走进2018年中考数学专题复习几何最值问题解题策略

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

走进2018年中考数学专题复习第七讲几何最值问题解题策略【专题分析】

最值问题是初中数学的重要内容,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)以及用一次函数和二次函数的性质来求最值问题.

【知识归纳】

1.在求几何图形中的周长或线段长度最值时,解决此类问题的方法一般是先将要求线段(要求的量)用未知数x表示出来,建立函数模型(一般所表示的式子为一次函数解析式或二次函数解析式),常用勾股定理或三角形相似求得函数关系式,再用函数的增减性或最值来求解即可.

2.利用对称的性质求两条线段之和最小值的问题,解决此类问题的方法为:如图,要求直线l上一动点P到点A,B距离之和的最小值,先作点A关于直线l的对称点A',连接A'B,则A'B与直线l的交点即为P点,根据对称性可知此时A'B的长即为PA+PB的最小值,求出A'B的值即可.

【题型解析】

题型1: 三角形中最值问题

例题:(2017山东枣庄)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P 的坐标为()

A.(﹣3,0)B.(﹣6,0)C.(﹣,0) D.(﹣,0)

【考点】F8:一次函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.

(方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.

【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.

令y=x+4中x=0,则y=4,

∴点B的坐标为(0,4);

令y=x+4中y=0,则x+4=0,解得:x=﹣6,

∴点A的坐标为(﹣6,0).

∵点C、D分别为线段AB、OB的中点,

∴点C(﹣3,2),点D(0,2).

∵点D′和点D关于x轴对称,

∴点D′的坐标为(0,﹣2).

设直线CD′的解析式为y=kx+b,

∵直线CD′过点C(﹣3,2),D′(0,﹣2),

∴有,解得:,

∴直线CD′的解析式为y=﹣x﹣2.

令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,

∴点P的坐标为(﹣,0).

故选C.

(方法二)连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.

令y=x+4中x=0,则y=4,

∴点B的坐标为(0,4);

令y=x+4中y=0,则x+4=0,解得:x=﹣6,

∴点A的坐标为(﹣6,0).

∵点C、D分别为线段AB、OB的中点,

∴点C(﹣3,2),点D(0,2),CD∥x轴,

∵点D′和点D关于x轴对称,

∴点D′的坐标为(0,﹣2),点O为线段DD′的中点.

又∵OP∥CD,

∴点P为线段CD′的中点,

∴点P的坐标为(﹣,0).

故选C.

方法指导:出现最值问题,可转化为轴对称知识所涉及的最短路径问题是我们解答此类问题的常见方法.

题型2: 四边形中最值问题

例题:(2017贵州安顺)如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 6 .

【考点】PA:轴对称﹣最短路线问题;KK:等边三角形的性质;LE:正方形的性

质.

【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的边长为6,可求出AB的长,从而得出结果.

【解答】解:设BE与AC交于点P,连接BD,

∵点B与D关于AC对称,

∴PD=PB,

∴PD+PE=PB+PE=BE最小.

即P在AC与BE的交点上时,PD+PE最小,为BE的长度;

∵正方形ABCD的边长为6,

∴AB=6.

又∵△ABE是等边三角形,

∴BE=AB=6.

故所求最小值为6.

故答案为:6.

方法指导:本题借助不等式“a2+b2≥2ab”通过代换转化来求平行四边形面积的最值,体现了转化思想和整体思想的运用.

题型3:圆中最值问题

例题:(2017浙江衢州)如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,

0),半径为1,点P为直线y=﹣x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是2.

【考点】MC:切线的性质;F5:一次函数的性质.

【分析】连接AP,PQ,当AP最小时,PQ最小,当AP⊥直线y=﹣x+3时,PQ 最小,根据两点间的距离公式得到AP=3,根据勾股定理即可得到结论.

【解答】解:连接AP,PQ,

当AP最小时,PQ最小,

∴当AP⊥直线y=﹣x+3时,PQ最小,

∵A的坐标为(﹣1,0),y=﹣x+3可化为3x+4y﹣12=0,

∴AP==3,

∴PQ==2.

方法指导: 此题综合性强,解题方法很多,考查范围较广,与初中数学很多内容有关,如勾股定理、圆周角定理及推论、垂径定理、相似、三角函数、二次函数、垂线段的性质、二次根式的计算与化简等.考查了多种数学思想,如建模思想、化归思想等.此题难度中等,有一定的灵活性,考生不易拿满分.

【提升训练】

1. (2017江苏盐城)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为π.

【考点】O4:轨迹;R2:旋转的性质.

【分析】如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短

【解答】解:如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,

观察图象可知,旋转角为90°(逆时针旋转)时B运动的路径长最短,PB=

=,

∴B运动的最短路径长为==π,

故答案为π.

相关文档
最新文档