ANSYS中单元类型介绍和单元的选择原则

合集下载

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。

类型的选择,跟你要解决的问题本身密切相关。

在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。

1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。

杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。

梁单元则既可以承受拉,压,还可以承受弯矩。

如果你的结构中要承受弯矩,肯定不能选杆单元。

对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)、beam3是2D的梁单元,只能解决2维的问题。

2)、beam4是3D的梁单元,可以解决3维的空间梁问题。

3)、beam188是3D梁单元,可以根据需要自定义梁的截面形状。

(常规是6个自由度,比如是用于桁架等框架结构,如鸟巢,飞机场的架构)2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。

而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。

实际工程中常用的shell单元有shell63,shell93。

shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。

Ansys单元类型设置

Ansys单元类型设置

Ansys单元类型设置一、单元类型选择概述:ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;单元类型选择方法:1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;二、单元类型选择方法(续一)2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围;三、单元类型选择方法(续二)4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型:Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元;四、单元类型选择方法(续三)5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”;五、单元类型选择方法(续四)6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。

六、单元类型选择方法(续五)7.进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作:仔细阅读其单元描述,检查是否与分析问题的背景吻合、了解单元所需输入的参数、单元关键项和载荷考虑;了解单元的输出数据;仔细阅读单元使用限制和说明。

Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。

(仅供参考)ANSYS软件中常用的单元类型

(仅供参考)ANSYS软件中常用的单元类型

ANSYS软件中常用的单元类型一、单元(1)link(杆)系列:link1(2D)和link8(3D)用来模拟珩架,注意一根杆划一个单元。

link10用来模拟拉索,注意要加初应变,一根索可多分单元。

link180是link10的加强版,一般用来模拟拉索。

(2)beam(梁)系列:beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用etab 读入smisc数据然后用plls命令。

注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。

该单元需要手工在实常数中输入Iyy和Izz,注意方向。

beam44适合模拟薄壁的钢结构构件或者变截面的构件,可用"/eshape,1"显示单元形状。

beam188和beam189号称超级梁单元,基于铁木辛科梁理论,有诸多优点:考虑剪切变形的影响,截面可设置多种材料,可用"/eshape,1"显示形状,截面惯性矩不用自己计算而只需输入截面特征,可以考虑扭转效应,可以变截面(8.0以后),可以方便地把两个单元连接处变成铰接(8.0以后,用ENDRELEASE命令)。

缺点是:8.0版本之前beam188用的是一次形函数,其精度远低于beam4等单元,一根梁必须多分几个单元。

8.0之后可设置“KEYOPT(3)=2”变成二次形函数,解决了这个问题。

可见188单元已经很完善,建议使用。

beam189与beam188的区别是有3个结点,8.0版之前比beam188精度高,但因此建模较麻烦,8.0版之后已无优势。

(3)shell(板壳)系列shell41一般用来模拟膜。

shell63可针对一般的板壳,注意仅限弹性分析。

它的塑性版本是shell43。

加强版是shell181(注意18*系列单元都是ansys后开发的单元,考虑了以前单元的优点和缺陷,因而更完善),优点是:能实现shell41、shell63、shell43...的所有功能并比它们做的更好,偏置中点很方便(比如模拟梁板结构时常要把板中面望上偏置),可以分层,等等。

ansys中单元类型中的单元都有什么区别?_百度知道

ansys中单元类型中的单元都有什么区别?_百度知道
link180是link10的加强版,一般用来模拟拉索。
(2)beam(梁)系列:
beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用etab读入smisc数据然后用plls命令。注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。该单元需要手工在实常数中输入Iyy和Izz,注意方向。
单元类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。
新手最容易犯的一个错误就是选用了第一类单元类型(六面体单元),但是,在划分网格的时候,由于结构比较复杂,六面体划分不出来,单元全部被划分成了四面体,也就是退化的六面体单元,这种情况,计算出来的结果的精度是非常糟糕的,有时候即使你把单元划分的很细,计算精度也很差,这种情况是绝对要避免的。
六面体单元和带中间节点的四面体单元的计算精度都是很高的,他们的区别在于:一个六面体单元只有8个节点,计算规模小,但是复杂的结构很难划分出好的六面体单元,带中间节点的四面体单元恰好相反,不管结构多么复杂,总能轻易地划分出四面体,但是,由于每个单元有10个节点,总节点数比较多,计算量会增大很多。
Link10 3维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。对于单向轴拉,如果元素变成受压,则硬度就消失了。此特性可用于静力钢缆中,当整个钢缆模 拟成一个元素时。当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。该元素是shell41的线形 式,keyopt(1)=2,’cloth’选项。如果分析的目的是为了研究元素的运动,(没有静定元素),可用与其相似但不能松弛的元素(如link8 和pipe59)代替。当最终的结构是一个拉紧的结构的时候,Link10也不能用作静定集中分析中。但是由于最终局于一点的结果松弛条件也是有可能的。 在这种情况下,要用其他的元素或在link10中使用‘显示动力’技术。Link10每个节点有3个自由度,x,y,z方向。在拉(或压)中都没有抗弯能 力,但是可以通过在每个link10元素上叠加一个小面积的量元素来实现。具有应力强化和大变形能力。

