2018年湖南省岳阳市中考数学试题(含答案解析)-推荐

合集下载

【精校】2018年湖南省岳阳市中考真题数学

【精校】2018年湖南省岳阳市中考真题数学

2018年湖南省岳阳市中考真题数学一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.2018的倒数是( ) A.2018B.12018C.-12018D.-2018解析:2018的倒数是12018. 答案:B2.下列运算结果正确的是( ) A.a 3·a 2=a 5B.(a 3)2=a 5C.a 3+a 2=a 5D.a -2=-a 2解析:A 、a 3·a 2=a 5,正确,故本选项符合题意;B 、(a 3)2=a 6,故本选项不符合题意;C 、不是同类项不能合并,故本选项不符合题意;D 、a -2=21a ,故本选项不符合题意. 答案:A3.函数中自变量x 的取值范围是( ) A.x >3 B.x ≠3 C.x ≥3 D.x ≥0解析:函数中x-3≥0,所以x ≥3. 答案:C4.抛物线y=3(x-2)2+5的顶点坐标是( ) A.(-2,5) B.(-2,-5) C.(2,5)D.(2,-5)解析:抛物线y=3(x-2)2+5的顶点坐标为(2,5). 答案:C5.已知不等式组2010xx-⎧⎨+≥⎩<,,其解集在数轴上表示正确的是( )A. B. C. D.解析:2010xx-⎧⎨+≥⎩<①,②,解①得:x<2,解②得:x≥-1,故不等式组的解集为:-1≤x<2,故解集在数轴上表示如下.答案:D6.在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是( )A.90,96B.92,96C.92,98D.91,92解析:将数据从小到大排列:86,88,90,92,96,96,98;可得中位数为92,众数为96. 答案:B7.下列命题是真命题的是( )A.平行四边形的对角线相等B.三角形的重心是三条边的垂直平分线的交点C.五边形的内角和是540°D.圆内接四边形的对角相等解析:平行四边形的对角线互相平分,A是假命题;三角形的重心是三条边的中线的交点,B是假命题;五边形的内角和=(5-2)×180°=540°,C是真命题;圆内接四边形的对角互补,D是假命题.答案:C8.在同一直角坐标系中,二次函数y=x2与反比例函数y=1x(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为( )A.1B.mC.m2D.1 m解析:设点A、B在二次函数y=x2图象上,点C在反比例函数y=1x(x>0)的图象上.因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x3=1m,∴ω=x1+x2+x3=x3=1m.答案:D二、填空题(本大题共8小题,每小题4分,满分32分)9.因式分解:x2-4= .解析:x2-4=(x+2)(x-2).答案:(x+2)(x-2)10.2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所,数据120000000科学记数法表示为 .解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.120000000=1.2×108.答案:1.2×10811.关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是 . 解析:由已知得:△=4-4k>0,解得:k<1.答案:k<112.已知a2+2a=1,则3(a2+2a)+2的值为 .解析:∵a2+2a=1,∴3(a2+2a)+2=3×1+2=5.答案:513.在-2,1,4,-3,0这5个数字中,任取一个数是负数的概率是 .解析:任取一个数是负数的概率是:P=25.答案:2 514.如图,直线a∥b,∠l=60°,∠2=40°,则∠3= .解析:∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°.答案:80°15.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.解析:∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DE ADBC AC=,∴126051217x xx-==,,∴该直角三角形能容纳的正方形边长最大是6017(步).答案:60 1716.如图,以AB为直径的⊙O与CE相切于点C,CE交AB的延长线于点E,直径AB=18,∠A=30°,弦CD⊥AB,垂足为点F,连接AC,OC,则下列结论正确的是 .(写出所有正确结论的序号)①»»BC BD=;②扇形OBC的面积为274π;③△OCF∽△OEC;④若点P为线段OA上一动点,则AP·OP有最大值20.25. 解析:∵弦CD⊥AB,∴BC=BD,所以①正确;∴∠BOC=2∠A=60°,∴扇形OBC的面积=2609273602π⋅⋅=π,所以②错误;∵⊙O与CE相切于点C,∴OC⊥CE,∴∠OCE=90,∵∠COF=∠EOC,∠OFC=∠OCE,∴△OCF∽△OEC;所以③正确;AP·OP=(9-OP)·OP=-(OP-3)2+9,当OP=3时,AP·OP的最大值为9,所以④错误.答案:①③三、解答题(本大题共8小题,满分64分,解答应写出文字说明,证明过程或演算步骤).17.计算:(-1)2-2sin45°+(π-2018)0|.解析:本题涉及零指数幂、乘方、特殊角的三角函数值、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.答案:原式=12121122-⨯++=+=.18.如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.解析:首先根据四边形ABCD是平行四边形,判断出AB∥CD,且AB=CD,然后根据AE=CF,判断出BE=DF,即可推得四边形BFDE是平行四边形.答案:∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,又∵AE=CF,∴BE=DF,∴BE∥DF且BE=DF,∴四边形BFDE是平行四边形.19.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y 轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.解析:(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程求得b的值,进而求得a的值,根据待定系数法,可得答案.答案:(1)由题意得,k=xy=2×3=6,∴反比例函数的解析式为y=6x.(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),∵反比例函数y=6x 的图象经过点B(a ,b)∴b=6a ,∴AD=3-6a. ∴S △ABC =6311226BC AD a a ⋅=-⎫ ⎪⎝⎭=⎛,解得a=6,∴b=6a=1, ∴B(6,1).设AB 的解析式为y=kx+b ,将A(2,3),B(6,1)代入函数解析式,得2361k b k b +=+=⎧⎨⎩,,解得124k b ⎧=-⎪⎨⎪=⎩,,直线AB 的解析式为y=-12x+4.20.为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为 人; (2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率. 解析:(1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数; (2)利用条形统计图以及样本数量得出喜欢广场舞的人数;(3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数; (4)利用树状图法列举出所有的可能进而得出概率.答案:(1)这次参与调查的村民人数为:24÷20%=120(人);(2)喜欢广场舞的人数为:120-24-15-30-9=42(人),如图所示:(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:30120×360°=90°;(4)如图所示:一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:16.21.为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?解析:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论. 答案:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:3300033000111.2x x-=,解得:x=500,经检验,x=500是原方程的解,∴1.2x=600.答:实际平均每天施工600平方米.22.图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M 到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD 保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.( 1.73,结果精确到0.01米)解析:(1)构建直角△OMN ,求ON 的长,相加可得BN 的长,即点M 到地面的距离; (2)左边根据要求留0.65米的安全距离,即取CE=0.65,车宽EH=2.55,计算高GH 的长即可,与3.5作比较,可得结论.答案:(1)如图,过M 作MN ⊥AB 于N ,交BA 的延长线于N , Rt △OMN 中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ON=12OM=0.6, ∴NB=ON+OB=3.3+0.6=3.9;即点M 到地面的距离是3.9米; (2)取CE=0.65,EH=2.55,∴HB=3.9-2.55-0.65=0.7, 过H 作GH ⊥BC ,交OM 于G ,过O 作OP ⊥GH 于P ,∵∠GOP=30°,∴tan30°=3GP OP =,∴GP= 1.730.733OP ⨯=≈0.404, ∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.23.已知在Rt △ABC 中,∠BAC=90°,CD 为∠ACB 的平分线,将∠ACB 沿CD 所在的直线对折,使点B 落在点B ′处,连结AB',BB',延长CD 交BB'于点E ,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC ,求证:CD=2BE ;(2)如图2,若AB ≠AC ,试求CD 与BE 的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC 绕点C 逆时针旋转角(α+45°),得到线段FC ,连结EF 交BC 于点O ,设△COE 的面积为S 1,△COF 的面积为S 2,求12S S (用含α的式子表示). 解析:(1)由翻折可知:BE=EB ′,再利用全等三角形的性质证明CD=BB ′即可; (2)如图2中,结论:CD=2·BE ·tan2α.只要证明△BAB ′∽△CAD ,可得1tan 2BB AB CD AC α'==,推出21tan 2BE CD α=,可得CD=2·BE ·tan2α; (3)首先证明∠ECF=90°,由∠BEC+∠ECF=180°,推出BB ′∥CF ,推出EO BE BEOF CF BC===sin(45°-α),由此即可解决问题. 答案:(1)如图1中,∵B 、B ′关于EC 对称,∴BB ′⊥EC ,BE=EB ′,∴∠DEB=∠DAC=90°, ∵∠EDB=∠ADC ,∴∠DBE=∠ACD ,∵AB=AC ,∠BAB ′=∠DAC=90°,∴△BAB ′≌CAD ,∴CD=BB ′=2BE. (2)如图2中,结论:CD=2·BE ·tan2α.理由:由(1)可知:∠ABB ′=∠ACD ,∠BAB ′=∠CAD=90°,∴△BAB ′∽△CAD ,∴1tan 2BB AB CD AC α'==,∴21tan 2BE CD α=,∴CD=2·BE ·tan2α. (3)如图3中,在Rt △ABC 中,∠ACB=90°-2α,∵EC 平分∠ACB ,∴∠ECB=12(90°-2α)=45°-α, ∵∠BCF=45°+α,∴∠ECF=45°-α+45°+α=90°, ∴∠BEC+∠ECF=180°,∴BB ′∥CF ,∴EO BE BE OF CF BC ===sin(45°-α), ∵12S EO S OF =,∴12S S =sin(45°-α). 24.已知抛物线F :y=x 2+bx+c 的图象经过坐标原点O ,且与x 轴另一交点为(-3,0).(1)求抛物线F 的解析式;(2)如图1,直线l :y=3x+m(m >0)与抛物线F 相交于点A(x 1,y 1)和点B(x 2,y 2)(点A 在第二象限),求y 2-y 1的值(用含m 的式子表示);(3)在(2)中,若m=43,设点A ′是点A 关于原点O 的对称点,如图2.①判断△AA ′B 的形状,并说明理由;②平面内是否存在点P ,使得以点A 、B 、A ′、P 为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由.解析:(1)根据点的坐标,利用待定系数法即可求出抛物线F 的解析式;(2)将直线l 的解析式代入抛物线F 的解析式中,可求出x 1、x 2的值,利用一次函数图象上点的坐标特征可求出y 1、y 2的值,做差后即可得出y 2-y 1的值;(3)根据m 的值可得出点A 、B 的坐标,利用对称性求出点A ′的坐标.①利用两点间的距离公式(勾股定理)可求出AB 、AA ′、A ′B 的值,由三者相等即可得出△AA ′B 为等边三角形;②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P ,设点P 的坐标为(x ,y),分三种情况考虑:(i)当A ′B 为对角线时,根据菱形的性质(对角线互相平分)可求出点P 的坐标; (ii)当AB 为对角线时,根据菱形的性质(对角线互相平分)可求出点P 的坐标;(iii)当AA ′为对角线时,根据菱形的性质(对角线互相平分)可求出点P 的坐标.综上即可得出结论.答案:(1)∵抛物线y=x 2+bx+c 的图象经过点(0,0)和(-3,0),∴00313c b c =⎧⎪⎨-+=⎪⎩,,解得:30b c ⎧=⎪⎨⎪=⎩,∴抛物线F 的解析式为y=x 2+3x. (2)将代入y=x 2,得:x 2=m ,解得:x 1=-m ,x 2=m ,∴12y m y m ==,, ∴y 2-y 1=m m ⎫⎛⎫⎪ ⎪⎭⎝⎭-=>0). (3)∵m=43,∴点A 的坐标为(233-,),点B 的坐标为(3,2). ∵点A ′是点A 关于原点O 的对称点,∴点A ′的坐标为(233-). ①△AA ′B 为等边三角形,理由如下:∵2223())3)A B A '-,,, ∴888333AA AB A B '=='=,,,∴AA ′=AB=A ′B ,∴△AA ′B 为等边三角形. ②∵△AA ′B 为等边三角形,∴存在符合题意得点P ,且以点A 、B 、A ′、P 为顶点的菱形分三种情况,设点P 的坐标为(x ,y).(i)当A′B为对角线时,有23323xy⎧-=⨯⎪⎪⎨⎪=⎪⎩,,解得:23xy⎧=⎪⎨=⎪⎩,∴点P的坐标为(23,);(ii)当AB为对角线时,有322233xy=--=+⎧⎪⎪⎨⎪⎪⎩,解得:3103xy⎧=-⎪⎪⎨⎪=⎪⎩,∴点P的坐标为103,);(iii)当AA′为对角线时,有322233xy⎧=-⎪⎪⎨⎪+=-⎪⎩,解得:32xy⎧=-⎪⎨⎪=-⎩,∴点P的坐标为,-2).综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(23,)、103,)和,-2).考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

