .求证:AD ∥BC .
8.如图,已知: ∠1+∠2=180°,∠3=∠B ,试判断∠AED 和∠ACB 的大小关系,并写出推理过程.
9. 如图, 已知: ∠1+∠2=180°,∠A =∠C ,AD 平分∠BDF ,求证:BC 边平分∠DBE .
1E F C B A D。