ANSYS单元类型选择方法

ANSYS单元类型选择方法

ANSYS单元类型选择方法最近在学习ANSYS,收集到一些资料,跟大家分享一下:还有心得体会将在后面写出来跟同行们交流!下面是有关ANSYS分析中的单元选择方法:一、单元类型选择概述:ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;单元类型选择方法:1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;二、单元类型选择方法(续一)2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围;三、单元类型选择方法(续二)4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型: Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元;四、单元类型选择方法(续三)5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”;五、单元类型选择方法(续四)6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。

六、单元类型选择方法(续五)7.进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作:仔细阅读其单元描述,检查是否与分析问题的背景吻合、了解单元所需输入的参数、单元关键项和载荷考虑;了解单元的输出数据;仔细阅读单元使用限制和说明。

ansys单元介绍 -回复

ansys单元介绍 -回复

ansys单元介绍-回复ANSYS单元介绍ANSYS(工程仿真软件)是工程领域中广泛应用的一款有限元分析软件。

在进行有限元分析时,模型是由许多单元组成的,而每个单元代表了模型中的一个小区域。

本文将逐步介绍ANSYS中常用的单元类型、它们的特点以及适用范围,以帮助读者更好地理解和使用ANSYS软件。

ANSYS软件提供了多种单元类型,每种单元类型可用于不同类型的工程问题。

下面是ANSYS中常用的几种单元类型:1. 点单元(POINT):点单元是最简单的单元类型,它代表模型中的一个点。

通常情况下,不直接使用点单元进行分析,而是用它来定义其他类型的单元的节点。

2. 线单元(LINE):线单元是由两个节点组成的简单线段。

它常用于模拟细长结构,如梁或桁架。

线单元具有两个位移自由度(分别是X和Y方向)。

3. 三角形单元(TRI):三角形单元是由三个节点组成的平面三角形。

它广泛应用于二维平面问题的建模和分析中。

三角形单元不仅能够模拟平面应力问题,还可以模拟壳体结构的应力、位移和应变。

4. 四面体单元(TET):四面体单元是由四个节点组成的三维四面体。

它适用于模拟三维结构中的应力、变形和热分析等问题。

5. 六面体单元(HEX):六面体单元是由八个节点组成的立方体。

它常用于模拟物体的体积行为,如流体力学、热传导和固体力学等。

六面体单元可以更准确地描述结构的形状变化,但在建模复杂几何形状时可能会受到限制。

6. 四边形单元(QUAD):四边形单元是由四个节点组成的四边形。

它适用于二维问题的建模和分析,如平面应力和平面应变问题。

上述单元类型只是ANSYS软件中的一小部分,还有其他一些特殊用途的单元类型,如壳体单元、梁单元、弹簧单元等。

在选择合适的单元类型时,需要根据具体问题的几何形状、边界条件和分析要求进行评估。

除了单元类型的选择之外,还需要注意单元的质量。

单元质量是指单元的形状是否足够正交、比例是否合理,以及不规则几何形状是否能够得到良好的表示。

ansys中单元类型区别

ansys中单元类型区别

ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。

单元类型的选择,跟你要解决的问题本身密切相关。

在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。

1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。

杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。

梁单元则既可以承受拉,压,还可以承受弯矩。

如果你的结构中要承受弯矩,肯定不能选杆单元。

对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)beam3是2D的梁单元,只能解决2维的问题。

2)beam4是3D的梁单元,可以解决3维的空间梁问题。

3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。

2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。

而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。

实际工程中常用的shell单元有shell63,shell93。

shell63是四节点的shell 单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。

对于一般的问题,选用shell63就足够了。

ANSYS软件中常用的单元类型

ANSYS软件中常用的单元类型

ANSYS软件中常用的单元类型一、单元(1)link(杆)系列:link1(2D)和link8(3D)用来模拟珩架,注意一根杆划一个单元。

link10用来模拟拉索,注意要加初应变,一根索可多分单元。

link180是link10的加强版,一般用来模拟拉索。

(2)beam(梁)系列:beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用etab 读入smisc数据然后用plls命令。