2018年湖南岳阳中考数学试卷及答案解析版

2018年湖南岳阳中考数学试卷及答案解析版

2018 年岳阳市中考试题数 学(满分 120 分,考试时间 90 分钟)一、选择题(本大题共 8 小题,每题3 分,满分 24 分,在每道小题给出的四个选项中,选出符合要求的一项)1. ( 2018 湖南岳阳, 1, 3 分)— 2018 的相反数是( )A .- 2018B . 2018C .1 D .12003 2003【答案】 B2.( 2018 湖南岳阳, 2, 3 分)计算 a 3﹒ a 2 的结果是()A . a 5B . a 3C . a 3+a 2D .3a 2【答案】 A3.( 2018 湖南岳阳, 3,3 分)一个正方体的平面睁开图如下图,将它折成正方体后,与汉字“岳”相对的汉字是( ) A .建B .设C .和D . 谐建 设和 谐 岳阳【答案】 C4. ( 2018 湖南岳阳, 4, 3 分)不等式 2x 的解集在数轴上表示正确的选项是( )05 0I50 5 0 5 A . B .C .D .【答案】 D5.( 2018 湖南岳阳, 5, 3 分)对于 x 的分式方程7 3 m 有增根,则增根为( )x 1x 1 A .x=1 B . x=-1C . x=3D . x=- 3【答案】 A6.( 2018 湖南岳阳, 6, 3 分)两圆半径分别是 3cm 和 7cm ,当圆心距 d=10cm 时,两圆的地点关系为( )A .外离B .内切C .订交D . 外切【答案】 D7 .( 2018 湖南岳阳,7,3 分)某组 7 名同学在一学期里阅读课外书本的册数分别是:14,12,13,12,17,18,16 .则这组数据的众数和中位数分别是()A . 12,13B . 12,14C . 13,14D .13,16【答案】 B8.( 2018 湖南岳阳, 8,3 分)二次函数 yax 2 bx c 的图象如下图, 对于以下结论: ① a ② b③ c 0; ④ b 2a 0; ⑤ a bc 0 .此中正确的个数是()。

2018年湖南岳阳中考数学试题及答案

2018年湖南岳阳中考数学试题及答案

【导语】将在本次湖南岳阳中考过后,考后发布2018年湖南岳阳中考数学试卷及答案解析,⽅便考⽣对照估分,⼤家可收藏并随时关注、栏⽬,中考信息持续更新!中考科⽬:语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。

)考试必读:中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。

涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。

不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。

有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。

避免违规:中考是中国重要的考试之⼀,直接决定着考⽣升⼊⾼中后的学习质量,对⾼考成绩有着⾮常重⼤的影响。

因此,中国教育部门对于中考违规、作弊的处罚⼒度是相当⼤的。

视违规情节的不同,轻则对试卷进⾏扣分处理,重则取消违规科⽬或全科的成绩并将其记⼊考⽣档案伴随终⽣,对于涉嫌犯罪的⼈员要追究刑事责任。

中考对于复读⽣也有⼀定的惩罚措施,例如禁⽌报考热点⾼中、对试卷进⾏扣分处理、取消额外加分等等。

因此,在中考的过程中要绝对避免出现违规、作弊的情况,不能铤⽽⾛险,酿成终⾝的遗憾。

参加2018中考的考⽣可直接查阅2018年湖南岳阳中考试题及答案信息!—→以下是湖南岳阳2018年各科中考试题答案发布⼊⼝:相关推荐:为⽅便⼤家及时获取岳阳2018年中考成绩、2018年中考录取分数线信息,为⼴⼤考⽣整理了《全国2018年中考成绩查询、2018年中考录取分数线专题》考⽣可直接点击进⼊以下专题进⾏中考成绩及分数线信息查询。

