求周期方波(见图1-4)的傅里叶级数(复指数函数形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-1 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出|c n |–ω和φn –ω图,并与表1-1对比。
解答:在一个周期的表达式为
00 (0)2() (0)2
T A t x t T A t ⎧
--≤<⎪⎪=⎨
⎪≤<⎪⎩
积分区间取(-T/2,T/2)
0000000
220
2
00
2
111()d =
d +
d =(cos -1) (=0, 1, 2, 3, )
T T jn t
jn t
jn t T T n c x t e
t Ae
t Ae t
T T T A
j
n n n ωωωππ
-----=
-±±±⎰
⎰
⎰
所以复指数函数形式的傅里叶级数为
001
()(1cos )jn t
jn t n n n A
x t c e
j
n e n
∞
∞
=-∞
=-∞=
=--∑∑ωωππ,=0, 1, 2, 3, n ±±±。
(1cos ) (=0, 1, 2, 3, )0nI
nR A c n n n c ⎧
=--⎪±±±⎨
⎪=⎩ππ
21,3,,(1cos )00,2,4,6,
n A
n A c n n n n ⎧=±±±⎪
==-=⎨⎪=±±±
⎩
πππ
1,3,5,2arctan 1,3,5,
2
00,2,4,6,nI n nR π
n c π
φn c n ⎧-=+++⎪⎪⎪===---⎨⎪=±±±⎪⎪
⎩
没有偶次谐波。其频谱图如下图所示。
图1-4 周期方波信号波形图
1-2 求正弦信号0()sin x t x ωt =的绝对均值x μ和均方根值rms x 。
解
答
:
000
2200000
224211()d sin d sin d cos T
T
T T
x x x x x μx t t x ωt t ωt t ωt T T T
T ωT ωπ
====-==⎰⎰⎰
2
222
00rms
000
111cos 2()d sin d d 22
T T T
x x ωt
x x t t x ωt t t T T T
-====⎰⎰⎰
1-3 求指数函数()(0,0)at
x t Ae a t -=>≥的频谱。
解答:
(2)220
2
2
(2)
()()(2)
2(2)a j f t
j f t
at j f t
e A A a j
f X f x t e
dt Ae e
dt A
a j f a j f a f -+∞
∞
---∞-∞
-====
=-+++⎰⎰πππππππ
2
2
()(2)
k X f a f π=
+
Im ()2()arctan
arctan Re ()X f f
f X f a
==-πϕ
1-5 求被截断的余弦函数0cos ωt (见图1-26)的傅里叶变换。
|c n | φn
π/2 -π/2 ω
ω
ω0
ω0 3ω0
5ω0
3ω0 5ω0
2A/π
2A/3π 2A/5π 幅频图
相频图
周期方波复指数函数形式频谱图
2A/5π 2A/3π 2A/π -ω0
-3ω0
-5ω0
-ω0 -3ω0
-5ω0 单边指数衰减信号频谱图
f
|X (f )|
A /a
φ(f )
f
π/2
-π/2
0cos ()0
ωt t T x t t T
⎧<⎪=⎨
≥⎪⎩
解:0()()cos(2)x t w t f t =π w (t )为矩形脉冲信号
()2sinc(2)W f T Tf =π
()
002201cos(2)2j f t j f t
f t e e
πππ-=
+ 所以002211()()()22
j f t
j f t x t w t e w t e -=+ππ
根据频移特性和叠加性得:
000011
()()()
22
sinc[2()]sinc[2()]
X f W f f W f f T T f f T T f f =-++=-++ππ 可见被截断余弦函数的频谱等于将矩形脉冲的频谱一分为二,各向左右移动f 0,同时谱线高度减小一半。也说明,单一频率的简谐信号由于截断导致频谱变得无限宽。
1-6 求指数衰减信号0()sin at
x t e
ωt -=的频谱
解答:
指数衰减信号
x (t )
f X (f )
T
f 0 -f 0
被截断的余弦函数频谱
图1-26 被截断的余弦函数
t
t
T
-T
T -T
x (t )
w (t )
1
1
-1