注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。

该单元需要手工在实常数中输入Iyy和Izz,注意方向。

beam44适合模拟薄壁的钢结构构件或者变截面的构件,可用"/eshape,1"显示单元形状。

beam188和beam189号称超级梁单元,基于铁木辛科梁理论,有诸多优点:考虑剪切变形的影响,截面可设置多种材料,可用"/eshape,1"显示形状,截面惯性矩不用自己计算而只需输入截面特征,可以考虑扭转效应,可以变截面(8.0以后),可以方便地把两个单元连接处变成铰接(8.0以后,用ENDRELEASE命令)。

缺点是:8.0版本之前beam188用的是一次形函数,其精度远低于beam4等单元,一根梁必须多分几个单元。

8.0之后可设置“KEYOPT(3)=2”变成二次形函数,解决了这个问题。

可见188单元已经很完善,建议使用。

beam189与beam188的区别是有3个结点,8.0版之前比beam188精度高,但因此建模较麻烦,8.0版之后已无优势。

(3)shell(板壳)系列shell41一般用来模拟膜。

shell63可针对一般的板壳,注意仅限弹性分析。

它的塑性版本是shell43。

加强版是shell181(注意18*系列单元都是ansys后开发的单元,考虑了以前单元的优点和缺陷,因而更完善),优点是:能实现shell41、shell63、shell43...的所有功能并比它们做的更好,偏置中点很方便(比如模拟梁板结构时常要把板中面望上偏置),可以分层,等等。

ANSYS线性单元和二次单元的选择

ANSYS线性单元和二次单元的选择

2.2. 选择线性或高次单元ANSYS程序的单元库包括两种基本类型的面和体单元:线性单元(有或无特殊形状的)和二次单元。

这些基本单元类型如图2.1所示,下面来探讨这两种基本类型单元的选择。

可用于ANSYS程序中的基本面和体类型(a)线性等参元(b)特殊形状的线性等参元(c)二次单元2.2.1. 线性单元(无中间节点)对结构分析,带有附加形函数的角点单元会在合理的计算时间内通常能得到准确的结果。

当使用这些单元时,要注意防止在关键区域的退化形式。

即避免在结果梯度很大或其它关注的区域使用二维三角形单元和楔形或四面体形的三维线单元。

还应避免使用过于扭曲的线性单元,对于非线性结构分析,如果使用线性单元细致地而不是用二次单元相对粗糙的进行网格划分,那么将以很少的花费获得很好的精度。

(a)线性单元和(b)二次单元的例子如图2.2所示。

当对弯曲壳体建模时,必须选用弯曲的(二次的)或平面(线性)的壳单元,每种选择都有其优缺点,对于多数的实际情况,主要问题利用平面单元以很少的计算时间,即可获得很高精度的结果。

但是,必须保证使用足够多的平面单元来创建曲面。

明显地,单元越小,准确性越好。

推荐三维平面壳单元延伸不要超过 15 度的弧,圆锥壳(轴对称线)单元应限制在 10 度的弧以内(或5度如果离Y轴较近)。

对多数非结构分析(热、电磁等),线性单元几乎与高次单元有同样好的结果,而且求解费用较低。

退化单元(三角形和四面体)通常在非结构分析中产生准确结果。

2.2.2. 二次单元(带中间节点)对于用退化的单元形式进行的线性结构分析(即二维三角形单元和楔形或三维四面体单元),二次单元通常会以比线性单元的求解费用更低且产生良好的结果。

可是,为正确地使用这些单元,需要注意它们的特殊的性质:●对于分布载荷和边压力不象线性单元按“一般意义上”分配到单元节点上(见图2.3所示),单元的中间节点对反力也表现出相同的非直观的解释。

●三维带中间节点的热流单元在承受对流载荷时按固定模式分配热流,在中间节点沿一个方向流动而在角点又沿另外方向的流动。

ANSYS单元类型(详细)