2018年湖南省岳阳市中考数学试题(含答案解析)-推荐

2018年湖南省岳阳市中考数学试题(含答案解析)-推荐

2018年湖南省岳阳市中考数学试卷一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中, 选出符合要求的一项)1. (3分)2018的倒数是( )A. 2018B. _L_C .- D - 2018 2018 201896, 92, 96, 86,这组数据的中位数和众数分别是( )A. 90, 96 B . 92, 96 C . 92, 98 D . 91, 927. (3分)下列命题是真命题的是( )A.平行四边形的对角线相等B.三角形的重心 是三条边的垂直平分线的交点C.五边形的内角和是540° D .圆内接四边形的对角相等8. (3分)在同一直角坐标系中,二次函数y=x 2与反比例函数y 一 (X >0)的图象如图所示,若两个函数图象上有三个不同的点 A (X 1, m , B (X 2, m ) , C (X 3,2 . (3分)下列运算结果正确的是( A. 3. A. 4. A. 5. A. a 3?a 2=a 5B. (a 3) 2=a 5 C. a 3+a 2=a 5D. a 2= - a 2(3分)函数、= .':「、中自变量x 的取值范围是( )x>3 B. X M 3C. x >3D. x >0 (3分) (-2, (3分) 抛物线y=3 ( X - 5) B. (- 2,- 5) 已知不等式组• \-2<0 ・ 1 I I 2-10123 2) 2+5的顶点坐标是( C. (2, 5) D. 其解集在数轴上表示正确的是()(2,- 5)C. 6. (3分)在 美丽乡村”评选活动中,某乡镇7个村的得分如下:98, 90, 88,)m),其中m为常数,令3 =X1 +X2+X3,则3的值为()二、填空题(本大题共8小题,每小题4分,满分32分)9. (4分)因式分解:x 2- 4= ______ .10. (4分)2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金 120000000元,用于改造农村义务教育薄弱学校100所,数据12000000C 科学记数法表示为11. (4分)关于x 的一元二次方程x 2+2x+k=0有两个不相等的实数根,贝U k 的取值范围是12. _______________________________________________ (4分)已知 a 2+2a=1,则3 (a 2+2a ) +2的值为 ____________________________________ . 13(4分)在-2,1,4, -3,0这5个数字中,任取一个数是负数的概率是 __________ .14. (4分)如图,直线 a // b ,Z 1=60。