ANSYS单元类型(详细)

把收集到得ANSYS单元类型向大家交流下。

初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。

单元类型的选择,跟你要解决的问题本身密切相关。

在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。

1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。

杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。

梁单元则既可以承受拉,压,还可以承受弯矩。

如果你的结构中要承受弯矩,肯定不能选杆单元。

对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)beam3是2D的梁单元,只能解决2维的问题。

2)beam4是3D的梁单元,可以解决3维的空间梁问题。

3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。

2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。

而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。

实际工程中常用的shell单元有shell63,shell93。

shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。

对于一般的问题,选用shell63就足够了。

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍与单元得选择原则ANSYS中单元类型得选择初学ANSYS得人,通常会被ANSYS所提供得众多纷繁复杂得单元类型弄花了眼,如何选择正确得单元类型,也就是新手学习时很头疼得问题。

类型得选择,跟您要解决得问题本身密切相关。

在选择单元类型前,首先您要对问题本身有非常明确得认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS得帮助文档中都有非常详细得描述,要结合自己得问题,对照帮助文档里面得单元描述来选择恰当得单元类型。

1。

该选杆单元(Link)还就是梁单元(Beam)?这个比较容易理解。

杆单元只能承受沿着杆件方向得拉力或者压力,杆单元不能承受弯矩,这就是杆单元得基本特点。

梁单元则既可以承受拉,压,还可以承受弯矩。

如果您得结构中要承受弯矩,肯定不能选杆单元。

对于梁单元,常用得有beam3,beam4,beam188这三种,她们得区别在于:1)、beam3就是2D得梁单元,只能解决2维得问题。

2)、beam4就是3D得梁单元,可以解决3维得空间梁问题。

3)、beam188就是3D梁单元,可以根据需要自定义梁得截面形状。

(常规就是6个自由度,比如就是用于桁架等框架结构,如鸟巢,飞机场得架构)2。

对于薄壁结构,就是选实体单元还就是壳单元?对于薄壁结构,最好就是选用shell单元,shell单元可以减少计算量,如果您非要用实体单元,也就是可以得,但就是这样计算量就大大增加了。

而且,如果选实体单元,薄壁结构承受弯矩得时候,如果在厚度方向得单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。

实际工程中常用得shell单元有shell63,shell93。

shell63就是四节点得shell单元(可以退化为三角形),shell93就是带中间节点得四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但就是由于节点数目比shell63多,计算量会增大。

ansys单元的选择

ansys单元的选择

在结构分析中,“结构”一般指结构分析的力学模型。

按几何特征和单元种类,结构可分为杆系结构、板壳结构和实体结构。

杆系结构:其杆件特征是一个方向的尺度远大于其它两个方向的尺度,例如长度远大于截面高度和宽度的梁。

单元类型有杆、梁和管单元(一般称为线单元)板壳结构:是一个方向的尺度远小于其它两个方向尺度的结构,如平板结构和壳结构。

单元为壳单元实体结构:则是指三个方向的尺度约为同量级的结构,例如挡土墙、堤坝、基础等。

单元为3D实体单元和2D 实体单元杆系结构:①当构件15>L/h≥4时,采用考虑剪切变形的梁单元。

②当构件L/h≥15时, 采用不考虑剪切变形的梁单元。

③BEAM18X系列可不必考虑的上限,但在使用时必须达到一定程度的网格密度。

对于薄壁杆件结构,由于剪切变形影响很大,所以必须考虑剪切变形的影响。

板壳结构:当L/h<5~8时为厚板,应采用实体单元。

当5~8<L/h<80~100时为薄板,选2D体元或壳元当L/h>80~100时,采用薄膜单元。

对于壳类结构,一般R/h≥20为薄壳结构,可选择薄壳单元,否则选择中厚壳单元。

对于既非梁亦非板壳结构,可选择3D实体单元。

杆单元适用于模拟桁架、缆索、链杆、弹簧等构件。

该类单元只承受杆轴向的拉压,不承受弯矩,节点只有平动自由度。

不同的单元具有弹性、塑性、蠕变、膨胀、大转动、大挠度(也称大变形)、大应变(也称有限应变)、应力刚化(也称几何刚度、初始应力刚度等)等功能⑴杆单元均为均质直杆,面积和长度不能为零(LINK11 无面积参数)。