2018湖南岳阳中考数学解析

2018湖南岳阳中考数学解析

2018年湖南省岳阳市初中学业水平考试试卷数学(满分120分,考试时间90分钟)一、选择题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018湖南岳阳,1,3分)2018的倒数是A.2018B.20181 C.20181- D.-2018 【答案】D.【解析】解:0)2018(-=1.故选D.【知识点】零指数幂2.(2018湖南岳阳,2,3分) 下列运算结果正确的是A .325a a a ⋅=B .325()a a =C .325a a a +=D .22a a -=- 【答案】A.【解析】解:A 选项,a 3·a 2=a 3+2=a 5,故正确;B 选项(a 3)2=a 3×2=a 6,故错误;C 选项,a 3和a 2不是同类项,不能合并,故错误;D 选项,a -2=21a,故错误. 故选A.【知识点】同底数幂的乘法,幂的乘方,合并同类项,负整数指数幂3.(2018湖南岳阳,3,3分) 函数3-=x y 中自变量x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C.【解析】解:根据题意可得x -3≥0,解答x ≥3,故选C.【知识点】函数的自变量的取值范围4.(2018湖南岳阳,4,3分) 抛物线23(2)5y x =-+的顶点坐标是( )A .(2,5)-B .(2,5)--C .(2,5)D .(2,5)-【答案】C.【解析】解:因为23(2)5y x =-+为抛物线的顶点式, 根据顶点式的坐标特点可知,顶点坐标为(2,5).故选C.【知识点】二次函数的性质5.(2018湖南岳阳,5,3分) 已知不等式组2010x x -<⎧⎨+≥⎩,其解集在数轴上表示正确的是( )A .B .C .D .【答案】D.【解析】解:⎩⎨⎧≥+-②01①02x x <,解不等式①,得x <2,解不等式②,得x ≥-1,不等式组的解集为-1≤x <2,不等式组的解集在数轴上表示为:故选D .【知识点】解一元一次不等式组6.(2018湖南岳阳,6,3分) 在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是( )A .90,96B .92,96C .92,98D .91,92【答案】 B【解析】解:将这组数按从小到大的顺序排列为:86,88,90,92,96,96,98,故该组数中的中位数为92,众数为96.故选B.【知识点】中位数,众数7.(2018湖南岳阳,7,3分) 下列命题是真命题的是( )A .平行四边形的对角线相等B .三角形的重心是三条边的垂直平分线的交点C .五边形的内角和是540oD .圆内接四边形的对角相等【答案】C.【解析】解:A 选项,平行四边形的对角线不一定相等,如菱形是平行四边形,但对角线不相等,故错误;B 选项,三角形的重心是三条边的中线的交点,故错误;C 选项,五边形的内角和为(5-2)×180°=540°,故正确;D 选项,圆内接四边形的对角互补,不一定相等,故错误.故选C.【知识点】平行四边形的性质,三角形重心的定义,多边形内角和,圆内接四边形的性质8.(2018湖南岳阳,8,3分) 在同一直角坐标系中,二次函数2y x =与反比例函数1(0)y x x=>的图象如图所示,若两个函数图象上有三个不同....的点1(,)A x m ,2(,)B x m ,3(,)C x m ,其中m 为常数,令123x x x ω=++,则ω的值为( )A .1B .mC .2mD .1m【答案】D.【解析】解:根据题意可得A ,B ,C 三点有两个在二次函数图象上,一个在反比例函数图象上,不妨设A ,B 两点在二次函数图象上,点C 在反比例函数图象上,∵二次函数2y x =的对称轴是y 轴,∴21x x +=0.∵点C 在反比例函数1(0)y x x =>上, ∴3x =m1, ∴m x x x 1321=++=ω. 故选D.【知识点】二次函数的性质,反比例函数的性质二、填空题:本大题共8小题,每小题4分,共32分.9.(2018湖南岳阳,9,4分) 因式分解:24x -= .【答案】(x -2)(x +2).【解析】解:原式=x 2-22=(x -2)(x +2).故答案为(x -2)(x +2).【知识点】应用公式法进行因式分解10.(2018湖南岳阳,10,4分)2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所.数据120000000用科学记数法表示为 .【答案】1.2×108.【解析】解:120000000=1.2×108.故答案为1.2×108.【知识点】科学记数法11.(2018湖南岳阳,11,4分)关于x 的一元二次方程220x x k ++=有两个不相等的实数根,则k 的取值范围是 . 【答案】k <1.【解析】解:∵一元二次方程220x x k ++=有两个不相等的实数根,∴△=22-4k >0,解得k <1.故答案为k <1..【知识点】一元二次方程根的判别式的应用12.(2018湖南岳阳,12,4分)已知221a a +=,则23(2)2a a ++的值为 . 【答案】5.【解析】解:∵221a a +=,∴23(2)2a a ++=3+2=5.故答案为5.【知识点】求代数式的值——整体代入法的应用13.(2018湖南岳阳,13,4分) 在-2,1,4,-3,0这5个数字中,任取一个数是负数的概率是 . 【答案】52. 【解析】解:∵在-2,1,4,-3,0这5个数字中负数有2个,∴任取一个数是负数的概率P=52. 故答案为52. 【知识点】古典概率的计算14.(2018湖南岳阳,14,4分)如图,直线//a b ,160∠=o ,240∠=o,则3∠= .【答案】80°.【解析】解:如图,∵a ∥b ,∴∠1=∠4.∵∠1=60°,∴∠4=60°.∵∠2=40°,∴∠3=180°-∠4-∠2=180°-60°-40°=80°.故答案为80°.【知识点】平行线的性质,三角形内角和定理15.(2018湖南岳阳,15,4分)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是 步.【答案】1760. 【解析】解:如图.设该直角三角形能容纳的正方形边长为x ,则AD=12-x ,FC=5-x根据题意易得△ADE ∽△EFC ,∴FCDE EF AD =, ∴x x x x -=-512,解得:x =1760. 故答案为1760.【知识点】相似三角形的性质16.(2018湖南岳阳,16,4分).如图,以AB 为直径的O e 与CE 相切于点C ,CE 交AB 的延长线于点E ,直径18AB =,30A ∠=o,弦CD AB ⊥,垂足为点F ,连接AC ,OC ,则下列结论正确的是 .(写出所有正确结论的序号)①»»BC BD =;②扇形OBC 的面积为274π;③OCF OEC ∆∆:;④若点P 为线段OA 上一动点,则AP OP ⋅有最大值20.25.【答案】①③④.【解析】解:∵AB 是⊙O 的直径,且CD ⊥AB ,∴»»BCBD =,故①正确; ∵∠A=30°,∴∠COB=60°,∴扇形OBC=ππ227)2(360602=AB ··,故②错误; ∵CE 是⊙O 的切线,∴∠OCE=90°,∴∠OCD=∠OFC ,∠EOC=∠COF ,∴OCF OEC ∆∆:,故③正确;设AP=x ,则OP=9-x ,∴AP ·OP=x (9-x )=-x 2+9x =481)29(2+-x -, ∴当x =29时,AP ·OP 的最大值为481=20.25,故④正确. 故答案为①③④.【知识点】垂径定理,扇形面积计算公式,相似三角形的判定,二次函数的性质三、解答题(本大题共8小题,满分64分,解答应写出文字说明、证明过程或演算步骤)17.(2018湖南岳阳,17,6分) 计算:20(1)2sin 45(2018)2π--+-+-o .【思路分析】首先利用乘方运算,特殊角的三角函数值,零指数幂以及绝对值的性质进行化简,然后将化简后的式子进行加减即可.【解题过程】解:原式=1-2×22+1+2=2. 【知识点】乘方运算,特殊角的三角函数值,零指数幂,绝对值的性质18.(2018湖南岳阳,18,6分)如图,在平行四边形ABCD 中,AE CF =,求证:四边形BFDE 是平行四边形.【思路分析】首先根据四边形ABCD 是平行四边形,可得AD=BC ,∠A=∠C ,AB=CD ,然后根据AE=CF 可得△ADE ≌△CBF ,进而得出DE=BF ,进而证明出结论.【解题过程】证明:∵四边形ABCD 是平行四边形,∴AD=BC ,∠A=∠C ,AB=CD.∵AE=CF ,∴BE=DF.∵在△ADE 和△CBF 中,⎪⎩⎪⎨⎧=∠=∠=BC AD C A CF AE ,∴△ADE ≌△CBF (SAS )∴DE=BF ,∴四边形BFDE 是平行四边形.【知识点】平行四边形的判定与性质,全等三角形的判定与性质19.(2018湖南岳阳,19,8分) 如图,某反比例函数图象的一支经过点(2,3)A 和点B (点B 在点A 的右侧),作BC y ⊥轴,垂足为点C ,连结AB ,AC.(1)求该反比例函数的解析式;(2)若ABC ∆的面积为6,求直线AB 的表达式.【思路分析】(1)首先设反比例函数的解析式为xk y =,然后把A 的坐标代入反比例函数的解析式即可求出答案;(2)根据三角形的面积求出B 的坐标,设直线AB 的解析式是y =mx +n ,把A 、B 的坐标代入得到方程组,求出方程组的解即可.【解题过程】解:(1)设反比例函数的解析式为xk y =, ∵点A 在反比例函数的图象上, ∴将(2,3)A 代入xk y =,得k =2×3=6, ∴反比例函数的解析式为xy 6=. (2)设B(x ,x 6),则C(0,x 6),点A 到BC 的距离d =3-x 6,BC=x, S △ABC =232)63(6-x x x =-, ∵S △ABC =6,∴623=6-x ,解得x =6, ∴B (6,1).设AB 的表达式为y =mx +n ,则⎩⎨⎧=+=+3216b k b k ,解得⎪⎩⎪⎨⎧==421b -k , ∴直线AB 的表达式为421+-=x y . 【知识点】待定系数法求一次函数的解析式和反比例函数的解析式,三角形的面积计算公式20.(2018湖南岳阳,20,8分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队.现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为_______人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.【思路分析】(1)根据条形统计图中喜欢腰鼓的人数和扇形统计图中腰鼓所占的比例即可计算出总人数;(2)根据总人数和腰鼓,花鼓戏,划龙舟以及其他的项目的人数可计算出广场舞的人数,进而画出条形图;(3)根据“划龙舟”的人数以及总人数计算出“划龙舟”的人占总数的百分比,进而得出所在扇形的圆心角;(4)首先列出表格,然后根据表格得出所有的情况和恰好选中“花鼓戏、划龙舟”这两个项目的情况,进而得出概率.【解题过程】解:(1)∵从条形图中可以看出喜欢腰鼓的有24人,从扇形图中可以看出喜欢腰鼓占的比例为20%,∴这次参与调查的村民人数为24÷20%=120人.故答案为240人.(2)喜欢广场舞的人数为120-24-15-30-9=42人,补充如图所示.(3)图中“划龙舟”所在的扇形的圆心角的度数为:360°×12030=90°. (4)列表如下:广场舞 腰鼓 花鼓戏 划龙舟 广场舞无 (腰鼓,广场舞) (花鼓戏,广场舞) (划龙舟,广场舞) 腰鼓(广场舞,腰鼓) 无 (花鼓戏,腰鼓) (划龙舟,腰鼓) 花鼓戏(广场舞,花鼓戏) (腰鼓,花鼓戏) 无 (划龙舟,花鼓戏) 划龙舟 (广场舞,划龙舟) (腰鼓,划龙舟) (花鼓戏,划龙舟)无 由表格可知,共有12中情况,其中恰好选中“花鼓戏、划龙舟”这两个项目的有2种情况,故概率为:612=. 【知识点】列表法求概率,求扇形的圆心角 21.(2018湖南岳阳,21,8分) 为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?【思路分析】首先设原计划平均每天施工x 平方米,根据题意列出分式方程11213300033000=-x.x ,解出分式方程,然后根据“实际工作效率比原计划每天提高了20%”得出答案.【解题过程】解:设原计划平均每天施工x 平方米,则 11213300033000=-x.x ,解得x =500, 经检验,x =500是原分式方程的解,∴实际平均每天施工为500×(1+20%)=600平方米.答:实际平均每天施工为600平方米.【知识点】分式方程的应用22.(2018湖南岳阳,22,8分)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC 宽3.9米,门卫室外墙AB 上的O 点处装有一盏路灯,点O 与地面BC 的距离为3.3米,灯臂OM 长为1.2米(灯罩长度忽略不计),60AOM ∠=o .(1)求点M 到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD 保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:3 1.73≈,结果精确到0.01米)【思路分析】(1)首先过点M 作MN ⊥AB 于N ,根据三角函数的定义可得出ON 的长,然后根据线段的加减运算即可得出M 到地面的距离;(2)首先根据题意可得货车的右端应该在图中E 点处,此时BE=0.7m ,过E 点作EF ⊥BC 交OM 于F 点,过O 点作OG ⊥DF ,然后根据含30°角的直角三角形的性质可得出FG 的长,进而得出EF 的长,进而得出答案.【解题过程】解:(1)过点M 作MN ⊥AB 于N ,∵OM=1.2,∠MON=60°,∴ON=OM ·sin60°=533, ∴M 到地面的距离d =ON+OB=533+3.3=103633+. (2)根据题意可得货车的右端应该在图中E 点处,此时BE=0.7m ,∴EF=FG+GE=3.3+0.404=3.704>3.5,∴能通过.【知识点】锐角三角函数的定义,含30°角的直角三角形的性质23.(2018湖南岳阳,23,10分) 已知在Rt ABC ∆中,90BAC ∠=o,CD 为ACB ∠的平分线,将ACB ∠沿CD 所在的直线对折,使点B 落在点'B 处,连结'AB ,'BB ,延长CD 交'BB 于点E ,设2(045)ABC αα∠=<<o o.(1)如图1,若AB AC =,求证:2CD BE =;(2)如图2,若AB AC ≠,试求CD 与BE 的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC 绕点C 逆时针旋转角(45α+o ),得到线段FC ,连结EF 交BC 于点O ,设COE ∆的面积为1S ,COF ∆的面积为2S ,求12S S (用含α的式子表示). 【思路分析】(1)首先根据轴对称的性质可得CE ⊥BB ′且BE=21BB ′,进而得出∠B ′=∠ADC ,进而得出△ABB ′≌△ACD ,然后根据全等三角形的性质可得BB ′=CD ,进而证明出结论; (2)首先根据(1)可得出∠B ′=∠ADC ,进而得出△ABB ′∽△ACD ,进而得出AC AB CD BB =',然后根据锐角三角函数的定义得出CD 与BE 的数量关系;(3)首先根据题意可得出∠ECF=90°,进而得出△OBE ∽△OCF ,然后根据等高的三角形的面积比等于底的比可得出OFOE S S =21,最后利用锐角三角函数的定义得出答案. 【解题过程】解:(1)根据题意可得CE ⊥BB ′且BE=21BB ′, ∵CE ⊥BB ′,∴∠EBD+∠BDE=90°.∵∠BDE=∠ADC ,∴∠ADC+∠EBD=90°.∵∠BAB ′=90°,∴∠EBD+∠B ′=90°,∴∠B ′=∠ADC ,在△ABB ′和△ACD 中⎪⎩⎪⎨⎧∠='∠=∠='∠ADC B ACAB CAD BAB ∴△ABB ′≌△ACD (ASA ),∴BB ′=CD ,∴CD=2BE.(2)由(1)可知,∠B ′=∠ADC ,∵∠BAB ′=∠CAD=90°,∴△ABB ′∽△ACD , ∴AC AB CD BB ='. ∵AB=BC ·cos ∠ABC==BCcos2α,AC=BC ·sin ∠ABC=BCsin2α,∴ααsin2cos CD BB 2=', ∴CD=BE cos 2sin2αα2. (3)由(1)(2)可知,CE ⊥BB ′,∠B ′BA=∠BCE ,∵∠EBC+∠BCE=90°,即∠B ′BA+∠ABC+∠BCE=90°,∴∠BCE=45°-α.∵∠BCF=45°+α,∴∠ECF=∠BCE+∠BCF=90°,∴CF ∥BE ,∴△OBE ∽△OCF ,∴CFBE OF OE =. ∵OF OE S S =21,sin ∠BCE=BCBE ,BC=CF , ∴21S S =sin (45°-α). 【知识点】轴对称的性质,锐角三角函数的定义,相似三角形的判定与性质,全等三角形的判定与性质24.(2018湖南岳阳,24,10分)已知抛物线F :2y x bx c =++的图象经过坐标原点O ,且与x 轴另一交点为3(,0)-.(1)求抛物线F 的解析式;(2)如图1,直线l :3(0)3y x m m =+>与抛物线F 相交于点11(,)A x y 和点22(,)B x y (点A 在第二象限),求21y y -的值(用含m 的式子表示);(3)在(2)中,若43m =,设点'A 是点A 关于原点O 的对称点,如图2. ①判断'AA B ∆的形状,并说明理由;②平面内是否存在点P ,使得以点A 、B 、'A 、P 为顶点的四边形是菱形.若存在,求出点P 的坐标;若不存在,请说明理由.【思路分析】(1)将原点和点3(3-代入抛物线2y x bx c =++,解出b 和c 即可; (2)首先联立m x y +=33与x x y 332+=,解出x 1和x 2,然后将x 1和x 2代入m x y +=33解出y 1和y 2,进而得出结果;(3)①首先根据题意得出A ′的坐标,进而得出A ′B 的长度,根据点A 的坐标得出OA 的长,进而得出AA ′,然后根据三角函数的定义得出sin ∠A ′,进而得出∠A ′的度数,进而得出△AA ′B 的形状;②分别以AA ′,A ′B 和AB 为菱形的对角线,根据菱形的性质得出点P 的坐标即可.【解题过程】解:(1)根据题意,得⎪⎩⎪⎨⎧=+-=033310c b c ,解得⎪⎩⎪⎨⎧==033c b , ∴F 的解析式为x x y 332+=. (2)联立m x y +=33与x x y 332+=,解得m x -=1,m x =2, ∴m m m x y +-=+=333311,m m m x y +=+=333322, ∴m m m m m y y 332333312=+--+=-)(, (3)①当43m =时,3321-=x ,3322=x , ∴321=y ,22=y∴A (332-,32),B (332,2). ∵点A 与点A ′关于原点对称,∴A ′(332,32-), ∴A ′B=2-(32-)=38. ∵OA=343233222=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-, ∴OA ′=34, ∴AA ′=38, ∴A ′B=AA ′.∵点A 到BA ′的距离d =332+332=334, ∴sin ∠A ′=2338334='AA d , ∴∠A ′=60°,∴△AA ′B 是等边三角形.②存在.若以AA ′为菱形的对角线,则点P 与点B 关于原点对称,此时点P 坐标为(-332,-2); 若以A ′B 为菱形的对角线,则点P 为将点A 向右移动2d 个单位长度,此时点P 的坐标为(334,32); 若以AB 为菱形的对角线,则点P 为将点A 向上移动A ′B 个单位长度,此时点P 的坐标为(332-,310).【知识点】待定系数法求二次函数的解析式,一次函数与二次函数的交点问题,中心对称图形的性质,锐角三角函数的定义,等边三角形的判定,在平面直角坐标平面内的点的平移,菱形的性质。