仅承受杆端荷载,温度沿杆元长线性变化。

杆元中的应力相同,可考虑初应变。

⑵LINK10属非线性单元,需迭代求解。

LINK11可作用线荷载;仅有集中质量方式。

⑶LINK180无实常数型初应变,但可输入初应力文件,可考虑附加质量;大变形分析时,横截面面积可以是变化的,即可为轴向伸长的函数或刚性的。

ANSYS软件基本单元类型选取原则对计算精度的影响

ANSYS软件基本单元类型选取原则对计算精度的影响

ANSYS中常用的实体单元类型有solid45,solid92,solid185,solid187这几种。

其中把solid45,solid185可以归为第一类,如果它们都是六面体单元,可以退化为四面体单元和棱柱体单元,单元的主要功能基本相同,(solid185还可以用于不可压缩超弹性材料)。

solid92 solid187可以归为第二类,它们都是高阶单元每条边上均带中间节点,单元的主要功能基本相同。

在ANSYS计算中选取单元的基本原则是优先选用大编号的单元类型。

例如:对于第一类里面而言solid45和solid185单元,应该优先选用solid185。

第二类里面应该优先选用solid187。

ANSYS的单元类型是在不断发展和改进的,同样功能的单元,编号大的往往意味着在某些方面有优化或者增强。

solid185 是一种采用力与位移混合形状函数的线性单元,但可以退化为五面体或四面体单元。

solid185支持大变形大应变,solid185单元用于构造三维固体结构。

每个六面体单元有8个节点,在节点坐标系下每个节点有沿着x,y,z三个方向平移的自由度。

solid185单元具有超弹性,应力钢化,蠕变,大变形和大应变能力。

还可采用混合模式模拟几乎不可压缩弹塑性材料和完全不可压缩超弹性材料。

图2.3 单元类型solid185Fig.2.3 element type solid185ANSYS软件中常见的板壳单元有shell63,shell181等,shell63,shell181可以归为一类,若不规则形状的四节点四边形单元可以退化成三节点三角形单元。

优先选取单元大编号的单元。

即所有薄壁筒形结构均用shell181平面四节点四边形等参元来分析。

shell181适合分析薄的及中等厚度的板壳结构零件。

该单元有四个结点,每个结点有六个自由度,即在节点坐标系方向上沿x,y,z方向的平动自由度和x,y,z方向的转动自由度。

这种单元类型还支持线性,大扭转和大应变和变厚度非线性分析。

单元类型的选择原则

单元类型的选择原则

ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。

单元类型的选择,跟你要解决的问题本身密切相关。

在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。

1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。

杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。

梁单元则既可以承受拉,压,还可以承受弯矩。

如果你的结构中要承受弯矩,肯定不能选杆单元。

对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)beam3是2D的梁单元,只能解决2维的问题。

2)beam4是3D的梁单元,可以解决3维的空间梁问题。

3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。

2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。

而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。

实际工程中常用的shell单元有shell63,shell93。

shell63是四节点的shell 单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。

对于一般的问题,选用shell63就足够了。

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。

类型的选择,跟你要解决的问题本身密切相关。

在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。

1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。

杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。

梁单元则既可以承受拉,压,还可以承受弯矩。

如果你的结构中要承受弯矩,肯定不能选杆单元。

对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)、beam3是2D的梁单元,只能解决2维的问题。

2)、beam4是3D的梁单元,可以解决3维的空间梁问题。

3)、beam188是3D梁单元,可以根据需要自定义梁的截面形状。

(常规是6个自由度,比如是用于桁架等框架结构,如鸟巢,飞机场的架构)2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。