2018年湖南省岳阳市中考数学试卷含答案解析

2018年湖南省岳阳市中考数学试卷含答案解析


.
12.已知 a2 2a 1,则 3(a2 2a) 2 的值为
.
13.在 2 ,1,4, 3 ,0 这 5 个数字中,任取一个数是负数的概率是
.
14.如图,直线 a∥b ,∠1 60 ,∠2 40 ,则∠3
.
15.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步, 股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短 直角边)长为 5 步,股(长直角边)长为 12 步,问该直角三角形能
第2页
徐老师
容纳的正方形边长最大是多少步?”该问题的答案是
步.
16.如图,以 AB 为直径的 O 与 CE 相切于点 C , CE 交 AB 的延长线于点 E ,直径
AB 18 ,∠A 30 ,弦 CD⊥AB ,垂足为点 F ,连接 AC , OC ,则下列结论正
确的是
(写出所有正确结论的序号).
① BC BD ;②扇形 OBC 的面积为 27 ;③ △OCF∽△OEC ;④若点 P 为线段 OA 4
上一动点,则 APOP 有最大值 20.25 .
三、解答题(本大题共 8 小题,共 64 分.解答应写出必要的文字说明、证明过程或演 算步骤)
17.(本小题满分 6 分) 计算: (1)2 2sin 45 (π 2 018) | 2 | .
(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;
(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加
端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏
徐老师
21.(本小题满分 8 分) 为落实党中央“长江大保护”新发展理念,岳阳市持续推进长江岸线保护,还 洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为 33000 平方米 的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增 加了人力和设备,实际工作效率比原计划每天提高了 20% ,结果提前 11 天完成 任务,求实际平均每天施工多少平方米?