而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。

实际工程中常用的shell单元有shell63,shell93。

shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。

ansys单元介绍

ansys单元介绍

ansys单元介绍ANSYS是一款功能强大的工程仿真软件,广泛应用于各种工程领域。

它提供了丰富的单元类型,以满足各种复杂的分析需求。

下面将介绍一些常用的ANSYS 单元类型及其特点。

1. 杆单元(Link):用于模拟杆状结构,如梁、柱等。

该单元具有三个自由度:轴向拉伸/压缩、弯曲和扭转。

可以通过设置截面属性来定义杆的截面特性。

2. 梁单元(Beam):用于模拟梁结构,具有六个自由度:轴向拉伸/压缩、弯曲、扭转和三个平动位移。

梁单元可以承受弯矩、剪力和轴力等载荷。

3. 壳单元(Shell):用于模拟薄壁壳体结构,如圆筒、管道等。

壳单元具有平面内和平面外的刚度,适用于分析壳体的弯曲、屈曲和振动等问题。

4. 实体单元(Solid):用于模拟三维实体结构,如块体、球体等。

实体单元具有任意方向的刚度,可以承受各种复杂载荷,如压力、温度和位移等。

5. 表面单元(Surface):用于模拟二维表面结构,如板、薄膜等。

表面单元可以承受平面内和平面外的载荷,适用于分析表面效应和接触问题。

6. 流体单元(Fluid):用于模拟流体结构和流体行为,如管道流动、流体振动等。

流体单元可以模拟流体的压力、速度和温度等参数。

7. 热单元(Thermal):用于模拟热传导、对流和辐射等热力学问题。

热单元可以模拟温度场、热流密度和热梯度等参数。

8. 电单元(Electrical):用于模拟电场、电流和电压等电磁学问题。

电单元可以模拟电场强度、电流密度和电势等参数。

除了以上介绍的单元类型外,ANSYS还提供了其他多种特殊单元类型,如弹簧单元、质量单元、阻尼器单元等,以满足特定领域的分析需求。

在使用ANSYS 进行仿真分析时,选择合适的单元类型是至关重要的,以确保分析的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。

类型的选择,跟你要解决的问题本身密切相关。

在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。

1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。

杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。

梁单元则既可以承受拉,压,还可以承受弯矩。

如果你的结构中要承受弯矩,肯定不能选杆单元。

对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)、beam3是2D的梁单元,只能解决2维的问题。

2)、beam4是3D的梁单元,可以解决3维的空间梁问题。

3)、beam188是3D梁单元,可以根据需要自定义梁的截面形状。

(常规是6个自由度,比如是用于桁架等框架结构,如鸟巢,飞机场的架构)2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。

而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。

实际工程中常用的shell单元有shell63,shell93。

shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。

对于一般的问题,选用shell63就足够了。

除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺层材料的,有的是用于结构显示动力学分析的,一般新手很少涉及到。

通常情况下,shell63单元就够用了。

3.实体单元的选择实体单元类型也比较多,实体单元也是实际工程中使用最多的单元类型。

常用的实体单元类型有solid45, solid92,solid185,solid187这几种。

其中把solid45,solid185可以归为第一类,他们都是六面体单元,都可以退化为四面体和棱柱体,单元的主要功能基本相同,(SOLID185还可以用于不可压缩超弹性材料)。

Solid92, solid187可以归为第二类,他们都是带中间节点的四面体单元,单元的主要功能基本相同。

实际选用单元类型的时候,到底是选择第一类还是选择第二类呢?也就是到底是选用六面体还是带中间节点的四面体呢?如果所分析的结构比较简单,可以很方便的全部划分为六面体单元,或者绝大部分是六面体,只含有少量四面体和棱柱体,此时,应该选用第一类单元,也就是选用六面体单元;如果所分析的结构比较复杂,难以划分出六面体,应该选用第二类单元,也就是带中间节点的四面体单元。

新手最容易犯的一个错误就是选用了第一类单元类型(六面体单元),但是,在划分网格的时候,由于结构比较复杂,六面体划分不出来,单元全部被划分成了四面体,也就是退化的六面体单元,这种情况,计算出来的结果的精度是非常糟糕的,有时候即使你把单元划分的很细,计算精度也很差,这种情况是绝对要避免的。

六面体单元和带中间节点的四面体单元的计算精度都是很高的,他们的区别在于:一个六面体单元只有8个节点,计算规模小,但是复杂的结构很难划分出好的六面体单元,带中间节点的四面体单元恰好相反,不管结构多么复杂,总能轻易地划分出四面体,但是,由于每个单元有10个节点,总节点数比较多,计算量会增大很多。

前面把常用的实体单元类型归为2类了,对于同一类型中的单元,应该选哪一种呢?通常情况下,同一个类型中,各种不同的单元,计算精度几乎没有什么明显的差别。

选取的基本原则是优先选用编号高的单元。

比如第一类中,应该优先选用solid185。

第二类里面应该优先选用solid187。

ANSYS的单元类型是在不断发展和改进的,同样功能的单元,编号大的往往意味着在某些方面有优化或者增强。

对于实体单元,总结起来就一句话:复杂的结构用带中间节点的四面体,优选solid187,简单的结构用六面体单元,优选solid185。

土木计算过程中常用的单元和材料类型!一、单元(1)link(杆)系列:link1(2D)和link8(3D)用来模拟珩架,注意一根杆划一个单元。

link10用来模拟拉索,注意要加初应变,一根索可多分单元。

link180是link10的加强版,一般用来模拟拉索。

(2)beam(梁)系列:beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用etab读入smisc数据然后用plls命令。

注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。

该单元需要手工在实常数中输入Iyy和Izz,注意方向。

beam44适合模拟薄壁的钢结构构件或者变截面的构件,可用"/eshape,1"显示单元形状。

beam188和beam189号称超级梁单元,基于铁木辛科梁理论,有诸多优点:考虑剪切变形的影响,截面可设置多种材料,可用"/eshape,1"显示形状,截面惯性矩不用自己计算而只需输入截面特征,可以考虑扭转效应,可以变截面(8.0以后),可以方便地把两个单元连接处变成铰接(8.0以后,用ENDRELEASE命令)。

缺点是:8.0版本之前beam188用的是一次形函数,其精度远低于beam4等单元,一根梁必须多分几个单元。

8.0之后可设置“KEYOPT(3)=2”变成二次形函数,解决了这个问题。

可见188单元已经很完善,建议使用。

beam189与beam188的区别是有3个结点,8.0版之前比beam188精度高,但因此建模较麻烦,8.0版之后已无优势。

(3)shell(板壳)系列shell41一般用来模拟膜。

shell63可针对一般的板壳,注意仅限弹性分析。

它的塑性版本是shell43。

加强版是shell181(注意18*系列单元都是ansys后开发的单元,考虑了以前单元的优点和缺陷,因而更完善),优点是:能实现shell41、shell63、shell43...的所有功能并比它们做的更好,偏置中点很方便(比如模拟梁版结构时常要把板中面望上偏置),可以分层,等等。

(4)solid(体)系列土木中常用的就solid45、46、65、95等。

45就不用多说了,95是它的带中结点版本。

solid46可以容忍单元的长厚比达到20比1,可以用来模拟钢板碳纤维板钢管等。

solid65是专门的混凝土单元,可以考虑开裂,这个讨论得很多了,清华的陆新征写的一个讲义()里面有详细解释。

(5)combin(弹簧)系列常用的有7、14、39、40等。

7可以用来模拟铰接点。

14是最简单的带阻尼弹簧。

39是非线性弹簧,在实常数中可以灵活定义力-位移关系,可用来模拟钢筋与混凝土的粘结滑移等。

40可模拟隔震结构(据说)。

(6)contact(接触)系列常用的有conta52,可用来模拟橡胶垫支座。

这个很简单,可以用命令流添加(eintf)。

TARGE16*和CONTA17*系列可用接触向导添加,三维的接触往往会造成收敛困难,和混凝土非线性分析一样,需要凭经验调参数反复试算。

二、材料弹性部分(必需)用MP命令输入,非线性部分用TB命令输入。

(1)TB,DP即Drucker-Prager模型,ansys中唯一用来模拟土的模型。

可以和几乎所有单元类型(2维和3维)配合使用,所以有时也会在计算2维的混凝土模型时用到它。

(2)TB,CONCR用来模拟混凝土,采用w-w五参数破坏准则,只能和solid65配合使用。

同样参见陆新征的讲义。

(3)TB,BKIN(BISO,MKIN,MISO)一般用来模拟钢材。

双线形随动强化(双线形等向强化、多线形随动强化、多线形等向强化)模型。

顾名思义,双线形和多线形的区别就是应力应变曲线是两段还是很多段;随动强化和等向强化的区别就是考不考虑包辛格效应。

如果不和其他准则配合的话,默认是von mises屈服准则。

单元类型选择概述:ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;单元类型选择方法:1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围;4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型:Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元;5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”;6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。

7.进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作:仔细阅读其单元描述,检查是否与分析问题的背景吻合、了解单元所需输入的参数、单元关键项和载荷考虑;了解单元的输出数据;仔细阅读单元使用限制和说明。

Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。

每个自由度的质量和惯性矩分别定义。

Link1可用于各种工程应用中。

根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。

这个2维杆元素是一个单轴拉压元素,在每个节点都有两个自由度。

相关文档
最新文档