岳阳市中考数学试卷

岳阳市中考数学试卷

2018年湖南省岳阳市中考数学试卷一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.(3.00分)(2018•岳阳)2018的倒数是()A.2018 B.C.﹣D.﹣20182.(3.00分)(2018•岳阳)下列运算结果正确的是()A.a3•a2=a5 B.(a3)2=a5C.a3+a2=a5 D.a﹣2=﹣a23.(3.00分)(2018•岳阳)函数y=中自变量x的取值范围是()A.x>3 B.x≠3 C.x≥3 D.x≥04.(3.00分)(2018•岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5) D.(2,﹣5)5.(3.00分)(2018•岳阳)已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.6.(3.00分)(2018•岳阳)在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,927.(3.00分)(2018•岳阳)下列命题是真命题的是()A.平行四边形的对角线相等B.三角形的重心是三条边的垂直平分线的交点C.五边形的内角和是540°D.圆内接四边形的对角相等8.(3.00分)(2018•岳阳)在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.二、填空题(本大题共8小题,每小题4分,满分32分)9.(4.00分)(2018•桂林)因式分解:x2﹣4=.10.(4.00分)(2018•岳阳)2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所,数据120000000科学记数法表示为.11.(4.00分)(2018•岳阳)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是.12.(4.00分)(2018•岳阳)已知a2+2a=1,则3(a2+2a)+2的值为.13.(4.00分)(2018•岳阳)在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是.14.(4.00分)(2018•岳阳)如图,直线a∥b,∠l=60°,∠2=40°,则∠3=.15.(4.00分)(2018•岳阳)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.16.(4.00分)(2018•岳阳)如图,以AB为直径的⊙O与CE相切于点C,CE交AB的延长线于点E,直径AB=18,∠A=30°,弦CD⊥AB,垂足为点F,连接AC,OC,则下列结论正确的是.(写出所有正确结论的序号)①=;②扇形OBC的面积为π;③△OCF∽△OEC;④若点P为线段OA上一动点,则AP•OP有最大值20.25.三、解答题(本大题共8小题,满分64分,解答应写出文字说明,证明过程或演算步骤)17.(6.00分)(2018•岳阳)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣| 18.(6.00分)(2018•岳阳)如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.19.(8.00分)(2018•岳阳)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.20.(8.00分)(2018•岳阳)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.21.(8.00分)(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?22.(8.00分)(2018•岳阳)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:≈1.73,结果精确到0.01米)23.(10.00分)(2018•岳阳)已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB沿CD所在的直线对折,使点B落在点B′处,连结AB',BB',延长CD交BB'于点E,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若AB≠AC,试求CD与BE的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EF交BC于点O,设△COE的面积为S1,△COF的面积为S2,求(用含α的式子表示).24.(10.00分)(2018•岳阳)已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.2018年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)1.(3.00分)(2018•岳阳)2018的倒数是()A.2018 B.C.﹣D.﹣2018【分析】直接利用倒数的定义进而分析得出答案.【解答】解:2018的倒数是,故选:B.【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键.2.(3.00分)(2018•岳阳)下列运算结果正确的是()A.a3•a2=a5 B.(a3)2=a5C.a3+a2=a5 D.a﹣2=﹣a2【分析】根据积的乘方,幂的乘方,负指数幂的定义一一判断即可解决问题;【解答】解:A、a3•a2=a5,正确,故本选项符合题意;B、(a3)2=a6,故本选项不符合题意;C、不是同类项不能合并,故本选项不符合题意;D、a﹣2=,故本选项不符合题意,故选:A.【点评】本题考查积的乘方,幂的乘方,负指数幂的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(3.00分)(2018•岳阳)函数y=中自变量x的取值范围是()A.x>3 B.x≠3 C.x≥3 D.x≥0【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:函数y=中x﹣3≥0,所以x≥3,故选:C.【点评】本题考查了求函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(3.00分)(2018•岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5) D.(2,﹣5)【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(﹣h,k)即可求解.【解答】解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),故选:C.【点评】本题考查了二次函数的性质,正确记忆y=a(x+h)2+k的顶点坐标是(﹣h,k)(a≠0)是关键.5.(3.00分)(2018•岳阳)已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.【分析】分别解不等式组进而在数轴上表示出来即可.【解答】解:,解①得:x<2,解②得:x≥﹣1,故不等式组的解集为:﹣1≤x<2,故解集在数轴上表示为:.故选:D.【点评】此题主要考查了解一元一次不等式组,正确掌握解题方法是解题关键.6.(3.00分)(2018•岳阳)在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,92【分析】根据中位数,众数的定义即可判断.【解答】解:将数据从小到大排列:86,88,90,92,96,96,98;可得中位数为92,众数为96.故选:B.【点评】本题考查众数、中位数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.7.(3.00分)(2018•岳阳)下列命题是真命题的是()A.平行四边形的对角线相等B.三角形的重心是三条边的垂直平分线的交点C.五边形的内角和是540°D.圆内接四边形的对角相等【分析】根据平行四边形的性质、三角形的重心的概念、多边形内角和的计算公式、圆内接四边形的性质判断即可.【解答】解:平行四边形的对角线互相平分,A是假命题;三角形的重心是三条边的中线的交点,B是假命题;五边形的内角和=(5﹣2)×180°=540°,C是真命题;圆内接四边形的对角互补,D是假命题;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3.00分)(2018•岳阳)在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.【分析】三个点的纵坐标相同,由图象可知y=x2图象上点横坐标互为相反数,则x1+x2+x3=x3,再由反比例函数性质可求x3.【解答】解:设点A、B在二次函数y=x2图象上,点C在反比例函数y=(x>0)的图象上.因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x3=∴ω=x1+x2+x3=x3=故选:D.【点评】本题考查二次函数图象的轴对称性,二次函数图象上点纵坐标相同时,对应点关于抛物线对称轴对称.二、填空题(本大题共8小题,每小题4分,满分32分)9.(4.00分)(2018•桂林)因式分解:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.10.(4.00分)(2018•岳阳)2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所,数据120000000科学记数法表示为 1.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.120000000=1.2【解答】解:120000000=1.2×108,故答案为:1.2×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(4.00分)(2018•岳阳)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是k<1.【分析】由方程有两个不等实数根可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:由已知得:△=4﹣4k>0,解得:k<1.故答案为:k<1.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于k的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(或不等式组)是关键.12.(4.00分)(2018•岳阳)已知a2+2a=1,则3(a2+2a)+2的值为5.【分析】利用整体思想代入计算即可;【解答】解:∵a2+2a=1,∴3(a2+2a)+2=3×1+2=5,故答案为5.【点评】本题考查代数式求值,解题的关键是学会用整体代入的思想解决问题,属于基础题.13.(4.00分)(2018•岳阳)在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是.【分析】根据概率公式:P(A)=事件A可能出现的结果数:所有可能出现的结果数可得答案.【解答】解:任取一个数是负数的概率是:P=,故答案为:.【点评】此题主要考查了概率公式,关键是掌握公式.14.(4.00分)(2018•岳阳)如图,直线a∥b,∠l=60°,∠2=40°,则∠3=80°.【分析】根据平行线的性质求出∠4,根据三角形内角和定理计算即可.【解答】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°﹣∠4﹣∠2=80°,故答案为:80°.【点评】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.15.(4.00分)(2018•岳阳)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.【分析】如图1,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论;如图2,同理可得正方形的边长,比较可得最大值.【解答】解:如图1,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴,∴,x=,如图2,四边形DGFE是正方形,过C作CP⊥AB于P,交DG于Q,设ED=x,S△ABC=AC•BC=AB•CP,12×5=13CP,CP=,同理得:△CDG∽△CAB,∴,∴,x=,∴该直角三角形能容纳的正方形边长最大是(步),故答案为:.【点评】此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.16.(4.00分)(2018•岳阳)如图,以AB为直径的⊙O与CE相切于点C,CE交AB的延长线于点E,直径AB=18,∠A=30°,弦CD⊥AB,垂足为点F,连接AC,OC,则下列结论正确的是①③④.(写出所有正确结论的序号)①=;②扇形OBC的面积为π;③△OCF∽△OEC;④若点P为线段OA上一动点,则AP•OP有最大值20.25.【分析】利用垂径定理对①进行判断;利用圆周角定理得到∠BOC=2∠A=60°,则利用扇形的面积公式可计算出扇形OBC的面积,于是可对②进行判断;利用切线的性质得到OC⊥CE,然后根据相似三角形的判定方法对③进行判断;由于AP•OP=﹣(OP﹣)2+,则可利用二次函数的性质对④进行判断.【解答】解:∵弦CD⊥AB,∴=,所以①正确;∴∠BOC=2∠A=60°,∴扇形OBC的面积==π,所以②错误;∵⊙O与CE相切于点C,∴OC⊥CE,∴∠OCE=90,∵∠COF=∠EOC,∠OFC=∠OCE,∴△OCF∽△OEC;所以③正确;AP•OP=(9﹣OP)•OP=﹣(OP﹣)2+,当OP=时,AP•OP的最大值为,所以④正确.故答案为①③④.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了垂径定理、圆周角定理和切线的性质.三、解答题(本大题共8小题,满分64分,解答应写出文字说明,证明过程或演算步骤)17.(6.00分)(2018•岳阳)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣2×+1+=1﹣+1+=2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6.00分)(2018•岳阳)如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.【分析】首先根据四边形ABCD是平行四边形,判断出AB∥CD,且AB=CD,然后根据AE=CF,判断出BE=DF,即可推得四边形BFDE是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,又∵AE=CF,∴BE=DF,∴BE∥DF且BE=DF,∴四边形BFDE是平行四边形.【点评】此题主要考查了平行四边形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.②判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.③判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.④判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.⑤判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.19.(8.00分)(2018•岳阳)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.【分析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程求得b的值,进而求得a的值,根据待定系数法,可得答案.【解答】解:(1)由题意得,k=xy=2×3=6∴反比例函数的解析式为y=.(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b)∵反比例函数y=的图象经过点B(a,b)∴b=∴AD=3﹣.=BC•AD∴S△ABC=a(3﹣)=6解得a=6∴b==1∴B(6,1).设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得,解得,直线AB的解析式为y=﹣x+4.【点评】本题考查了反比例函数,利用待定系数法求反比例函数的解析式,正确利用a,b表示出BC,AD的长度是关键.20.(8.00分)(2018•岳阳)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为120人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.【分析】(1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数;(2)利用条形统计图以及样本数量得出喜欢广场舞的人数;(3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;(4)利用树状图法列举出所有的可能进而得出概率.【解答】解:(1)这次参与调查的村民人数为:24÷20%=120(人);故答案为:120;(2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),如图所示:;(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;(4)如图所示:,一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:.【点评】此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,正确列举出所有可能是解题关键.21.(8.00分)(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?【分析】设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论.【解答】解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=600.答:实际平均每天施工600平方米.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8.00分)(2018•岳阳)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:≈1.73,结果精确到0.01米)【分析】(1)构建直角△OMN,求ON的长,相加可得BN的长,即点M到地面的距离;(2)左边根据要求留0.65米的安全距离,即取CE=0.65,车宽EH=2.55,计算高GH的长即可,与3.5作比较,可得结论.【解答】解:(1)如图,过M作MN⊥AB于N,交BA的延长线于N,Rt△OMN中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ON=OM=0.6,∴NB=ON+OB=3.3+0.6=3.9;即点M到地面的距离是3.9米;(2)取CE=0.65,EH=2.55,∴HB=3.9﹣2.55﹣0.65=0.7,过H作GH⊥BC,交OM于G,过O作OP⊥GH于P,∵∠GOP=30°,∴tan30°==,∴GP=OP=≈0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会添加常用辅助线,在直角三角形解决问题,属于中考常考题型.23.(10.00分)(2018•岳阳)已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB沿CD所在的直线对折,使点B落在点B′处,连结AB',BB',延长CD交BB'于点E,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若AB≠AC,试求CD与BE的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EF交BC于点O,设△COE的面积为S1,△COF的面积为S2,求(用含α的式子表示).【分析】(1)由翻折可知:BE=EB′,再利用全等三角形的性质证明CD=BB′即可;(2)如图2中,结论:CD=2•BE•tan2α.只要证明△BAB′∽△CAD,可得==,推出=,可得CD=2•BE•tan2α;(3)首先证明∠ECF=90°,由∠BEC+∠ECF=180°,推出BB′∥CF,推出===sin(45°﹣α),由此即可解决问题;【解答】解:(1)如图1中,∵B、B′关于EC对称,∴BB′⊥EC,BE=EB′,∴∠DEB=∠DAC=90°,∵∠EDB=∠ADC,∴∠DBE=∠ACD,∵AB=AC,∠BAB′=∠DAC=90°,∴△BAB′≌CAD,∴CD=BB′=2BE.(2)如图2中,结论:CD=2•BE•tan2α.理由:由(1)可知:∠ABB′=∠ACD,∠BAB′=∠CAD=90°,∴△BAB′∽△CAD,∴==,∴=,∴CD=2•BE•tan2α.(3)如图3中,在Rt△ABC中,∠ACB=90°﹣2α,∵EC平分∠ACB,∴∠ECB=(90°﹣2α)=45°﹣α,∵∠BCF=45°+α,∴∠ECF=45°﹣α+45°+α=90°,∴∠BEC+∠ECF=180°,∴BB′∥CF,∴===sin(45°﹣α),∵=,∴=sin(45°﹣α).【点评】本题考查几何变换综合题、等腰直角三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、平行线等分线段定理、锐角三角函数等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.24.(10.00分)(2018•岳阳)已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;(2)将直线l的解析式代入抛物线F的解析式中,可求出x1、x2的值,利用一次函数图象上点的坐标特征可求出y1、y2的值,做差后即可得出y2﹣y1的值;(3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P 的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.【解答】解:(1)∵抛物线y=x2+bx+c的图象经过点(0,0)和(﹣,0),∴,解得:,∴抛物线F的解析式为y=x2+x.(2)将y=x+m代入y=x2+x,得:x2=m,解得:x1=﹣,x2=,∴y1=﹣+m,y2=+m,∴y2﹣y1=(+m)﹣(﹣+m)=(m>0).(3)∵m=,∴点A的坐标为(﹣,),点B的坐标为(,2).∵点A′是点A关于原点O的对称点,∴点A′的坐标为(,﹣).①△AA′B为等边三角形,理由如下:∵A(﹣,),B(,2),A′(,﹣),∴AA′=,AB=,A′B=,∴AA′=AB=A′B,∴△AA′B为等边三角形.②∵△AA′B为等边三角形,∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P 的坐标为(x,y).(i)当A′B为对角线时,有,解得:,∴点P的坐标为(2,);(ii)当AB为对角线时,有,解得:,∴点P的坐标为(﹣,);(iii)当AA′为对角线时,有,解得:,∴点P的坐标为(﹣,﹣2).综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(2,)、(﹣,)和(﹣,﹣2).【点评】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)将一次函数解析式代入二次函数解析式中求出x1、x2的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.。

[重点推荐]湖南省岳阳市2018年中考数学试题(含解析)

[重点推荐]湖南省岳阳市2018年中考数学试题(含解析)
专项资金120000000元,用于改造农村义务教育薄弱学校100所,数据120000000
科学记数法表示为.
11.(4分)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取
值范围是.
12.(4分)已知a2+2a=1,则3(a2+2a)+2的值为.
13.(4分)在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是.
3.(3分)函数y=中自变量x的取值范围是()
A.x>3B.x≠3C.x≥3D.x≥0
4.(3分)抛物线y=3(x﹣2)2+5的顶点坐标是()
A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)
5.(3分)已知不等式组,其解集在数轴上表示正确的是()
A.B.
C.D.
6.(3分)在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,
的式子表示).
24.(10分)已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交
点为(﹣,0).
(1)求抛物线F的解析式;
(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点
第5页(共22页)
B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);
三、解答题(本大题共8小题,满分64分,解答应写出文字说明,证明过程或
演算步骤)
17.(6分)计算:(﹣1)2﹣2sin45°+(π ﹣2018)0+|﹣|
18.(6 分)如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行
四边形.
19.(8分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018 年湖南省岳阳市中考数学试卷一、选择题(本大题共8 小题,每小题3 分,满分24 分,在每道小题给出的四个选项中,选出符合要求的一项)1.(3分)2018的倒数是()A.2018 B.C.﹣D.﹣2018 2.(3分)下列运算结果正确的是()A.a3•a2=a5B.(a3)2=a5 C.a3+a2=a5D.a﹣2=﹣a23.(3分)函数y=中自变量x的取值范围是()A.x>3 B.x≠3C.x≥3D.x≥04.(3分)抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)5.(3分)已知不等式组,其解集在数轴上表示正确的是()A. B .C.D.6.(3分)在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,927.(3分)下列命题是真命题的是()A.平行四边形的对角线相等B.三角形的重心是三条边的垂直平分线的交点C.五边形的内角和是540° D.圆内接四边形的对角相等8.(3分)在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2 D.二、填空题(本大题共8 小题,每小题4 分,满分32 分)9.(4分)因式分解:x2﹣4= .10.(4分)2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所,数据120000000科学记数法表示为.11.(4分)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是.12.(4分)已知a2+2a=1,则3(a2+2a)+2的值为.13.(4分)在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是.14.(4分)如图,直线a∥b,∠l=60°,∠2=40°,则∠3=.15.(4分)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.16.(4分)如图,以AB为直径的⊙O与CE相切于点C,CE交AB的延长线于点E,直径AB=18,∠A=30°,弦CD⊥AB,垂足为点F,连接AC,OC,则下列结论正确的是.(写出所有正确结论的序号)①=;②扇形OBC π;③△OCF∽△OEC;④若点P 为线段OA 上一动点,则AP•OP 有最大值20.25.三、解答题(本大题共8 小题,满分64 分,解答应写出文字说明,证明过程或演算步骤)17.(6分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|18.(6 分)如图,在平行四边形ABCD 中,AE=CF,求证:四边形BFDE是平行四边形.19.(8分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC 的面积为6,求直线AB 的表达式.20.(8 分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.21.(8分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?22.(8 分)图1 是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC 宽3.9 米,门卫室外墙AB 上的O 点处装有一盏路灯,点O 与地面BC的距离为3.3 米,灯臂OM 长为1.2 米(灯罩长度忽略不计),∠AOM=60°.(1)求点M 到地面的距离;(2)某搬家公司一辆总宽2.55 米,总高3.5 米的货车从该入口进入时,货车需与护栏CD 保持0.65 ≈1.73,结果精确到0.01米)23.(10分)已知在Rt△A BC中,∠B AC=90°,CD 为∠ACB的平分线,将∠ACB沿CD 所在的直线对折,使点B 落在点B′处,连结AB',BB',延长CD交BB'于点E,设∠A B C=2α(0°<α<45°).(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若AB≠AC,试求CD与BE的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EF交BC于点O,设△COE的面积为S1,△COF的面积为(用含α的式子表示).24.(10分)已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F 的解析式;(2)如图1,直线l:y= x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B 的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P 为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由.2018 年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8 小题,每小题3 分,满分24 分,在每道小题给出的四个选项中,选出符合要求的一项)1.(3分)2018的倒数是()A.2018 C.﹣D.﹣2018【解答】解:2018 ,故选:B.2.(3分)下列运算结果正确的是()A.a3•a2=a5B.(a3)2=a5 C.a3+a2=a5D.a﹣2=﹣a2【解答】解:A、a3•a2=a5,正确,故本选项符合题意;B、(a3)2=a6,故本选项不符合题意;C、不是同类项不能合并,故本选项不符合题意;D、a﹣2=,故本选项不符合题意,故选:A.3.(3分)函数y=中自变量x的取值范围是()A.x>3 B.x≠3C.x≥3D.x≥0【解答】解:函数中x﹣3≥0,所以x≥3,故选:C.4.(3分)抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)【解答】解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),故选:C.5.(3分)已知不等式组,其解集在数轴上表示正确的是()A. B .C.D.【解答】解:,解①得:x<2,解②得:x≥﹣1,故不等式组的解集为:﹣1≤x<2,故解集在数轴上表示为:.故选:D.6.(3分)在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,92【解答】解:将数据从小到大排列:86,88,90,92,96,96,98;可得中位数为92,众数为96.故选:B.7.(3分)下列命题是真命题的是()A.平行四边形的对角线相等B.三角形的重心是三条边的垂直平分线的交点C.五边形的内角和是540° D.圆内接四边形的对角相等【解答】解:平行四边形的对角线互相平分,A 是假命题;三角形的重心是三条边的中线的交点,B 是假命题;五边形的内角和=(5﹣2)×180°=540°,C 是真命题;圆内接四边形的对角互补,D 是假命题;故选:C.8.(3分)在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2 D.【解答】解:设点A、B在二次函数y=x2图象上,点C在反比例函数(x>0)的图象上.因为AB 两点纵坐标相同,则A、B 关于y 轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x 3=∴ω=x 1+x2+x3=x3=故选:D.二、填空题(本大题共8 小题,每小题4 分,满分32 分)9.(4分)因式分解:x2﹣4=(x+2)(x﹣2).【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).10.(4 分)2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000 元,用于改造农村义务教育薄弱学校100 所,数据120000000科学记数法表示为1.2×108 .【解答】解:120000000=1.2×108,故答案为:1.2×108.11.(4分)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k 的取值范围是k<1.【解答】解:由已知得:△=4﹣4k>0,解得:k<1.故答案为:k<1.12.(4分)已知a2+2a=1,则3(a2+2a)+2的值为5 .【解答】解:∵a2+2a=1,∴3(a2+2a)+2=3×1+2=5,故答案为5.13.(4 分)在﹣2,1,4,﹣3,0 这5 个数字中,任取一个数是负数的概率是.【解答】解:任取一个数是负数的概率是:P=,故答案为:.14.(4分)如图,直线a∥b,∠l=60°,∠2=40°,则∠3=80°.【解答】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°﹣∠4﹣∠2=80°,故答案为:80°.15.(4分)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是步.【解答】解:∵四边形CDEF 是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴,∴,x=,∴该直角三角形能容纳的正方形边长最大是(步),故答案为:.16.(4 分)如图,以AB 为直径的⊙O 与CE 相切于点C,CE 交AB 的延长线于点E,直径AB=18,∠A=30°,弦CD⊥AB,垂足为点F,连接AC,OC,则下列结论正确的是①③ .(写出所有正确结论的序号)①=;②扇形OBC π;③△OCF∽△OEC;④若点P 为线段OA 上一动点,则AP•OP 有最大值20.25.【解答】解:∵弦CD⊥AB,∴=,所以①正确;∴∠BOC=2∠A=60°,∴扇形OBC =π,所以②错误;∵⊙O 与CE 相切于点C,∴OC⊥CE,∴∠OCE=90,∵∠COF=∠EOC,∠OFC=∠OCE,∴△OCF∽△OEC;所以③正确;AP•OP=(9﹣OP)•OP=﹣(OP﹣3)2+9,当OP=3 时,AP•OP 的最大值为9,所以④错误.故答案为①③.三、解答题(本大题共8 小题,满分64 分,解答应写出文字说明,证明过程或演算步骤)17.(6分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|【解答】解:原式=1﹣2×+1+=1﹣+1+=2.18.(6 分)如图,在平行四边形ABCD 中,AE=CF,求证:四边形BFDE是平行四边形.【解答】证明:∵四边形ABCD 是平行四边形,∴AB∥CD,且AB=CD,又∵AE=CF,∴BE=DF,∴BE∥DF 且BE=DF,∴四边形BFDE 是平行四边形.19.(8分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC 的面积为6,求直线AB 的表达式.【解答】解:(1)由题意得,k=xy=2×3=6∴反比例函数的解析式为.(2)设B ,作AD⊥BC 于D,则D(2,b)∵反比例函数的图象经过点B(a,b)∴b=∴AD=3﹣.=BC•AD∴S△ABC=a(3﹣)=6解得a=6∴b==1∴B(6,1).设AB 的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得,解得,直线AB的解析式为x+4.20.(8 分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为120 人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.【解答】解:(1)这次参与调查的村民人数为:24÷20%=120(人);故答案为:120;(2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),如图所示:;(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;(4)如图所示:,一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2.21.(8分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?【解答】解:设原计划平均每天施工x 平方米,则实际平均每天施工1.2x 平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500 是原方程的解,∴1.2x=600.答:实际平均每天施工600 平方米.22.(8 分)图1 是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC 宽3.9 米,门卫室外墙AB 上的O 点处装有一盏路灯,点O 与地面BC的距离为3.3 米,灯臂OM 长为1.2 米(灯罩长度忽略不计),∠AOM=60°.(1)求点M 到地面的距离;(2)某搬家公司一辆总宽2.55 米,总高3.5 米的货车从该入口进入时,货车需与护栏CD 保持0.65 ≈1.73,结果精确到0.01米)【解答】解:(1)如图,过M作MN⊥AB于N,交BA的延长线于N,Rt△OMN 中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ON=OM=0.6,∴NB=ON+OB=3.3+0.6=3.9;即点M 到地面的距离是3.9 米;(2)取CE=0.65,EH=2.55,∴HB=3.9﹣2.55﹣0.65=0.7,过H 作GH⊥BC,交OM 于G,过O 作OP⊥GH 于P,∵∠GOP=30°,∴tan30°= ,∴GP= OP=≈0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.23.(10 分)已知在Rt△A BC 中,∠B AC=90°,CD 为∠ACB的平分线,将∠ACB沿CD 所在的直线对折,使点B 落在点B′处,连结AB',BB',延长CD 交BB'于点E,设∠A B C=2α(0°<α<45°).(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若AB≠AC,试求CD与BE的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EF交BC于点O,设△COE的面积为S1,△COF的面积为(用含α的式子表示).【解答】解:(1)如图1中,∵B、B′关于EC 对称,∴BB′⊥EC,BE=EB′,∴∠DEB=∠DAC=90°,∵∠EDB=∠ADC,∴∠DBE=∠ACD,∵AB=AC,∠BAB′=∠DAC=90°,∴△BAB′≌CAD,∴CD=BB′=2BE.(2)如图2 中,结论:CD=2•BE•tan2α.理由:由(1)可知:∠ABB′=∠ACD,∠BAB′=∠CAD=90°,∴△BAB′∽△CAD,∴==,∴=,∴CD=2•BE•tan2α.(3)如图3 中,在Rt△ABC 中,∠ACB=90°﹣2α,∵EC 平分∠ACB,∴∠ECB=(90°﹣2α)=45°﹣α,∵∠BCF=45°+α,∴∠ECF=45°﹣α+45°+α=90°,∴∠BEC+∠ECF=180°,∴BB′∥CF,∴===sin(45°﹣α),∵=,∴=sin(45°﹣α).24.(10分)已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F 的解析式;(2)如图1,直线x+m(m>0)与抛物线F 相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B 的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P 为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=x2+bx+c的图象经过点(0,0)和(﹣,0),∴,解得:,∴抛物线F 的解析式为y=x2+ x.(2)将x+m 代入y=x2+ ,x2=,∴y 1=﹣+m,y2= +m,∴y 2﹣y1=(+m)﹣(﹣+m)= (m>0).(3)∵m=,∴点A的坐标为(﹣,),点B的坐标为(,2).∵点A′是点A 关于原点O 的对称点,∴点,﹣).①△AA′B 为等边三角形,理由如下:∵A(﹣,),B(,2),A′(,﹣),∴A A′=,AB=,A′B=,∴AA′=AB=A′B,∴△AA′B 为等边三角形.②∵△AA′B 为等边三角形,∴存在符合题意得点P,且以点A、B、A′、P 为顶点的菱形分三种情况,设点P 的坐标为(x,y).(i)当A′B为对角线时,有,解得:,∴点P ,);(ii)当AB为对角线时,有,解得:,∴点P ,);(iii)当AA′为对角线时,有,解得:,∴点P的坐标为(﹣,﹣2).综上所述:平面内存在点P,使得以点A、B、A′、P 为顶点的四边形是菱形,点P的坐标为(2,)、(﹣,)和(﹣,﹣2).。

相关文档
最新文档